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Abstract—Context information brings new opportunities for efficient and effective system resource management of mobile devices. In

this work, we focus on the use of context information to achieve energy-efficient, ubiquitous wireless connectivity. Our field-collected

data show that the energy cost of network interfaces poses a great challenge to ubiquitous connectivity, despite decent availability of

cellular networks. We propose to leverage the complementary strengths of Wi-Fi and cellular interfaces by automatically selecting the

most efficient one based on context information. We formulate the selection of wireless interfaces as a statistical decision problem. The

challenge is to accurately estimate Wi-Fi network conditions without powering up the network interface. We explore the use of different

context information, including time, history, cellular network conditions, and device motion, to statistically estimate Wi-Fi network

conditions with negligible overhead. We evaluate several context-based algorithms for the estimation and prediction of current and

future network conditions. Simulations using field-collected traces show that our network estimation algorithms can improve the

average battery lifetime of a commercial mobile phone for an ECG reporting application by 40 percent, very close to the estimated

theoretical upper bound of 42 percent. Furthermore, our most effective algorithm can predict Wi-Fi availability for one and ten hours

into the future with 95 and 90 percent accuracy, respectively.

Index Terms— Network architecture and design, local and wide-area networks.

Ç

1 INTRODUCTION

EMERGING mobile applications in healthcare and multi-
media demand ubiquitously available wireless network

connectivity. Despite the wide deployment of cellular
networks and an increasing number of Wi-Fi hotspots,
how close we are to achieving ubiquitous connectivity in
our everyday life is still an open question. In this work, we
show the complementary strengths of cellular and Wi-Fi
networks and present context-based network estimation to
leverage these strengths and provide ubiquitous energy-
efficient wireless connectivity.

In order to realistically evaluate context-based network
estimation for everyday life, we gathered field data about
cellular and Wi-Fi networks through participants from the
Rice community in Houston, Texas, a major US urban area
from September 2006 to February 2007. Our data revealed
that on average, our participants spent 99 and 49 percent of
their everyday lives under cellular and accessible Wi-Fi
networks, respectively. However, the reality of the energy
costs and battery lifetime are not as bright. For example,
wireless data transfer for a three-channel ECG reporting
application will reduce the battery lifetime of a commercial
mobile phone by over 75 percent.

Compared to Wi-Fi, cellular networks require much lower
power to stay connected but consume much more energy per

bit for data transfers. Our solution is to employ Wi-Fi to
improve the energy efficiency of cellular data transfer.
However, unlike cellular networks, Wi-Fi has limited
availability and its network interface needs to remain
powered-off as much as possible due to its overwhelming
idle power consumption. The key challenge is to determine if
attempting a Wi-Fi connection is profitable energywise.
Addressing this challenge requires estimating Wi-Fi network
conditions without powering on the Wi-Fi interface.

In this work, we explore the use of context information to
estimate Wi-Fi network conditions. Such context information
includes time, history, cellular network conditions, and
device motion. We devise effective algorithms to learn the
conditional probability distribution of Wi-Fi network condi-
tions, given context information. With the conditional
probability distribution, we formulate wireless data transfer
through multiple interfaces as a statistical decision problem,
and validate our solutions through both trace-based simula-
tion and field trials. Furthermore, we evaluate the perfor-
mance of our algorithms for the prediction of future network
conditions. On average, our most effective algorithm can
predict Wi-Fi availability for one and ten hours into the
future with 95 and 90 percent accuracy, respectively. For the
ECG reporting application, our most effective algorithm
improves the battery lifetime of a commercial mobile phone
by 40 percent, close to the theoretical upper bound of
42 percent. Our field validation for the same application
showed a 35 percent improvement in battery lifetime.

We have made the following contributions in this work:

. We present a reality check of network availability
and the energy cost of ubiquitous connectivity in
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people’s everyday life, and study the use of Wi-Fi
networks to improve the energy efficiency of cellular
networks. We offer a theoretical analysis on data
transfer through multiple wireless interfaces. Based
on our power measurements on a commercial
mobile phone, we provided the theoretical upper
bound of energy savings.

. We investigate several algorithms to estimate Wi-Fi
network conditions using context information.
Furthermore, we evaluate their performance for the
prediction of future network conditions. Estimated
network conditions can be utilized to minimize the
energy consumption of data transfers. Our measure-
ments and field evaluation showed that our estima-
tion algorithms can achieve energy savings close to
the theoretical upper bound.

The rest of this paper is organized as follows: In Section 2,
we provide the background for our study and in Section 3,
we describe our experiments, field studies, and energy
model. In Section 4, we formulate data transfer through
multiple wireless interfaces as a statistical decision problem
and present a theoretical analysis. We present a suite of
context-sensitive algorithms to estimate network conditions
in Section 5, and validate them through field-collected real-
world traces and a field test with a mobile healthcare
application in Section 6. We present a discussion in Section 7
and address related work in Section 8. Finally, we conclude
in Section 9. Early results from this work were presented in
Context-for-Wireless [1].

2 BACKGROUND

In addition to traditional applications, such as e-mail and
web browsing, emerging applications in mobile healthcare,
multimedia, and Web 2.0 have created an insatiable appetite
for ubiquitous wireless data connectivity. Emerging mobile
healthcare applications seek to collect health information via
bodyworn or implanted sensors and deliver health-promot-
ing messages in situ and throughout people’s everyday life.
Many mobile healthcare applications depend on ubiquitous
wireless connectivity from a mobile device to report health
data and deliver messages on time. More importantly, they
require a broad range of data sizes and allowable transfer
latencies [2], [3]. The increasing information capturing and
processing capabilities of mobile devices, especially mobile
phones, enables users to produce and consume multimedia
data pervasively. The desire to document our life and share
our experience has created multimedia content for Web 2.0
applications, e.g., video blogging and YouTube. Compared
with mobile healthcare applications, multimedia contents
impose a much larger data size but may tolerate larger
latencies. The need for energy-efficient ubiquitous connec-
tivity that can address a broad range of data size and latency
requirements has become urgent.

