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Abstract—Experimenting with mobile and wireless networks is challenging because testbeds lack repeatability and existing simulation

models are unrealistic for real-world settings. We present practical models for the physical and MAC layer behavior in mobile wireless

networks in order to address this challenge. Our models use measurements of a real network rather than abstract radio propagation

and mobility models as the basis for accuracy in complex environments. We develop an adaptive measurement technique in order to

maximize the accuracy of our models in dynamic environments. The models then predict the packet delivery, deferring, and collision

probability in the same network for an arbitrary set of transmitters. This allows to explore the performance of different network and

higher layer protocols in simulation or emulation under identical and realistic conditions. We evaluate the accuracy of our models

empirically by comparing them to benchmark measurements. We find that our models are effective at reproducing mobile scenarios in

various environments. Across many experiments in realistic environments, we are able to reproduce link delivery probabilities with

RMS error below 12 percent, and the simulated throughput of data flows in the presence of interfering transmitters with an error that is

below 10 percent.

Index Terms—Wireless experiments, measurements, simulation, mobility.
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1 INTRODUCTION

WIRELESS networks have enjoyed a high popularity in
recent years, and the adoption rate continues to grow

rapidly in the mobile device market. Wireless networks
have traditionally been used in combination with a fixed
infrastructure to provide wireless connectivity to nomadic
users at “hotspots.” However, more recent developments
have proposed to incorporate cooperative peer-to-peer
communication between the mobile users in the form of
wireless ad hoc networks. The latter has led to a large effort
by researchers to develop new MAC, routing, and transport
protocols that are able to cope with the dynamic nature of
these networks.

A large portion of these efforts is concerned with the
challenging task of evaluating different protocol design
tradeoffs in a systematic and representative way. The two
main techniques that have been used for this purpose are
field experiments that test real systems in real-world
environments and simulation (or emulation) studies that
use abstract models to model the wireless network behavior
in a synthetic environment. Both techniques have unique
benefits but have also inherent limitations.

On the one hand, field experiments with real hardware
and software allow for a high degree of realism and
credibility. However, this approach faces serious issues in
terms of repeatability and control: the radio conditions are
almost impossible to reproduce, due to the mobility of the
communicating nodes, the variability of radio sources, and

the interference of physical objects. Even repeating the same
experiment twice under ideal conditions can be a daunting
task as we will show in Section 3. In addition, field trials
lack a crucial benefit of simulations. It is simply too time
consuming to run experiments in a wide variety of settings.

For these reasons, many researchers have understand-
ably embraced simulations. Simulations solve the problems
of repeatability and configurability. However, simulations
that rely on abstract models found in the literature are often
simple, assuming, for example, that signal propagation is a
simple function of distance, that coverage of radios are
circular, that interference is twice the transmission range, or
that node mobility follows uniform random patterns. As a
result, evaluations with wireless simulation tools that rely
on such models like ns-2 [1], GloMoSim [19], OMNet++ [2],
and TOSSIM [13] have been shown to produce results that
differ significantly from the reality [11], [12].

In our work, we follow another approach that aims at
combining the strengths of both methods by developing
models that are seeded by measurements taken in field
experiments. Radio propagation and in particular node
mobility are sufficiently complex in realistic settings that
the only feasible method to model them accurately is by
means of physical measurements. Our main goal is, there-
fore, to use simple real-world measurements on a mobile
network to capture the radio characteristics over time, and
then predict how such a network, or part of it, will perform
when running under different workloads in a simulator.
This allows us to compare different protocols under
identical real-world conditions.

The methodology we developed works as follows: We
use measurements on a network to get channel character-
istics between wireless nodes. During the whole measure-
ment phase, each node sends broadcast packets at a
constant rate and records all packets that it receives from
the other nodes. The broadcasting rate is limited at each
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node depending on the number of neighbors in order to
minimize packet losses caused by interfering transmissions.
We then formulate a physical layer model for the packet
delivery probability based on the measured broadcast
packets that captures the effects of radio propagation,
environmental noise, and node mobility. On top of that, a
MAC layer model predicts packet delivery under the
influence of carrier sense and interference caused by
simultaneous transmissions. Our models are effective for
exploring the performance of network or higher level
protocols under repeatable and realistic conditions in
various settings, i.e., we are able to explore arbitrary
communication patterns among an arbitrary subset of the
nodes participating in the measurements.

We have evaluated our models for the base case in which
IEEE 802.11 mobile nodes compete for the same channel in
various environments and mobility patterns. We find that
our models are accurate at estimating the link delivery
probability and the link throughput for many different
experiments. Across various settings, the root mean square
error (RMSE) of the estimated versus measured benchmark
packet probability ranges between 4 percent and 12 percent.
Furthermore, the error of the estimated throughput versus
the effective observed throughput is below 10 percent, in
contrast to up to >50 percent for a naive model that ignores
carrier sense and interference effects.

