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Abstract—The integration of different wireless access technologies combined with the huge characteristic diversity of supported

services in next-generation wireless systems creates a real heterogeneous network. In this paper, we propose a generic practical

framework that optimizes media streaming in heterogeneous systems by taking advantage of cost and resource characteristic diversity

of the integrated access technologies and the buffering capability of streaming applications. The proposed optimization framework

represents a means to compromise the tradeoff between different performance metrics including streaming monetary cost, signaling

load, and session quality. Additionally, it accommodates different design challenges including mobility randomness, limited processing

capacity, and handoff delay requirements. The simulation results provide important insights on the design of pricing profiles in

integrated systems. Additionally, the results show that significant cost savings can be realized using the newly proposed streaming

management algorithms and optimization framework.

Index Terms—Media streaming algorithm, heterogeneous wireless network, cost optimization, service pricing.
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1 INTRODUCTION

THE future of wireless networking is envisioned as a
converged system of different radio access technologies

that have heterogeneous characteristics [1], [2], [3]. In this
networking paradigm, roaming across heterogeneous net-
works, commonly known as vertical handoff (VHO) [4],
represents a unique process that brings both design
challenges and system benefits. Improving network re-
source utilization and enhancing user perceived Quality-of-
Service (QoS) are among the foreseen benefits while
keeping such transitions seamless is the main design
challenge. This challenge requires careful handling for the
VHO process at different layers [5], especially with the
increasing penetration of revenue-generating resource-
demanding services such as media streaming [6].

The integration of third-generation (3G) cellular systems
and wireless local area networks (WLAN) is a typical
example for next-generation heterogeneous wireless net-
works (NgHWN). Typically, 3G systems provide expensive
universal coverage with limited resources while WLANs
represent cheap resourceful alternatives within their limited
coverage, commonly denoted as hotspots. This character-
istic diversity creates new room for improving the user
streaming experience in NgHWN by taking advantage of
the possible rate control of streamed media. Generally, rate
control is used to improve the user streaming experience as
the network conditions change [7]. For example, the
streaming application may control its buffered media
playout rate to conceal occasional delays and loss variations

[8], [9]. Additionally, the application can instruct the
streaming server to change the streaming rate, e.g., by
changing the stream encoding, in response to drastic
changes in the available network resources.

In NgHWNs, changing the streaming rate as the user
roams across heterogeneous networks is a principal
requirement to maintain seamless VHOs due to the huge
difference in the utilized bandwidth during the VHO
process and the limited buffering space in 3G systems.
Several studies [10], [11], [12] experimentally prove the
feasibility of seamless streaming in different systems, such
as 802.11b-CDMA2000 [10], 802.11b-UMTS [12], and GPRS-
WLAN [11] using different adaptive cross-layer designs.
This success is rooted to employing proactive VHO policies,
tracking the signal deterioration in the hotspots, and
proactively adjusting the streaming rate before leaving
hotspots. It is worth mentioning that the media indepen-
dent handover framework (IEEE 802.21) [13], supports
signal strength tracking and application notification
through its event and information services, respectively.

The coexistence of different access technologies drives
another research avenue based on the existence of multi-
path diversity in NgHWN. In [14], Pan et al. employ this
diversity by streaming the media in different networks to
realize smooth handoff. In [15], Jurca and Frossard study
rate and path allocation so that the quality at the receiver is
maximized. In [16], Yang and Chen optimize the streaming
quality by selecting the cell and technology used for
multicasting different video stream layers to different users.
Although all the aforementioned studies provide important
insights on media streaming in heterogeneous systems,
none of them has considered the monetary service cost in
their analysis.

Access and service pricing plays a significant role in
different operational aspects of any communication system,
especially resource management and revenue maximization
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[17]. This role is magnified in NgHWN because service cost is
considered a principal factor in the VHO decision [18], [19].
Typically, cost heterogeneity is an inherent characteristic of
NgHWN. This cost heterogeneity is considered a core
motivation for several studies [20], [21]. In [20], Liang et al.
employ proactive document prefetching before exiting
cheaper networks using a probabilistic framework. In [21],
Chen et al. model the cost of data delivery as linear
programming assuming the availability of network topology
and mobility information through global positioning system
support. This assumption is applicable to specific scenarios
such as predetermined paths in transportation systems but
may not be applicable for more general scenarios.