Indeed, cellular networks are becoming universal.
According to the GSM Association [4], there are over
2.5 billion global mobile phone users as of October 2006,
accounting for 40 percent of the world population. More-
over, 80 percent of the world population is covered by
cellular networks, double that of year 2000. As a result, the

deployment of cellular data services has the potential to
provide an unprecedented portion of the world population
with increasingly ubiquitous wireless Internet access. The
effective expansion of cellular network coverage roots in
that it is a wireless metro-area technology and each base
station covers a relatively large area. However, the
potentially large distance between a mobile phone and its
base station limits the energy efficiency for data transfers.

Shorter range wireless networks are also increasingly
available, especially in urban, residential, and business
settings. Wi-Fi, a wireless local-area network (WLAN)
technology, has seen rapid expansion. It has been recently
estimated that there are more than 14 million Wi-Fi access
points in US homes [5]. Several major US cities have
announced plans to deploy citywide Wi-Fi networks. Yet,
Wi-Fi still has limited availability compared to cellular
networks. On the other hand, the relatively short range of
Wi-Fi enables it to achieve a much higher data rate and
lower energy per MB data transfer compared to cellular.
Therefore, to achieve energy-efficient ubiquitous wireless
connectivity, it is important to combine the strength of both
networks, as is the focus of this work.

3 EXPERIMENTAL PLATFORM

In order to realistically evaluate context-based network
estimation for everyday life, we have gathered network
data from a number of mobile users over six months, and
obtained the energy profiles of wireless interfaces on
multiple mobile phones through measurement. In this
section, we present our experiment setup and findings.

3.1 Field Data Collection and Participants

We have developed and installed logging software on
11 HTC Wizard Pocket PC phones to record network
characteristics with minimal intrusion to normal phone
operation. At the time of the study (Fall 2006-Winter 2007),
the Wizard was one of the most feature-rich commercial
Pocket PC phones. The Wizard is commercially available
under a variety of brands, including T-Mobile MDA and
Cingular 8125. It is a Windows Mobile 5.0 GSM phone with
integrated 802.11b and is capable of EDGE data connectiv-
ity. It has a battery capacity of 1250 mAh at 3.7 volts.

Our logging software, Tower Logger, measures network
availability, signal levels, and context information. It
records the cell tower ID, signal strength, and channel of
the currently associated GSM cell and those of up to six
other visible cells every 30 seconds. It also records the
unique Basic Service Set Identifier (BSSID), signal strength
and the security property of all visible Wi-Fi access points.
With an extra sensor board, Tower Logger can also record
motion information of the phone. We developed the sensor
board based on the Rice Orbit sensor platform [6], which
can be placed in the phone battery compartment with a
cover from a larger battery (Fig. 1) and directly powered by
the phone battery. The sensor board continuously samples
an on-board three-axis accelerometer at 32 Hz per channel.
The data are buffered by the sensor board and collected by
the phone every 30 seconds.

Fourteen volunteers from the Rice campus participated in
our data gathering. They carried around our experimental
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phones for at least three weeks and could opt to use their own
SIM card on the phone. We requested all participants to carry
the phone as they would carry their own phone. We
interviewed each participant regularly to document any
significant diversion from their daily activities, for example,
travels and forgetting to carry the phone. Tower Logger was
installed on the phones of all 14 participants. Three
participants, P1, P2, and P3, were given phones equipped
with the sensor board.

Unlike war-drives or spatial coverage measurements,
such as in [5], [7], we measured personal coverage: the
signal strength seen in a person’s daily life. More informa-
tion and detailed findings regarding the participants and
their traces can be found in [1].

Our first observation is that cellular network availability is
extremely high (99.1 percent). On average for all our
participants, cellular signal strength is above�94 dBm (three
or four bars) for more than 75 percent of time. This is not
surprising for a major urban area like Houston. Nevertheless,
while weak signal strength maybe acceptable for voice
communications, it is not true with data communications.

Our second observation is that on average, our partici-
pants spent 49 percent of their daily lives under preferred
Wi-Fi networks. We define preferred networks as those
from which the participants were known to have internet
connectivity. We will use preferred networks for our
analysis in the rest of the paper. Yet, on average, our
participants are covered by preferred and/or unencrypted
networks for 77 percent of their daily lives. While not all
unencrypted access points are accessible, Nicholson et al.
showed that over 46 percent of all unencrypted access
points in residential areas were accessible [8].

3.2 Energy Cost for Data Transfers

3.2.1 Energy Model

In order to develop an energy model for wireless data
transfers on the phone, we measured its power consump-
tion under different signal conditions. The phone requires
the battery in place to power up; therefore, we have to
leave the battery inside for measurements. To eliminate
interference from the battery charging circuitry, we
measured the power transferred from the battery to the
phone while the charger was disconnected, instead of
measuring the power supplied by the charger. To achieve
this, we placed a 0.1-ohm resistor in series with the Ground
pin (Fig. 1). The phone power consumption can then be
calculated by measuring the input voltage to the phone and
the voltage drop on the resistor. We used the Measurement
Computing USB-1608FS data acquisition device with a
sampling rate of 1 KHz for our measurements.

Furthermore, we observed cellular and Wi-Fi signal
strength affect data transfer speeds and success rates. To
accurately account for them, we developed another logging
application, Rate Logger, to measure Wi-Fi and cellular data
rates and signal strength every five minutes for two of our
participants, as sampling tools, for approximately one
month. We utilized this information for the development
of an energy model, assuming a constant network condition
throughout a single transfer. This assumption is reasonable
for short transfers. We can also apply our model to a long
transfer by splitting it into multiple short transfers. Further
details regarding the energy model are reported in [1].