The rest of this paper is structured as follows: In the next
section, we introduce the experimental setup we base our
measurements on. In Section 3, we review general chal-
lenges in repeating and modeling wireless experiments
with mobility. In Section 4, we introduce our method and
our models which we evaluate in Section 5. Finally, we
review related work in Section 6 and conclude in Section 7.

2 EXPERIMENTAL SETUP

The work described in this paper uses measurements 1) to
gain an understanding of wireless characteristics under
node mobility, 2) as input for our models, and 3) to evaluate
the accuracy of our models. The measurement platforms
and environment in which we conduct our experiments are
described in this section.

We use laptops as mobile nodes in our testbed. Each
laptop is equipped with an Atheros IEEE 802.11 a/b/g card
which we primarily use in the 2.4 GHz frequency band. In
all experiments, the wireless cards are operated in ad hoc
mode on the same channel. While all experiments are
conducted with IEEE 802.11, we expect the presented
results to hold, in general, for CSMA/CA systems.

We perform experiments in three different environments
to understand the limitations of our models and the effects
in different settings:

. IN-PED: These experiments consist of indoor
measurements where the mobile nodes are carried
by people inside a structured building with multi-
ple floors. The nodes are moving at typical
pedestrian speed.

. OUT-PED: These experiments are conducted out-
doors on sunny and dry days. The outdoor environ-
ment is flat and relatively free of obstacles such that
the mobile nodes almost always have line-of-sight

contact. The mobile nodes are carried by people
moving at typical walking speeds.

. OUT-CAR: In these experiments, a mobile node is
mounted inside a car driving on a street at varying
speeds with a maximum of 50 km/h. The mobile
node inside the car communicates with fixed nodes
along the street.

In all experiments, we aimed at minimizing the source of
external interference by conducting the experiments in areas
with low radio frequency (RF) activity in the 2.4 GHz band.

3 MOBILITY CHALLENGES IN WIRELESS

EXPERIMENTS

Before presenting our models, we present two challenges in
reproducing practical measurements with identical condi-
tions. We first provide an illustrative example to show how
reproducing identical field experiments with node mobility
can lead to a significant difference in the resulting network
characteristics. Then, we analyze the relationship between
the signal strength at the receiver and the packet delivery
ratio in order to use the signal to interference and noise ratio
(SINR) to model intermediate packet delivery ratios.

3.1 Repeatability

Wireless experiments with node mobility are inherently
difficult to reproduce accurately because the received
wireless signal depends strongly on the environmental
conditions. Even repeating a single experiment twice in a
controlled environment is a quite challenging task. To
illustrate this challenge, we show a simple IN-PED
experiment in which we control as much as possible the
mobility of the nodes and the environment.

This particular experiment includes two nodes, one fixed
and one that is mobile. At the beginning, both nodes are close
together. Then, we move the mobile node away and come
back according to a predefined path with strictly identical
time guidelines in both experiments. The experiment is
conducted indoors with the fixed node sending broadcast
packets of 512 B at a constant rate (50 packets per second).
Note that broadcast packets are not acknowledged and
hence not retransmitted in the case of losses with 802.11,
allowing us to capture the raw delivery probability over the
link. The mobile node is passive and only records the
received packets.

The packet delivery probability over time at the mobile
node averaged over one second intervals is plotted in Fig. 1.
Clearly, we recognize a similarity in the outcome of both
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Fig. 1. Packet delivery probability over time on a wireless link in two
consecutive experiments with “identical” underlying node mobility
patterns.
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experiments. The packet delivery probability drops at

around 20 seconds when the mobile node moves away from

the fixed node. However, the packet delivery probability

varies significantly between the two experiments, despite

our attempts to hold the environment constant. The largest

discrepancy is between 40 and 50 seconds. During this time

interval, the probability is below 0.25 in experiment 1 in

contrast to a value larger than 0.75 in experiment 2. The

reason for the difference in packet losses is due to minimal

variations in the mobility causing significant differences in

fading and shadowing of the wireless channel.
This example questions the applicability of reproducing

particular mobility patterns to obtain the same link
conditions in field experiments. The discrepancy of con-
secutive experiments will even be higher in experiments
with longer intervals between the trials, with uncontrolled
interfering radio sources, or with a higher number of nodes.
These difficulties in controlling mobility and interference
are the prime motivators for the experimental approach we
propose and evaluate in this paper.

3.2 Intermediate Packet Delivery Probabilities

Unlike in wired networks, intermediate packet delivery
ratios ranging between 0 and 1 are quite common in wireless
networks. Even in static wireless networks, researchers have
reported such behavior [18], [3]. The reasons are typically
assigned to multipath fading and shadowing effects. In
mobile wireless networks, intermediate packet delivery
ratios are even the common case, occurring whenever two
nodes move outside or inside communication range. There-
fore, a key metric that has to be captured in order to
characterize wireless links is the packet delivery probability.

The SINR model is widely used in the literature to model

the delivery probabilities in wireless networks [8], [16], [14].