In [22], [23], we developed new stream management
algorithms that minimize the average monetary session cost
of streaming applications in two-tier wireless systems under
user random mobility patterns. Under this setting, the
solution of the stream management problem becomes
computationally expensive. Hence, it contradicts with the
limited processing capacity of mobile devices and VHO delay
requirements. In [22], we propose stream management
heuristics based on the analysis of a theoretical infinite
streaming session. The proposed heuristic results in notice-
able reduction in the session cost in comparison to greedy
media streaming (GMS), in which the mobile terminal (MT)
downloads at the maximum possible rate in the cheaper
network and avoids using the expensive network. In [23], we
develop a pseudo-optimal GMS (PGMS) as an optimized
version of GMS. The developed algorithm results in further
cost reduction in comparison to previously proposed heur-
istics. These studies show a tradeoff between the streaming
monetary cost, the signaling load, and session QoS.

In this paper, we propose controlled streaming to thresh-
old and stop (CSTS) and controlled streaming to threshold
and recourse (CSTR) as new streaming management policies
for two-tier heterogeneous wireless systems. The proposed
strategies are designed to enhance the application adapt-
ability to different cost profiles and mobility behavior.
Additionally, we present a generic analytical framework to
optimize media streaming for any threshold-based stream-
ing policies in heterogeneous systems. This framework
accommodates the aforementioned practical limitations
and naturally adapts to user mobility patterns. Furthermore,
we present a means to tune the algorithm performance to
adapt to different cost components such as monetary and
signaling costs. The presented results show that CSTR and
CSTS realize significant cost reductions in comparison to
previously proposed algorithms.

The rest of this paper is organized as follows: Section 2
presents the system model and problem formulation. The
optimization approach and proposed streaming strategies
are presented in Section 3 followed by the analysis of this
framework in Section 4. In Section 5, we present the
simulation results and then conclude in Section 6.

2 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the system model and
core assumptions. We then formulate the media stream-
ing problem in heterogeneous systems pointing out
associated challenges.

2.1 System Model

In our model, we consider a two-tier integrated wireless
system composed of networks Nn for n 2 fu; ig, where u
and i correspond to the technologies that provide universal
and intermittent coverage, respectively. For example, the
3G cellular network and WLAN, respectively, represent the
technologies with the universal and intermittent coverage in
a 3G-WLAN integrated system. Note that for the rest of this
paper, we will consider 3G-WLAN for ease of presentation.
However, the presented material can be generalized to any
two-tier integrated systems. We assume that each network
has a continuous nondecreasing rate-dependent cost pro-
file, denoted as �nðrnÞ, where rn represents the average1

data service rate in network Nn. The assumption of
monotonic service cost strategies is motivated by the
interest in QoS-enabled integrated systems [26], [27], [28].
These studies propose rate dependent pricing strategies for
several purposes including optimizing network perfor-
mance, controlling user behavior, and reducing network
congestion. Note that the commonly adopted usage-based
pricing strategies are equivalent to linear rate dependent
strategies for continuous usage of the resource as is the case
for media streaming. To illustrate, if �nðrÞ ¼ ar, the
monetary service cost for a specific period t equals ðarÞt ¼
aðrtÞ in which ðrtÞ represents the size of downloaded data
and a represents the cost per data unit.

We typically assume that the streaming monetary cost of
considered media in WLANs is cheaper than the corre-
sponding cost in the cellular network. The reverse case is
trivial as the user will always maintain its association with
the universal network. Fig. 1 shows two possible pricing
schemes in two-tier systems. Fig. 1a shows a case in which
the service cost of the 3G cellular network is always more
expensive than that of WLANs for all service rates. For
similar cost profiles, handing off to the WLAN can always
reduces the streaming cost. Fig. 1b shows a more interesting
case in which the operators of the cellular system choose to
provide a cheaper service for a specific low data rate range,
which is upperbounded by the intersection point of the cost-
rate curves as shown in Fig. 1b. Noting that the service cost is
expected to be a major factor in VHO decision, cheaper price
represents a major incentive for users not to roam to WLANs
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1. Practically, fixed service data rate may not be realizable. However, by
using admission control and scheduling mechanisms that represent
intrinsic parts of different standards [24], [25], the user can be guaranteed
an average service rate.

Fig. 1. Cost profiles in a two-tier system. (a) Cost Profile A and (b) Cost
Profile B.



as long as the application requirements are below the
intersection point. The latter strategy may be propelled by
the interest of the cellular networks in maintaining the high
revenue associated with applications such as voice tele-
phony and audio streaming. If the application bandwidth
requirement is above the intersection rate, the intermittent
technology becomes more favorable and cost optimization of
streaming applications is viable.