We model the additional system energy cost for establish-
ing a connection and transferring n megabytes data as

E ¼ Eeþ n � Et; ð1Þ

where Ee is the energy cost for connection establishment and
Et is the energy per bit for the transfer. To account for possible
transfer failures, we assume a failed transfer will simply be
retransmitted under the same network condition. Thus, when
S is the transfer success rate, the energy cost is approximately

E ¼ Eeþ n
S
� Et: ð2Þ

Table 1 provides the additional energy cost we have
measured for various activities on cellular and Wi-Fi
network interfaces for the HTC Wizard, in addition to the
HP iPAQ hw6925, a Pocket PC phone with built-in GPS,
and the HTC Tornado, a Smartphone commercially avail-
able under various brands, e.g., T-Mobile SDA.
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TABLE 1
Average Measured Additional Energy Costs for Various Cellular and Wi-Fi Activities

Fig. 1. An HTC Wizard with the sensor board in its battery compartment
(left) and an opened battery for power measurement (right).



It is interesting to note that we measured the additional
power consumption of the built-in GPS of the HP iPAQ
hw6925 at about 600 mW (36 J per minute). Such high power
consumption makes it impractical to use GPS frequently,
e.g. to provide context information for system management.

3.2.2 Implications

While cellular network interfaces on mobile phones are
usually always on and connected, Wi-Fi interfaces are
typically turned off the majority of the time due to limited
availability and high power consumption, as we will discuss
below. Checking for Wi-Fi availability and establishing a
connection consumes considerable energy. The energy cost
is closely related to the time required to either connect to an
access point, or time-out assuming Wi-Fi is unavailable. We
have measured the additional energy cost for the whole
connection process (Ee) to be on average 5 J on the Wizard. If
the phone is not associated to an access point after a specific
time-out period, we assume there is no accessible Wi-Fi
network available. We have found 5 seconds to be a
reasonable time-out for the association process. Using this
time-out, the energy cost for an unsuccessful attempt is also
about 5 J for the HTC Wizard. Since we assume the phone is
always connected to the cellular network, its Ee is zero.

The additional energy cost for a wireless activity refers to
the extra energy consumption as compared to that if the
activity is absent in an idle device. The values are averages
from multiple measurements. Et denotes the additional
energy cost for transferring 1 MB data. We have ignored the
effects of TCP and HTTP connection establishment, round
trip latency (RTT), and TCP slow start, because the energy
cost of data transfer is much larger. Em denotes the energy
cost for maintaining an idle connection for a minute,
compared to the energy consumption when the correspond-
ing network interface is powered off. For Wi-Fi, the values
are shown with and without 802.11 MAC Power-Saving
Mode (PSM), using the “maximum battery” setting on the
phones, if available. We must note that the mobile device
must stay connected to an access point to use PSM. The
range for each value is based on best and worst signal
strength. It is interesting that the maximum power saving
setting on the HTC Wizard only provided a 3.5 percent
reduction in Em, compared to the default (balanced) setting.

Our measurements in Table 1 clearly show that cellular
and Wi-Fi network interfaces have complementary energy
profiles: the cellular interface can cost an order of
magnitude more than the Wi-Fi interface to transfer data
(Et), but cost an order of magnitude less energy to maintain
the connection (Em). It is important to note that because the
cellular network interface on mobile phones is usually left
on for incoming calls, Em should be regarded as zero for
data applications using the cellular interface.

Since Wi-Fi consumes significant power even in PSM, and
Wi-Fi availability is low (therefore, PSM cannot always be
used), it is usually more energy-efficient to power off the Wi-
Fi interface and then reestablish the connection when
necessary. For example, on the HTC Wizard, it is more
energy-efficient to power off the Wi-Fi interface if it has to be
idle for more than 15 seconds. Checking for Wi-Fi availability
and establishing a connection consume considerable energy
too, Ee. This large energy overhead makes Wi-Fi inefficient
for small data transfers. While newer Wi-Fi implementations

on mobile devices have been shown to be more energy-
efficient [9], they still have a energy profile complementary to
newer cellular interfaces because of difference in their
targeted ranges and application modalities.

Indeed, neither cellular nor Wi-Fi alone can provide
acceptable battery lifetime for future mobile applications
requiring ubiquitous connectivity [1]. This motivates our
proposal to combine their complementary strengths for
achieving energy-efficient ubiquitous connectivity.

4 DATA TRANSFER ON MULTIPLE INTERFACES

We next present the problem formulation for data transfer
through multiple wireless interfaces, and using our field-
collected traces and energy profiles, we theoretically
analyze the energy-saving potential of selecting between
Wi-Fi and cellular interfaces.

4.1 Problem Description

Based on our field-collected traces, we assume that a mobile
system is always connected through a low-power high-
availability primary wireless network, which offers a lower
data rate and consumes higher energy per bit for data
transfers. For mobile phones, the primary network is the
cellular network (in our case, GSM/EDGE). We assume that
alternative wireless networks maybe available at limited
locations or times which offer a higher data rate and
consume lower energy per bit. However, they cost extra,
usually significant, power to stay connected and incur
significant energy and time overheads for connection
establishment. For the HTC Wizard and most modern
mobile handsets, this complementary network is Wi-Fi.

The problem that we propose to solve is:

If the device needs to transfer n bits of data with minimal energy
consumption, should it search for an alternative network to
transfer the data?

To solve this problem, we need to calculate the expected
energy saving for attempting to use an alternative network, a,
instead of the primary network, p, to transfer data. Assuming
network a is available with condition ~C, the expected energy
cost for establishing a connection and transferring n bits of
data through it can be estimated with (2) as

Ea;available ¼
n

Sað~CaÞ
� Etað~CaÞ þEea: ð3Þ

If network a is unavailable, the energy cost of attempting
an unsuccessful transfer would be the energy required to
check for a connection

Ea;unavailable ¼ Eea: ð4Þ

Since the interface for the primary network is always on
and connected, there is no energy cost for connection
establishment. Therefore, the energy cost to transfer the
data through the primary interface is simple:

Ep ¼
n

Spð~CpÞ
� Etpð~CpÞ: ð5Þ

Let Pa denote the probability that the alternative net-
work a is available. The expected energy saving of
attempting to use network a is
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Ea;p ¼ Pa � Ep �Ea;availabe

� �
� 1� Pað Þ � Ea;unavailable ð6Þ

or

Ea;p ¼ Pa � n �
Etpð~CpÞ
Spð~CpÞ

�Etað
~CaÞ

Sað~CaÞ

 !
� Eea: ð7Þ

Our algorithm for selecting the network interface for
data transfer works as follows: The system calculates Ea;p

for every data transfer. If Ea;p is negative, the system
transfers the data through the primary network. Otherwise,
it attempts to connect using interface a. In the case of
multiple alternative interfaces, the system can choose the
network with the most expected energy saving by calculat-
ing Ea;p for all alternative networks.