The model says that packets are successfully received if S
IþN

is above a certain threshold, where S is the strength of the

signal at the receiver, I is the interference from simultaneous

transmissions on the same frequency band, and N is the

noise inside the receiving radio. At first, this model appears

appealing. We should be able to model the delivery

probabilities by measuring these values. However, our

experiments revealed that the model is not well suited to

model intermediate packet delivery probabilities. To illus-

trate this, we plot in Fig. 2, the outcome of an experiment

similar to the one previously shown in Fig. 1. On the vertical

axis, we plot the mean SINR which is measured as the

received signal strength indicator (RSSI) as reported by the

wireless card over the noise floor N (which is a constant

value for the card). The RSSI value that the card reports

includes interference but is almost negligible in this

experiment. Each point represents an average over one

second. As we can see, for SINR values higher than 20 dB, we

can declare the packet delivery ratio to be between 0.9 and 1.

However, for smaller packet delivery probabilities, the

measured SINR values all fall in a relatively narrow band

of a couple dBs. Hence, it is quite problematic to infer the

delivery probability from the SINR in this range. Radio cards

from different manufacturers may have slightly different

behavior; however, the general problem remains the same.

4 MEASUREMENT-BASED MODELS

We now present our models of packet delivery that use past

measurements to predict the performance with arbitrary

sets of interfering senders competing for the same channel.

We first describe the overall methodology consisting of an

adaptive network probing technique, a physical layer

receiver model, and a MAC layer deferral and interference

model. Then, we present each part in more detail.

4.1 Methodology Overview

Our methodology operates as follows:

1. The profile of the network is traced in a field
experiment. Each of the nodes broadcasts probe
packets at a constant rate. The rate is adapted at each
node according to the momentary number of nodes
it has in its transmission range. This approach
attempts to minimize the probability of packet losses
caused by colliding probe packets transmissions.

2. Our physical layer receiver model, we present in
Section 4.3, is then used with the network profile to
compute a time-dependent probability that a packet
is correctly received from a given sender to any
other node.

3. Our MAC layer interference model (Section 4.4) is
used in combination with our physical layer model
to compute the probability that a sender will sense
competing transmissions and that simultaneous
transmissions will interfere.

4. Traffic models or traces build on the physical and
MAC layer models to predict the performance of any
arbitrary communication pattern among all nodes
participating in the traces or an arbitrary subset. This
could be in the form of a packet-level simulator or of
a network emulator.

The key contributions are the physical and MAC layer

models that use measurements to predict the packet

delivery probability.
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Fig. 2. Scatter plot of the mean SINR as a function of delivery probability
for received packets.
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4.2 Network Profiling

The network profiling is a field experiment to capture the
impact of the path loss, fading, and shadowing on the link
qualities in a mobile network. For this, each node broadcasts
probe packets at a constant rate. The probe packets are not
only affected by environmental factors such as the path loss
or fading but also by interference and collisions from the
injected probe packets. In 802.11, CSMA/CA with broadcast
senders works as follows: Each node senses whether the
channel is busy, and defers if so. To avoid collisions, when
the channel becomes free, each node randomly picks a
number of fixed-time slots in the range ½0;W � 1�. There is no
exponential back off for broadcast packets in 802.11 and W

is, therefore, fixed. The node counts down this many free
slots to pass before transmitting the packet, pausing the
countdown when the channel is busy. The countdown
operations are effectively races among the nodes and two
nodes picking the same random number might end up
transmitting at the same time, causing a collision. Further-
more, interference may occur when a node senses the
channel as free because it is too far away to decode a signal
from another sending node (the hidden node problem). In
this case, two transmissions might interfere at a third node
located in between the two senders.

To avoid losses caused by interferences and colliding
transmissions, we limit the sending rate of the broadcast
packets at each node according to the number of nodes it has
in transmission range. More precisely, ifC is the link capacity
and NðiÞ is the number of nodes in transmission range of
node i, the sending rate rðiÞ of node i is set according to

rðiÞ ¼ � � 1

NðiÞ þ 1
� C; ð1Þ

where � is a constant between 0 and 1. In other words, we
limit the probability that N nodes will pick up the same
random number in the range ½0;W� 1� and possibly collide
with each other. Further, this approach also directly limits
the amount of potential interference that might result due to
a false estimation of the channel availability. Section 5
discusses in detail how � impacts the accuracy of our model
and how it should be set to provide a good performance
tradeoff. In addition to internal interference, losses may also
be caused by interference from external radio sources. This
type of interference is indeed desired as it reflects realistic
settings that we might encounter in real deployments.

When a node receives a broadcast packet, it stores
information such as the arrival time of the packet, the
identity of the sender, and a sequence number included in
the probe packets and incremented by the sender locally in
its storage. The collected information from all nodes
represents the complete network profile that we use as
input for the models presented next.

4.3 Physical Receiver Model

Having a complete set of link traces from probe measure-
ments, we infer the link quality at various moments in time
using a probabilistic physical receiver model. Each partici-
pating node provides a trace of all the packets it received.
With sequence numbers in all traces, we can infer losses and

generate a sequence of success/loss events over time for all
node pairs.