Fig. 2 shows a typical scenario for a streaming session in a
two-tier heterogeneous system. Generally, we assume that
the session duration, denoted as T , follows a generic heavy
tailed distribution [29]. Clearly, after the session start at to, the
mobile terminal encounters subsequent transitions between
unique and dual technological zones at specific instants tj
until the session ends at tk. The durations spent by the user in
different technological zones, denoted as �n, are assumed to
have generic probability and cumulative density functions,
denoted as fnð�nÞ and Fnð�nÞ, respectively. Note that �n
represents the residual time distribution of �n.

The dynamics of the streaming application buffer level,
xðtÞ, is governed by the following differential equation:

x0ðtÞ ¼ rnðtÞ � ro; ð1Þ

where rn represents the server streaming rate during �n and
ro represents the average playout data rate. Typically, rn is
non-negative and upper-bounded by a maximum service
rate of rnmax in network Nn, i.e., rn 2 ½0; rnmax�. Practically,
rate control messages are communicated to the streaming
server using a stream management protocol such as Real-
Time Streaming Protocol (RTSP) [30]. In this work, we
assume the streamed media is precoded with a fixed data
rate, i.e., the model assumes that the user chooses a specific
media quality for the entire session. Additionally, we
assume proactive stream management in which the
streaming rate is adjusted before leaving the cheaper
network to reduce the signaling cost and ensure seamless
VHOs. It is worth noting that we also assume that the
application proactively tunes the streaming rate to maintain
the buffer level above the initial playout latency level when
the rate of change of the buffer level is negative. This
assumption ensures that the buffer always has sufficient
data for smooth playout of the media. Clearly, this buffer
model ignores buffer fluctuations that may evolve due to
playout rate variability and occasional channel degradation.
Generally, these fluctuations are of insignificant impact on
the considered rate optimization problem due to the large
time scale difference between these fluctuations and the
zone residence times. Hence, the average value of streaming
and playout rates are considered good approximate values.

To this end, it is worth pointing out that the presented
problem ignores possible horizontal handoff (HHO) when

the user roams between different cells in the overlay 3G
cellular network. Generally, HHOs should not affect the
streaming policy design as the application is not expected to
change its streaming rate as it moves from one cell to
another within the same technology. However, HHOs may
affect the streaming quality if the next-cell does not have
enough resources. The latter impact can be ignored for
efficient streaming strategies that significantly reduce the
session HHO rate as will be shown later.

2.2 Streaming Optimization Problem

The objective of the media streaming optimization problem
is to establish the optimal streaming policy that minimizes a
generic streaming cost function, which can be expressed as

Jav ¼
Z T

0

�ðxðtÞÞdt: ð2Þ

The optimal cost can be realized by tuning the server
streaming rate on each transition based on the buffer status
and the cost profile of different operators. Considering the
stochastic nature of user mobility, the presented problem
falls under the umbrella of multistage stochastic sequential
decision problems [31]. These types of problems take one of
two forms: 1) multistage stochastic programs or 2) stochastic
dynamic programs. The solution of these programs is
computationally demanding because it usually involves
generating and averaging a tremendous number of sample
trajectories. Hence, this approach is not suitable for online
estimation of streaming parameters due to the limited
processing capacity of handheld devices and the real-time
requirement of VHO decisions. Consequently, we focus on
developing streaming policies that accommodate these
limitations as detailed in the Section 3.

3 OPTIMIZED STREAMING ALGORITHMS

In this section, we develop novel practical cost optimization
strategies in heterogeneous systems. We first present a
generic optimization framework based on which we propose
three streaming policies for heterogeneous networks.

3.1 Optimization Framework

The main objective of our optimization framework is to
develop a practical means for minimizing the cost of
streaming sessions in NgHWNs. Typically, monetary cost
saving is mainly attained by buffering the media in the
cheaper intermittent network and minimizing the utiliza-
tion of the expensive one. Hence, we introduce the notion
of optimization cycle that is determined by any subsequent
visits to the cheaper and expensive network in series. Fig. 3
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illustrates a typical optimization cycle showing the buffer
level variations in its two time stages, which correspond to
the durations spent by the user under the coverage of
intermittent and universal networks. In this figure, �q
represents the buffer level that corresponds to the Initial
playout latency. Generally, playout latency is employed to
ensure the presence of sufficient media in the application
buffer to start media playout. This delay is intended to
avoid successive playout interruption due to buffer
depletion caused by channel condition degradation. Con-
sequently, the streaming strategies are designed to main-
tain the buffer level above this threshold. Additionally, �b
represents a buffering threshold whose value is optimized
in our framework. Furthermore, xo, x1, and x2 represent the
buffer level at the start of the optimization cycle, on exiting
the cheap network, and at the end of the optimization
cycle, respectively.