In our study, the primary network is cellular and the sole
alternative network is Wi-Fi. The only network condition
we consider is signal strength, denoted by Cp and Ca, for
cellular and Wi-Fi networks, respectively. We assume the
data size, n, is provided through the software attempting
the transfer. Cellular signal strength, Cp, is available
without any extra energy cost. Therefore, the key to
calculating Ea;p using (7) is Ca and Pa. Before we address
how to estimate Ca and Pa, we next offer the theoretical
upper bound for energy savings by using multiple wireless
interfaces for data transfer, assuming Ca and Pa are
available with an insignificant energy cost.

4.2 Potential Energy Savings

To determine the maximum potential energy benefit of using
multiple wireless interfaces, we examine the ideal case where
Ca and Pa are available without an extra energy cost. Pa is
equal to 1 if a Wi-Fi connection is available and 0 otherwise.
Analysis of the ideal case will give the theoretical upper
bound in energy savings achievable by estimatingCa and Pa.

Using the field-collected traces and the energy data for the
HTC Wizard, we calculate the average battery lifetime of an
otherwise idle phone using cellular-only transfer and that of
one using the ideal case of data transfer through multiple
wireless interfaces. Fig. 2a shows the average battery lifetime
gain for different data rates and transfer intervals. We can
see the use of multiple wireless interfaces has a large impact
for larger data sizes and/or longer transfer intervals.
Moreover, Wi-Fi network availability is a major factor too.
The average Wi-Fi availability in our field-collected traces is

49 percent. In Fig. 2, we show the battery lifetime gains for
hypothetical 20 and 80 percent Wi-Fi availabilities, assuming
average Wi-Fi signal strength from the traces. Figs. 2b and 2c
clearly show that the effectiveness of using multiple wireless
interfaces, compared to a cellular-only policy, is improved
with increased Wi-Fi availability.

5 CONTEXT-BASED NETWORK ESTIMATION

In Section 4.2, we calculated the theoretical upper bound of
energy savings achievable by the judicious use of multiple
wireless interfaces, assuming the system knows network
conditions, Ca and Pa, for free. In reality, measuring Wi-Fi
network conditions incurs the connection establishment
energy cost, Een. In this section, we present and evaluate
different methods for the system to estimate Ca and Pa
without powering on the Wi-Fi interface, and compare
their energy savings with the theoretical upper bound.
Mathematically, we can formulate the problem as estimat-
ing the conditional probability P ðWiFijContext), of Wi-Fi
availability given the observed Context. We study various
sources of context information for such estimation and
employ the field-collected traces to evaluate our solutions
through simulation. For each simulation and each partici-
pant, we use half of the trace for training, if necessary for
the estimation algorithm, and the rest for evaluation.

5.1 Naı̈ve and Simple Solutions

A naı̈ve solution is to have the system attempt a Wi-Fi
connection for every data transfer, regardless of data size and
expected network conditions. Obviously, for small data sizes,
the high connection establishment energy (Ee) can easily
cancel out the energy saving from the actual data transfer.

The Simple Solution uses minimal context information. It
employs each user’s all-time average for Ca and Pa, to
decide whether to attempt a Wi-Fi connection. We use it as
the baseline, along with the theoretical upper bound from
Section 4.1, for evaluating other algorithms in below. Figs. 3
and 4 show the average data transfer energy and energy
savings versus data size using our field-collected traces and
hypothetical 20 and 80 percent Wi-Fi availabilities, respec-
tively. It is clear that the Simple Solution provides
substantial energy saving for larger data sizes and higher
Wi-Fi network availability. However, the difference be-
tween the ideal case and the Simple Solution is substantial
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Fig. 2. Potential phone battery lifetime gain achieved by optimally selecting between Cellular and Wi-Fi, for various transfer sizes and intervals, for
measured and simulated Wi-Fi availability. (a) Average among all participants. (b) Simulated 80 percent Wi-Fi availability. (c) Simulated 20 percent
Wi-Fi availability.



for smaller data sizes and/or lower Wi-Fi coverage. In these
cases, accurate network condition estimation is critical. We
next propose several advanced algorithms for network
condition estimation for this sake.

5.2 Hysteretic Estimation

People often stay at a certain location for rather long periods
of time, therefore we expect that network conditions be
related in time. This forms the basis for Hysteretic Estimation
for which, the context information is previously measured
network conditions (Ca andPa). We use these values until we
either have a new measurement or a predetermined time-out
runs out, after which we will remeasure network conditions
upon the next data transfer. Obviously, Hysteretic Estima-
tion is more effective for shorter data transfer intervals,
where network conditions are more likely to remain valid.
The performance of this algorithm depends on the prede-
termined time-out value and how often network conditions
change. The time-out can be adaptively tuned by the system
based on the success rate of its previous estimations. We
have tested a simple version of this algorithm with a constant
25-minute time-out. This method has the advantage of not
requiring training. Fig. 12 shows, on average among all our
participants, the accuracy of Hysteretic Estimation versus
time for Wi-Fi availability, i.e., the probability of having the
same Wi-Fi availability after a specific time.

5.3 TimeOfDay Estimation

People often spend days in a predictable fashion, e.g., at
work, at home, commuting, etc. Fig. 5 shows the probability
of having the same Wi-Fi availability after a specific period

of time spanning several days. It confirms that network
conditions at the same time on different days are statisti-
cally related. We would expect to observe a similar
correlation for the same days in different weeks had our
logging period been longer.