Consider a link from node u to node v. Since the outcome
of each packet reception on this link is either loss or success,
a simple model is treat each packet reception as a Bernoulli
trial, with 1 denoting success, and 0 denoting loss. Consider
the sequence of loss/success M½�� over all trials in an
experiment’s time. We are interested in the probability
pu;vðnÞ representing the probability that the outcome of the
trial n is 1 and in 1� pu;vðnÞ representing the probability that
the trial n is 0. The probability of a success event n is given by

pu;vðnÞ ¼
Pnþb

i¼n�a M½i�
aþ bþ 1

; ð2Þ

for 0 � a < n and 0 � b � maxðnÞ � n, where a and b are
to be chosen such that the process of trials within interval
½n� a; nþ b� is stationary. The assumption of this model is
that each trial is independently and identically distributed
(i.i.d.) within the interval ½n� a; nþ b�. In reality, this is
not totally true (see Appendix A). However, since the
dependence quickly vanishes for time intervals larger than
100 ms as shown in Appendix A, the error in modeling
the trials as i.i.d. will not be significant when averaging
over longer periods.

There is fundamental tradeoff in setting a and b properly.
Using small values for a and b will result in a large sampling
error as we might not acquire enough trials to have a high
confidence in the obtained mean value. On the other side, if
we use too large values for a and b, we might get a large
averaging error because we average over a nonstationary
process with variant mean, for example, when the devices
have moved considerably such that the loss behavior has
changed. Our physical layer model adapts a and b over the
experiment’s time to find the best tradeoff in different
contexts as explained in the following.

The model relies on statistical hypothesis testing. A
statistical hypothesis test is an algorithm to state the
alternative (for or against the hypothesis) which minimizes
certain risks. It is often used in statistics for assessing
whether two samples of observations come from the same
distribution. In our context, we are interested whether the
outcome of two Bernoulli trial sequences has the same
distribution and expected value. If this is the case, we can
combine them into one larger sequence to reduce the
sampling error while not increasing the averaging error in
determining the probability of loss/success. We apply
hypothesis testing to estimate pðnÞ in the following way:
We start with a small bin of trials around trial n. For
example, Fig. 3 shows a bin of five trials with a0 ¼ b0 ¼ 2.

LENDERS AND MARTONOSI: REPEATABLE AND REALISTIC EXPERIMENTATION IN MOBILE WIRELESS NETWORKS 1721

Fig. 3. Hypothesis tests on bins of trials to check whether prior and
successive bins have the same probability distribution and mean.
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Then, we test whether trial sequences prior and after the
sequence of this bin might have the same mean. We
formulate the hypothesis test as follows: The null hypothesis
is that the two sequences are drawn from identical
distributions with equal means. Then, we apply the Mann-
Whitney U-test [6], [9], which is a well-established two-
sided nonparametric hypothesis test for assessing whether
two nonoverlapping samples of observations have equal
means. The outcome of the test is a p-value, a value between 0
and 1 that indicates if the null hypothesis is true. The test is,
for example, rejected at a 5 percent confidence level if this
value is below 0.05. If the value is above 0.05, the test is
successful at a 5 percent confidence level which means that
the two sequences can be assumed to have identical means.
Confidence levels between 5 percent and 10 percent are
typically used in the literature. We have used 10 percent for
all our experiments in this paper because our experience has
shown that lower values result in too many false positives.

If the test constituting prior trials is successful, a is
increased to encompass the whole prior bin. If the test
constituting later trials is successful, b is increased to
encompass those trials. This procedure is repeated on each
side until both tests fail. In the particular example of Fig. 3,
the test with the left bin would be negative and the test with
the right bin positive. Therefore, a would stop growing,
whereas b would be increased by 5 to form a new bin of 10
trials. Finally, when the test on both sides fails, we declare
the window size as final and compute the probability pðnÞ
using this size. The pseudocode of the simplified algorithm
is summarized in Fig. 4.

The size of the initial window has to be chosen as small
as possible in order to make sure that the process within
that initial window is stationary. However, we also need a
reasonable amount of initial trials to build the first average.
In all tests we have performed with different window sizes,
we have observed that an initial window size of five trials is
a reasonable tradeoff and provides good results for various
broadcasting rates.

4.4 MAC Deferral and Interference Model

At the MAC layer, we model the deferral of the nodes
competing for the same channel and the interference from
simultaneous transmissions. Both are achieved using the
delivery probabilities p extracted from the physical layer
model and a higher layer traffic model that captures when a
node has packets to send. The latter might be done (as in the
next two sections of this paper) with a simulator that
models a traffic workload and higher level protocol rules.
An alternative would be to emulate a real application with
an entire protocol stack generating the traffic load.