In the first stage of the optimization cycle, the application
streams the media at a rate that is larger than the nominal
stream rate, i.e., ri > r0. Hence, the buffer level increases at
a rate of ðri � roÞ until the buffer level reaches the buffering
threshold. At this instant, the application readjusts the
streaming rate to the nominal stream rate, i.e., ro, in order to
maintain the buffer level until the mobile terminal exits the
hotspot. In the second stage of the optimization cycle, the
application relies on the buffered data by setting the
streaming rate ru such that 0 � ru < ro. Hence, the buffer
is depleted at a rate of ðro � ruÞ. As the buffer level
approaches the QoS threshold, �q, in the expensive network,
the application proactively adjusts the streaming rate to the
nominal stream rate. Hence, the streaming policy will not
result in any playout interruptions unless the extra
bandwidth allocation request is denied by the 3G network.

To this end, the design of the streaming strategy under
this framework involves the choice of a set of parameters
including the buffering threshold �b and the streaming rates
ri and ru. Each strategy assigns a subset of these parameters
as static values and optimizes the design values of the
parameters in the complementary subset. The developed
optimization framework is based on the foundations of
stochastic optimization [32] that involves two steps

1. developing a deterministic version of the problem
and

2. solving the problem using one of the well-established
optimization tools.

Clearly, the streaming strategy parameters can only be
optimized when the user starts the session in a WLAN or
when it is handed off to a WLAN during the session. Note
that if the session starts in the cheaper network, the
streaming policy parameters will be optimized using the
residual residence time distribution of the cheaper network,
i.e., �i. If the streaming session starts in the cellular network,
the application will adjust the server streaming rate to the
nominal rate, i.e., ro to minimize the session cost and satisfy
QoS constraint. Finally, as the user continues to roam across
the two networks, the design parameters are estimated
online according to different operating conditions such as
the mobility parameters, buffer level, and service cost.

3.2 Streaming Strategies

In this section, we first introduce the greedy media streaming
(GMS) algorithm as a natural behavior for the users in
NgHWN. We then propose the Greedy streaming to thresh-
old and stop (GSTS),2 controlled streaming to threshold and
stop (CSTS), and controlled streaming to threshold and
recourse (CSTR) algorithms. The latter three algorithms are
based on the optimization cycle idea and are optimized using
the framework presented in Section 4.

3.2.1 Greedy Media Streaming (GMS)

GMS is a typical strategy to reduce the session cost in
heterogeneous system by taking advantage of the cheap
network by streaming at the maximum possible rate
whenever this network is visited. In the expensive network,
the application stops the streaming process until the
buffered data is depleted to �q. At this instance, GMS
readjusts the streaming rate to the nominal rate; i.e., ro.

3.2.2 Greedy Streaming to Threshold and Stop (GSTS)

GSTS uses static values for the streaming rates ri and ru and
only optimizes the buffering threshold value. In the cheaper
network, the application sets the streaming rate to the
maximum available bandwidth, i.e., ri ¼ rimax. In the
expensive network, GSTS pauses the streaming process,
i.e., ru ¼ 0. The buffering threshold value is optimized to
minimize the session cost using the cost optimization
framework that is explained in the following section. The
main intuition behind introducing the buffering threshold is
to reduce the streaming monetary cost in the cheaper
network after securing a sufficient amount of the streamed
media in the application buffer. However, this strategy
leads to increasing the network signaling load as the
application will require more visits to finish downloading
the whole media file.

3.2.3 Controlled Streaming to Threshold and Stop

(CSTS)

In the cheaper network, CSTS optimizes the values of both
the streaming rate and the buffering threshold. In the
expensive network, CSTS pauses streaming, i.e., ru ¼ 0. Note
that reducing the streaming rate in the cheaper intermittent
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Fig. 3. Optimization cycle.