For TimeOfDay Estimation, referred to as History Estima-
tion in our previous work [1], we use the time of day as
context information and estimate PðWiFijtime of day). We
divide days into 24 one-hour time slots and compute the all-
time average Wi-Fi availability and signal strength for each
time slot, as Phist and Chist, respectively, when we are in the
same time slot.

5.4 Cellular Tower Estimation

Network conditions are highly correlated to geographical
location. While GPS can provide very accurate location
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Fig. 4. Data transfer energy saving versus data size. (a) Average among all participants. (b) Simulated 80 percent Wi-Fi availability. (c) Simulated
20 percent Wi-Fi availability.

Fig. 5. Network conditions are related at the same time of day in different
days.

Fig. 3. Data transfer energy versus data size. (a) Average among all participants. (b) Simulated 80 percent Wi-Fi availability. (c) Simulated
20 percent Wi-Fi availability.



information, its energy cost is too high for our purpose, as

our measurement showed in Section 3.2.1. Furthermore,

GPS systems only work outdoors. There has been consider-

able research on using visible cell tower IDs for localization

[7], [10]. Localization requires knowing the location of

existing cell towers, e.g., by means of GPS. In contrast, we

directly train our algorithm and estimate Wi-Fi network

conditions visible GSM cell towers and without positioning.

We study the use of visible cellular towers as the context for

estimating P ðWiFijContextÞ.

5.4.1 Cell ID Estimation

For Cell ID, we calculate P ðWiFijvisible cell towersÞ as a

weighted sum of the probability of Wi-Fi availability for

when each cell tower is visible, or P ðWiFijiÞ, where i

uniquely identifies a cell tower. This can be easily recorded

from previous measurements. We also store ni, the number

of previous measurements used for calculating P ðWiFijiÞ,
and Ccell;i, the average Wi-Fi signal strength when Wi-Fi is

available and tower i is visible
We then estimate Wi-Fi availability, P ðWiFijvisible

cellular stations), or Pcell for short, as the weighed mean of

P ðWiFijiÞ among all visible cell towers.

Pcell ¼
P

i2V wi � P ðWiFijiÞP
i2V wi

;

wi ¼ logðniÞ � P ðWiFijiÞ � 0:5ð Þ4:
ð8Þ

The weights, wi, are empirical and consist of two parts.

logðniÞ gives more weight to towers that have been seen

more often. In other words, the more samples we have of

any tower, the more we trust its estimation. The exponent

(Pcell;i � 0:5Þ4 gives larger weight to towers that have

P ðWiFijiÞ close to 0 or 1. In other words, the more certain

estimation is, the more we trust it.
We calculate the Cell ID estimated Wi-Fi signal, Ccell, as

the simple mean of Ccell;i among all visible cell towers. A

receiver operating characteristic (ROC) curve shows the

relationship between the fraction of true positives and false

positives. The ROC curve for Wi-Fi availability using Cell
ID Estimation is shown in Fig. 6.

5.4.2 Fingerprinting Estimation

For Fingerprinting Estimation, we use an ordered set of up
to seven visible cell towers reported by the phone (i.e., the
fingerprint) as the context, and calculate P ðWiFijordered set
of visible cell towers). Similar methods have been used for
localization based on Wi-Fi access points [11] and cellular
base stations [12].

We calculate the Fingerprinting estimated Wi-Fi signal as
the simple mean of signal strengths when Wi-Fi was
available under a specific fingerprint. The ROC curve for
Wi-Fi availability using Fingerprinting Estimation is shown
in Fig. 7. Our results show that, on average among all our
participants, fingerprinting is the most effective estimation
method. However, we must note that compared to Cell ID,
Fingerprinting requires considerably more memory to store
training data and requires prior training at each location to
be effective.

5.5 Acceleration Estimation

For P1, P2, and P3, we have recorded three-axis acceleration
of their mobile phones. While there has been extensive
research on extracting user-context information and physical
activity from acceleration sensors [2], we use the acceleration
data in a very simple fashion. We have observed the recorded
acceleration values for a stationary phone are virtually
constant. However, they constantly change when the phone
is moving, often carried or handled by the user. In turn,
wireless network conditions are expected to remain rela-
tively constant if the phone hasn’t moved much. Therefore,
we compute the movement intensity, m, as:

m ¼
Xcurrent
t¼reset

½j�AxðtÞj þ j�AyðtÞj þ j�AzðtÞj þ c�; ð9Þ

where �AxðtÞ;�AyðtÞ, and �AzðtÞ, are the change in
acceleration along the three axes, measured at 32 Hz. c is
a small positive constant to account for drift, or slow rate
changes in wireless conditions. m is reset to zero every time
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Fig. 6. ROC curve for Cell ID Estimation of current and future network
availability.

Fig. 7. ROC curve for Fingerprinting Estimation of current and future
network availability.



network conditions are measured. It then accumulates as
time passes by. Fig. 10 shows the average probability of
having the same Wi-Fi availability after 30 seconds versus
m for all our participants with acceleration logging. Our
Acceleration Estimation assumes network conditions are
unchanged and uses previously measured network condi-
tions if the movement intensity, m, is below a predeter-
mined threshold. Similar to Hysteretic Estimation,
Acceleration Estimation is more effective for shorter data
transfer intervals, where previous network conditions are
more likely to remain valid. The performance of this
algorithm depends on the predetermined values and how
much the user actually moves around. The predetermined
values can be adaptively tuned by the software based on the
success rate of its previous estimation. We have tested a
simple version of this algorithm with a constant threshold
and c. It has the advantage of not requiring training.

At the time of our study, very few commercial phones
were equipped with accelerometers, e.g., the Nokia 3220,
5500, and the Sharp V603SH. Today, accelerometers are
present in an increasing number of phones. Accelerome-
ters can be made ultra-low power. For example, the Kionix
KXM52 three-axis accelerometer on our sensor board
consumes less than 0.35 J/h for a 32 Hz sampling rate.
As large displacements typically do not happen in-
stantaneously, we expect the energy consumption of the
accelerometer can be further reduced by reducing its
measurement duty cycle, e.g. recording two seconds every
ten seconds.