The deferral model works as follows: Assume that we
have only two nodes u and v. Node u is sending and node v
needs to acquire the channel because it has a packet to send.
The packet delivery probability pu;v from node u to v is
known from the physical receiver model presented earlier.
We model the probability that node v will sense the channel
as busy with the probability pu;v and as free with the
probability 1� pu;v. In reality, the deferral depends on the
signal power at the receiver and an associated deferral
threshold. By using pu;v to base the deferral decision, we
will defer slightly less frequently than we should because
we do not account for signal power levels that are above the
deferral threshold but in which the received signal at node v
was not sufficient to achieve a channel bit error rate that is
large enough to correctly decode the probe packets from
node u. However, we opt for the probabilistic model based
on the probe packets as the signal power threshold-based
decision model would lead to a deterministic deferral
behavior in which node v always or never defers when node
u is sending even when the signal power is close to the
deferral threshold. When the channel is sensed busy, node v
defers and waits according to the exponential back off
algorithm of 802.11. Otherwise, it may start transmitting.

Now consider the general case of more than one spatially
distributed nodes having acquired the channel and trans-
mitting simultaneously. This is, for example, possible for
node pairs which are distant enough not to hear from each
other. In this case, we model the deferral probability of a
new node that wants to acquire the channel in analogy to
the single node case as 1��u2Uð1� pu;vÞ and the prob-
ability that the channel is free as �uð1� pu;vÞ.

Once we have the individual probabilities that each node
will sense the channel as free and start transmitting, we
need to determine collisions from possibly interfering
transmissions. The SINR is typically used in the literature
to model interference [8], [16], [14]. The SINR model counts
the signal power of simultaneous transmissions as adding
to the noise floor at a receiving node. The main problem
with this model as we have seen in Section 3, is that it fails
to capture loss behavior characteristics for links with
intermediate delivery probabilities. However, such links
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Fig. 4. Pseudocode to estimate the success probability pðnÞ from a
sequence of loss/success events M using hypothesis testing.
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are the common case in mobile networks when nodes move
in and out of range of each other. We, therefore, do not use
the SINR model and instead account for interference by
using the individual link delivery probabilities p as follows.

Consider node u sending to node v. Without any
interfering transmission, node v would receive the packet
with probability pu;v. Now consider a third node w sending
at the same time. According to our model, node v would
receive this packet with probability pw;v. Accordingly, we
model the interference probability at node v as pw;v. Hence,
the probability that node v correctly receives the packet
from u is pu;v � ð1� pw;vÞ. In case multiple nodes are sending
at the same time, the reception probability becomes
pu;v ��w2W ð1� pw;vÞ, where W is the set of nodes sending
at the same time as node u. Similarly, as with the deferral
probability, our model slightly underestimates interference
since it is based on the probability of received probe
packets. However, we will see in Section 5 that the
modeling error is low.

When we have interference, our model considers the
packet at the receiver as lost. This model is in a sense
pessimistic since the sum of the power level of interfering
transmissions might not be large enough to tear down the
signal to noise threshold below the minimal value required
to correctly decode a packet. However, transmissions
having a low signal strength are likely to have a low
delivery probability, hence reducing the probability of
interference in our model. Another downside of our model
is that nodes do only account for interference of other nodes
from which they can possibly receive packets. However, in
reality, the interference range is typically larger than the
transmission range. Here again, the problem is somewhat
mitigated since it is likely that nodes in the interfering range
will occasionally be able to decode some packets, resulting
in a delivery and interference probability that is greater
than zero. We will see in Section 5 that our model is able to
accurately model interference despite these two limitations.

4.5 Reproducing the Measured Experiments

The strength of our methodology is its ability to reproduce
any arbitrary communication pattern for the measured
experiments. The communication patterns are defined by
traffic models or real-world traces of interest building on
the physical and MAC models to predict the performance in
simulation or emulation. The reproduced experiments
could include all nodes from the traced experiment or an
arbitrary subset of the nodes. Hence, one can answer
questions such as how would two protocols (or applica-
tions) perform under identical conditions. Alternatively,
one can evaluate the performance of a particular protocol
under different network configurations by including all
nodes versus only a subset of them.

5 EVALUATION

In this section, we test our models to show that mobile
scenarios can be reproduced in simulations with a high
confidence despite the inherent dynamics and variability of
the link conditions. We evaluate first the physical layer
receiver component separately. Then in a second step, the
overall accuracy of all models are assessed.

5.1 Methodology

We judge the accuracy of our models by comparing their
usage in simulations to benchmark measurements. For
this purpose, we have implemented our models in the
GloMoSim discrete-event simulator [19]. GloMoSim is a
packet-level simulator designed for wireless networks.
Our modifications are related to the physical and MAC
layer of the simulator. We use the probabilities p derived
from measurements instead of abstract models for the
path loss, fading, and interference in order to determine
successful packet transmissions.