2. Note that PGMS [23] is renamed GSTS for consistency.



network typically reduces the session cost as the streamed
media is buffered at a lower cost rate. On the other hand,
buffering the media at reduced streaming rates may lead to a
failure in securing the target amount before exiting the
cheaper network. This failure increases the probability of
buffer depletion, which is followed by resource allocation
request in the expensive network to avoid streaming
interruption. Such a request involves excess signaling and
may degrade the streaming QoS if the bandwidth allocation
request is denied in the 3G cellular systems. The optimal
choice of the streaming policy parameters should compro-
mise the tradeoff between monetary cost, signaling load, and
session QoS.

3.2.4 Controlled Streaming to Threshold and Recourse

(CSTR)

CSTR represents the most flexible streaming strategy as it
optimizes all the optimization cycle parameters including ri,
�b, and ru. Note that streaming on moving to the expensive
network enables the application to use the expensive network
at a lower cost rate before the buffer depletion. The high
variability of the user mobility magnifies the importance of
streaming in the expensive network because the user in many
cases may not have time to secure enough media in the
application buffer. In CSTR, the application considers a
recourse estimate for ru on moving to the expensive network
because the exact value of the residence time in the cheap
network and consequently, the buffer level on moving to the
expensive network, become known at the end of the first
stage of the optimization cycle. Hence, the recourse value of
ru represents a more accurate estimate for the value
determined in the first half of the optimization cycle when
all the mobility information is unknown. In the recourse
phase, the streaming rate is determined such that the
expected streaming cost of the second part of the optimiza-
tion cycle in minimized, as detailed in the following section.

4 COST ANALYSIS AND OPTIMIZATION

In this section, we present a generic optimization frame-
work that is applicable to GSTS, CSTS, and CSTR. We focus
on the analysis of CSTR as it represents the most general
streaming strategy. The analysis of CSTS and GSTS can be
derived as special cases of CSTR as will be shown later.
First, we present the cost analysis of an optimization cycle.
We then present our cost optimization framework.

4.1 Optimization Cycle Cost Analysis

Typically, each optimization cycle has two stages that
correspond to the duration spent in the cheaper and
expensive networks. Our cost analysis follows the same
sequence by presenting the cost of each stage in series.

4.1.1 Cost Analysis in the Cheaper Network

As the user starts a new optimization cycle, by moving
from cellular network to a WLAN or starting a new session
in the WLAN, the application should determine the values
of the streaming strategy parameters, i.e., ri, �b, ru.
Typically, ri is lower bounded by the nominal streaming
rate and upper bounded by the technology maximum
streaming rate, i.e., ro � ri � rimax. Once, this value is
communicated to the streaming server, the buffered media

builds up at a rate of ðri � roÞ. Let �b represent the time
required for the buffered data level to reach the optimized
buffering threshold. Then, �b can be expressed as �b ¼ �b�xo

ri�ro .
Assuming that there is enough media to be streamed, we
have two possible scenarios:

. The user moves out of the cheap network before
hitting the buffering threshold, i.e., �i � �b. Hence,
the user maintains a constant streaming rate during
its residence in the cheaper network.

. The buffered media increases to the buffering
threshold, i.e., �i > �b. Hence, at �b, the application
adjusts the streaming rate to maintain the buffer
level at the buffering threshold.

Note that in both cases, the application proactively adjusts
the streaming rate to be used in the expensive network
before exiting the cheaper network. To this end, the buffer
level at the beginning of the second stage can be expressed as

x1 ¼
xo þ ðri � roÞ�i; �i � �b
�b; �i > �b:

�

Generally, we define three cost components including
monetary cost, signaling cost, and QoS cost. In the cheaper
intermittent network, these costs are denoted Cim, Cis, and
Ciq, respectively. These costs can be expressed as

Cim ¼
�iðriÞ�i; �i � �b
�iðriÞ�b þ �iðroÞð�i � �bÞ; �i > �b;

�

Cis ¼
2�is; �i � �b
3�is; �i > �b;

�
Ciq ¼ 0;

where �is represents the signaling cost for stream rate
adjustment in the cheaper intermittent network. This cost
includes resource allocation (deallocation) communication
with the access network and RTSP message communication
with the streaming server. Note that the signaling cost only
considers the signaling resulting from the stream manage-
ment and ignores the signaling incurred for other core
functions such as location update [33] as the latter cost is
incurred independent of the streaming strategy. Typically,
the MT adjusts the streaming rate at least twice on entering
and exiting WLANs. An additional rate adjustment is
performed on hitting the buffering threshold �b. The QoS
cost is set to zero because we assume that WLANs have
sufficient resources and will not deny the user resource
allocation request. Additionally, the streaming rate in the
cheaper network is always higher than the application
playout rate. Hence, the user continuously maintains the
application buffer above the QoS threshold.