5.6 Combination Algorithms

One challenge we face is how to combine different
estimation algorithms. The key is to combine them based
on their individual strengths. The Hysteretic and Accelera-
tion Estimation algorithms are best suited to accurately
determine whether we should expect a change in network
conditions. On the other hand, the Cell ID and the
Fingerprinting algorithms determine network conditions
irrespective of its previously measured condition. There-
fore, we combine them as follows:

We first use either Hysteretic or Acceleration Estimation
to determine if we should expect a change in network

conditions. If no change is expected, we will use the
previously measured network conditions. If a change is
expected, we will use Cell ID or Fingerprinting Estimation
to calculate network conditions, as shown in Fig. 11.

Figs. 8 and 9 show the ROC curve for the combination of
Cell ID Estimation and either Hysteretic or Acceleration
Estimation, respectively. We can see that while each of the
estimation algorithms did well alone, the key for further
improved performance is combining them according to
their individual strengths. The performance improvement
of the combination of Fingerprinting with Hysteretic
Estimation was minimal and not visible on ROC curves,
as it is already extremely good (Fig. 7).

5.7 Predicting Future Network Conditions

Our above-mentioned algorithms were designed and
evaluated to estimate current Wi-Fi network conditions.
Yet, some applications maybe able to delay data transfer in
order to utilize better network conditions. In this case, a
prediction of future network conditions is necessary in
addition to a cost function that accounts for the delay and
power savings for each particular application. While
defining and solving the cost-benefit function for particular
applications is outside the scope of this work, we evaluate
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Fig. 9. ROC curve for the combination of Acceleration Estimation and

Cell ID Estimation.

Fig. 8. ROC curve for the combination of Hysteretic Estimation and Cell
ID Estimation.

Fig. 10. Probability of having the same Wi-Fi availability after 30 seconds
decreases with increased movement intensity.



the performance of several of our algorithms for the
prediction of future network conditions.

Hysteretic Estimation can estimate the probability of
having the same network availability as a previous measure-
ment for a future time, based on their time difference. In
contrast, the Cell ID and Fingerprinting algorithms estimate
Wi-Fi network conditions irrespective of previously mea-
sured conditions. Therefore, by training these algorithms
with cellular and time-of-day observations offset by �t, we
can utilize these algorithms to predict network conditions �t
in the future. The average prediction accuracies among all
our participants for the Fingerprinting, Cell ID, and
Hysteretic algorithms are compared in Fig. 12. For Hysteretic,
we assume current conditions are known, otherwise the time
difference of the last measurement should be added to the
prediction time. We can see that, in particular, Fingerprinting
performs very well for future network availability prediction.
The ROC curve for Wi-Fi availability prediction 30, 60, and
120 minutes into the future using the Cell ID and Fingerprint-
ing algorithms are shown in Figs. 6 and 7, respectively.

6 REAL-LIFE PERFORMANCE EVALUATION

6.1 Trace-Based Evaluation

In this section, we show how the performance of each
network condition estimation algorithm translates into

real-life energy savings. We use field-collected traces to
calculate the energy consumption of each algorithm for a
typical ECG reporting application with data transfers of
270 KB every 5 minutes, the data rate of a typical three-
channel ECG (each sampled at 200 Hz with 12-bit resolution
[3], without compression). For each algorithm, we compare
its energy savings beyond that of the Simple Solution,
compared to the ideal case. For example, if the average
energy cost for a data transfer is 23 J for one of our estimation
algorithms, 30 J for the simple case, and 20 J for the ideal
case, then the effectiveness of the estimation algorithm is

30� 23

30� 20
¼ 70%:

The effectiveness of all estimation algorithms, except
Acceleration Estimation, are shown in Fig. 13. We can see
that on average, fingerprinting is the most effective
estimation method. However, fingerprinting requires prior
training at every specific location. In addition, Fingerprint-
ing and Cell ID require detailed cell tower information from
a GSM interface. On the other hand, Hysteretic, TimeOf-
Day, and Acceleration estimation can work on devices with
Wi-Fi but without GSM interfaces, e.g., the iPod Touch.

Detailed analysis of the performance of our estimation
algorithms provides interesting findings. First, we can
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Fig. 11. Flowchart for combining different estimation algorithms.

Fig. 12. Prediction accuracy of different algorithms. For Hysteretic, we
assume current conditions are known.

Fig. 13. Effectiveness of estimation algorithms for minimizing energy consumption for all participants. Effectiveness is defined as the achieved
energy savings beyond that of the Simple Solution, compared to the ideal case.



clearly see that combining multiple heterogeneous sources of
context information provides enhanced performance.

Second, as shown in Fig. 14, on average among all the
participants, Cell ID Estimation performs better with increased
commute distance, which is indicated by the straight-line
distance between their homes and workplaces. This is the
opposite of Fingerprinting Estimation, and expected; while
the visible cell towers change minimally at short distances,
their fingerprints can change greatly.

Third, as shown in Fig. 15, on average among all the
participants, the performance of our estimation algorithms is
better with moderate or low Wi-Fi availability. Indeed, when
Wi-Fi availability is high, the Simple Solution is already
very close to the ideal case.

Finally, as previously discussed, the data transfer
interval impacts the efficiency of Hysteretic and Accelera-
tion Estimation algorithms. To highlight the impact, we
present the performance of those algorithms for P1, P2, and
P3 in Fig. 16. The data size for each transfer is 270 KB for all
three intervals. As expected, their performance is higher for
shorter transfer intervals, when network conditions are more
likely to remain valid.