In order to compare our results to a benchmark, we
conduct selected experiments in which we gather the profile
of the network at the same time as we send traffic samples
from selected nodes. This approach assures that the
benchmark data traffic encounters the same network
conditions as the probe traffic, leading to a possible
comparison when the nodes are mobile. The outcome of
such experiments is a traced profile of probe packets
together with data traffic samples that we consider as a
benchmark for our simulations. That is, we compare the
benchmark with the outcome of simulations using our
models that take as input the traced profile together with
the same data traffic as for the benchmark.

Unless noted otherwise, we use 512 Bytes packets for the
probe and benchmark data traffic. The data rate is fixed at
1 Mbps. We do not present results with a variable bit rate.
However, our models could easily be extended to incorpo-
rate for variable bit-rate transceivers by tracing the effective
bit rate during the experiments and replaying the simula-
tions using those values.

To present our results, we use the correlation coefficient
as a measure for the accuracy of the simulations compared
to the benchmarks. The correlation coefficient is the zeroth
lag of the normalized covariance function. We use the
correlation coefficient instead of the more popular RMSE in
order to capture errors in the absolute values but also in
shifts within the time domain. However, as a reference, we
also sometimes give the RMSE value. A correlation
coefficient of 1 is a perfect match. A value of zero is the
largest difference that two functions may have.

5.2 Physical Receiver Model

We first analyze the impact of the probing rate on the
accuracy in the different environments (IN-PED, OUT-PED,
and OUT-CAR). Fig. 5 plots the error of reproducing in
simulations the benchmark traffic for different probing rates
with 0 < � < 1 and one-hop constant-bit-rate UDP flows of
20 KB/s. The reported values are averages over the
correlation coefficients between the benchmark and the
simulations for at least one-hour measurements for each
point. We see slight variations depending on the mobility
and the environment. The error gets smaller when the
nodes move faster (OUT-CAR versus OUT-PED) and when
the environment has less obstacles (OUT-PED versus IN-
PED). The reason for the speed variations is that faster
nodes tend to remain for less time in link states that have
intermediate delivery probabilities. This makes, in general,
the link probability estimation error smaller when aver-
aging over time. The difference between outdoor and
indoor experiments can be associated to higher link
dynamics caused by fading and shadowing in indoor
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settings that have intermediate obstacles and reflections.
Links with higher dynamics generally require higher
sampling rates for the same accuracy as links with less
variations. For all three cases, we see that the error is
smallest for values of � between 0.2 and 0.4. This regime
offers the best tradeoff between the amount of probe
packets sent to estimate the link delivery probabilities and
the amount of interference caused by colliding probe
packets. We, therefore, sample the network profile with � ¼
0:3 in all the remaining experiments of our work.

Next, we look at how our models scale to the number of
nodes in the network. For this, we consider the reproducing
error when varying the number of nodes inside the same
collision domain. In this experiment, the nodes are fixed
inside the same collision domain (i.e., all nodes can receive
packets from each other) and we are moving in and out of
range with one node that is sending the benchmark traffic in
order to have mobility effects as time-varying packet

delivery probabilities. The correlation coefficient between
the simulated and the benchmark delivery probability over
one second averages is plotted in Fig. 6. For visualization
purposes, Fig. 7 shows three individual snapshots for 2, 18,
and 82 nodes in IN-PED. Note that since we only had five
physical devices at our hands for our actual experiments, the
results for a larger amount of nodes indicate the performance
obtained by using only five nodes but while setting the probe
packet sending rate as if there were a higher number of
nodes in the collision domain by using (1). Clearly, we
observe a degradation in the accuracy of our models for an
increased number of nodes. For example, in Fig. 7c, the
simulations do not manage to reproduce the sharp prob-
ability drop at roughly 150 s. Nonetheless, the overall trend
is comparably well reproduced and we believe that this
accuracy level is sufficient for many scenarios of interest.

To show the benefit of using hypothesis testing with a
variable window size as we propose to estimate the loss/
success probability of the probe packets in our physical
layer model, we further compare, in Fig. 8, our model with a
model that would use a fixed window size for this purpose.
The plot makes the comparison for the IN-PED traces from
the previous experiments using fixed window sizes of 0.5 s,
1 s, 2 s, and 4 s. Our approach outperforms any fixed
window size. A small window size achieves an almost as
good correlation coefficient for a low number of nodes but
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Fig. 6. Effect of the number of nodes on the correlation coefficient of the

delivery probability between simulated and benchmark flows in the OUT-

Fig. 7. Visual comparison of simulated versus benchmark delivery
probability on a link in the IN-PED traces for 2, 18, and 82 nodes in the
same collision domain. (a) 2 nodes, correlation coefficient ¼ 0:96,
RMSE ¼ 7 percent. (b) 18 nodes (extrapolated, correlation
coefficient ¼ 0:94, RMSE ¼ 10 percent. (c) 82 nodes (extrapolated),
correlation coefficient ¼ 0:88, RMSE ¼ 12 percent.

Fig. 5. Effect of the probing rate (�) on correlation coefficient of delivery
probability between simulated and benchmark flows in the OUT-CAR,
OUT-PED, and IN-PED traces.
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turns out to be significantly worse for higher node densities.