4.1.2 Cost Analysis in the Expensive Network

On moving to the expensive network, the application
determines its streaming rate, which is typically 0 � ru � ro.
Hence, the buffer depletes at a rate of ðr0 � ruÞ creating two
possible cases

. the user enters a dual coverage zone before the buffer
depletion to the QoS threshold �q. Note that the buffer
depletion duration may be expressed as �d ¼ x1��q

ro�ru or
�d ¼ �b��q

ro�ru for �i � �b or �i > �b, respectively.
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. the buffer depletes while the user is still in the
expensive network. In this case, the application
proactively readjusts the streaming rate to ro.

Consequently, the monetary, signaling, and QoS cost,
respectively, donated as Cum, Cus, and Cuq, in the expensive
network can be expressed as

Cum ¼
�uðruÞ�u; �u � �d
½�uðruÞ�d þ �uðroÞð�u � �dÞ�; �u > �d;

�

Cus ¼
�0us; �u � �d
�us þ �0us; �u > �d;

�

Cuq ¼
�uqðruÞ; �u � �d
�uqðro � ruÞ; �u > �d;

�

where �0us and �us represent the signaling cost in the
expensive network excluding and including RTSP signaling
and �quðruÞ represents the QoS cost in the expensive
network. Note that the RTSP signaling of the first rate
adjustment is proactively sent in WLANs. Additionally, the
QoS cost in the cellular network is considered to represent
the possible resource allocation denial due to insufficient
resources. This denial may lead to sluggish streaming if the
application buffer is completely depleted. The QoS cost is
assumed to be rate dependent as it is intuitively expected
that the larger the requested the bandwidth is, the higher
the probability of denying the resource allocation request.

4.2 Cost Optimization

In this section, we first derive an expression for the
expected cost of the optimization cycle based on the
presented cost analysis. We then formulate the cost
optimization problem and present our solution approach.

4.2.1 The Expected Cost of an Optimization Cycle

The expected monetary cost, Cm, for an optimization cycle
can be expressed as

Cm ¼
Z �b

0

�iðriÞt1fiðt1Þdt1

þ
Z 1
�b

½�iðriÞ�b þ �iðroÞðt1 � �bÞ�fiðt1Þdt1

þ
Z �b

0

Z �d

0

�uðruÞt2fuðt2Þdt2fiðt1Þdt1

þ
Z �b

0

Z 1
�d

½�uðruÞ�d þ �uðroÞðt2 � �dÞ�

fuðt2Þdt2fiðt1Þdt1

þ
Z 1
�b

Z �d

0

�uðruÞt2fuðt2Þdt2fiðt1Þdt1

þ
Z 1
�b

Z 1
�d

½�uðruÞ�d þ �uðroÞðt2 � �dÞ�

fuðt2Þdt2fiðt1Þdt1:

After some algebraic manipulation, integrating by parts and
simplifying, Cm can be expressed as

Cm ¼
�iðroÞ
�i
þ �uðroÞ

�u
þ �iðriÞ � �iðroÞð ÞI1

þ �uðruÞ � �uðroÞð Þ½I2 þ I3�;
ð3Þ

where

I1 ¼
Z �b

0

ð1� Fiðt1ÞÞdt1;

I2 ¼
Z �b

0

Z �d

0

ð1� Fuðt2ÞÞdt2 fiðt1Þdt1; and

I3 ¼
Z 1
�b

Z �d

0

ð1� Fuðt2ÞÞdt2 fiðt1Þdt1:

Note that the first two terms in (3) correspond to the
monetary cost for a mobile terminal streaming at the nominal
stream rate and staying exactly the average residence time in
each network. The third term represents the excess cost for
streaming at a higher rate in the cheaper network while the
last term in (3) represents the cost savings due to streaming at
a lower rate in the cellular network.

Similarly, the expected signaling cost, Cs, can be
expressed as

Cs ¼ 2�is þ �is½1� Fið�bÞ� þ �0us
þ �usf½1� Fuð�dÞ�½1� Fið�bÞ� þ I4g;

ð4Þ

where I4 ¼
R �b

0 ½1� Fuð�dÞ�fiðt1Þdt1. Typically, the first term
in Section 4.2.1 is unavoidable resource management
signaling on entering and exiting the cheaper network. In
contrast, the second term is an additional cost due to rate
adjustment after hitting the buffering threshold. The third
term represents the cost associated with resource allocation
as the user moves to the expensive network. The last term
represents the signaling cost in the expensive network
including the penalty that may be incurred if the buffer is
depleted. Last but not least, the expected QoS cost, Cq, can
be expressed as

Cq ¼ �qðruÞ þ �qðro � ruÞ
f½1� Fuð�dÞ�½1� Fið�bÞ� þ I4g:

ð5Þ

Note that the first term in (5) corresponds to the
possibility of resource allocation denial on performing
VHO to the expensive network while the second term
corresponds to the penalty for choosing a low data rate,
which speeds the buffer depletion.