In this section, we presented and evaluated several
algorithms for estimating Ca and Pa with various context
information. We showed that they have very good perfor-
mance when Wi-Fi estimation is important, i.e., lower Wi-Fi
availability. Moreover, our algorithms have complementary

strengths. For example, Hysteretic Estimation works well for
short transfer intervals and for participants with high Wi-Fi
availability. TimeOfDay Estimation works very well for
participants with regular hours and locations of Wi-Fi
availability. We also observed that the performance of Cell
ID Estimation is improved with increased mobility, which is
opposite of Fingerprinting. Finally, combining different
estimation algorithms can further improve performance.

Our goal is by no means to devise the best possible
estimation algorithm. Instead, our main focus is to demon-
strate how readily available context information, such as
time and cell tower ID, can be used to estimate Wi-Fi
network conditions. We have kept our algorithms simple
and have limited the number of parameters in them.
Therefore, we expect their overhead to be negligible, and
that they will generalize well [13].

6.2 Field Validation

To validate the effectiveness of context-based network
estimation, we have implemented it for a mobile ECG
reporting application, which collects ECG data from body-
worn wireless (e.g., Bluetooth) sensors and periodically
reports it to an Internet server. Since the focus of this work
is on data transfer between the mobile device and the
Internet server, we assume ECG data are already available
on the phone. We use the same data rate and interval as in
Section 6.1, 270 KB every 5 minutes.

We have developed the ECG reporting software that
automatically runs on the phone every 5 minutes. Our
software has two modes of operation. In cellular-only mode,
it transfers data only using cellular. In context-based
interface selection mode, it uses our Hysteretic algorithm,
with a constant 25 minute time-out, to estimate network
conditions and decide whether to power up the Wi-Fi
adapter and attempt a Wi-Fi transfer. We chose Hysteretic
Estimation because it has relatively good performance
without training or extra hardware and our simulation in
Section 6.1 showed that it is effective when transfer intervals
are short. If the connection fails, is dropped, or no response is
received from the server, the transfer is considered un-
successful and our software will attempt a resend. When-
ever a Wi-Fi resend fails, our software will resort to cellular.

We installed our ECG reporting software on two HTC
Wizard phones and gave them to participants P1 and P2,
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Fig. 14. For participants with longer commutes, the effectiveness of Cell
ID increases while the effectiveness of Fingerprinting decreases.

Fig. 15. Our estimation algorithms performed better when Wi-Fi
availability is moderate and low.

Fig. 16. Hysteretic and Acceleration Estimation perform better with
shorter transfer intervals.



who used the phones as their primary mobile phones
during our experiments. We ran six experiments for each
participant, half of them in cellular-only mode and the other
half using context-based interface selection. We measured
the battery lifetime as the operational time between when
the phone is disconnected from its charger (with a fully
charged battery) and when the phone automatically shuts
itself off due to low battery, with no charging in between.
The battery lifetimes for cellular-only mode and context-
based interface selection mode are shown in Table 2. The
average battery lifetime gain was 35 percent.

For comparison, the average battery lifetime gain
simulated using the field-collected traces was 29 percent
for the Simple Solution, 37 percent for Hysteretic Estima-
tion, 39 percent for the combined History, Cell Tower ID,
and Hysteretic Estimation, 40 percent for Fingerprinting,
and 42 percent for the ideal upper bound.

7 DISCUSSION

Our reality check and studies of context-based network
estimation are limited to our participants, who were
affiliated with Rice University and spent a significant
portion of their everyday life under the Rice campus Wi-Fi
coverage. Moreover, the majority of our field-collected traces
were from Houston, a major metropolitan area; cellular
networks in rural or suburb areas can have different
characteristics. Therefore, we expect our participants might
have painted a more optimistic picture of ubiquitous
connectivity than what is available for the general popula-
tion. Nonetheless, with the increasing availability of Wi-Fi
and expanding deployment of cellular networks, we believe
our participants represent the trend in the development of
ubiquitous wireless connectivity.

We studied the use of Wi-Fi and cellular networks, but
the approach of selecting between multiple network
interfaces to achieve energy-efficient ubiquitous connectiv-
ity is general. While newer cellular technologies such as 3G
will support higher data rates, they are still metro-area
networks and each base station covers a relatively large
area. The long range radio communication between the
mobile phone and its base station will still have high energy
per bit requirement compared to shorter range wireless
technologies, such as the current and future wireless LAN

technologies. Although Wi-Fi hotspots are on the rise, their
availability will still remain well below cellular networks
due to their short range. Therefore, we expect the avail-
ability and range versus energy trade-off behind different
wireless interfaces to remain valid in the foreseeable future.
Emerging technologies, such as WiMAX, can be yet another
network interface to select from.

In our work, we assumed that cellular and Wi-Fi
networks operated in isolation. Cooperation between
cellular and Wi-Fi networks will create additional oppor-
tunities in estimating Wi-Fi network condition and avail-
ability. For example, due to E911 requirements, cellular
network providers are already aware of approximate
location of their subscriber phones. Therefore, they could
potentially send prior known Wi-Fi availability data, based
on location, to subscribers. This could be especially
appealing as many cellular providers also offer Wi-Fi
hotspots, including the four major US providers, AT&T,
Sprint, T-Mobile, and Verizon. Nevertheless, our network
estimation methods can still be useful to improve the
accuracy of Wi-Fi estimation.

It is important to note that using context information to
estimate wireless network conditions (Context-for-Wireless)
is a mechanism. We used context information to estimate
current and future network conditions. Based on the
prediction, system policies can be devised to prefetch
wireless data if the network is predicted to degrade, or to
buffer data transfers while respecting latency requirements
if the network is predicted to improve.