On the other side, larger window sizes come close to our

approach for high node densities but are less accurate

otherwise. A major problem with a fixed window size is

that the number of nodes will not remain fixed during an

experiment. Because of mobility, the node density will

change over time and the nodes will adapt their sending

rate accordingly. Hence, a fixed window size for the

duration of a whole experiment fails to choose the correct

window size according to the context and mobility.

5.3 MAC Deferral and Interference Model

We now look at the deferral and interference component of

our models. The key metric here is the accuracy of the

achieved throughput of multiple senders deferring and

interfering with one another. We compare the simulated

throughput using the probe packets to the measured

throughput in the benchmark traffic for the IN-PED traces.

In addition, we compare the outcome of a naive model that

does not account for node deferral and interference, i.e.,
there are no packet losses due to collisions. This naive model
is included as a baseline representing a worst case scenario.

Fig. 9 plots the error for this experiment including five
nodes (IN-PED). The horizontal axis represents the overall
sending rate measured as the total number of data traffic
sent per time over all nodes. The vertical axis shows the
average error of the throughput (receiving rate per time)
between the simulations and the benchmark measurements.
We can see that in contrast to the naive approach which
does not model deferral and interference, our model
manages to keep the error bounded even when the overall
sending rate exceeds 1 Mb/s, corresponding to the link
capacity in this experiment. Depending on the sending rate,
our model sometimes overestimates or sometimes under-
estimates losses.

5.4 Effect of the Probe Packet Size

So far, we have considered the probe packet size to be
identical to the reproduced data packet size in simulations.
However, for practical reason, it might not always be
possible to probe the network with the same packet size as
the simulated data packets. For example, when the
simulations include data traffic with variable packet sizes.
Hence, we investigate in the following the sensitivity of our
models in relation to the probe packet size.

In general, small packets have a higher delivery
probability than large packets over the same channel
because the probability of an event that causes a packet
loss is related to the packet transfer time. Therefore, relying
on small packets overestimates the delivery probability
when extrapolating to larger data packets. However, in our
method, � is limiting the sending rate and not the number
of probe packets per time. Hence, for a constant �, small
probe packets result in a higher channel sampling rate
compared to large probe packets. Indeed, this tradeoff
results in better performance results for small �. For
example, in Fig. 10, the reproducing error of an experiment
is plotted in which the network has been profiled
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Fig. 8. Effect of the window size in the physical layer delivery model for
the IN-PED traces varying the number of nodes in the same collision
domain.

Fig. 9. Throughput estimation error of our model compared to a naive
model that ignores interference.

Fig. 10. Effect of the probe packet size (64 B versus 512 B) on
correlation coefficient between simulated and benchmark flow with
512 B data packets.
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simultaneously with 64 B and 512 B probe packets to
reproduce 512 B traffic in simulations. We see that 64 B
probe packets outperform 512 B probe packets for � < 0:33.
For larger packet size differences between probe and data
traffic, we will, however, experience a higher reproducing
error. For example, in Fig. 11, an experiment is plotted in
which the network has been profiled simultaneously with
64 B and 1,500 B probe packets to reproduce 1,500 B data
traffic in simulations. Compared to Fig. 10, a smaller � is
needed (here � ¼ 0:04) before the correlation coefficient of
1,500 B probe packets outperforms 64 B probe packets.

To set an appropriate probe packet size, one has to
consider the value of � and the data packet size to be
reproduced in simulations. For example, in the previous
sections where we used � ¼ 0:3, it would be preferable to
use 64 B probe packets for up to approximately 500 B data
packets. Only when reproducing larger data packets, one
would increase the probe packet size in the experiments.

5.5 Multihop Traffic

The previous results were based on one-hop traffic flows as
benchmark traffic. The next experiment looks at the
accuracy of our models for multihop flows, i.e., data flows
with intermediate relaying nodes as in multihop ad hoc
networks or mesh networks. Again, we compare the
simulated throughput using our models with the outcome
of a naive model that ignores interference. Fig. 12 plots the
error for an IN-PED experiment including three nodes and
without mobility. The three nodes are aligned as a chain
with an internode distance of roughly 10 meters. The
intermediate node relays the benchmark traffic between the
other two border nodes. The horizontal axis represents the
benchmark traffic sending rate at the sending border node.
The vertical axis shows the average receiving rate error
between the simulations and the benchmark measurements
at the opposite border node. Similarly, as for one-hop flows,
our models manage to keep the error low at high rates
compared to the naive model which underestimates losses
caused by interference and collisions.

6 RELATED WORK

Much work on the evaluation of mobile wireless networks

have relied on abstract models for radio propagation [8],

mobility [4], and fading [15]. These abstract models are

shown to be highly inaccurate in real-world environments

[7], [11], [12], [5]. Our approach is fundamentally different.