4.2.2 Optimization Problem Formulation

We formulate the optimization problem as a weighted sum
of different cost components as follows:

min Cobj ¼
X

l2fm; s; qg
klCl

such that �b � �q
ro � ri � rimax
0 � ru � ro;

ð6Þ

where kl represents the cost coefficient of Cl. These cost
coefficients are used to tune the algorithm performance as
will be shown later. To this end, the presented problem
represents a deterministic program that can be solved for
the streaming algorithm design parameters. Generally, the
resultant program is nonlinear in the design parameter due
to the nonlinearities in residence distributions and cost
profiles. Hence, this problem is classified as a nonlinear
optimization program with boundary constraints. The
solution of nonlinear programs is generally realized using
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different numerical techniques. Practically, the adopted
optimization technique should be simple, easy to imple-
ment, and applicable to any model without restrictions. All
these features are satisfied by direct search methods [34].
More importantly, these methods are known for their speed
and robustness when the application target is one or two
digits of accuracy, which matches the requirements of the
presented program.

Clearly, the objective function involves the solution of
integrals I1-I4. Although each of these integrals can be
calculated numerically, we develop a framework to
analytically estimate these integrals to speed the solution
of (6). In this framework, we employ phase-type (PH)
distributions [35] to represent the residence times of
different zones. PH distributions are chosen due to their
flexibility and analytical tractability.

We assume that the mobile terminal records the
durations spent in different dual and unique coverage
zones. We fit the durations spent in a specific zone based
on its coefficient of variation, denoted as �x

3 to hyper-
exponential, exponential, and hypoexponential distribu-
tions for �x > 1, �x ¼ 1, and �x < 1, respectively. These
distributions are specifically chosen due to their simple
structure and computationally inexpensive fitting proce-
dures [36]. To illustrate the simplicity of the fitting
procedure, we present the case of hyperexponential
distributions. The probability distribution function of
hyperexponential random variables is expressed as
fXðxÞ ¼

Pk
i¼1 qi�ie

��ix in which k represents the number
of exponential stages, �i represent the exponential para-
meter of stage i, and qi represents the probability of stage i.
Given the sample mean (�) and coefficient of variation �x
of a specific residence time, �1 and �2 can be estimated as

�1 ¼ �
,

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

q1

�2
x � 1

2

s" #

�2 ¼ �
,

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1

q2

�2
x � 1

2

s" #
;

where the parameters q1 and q2 can be assigned any values
that satisfy the restrictions q1; q2 � 0, q1 þ q2 ¼ 1, and
�1; �2 > 0. Closed forms for the integrals I1-I4 can be
obtained for using integration by parts. These closed forms
are calculated for different combinations of residence time
distributions but are not shown here for brevity.

4.2.3 Recourse Phase

The solution of (6) provides all the design parameters
including �b, ri, and ru. However, these parameters are
estimated with all the involved stochastic parameters
unknown. Clearly, at the end of the first stage of the
optimization cycle, the buffer level, x1, is known. Conse-
quently, a recourse estimate of ru can be considered based on
the uncovered information. Similar to the previous analysis,
the updated ru can be estimated by minimizing a weighted
sum of different expected costs for the second stage given the
buffer level at the beginning of this stage. Similar to the

previous analysis, the streaming rate in the expensive
network can be obtained by solving the following program:

min km

�
�uðroÞ
�u

þ �uðruÞ � �uðroÞð Þ
Z �d

0

1� Fuðt2Þð Þdt2
�

þ ks�0us þ kq�qðruÞ þ ½ks�us þ kq�qðro � ruÞ�½1� Fuð�dÞ�
ð7Þ

such that 0 � ru � ro;

where �d ¼ x1��q
ro�ru . Equation (7) also represents a determi-

nistic program that can be solved using standard
optimization tools.