8 RELATED WORK

Our use of multiple wireless interfaces for data transfer
resonates with a considerable body of work employing a
secondary low-power wireless interface for improving Wi-
Fi energy efficiency. For example, Wake-on-Wireless [12] uses
a low-power radio interface to transmit control information
so that Wi-Fi can stay powered-off most of the time.
Coolspots [14] employs Bluetooth to improve power effi-
ciency of Wi-Fi. However, these works and others [15], [16]
target at improving Wi-Fi energy efficiency and are
restricted by limited Wi-Fi availability. In contrast, our
approach utilizes Wi-Fi to improve the efficiency of cellular
networks and provide energy-efficient ubiquitous connec-
tivity. Armstrong et al. also found that Wi-Fi is more energy-
efficient for transfers of large data sizes and subsequently
selected the wireless interface based on the data size [17].
However, they assumed that Wi-Fi is always available and
sought to reduce the energy cost of data transfer without
considering that of establishing or maintaining a Wi-Fi
connection, which is nontrivial, as our work demonstrated.
Moreover, while they only showed that Wi-Fi is more
energy-efficient when the data size is larger than 30 KB, we
provided more detailed energy profiles for Wi-Fi and
cellular network interfaces with an analytical model.
Integrating Wi-Fi and cellular networks and seamlessly
switching between them on various layers has also been
widely studied. For example, Always Best Connected [18]
seeks to achieve best performance and coverage. In contrast,
our solutions work at the application layer and do not
require cooperation between Wi-Fi and cellular networks.
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TABLE 2
Phone Battery Lifetime during Our Field Test



Related to our use of Wi-Fi, Virgil [8] automatically
discovers and selects access points with faster connection
establishment, which leads to energy savings as well. Virgil
is complementary to our approach and can be readily
incorporated to improve the connection establishment in
multi-interface data transfer. Related to our reality check,
Bychkovsky et al. [5] presented Wi-Fi access point data
collected by war-drives to evaluate the possibility of a large-
scale Wi-Fi network made up by volunteered home Wi-Fi
hotspots. Intel Place Lab [7], [10] also collected extensive
network data on GSM cellular networks for the sake of
positioning. These works provide a reality check of the
spatial network availability. In contrast, our work is targeted
at the personal coverage of wireless networks, i.e., how
networks are available throughout people’s daily life.

Place Lab [7], [10] is also related to our endeavor on
estimating Wi-Fi network conditions. With positioning
accuracy around 100 m, Place Lab can indeed provide
important clues for Wi-Fi network condition, which is
highly position-related. However, Place Lab requires a
premapping of GSM towers (base stations) with GPS.
Instead, our estimation methods seek to learn the direct
relations between Wi-Fi network conditions and context
information, including cellular network conditions, thus
eliminating the need for mapping. In Turducken [19], the
authors used a Wi-Fi detector to reduce Wi-Fi connection
attempts that fail. However, a Wi-Fi detector can only detect
the existence of Wi-Fi signal; it cannot determine whether it
is from an accessible network. Furthermore, the energy cost
and benefit of the Wi-Fi detector were not addressed. The
authors of [20] used GPS-based movement prediction to
reduce wireless communication energy between two mobile
nodes. They targeted at a specific application scenario with
a single wireless network. More importantly, GPS only
works outdoors and its energy cost is too high for our
purpose, as showed in Section 3.2.1.

Our work estimates current and future Wi-Fi conditions
based on context information and past Wi-Fi conditions.
In contrast, the authors of [21] focus on predicting detailed
Wi-Fi conditions, including available bandwidth, tens of
seconds into the future using current Wi-Fi conditions,
location information, and a mobility model. Yet, as our
measurements indicate, measuring current Wi-Fi conditions
incurs a considerable energy cost. Future network condition
prediction enable the postponing of data transfers for more
favorable conditions. For example, the authors of [22] employ
data prefetching when more energy-efficient networks are
available, in order to lower the overall energy cost. These
works are complementary to Context-for-Wireless.

While we have used context information to assist in
selecting the most efficient wireless interface for data
transfers, context information can be used to manage a
variety of other system resources, such as battery energy
and power consumption [23], [24], [25]. We believe that our
approach for determining network conditions from context
information can be applied to other system resources as
well, especially those which are location-dependent.

9 CONCLUSION

The driving vision of our work is to leverage the comple-
mentary strength of multiple available wireless networks for

energy-efficient ubiquitous connectivity. We achieve this by
estimating network condition using context information.

Using findings from our recent field study, we showed
that the energy cost of ubiquitous network connectivity is
overwhelming. Our field measurements presented a chal-
lenging picture for emerging mobile applications that rely
on ubiquitous connectivity: Our experiment showed that
the data transfer required for mobile ECG reporting
reduced the battery lifetime of our mobile phone to an
average of 15.4 hours. We also showed that Wi-Fi and
cellular network interfaces (802.11b and GSM/EDGE in our
study) have energy profiles with complementary strengths.
Therefore, we proposed to leverage increasingly available
Wi-Fi networks to improve the data transfer energy
efficiency of cellular networks. Our theoretical analysis
showed that judiciously choosing between network inter-
faces can considerably improve battery lifetime under a
broad range of application requirements, while careless use
of Wi-Fi can have a severe power impact.

We formulated data transfer through multiple wireless
interfaces as a statistical decision problem and explored
various contextual clues to learn the conditional prob-
ability distribution of Wi-Fi network conditions in order to
solve it. We showed that while individual algorithms
perform significantly better than our baseline, combining
different algorithms based on their individual strengths
can improve performance further. Our best algorithms can
achieve battery lifetime improvement close to the theore-
tical limit, without additional hardware on phones.
Furthermore, our evaluation shows our context-based
algorithms are highly effective at predicting future net-
work conditions. In particular Fingerprinting, can, on
average, predict Wi-Fi availability for one and ten hours
into the future with 95 and 90 percent accuracy, respec-
tively. Such high predictability suggests the possibility of
making tradeoffs between energy efficiency and delay in
wireless data transfer. We also explored the use of a three-
axis accelerometer to sense motion and movement using
an additional sensor board. Today, such a sensor is present
in an increasing number of phones.

We validated our solutions using data collected from the
everyday lives of 14 participants as well as using field trials.
By judiciously choosing a wireless interface using Context-
for-Wireless, with our most simple algorithm, Hysteretic
Estimation, we were able to improve the average battery
lifetime by 35 percent in field trials with real phone usage.
Yet more sophisticated algorithms, some described in this
work, will produce even more energy savings.
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