It is based on measurements of real networks in order to

avoid simplistic assumptions of these models.
There is relatively little work combining measurements

with models. Reis et al. [16] provide measurement-based
models of delivery and interference in wireless network.
Qiu et al. [14] also developed measurement-based models to
estimate throughput and goodput in wireless networks.
Both approaches were designed for static networks and
have inherent drawbacks in mobile scenarios. First, they
rely on the SNR value to estimate the packet delivery
probability which is a bad indicator for intermediate link
qualities as we have shown previously. Second, they
require iterative measurements in which every node sends
individually for a few seconds. The network topology has to
remain static for the duration of an iteration period which is
unrealistic in mobile networks.

Judd and Steenkiste emulate signal propagation in
hardware to provide a tool for experimenting with wireless
networks [10]. They notably improve realism and repeat-
ability, but unlike predictive models they must evaluate
each configuration of interest experimentally where our
approach allows to simulate different communication
patterns and network configurations, i.e., an arbitrary
subset of the experimentally traced nodes.

Woo et al. [18] use measurements to construct link quality

estimators in sensor networks. Chaintreau et al. [5] use

measurements to analyze the mobility patterns of people-

centric opportunistic networks. The Roofnet project has

investigated characteristics of packet loss, connectivity, and

throughput on a city-scale wireless network [3]. Similar to

us, these works find that measurements add significantly to

realism, though they do not explicitly model radio propaga-

tion, fading, or mobility in a predictive way as we do.
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Fig. 11. Effect of the probe packet size (64 B versus 1,500 B) on
correlation coefficient between simulated and benchmark flow with
1,500 B data packets.

Fig. 12. Throughput estimation error of our model compared to a naive
model that ignores interference for two-hop traffic flow.
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7 CONCLUSIONS

Experimenting with mobile and wireless networks is
challenging because testbeds lack of repeatability and
abstract simulation models are unrealistic for real-world
settings. We present measurement-based models for the
physical and MAC behavior of mobile networks including
the packet delivery and interference probability in CSMA
networks. To improve the accuracy of abstract radio
propagation and mobility models, we seed our models with
measurements of probe packets in real-world environments.
Our network profile of a given scenario includes probe
packets sent simultaneously from all nodes according to an
adaptive probing technique that minimizes the probe packet
loss interference. With our models, we are able to reproduce
real-world scenarios in higher layer simulations for arbitrary
traffic conditions. We evaluate our models in various
experiments and find that we can reproduce individual
wireless link conditions with a high confidence. Across
many experiments in realistic environments, we are able to
reproduce link delivery probabilities with an RMS error
below 12 percent and the simulated throughput of data flows
in the presence of interfering transmitters with an error
below 10 percent compared to errors of up to 50 percent for a
model that ignores the effects of interference.

Our goal is not to replace simulations based on abstract
models or traditional field experiments but to complement
them. We provide an attractive middle ground between
simulation and field experiments. To a large degree, our
approach is able to maintain the repeatability and configur-
ability of simulation while retaining the support for real
applications and much of the realism of testbeds. As a result,
we provide a superior platform for mobility experimenta-
tion. Our method is not, however, a complete replacement
for pure simulations with abstract models and real-world
evaluation. Abstract models are still useful in cases where a
large-scale experiment is needed that goes beyond the scale
of any empirical experiment. Real-world evaluation is still
useful when radio channel confidence beyond the capabil-
ities of the particular method is required, or for verifying the
operation of real software implementations.

APPENDIX A

EVALUATION OF STATISTICAL INDEPENDENCE IN

PACKET LOSSES

It is well known that wireless networks tend to have bursty
losses. In our model, however (see Section 4), we estimate
the packet delivery ratio by assuming that the losses are
statistically independent of each other, which is not true for
bursty losses. The accuracy of our model hence depends on
the error of modeling the losses as statistically independent.
We have seen in the evaluation of our model (Section 5) that
this assumption does not significantly impact the accuracy
of the modeling. However, to better understand the
burstiness of packet losses, in general, we give here an
analysis of the traces we collected.

We assess the burstiness of the losses on a link by
computing the covariance of a sequence of packets sent
broadcast (50 packets per second) between node pairs with
the same sequence shifted by a lag (a fixed number of

packets). The first lag is a shift of the series by one packet.
The second lag is a shift of the series by two packets, and so
on. The covariance for a series of statistically independent
packets is zero. The maximum value of the covariance is
one, when the packet losses are totally dependent of each
other. The covariance averaged over a stationary portion of
our traces (i.e., no mobility) in which the delivery ratio is
roughly 50 percent is shown in Fig. 13. We observe a
significant dependence for small lags below 10. However,
this dependence quickly vanishes. For lags higher than 10,
the losses are practically independent of each other. In the
time domain, a lag of 10 represents an interval of 200 ms
since packets are sent at 50 packets per second. Independent
studies in different settings have reported typical loss burst
durations in the order of roughly 100 ms [17], [16],
increasing our confidence that losses can be assumed as
independent for time intervals larger than that.
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