To this end, the presented analytical framework is
applicable to all the proposed streaming strategies. Yet
further modifications are considered depending of the
streaming strategy. For example, if greedy streaming is
considered in the cheaper network, then ri ¼ rimax. Similarly,
if a stream pause is considered in the expensive network as in
GSTS and CSTS, the streaming rate in the expensive network
is set to zero, i.e., ru ¼ 0. Hence, the associated costs in the
expensive networks will be expressed as follows:

Cum ¼
0; �u � �d
½�uðroÞð�u � �dÞ�; �u > �d;

�

Cus ¼
0; �u � �d
�us; �u > �d;

�

Cuq ¼
0; �u � �d
�uqðroÞ; �u > �d:

�

5 SIMULATION AND NUMERICAL RESULTS

The performance of the presented algorithms under
different operating scenarios is investigated using NS-2
[37] simulations. We have simulated an integrated cellular-
WLAN heterogeneous system, with square cells for
simplicity of illustration. Each overlay cellular cell is
composed of N square subdivisions, where WLANs are
randomly located with probability Pwo. When an MT is
handed off to another cell, it experiences a new random
WLAN topology. For mobility simulation, we adopt a two-
dimensional Gauss-Markov movement model [38]. In this
model, the MT velocity is assumed to be correlated in time
and is modeled by a Gauss-Markov process. In its discrete
version, at time n, the MT velocity in each dimension, vn, is
given by

vn ¼ �vvn�1 þ ð1� �vÞ�v þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

v

q
xn�1; ð8Þ

where �v, 0 � �v � 1, represents a velocity memory factor,
�v is the asymptotic mean of vn, and xn is an independent
and stationary Gaussian process with zero mean and
standard deviation 	v, where 	v is the asymptotic standard
deviation of vn. The Gauss-Markov model can be easily
tuned to represent a wide range of user mobility patterns
between the two extreme cases of random-walk and
constant velocity fluid-flow as �v changes from 0 to 1.
Additionally, it has been shown that the Gauss-Markov
model successfully emulates real mobility patterns due to
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3. �x ¼ 	x
�x

, where 	x and �x represent the standard deviation and the
mean of the corresponding measurements, respectively.



its capturing temporal dependency, which is an important
mobility characteristic.

We assume that the network pricing profiles of the cellular
and WLAN technologies are expressed as �uðrÞ ¼ aur2 þ bur
and �iðrÞ ¼ air2 þ bir, respectively. Note that these cost
profiles are used for illustration purposes only. The design of
optimal cost profiles in heterogeneous integrated systems is a
nontrivial design issue and is beyond the scope of this work.
We assume linear blocking probabilities in 3G systems. That
is to say that the probability that a specific handoff in 3G
system is blocked varies from 0 to Pv and Ph for vertical and
horizontal handoffs, respectively, as the requested rate
changes from 0 to rumax. Typically, vertical blocking
probability is expected to be smaller than horizontal blocking
probability because the impact of VHOs is more critical due
to their higher frequency.

The session duration is modeled using a hyperexponen-
tial distribution with mean �T and coefficient of variation �T
to capture the high variability of session durations. In the
following sections, we compare the performance of the GMS,
GSTS, CSTS, and CSTR algorithms for different pricing
strategies and mobility patterns. For the optimization
problem solution, we use the parallel direct search method
from the OPT++ optimization package [39]. Table 1 shows
the default values of the simulation parameters of a two-tier
system. The chosen maximum network service rates repre-
sent possible per user rate allocation strategies of CDMA2000
and 802.11g. In the shown figures, each point represents the
performance metric for the mean of 500 sessions with its
corresponding 95 percent confidence interval.

5.1 Pricing Strategies

In this section, we study the impact of different cost profiles
including linear and nonlinear pricing strategies. Addition-
ally, in order to focus on monetary cost, we reset several
simulation parameters including signaling cost coefficient,
QoS cost coefficient, and system blocking probabilities, i.e.,
ks ¼ kq ¼ Pv ¼ Ph ¼ 0.

5.1.1 Linear Pricing Strategies

Fig. 4 plots the average cost rate for different algorithms
versus cost coefficient ratio, i.e., bubi . In this figure, au ¼ ai ¼ 0
and �uðrumaxÞ ¼ 100. The figure also shows the ideal
minimum cost, which is estimated assuming full knowl-
edge of the user residence times in different technologies.
Typically, as the cost coefficient ratio increases, WLANs
cost profile becomes cheaper and more appealing to the
user. The figure shows that using GMS not only incurs the
lowest cost but also leads to near-optimal cost. The figure
also shows that GSTS comes next to GMS followed by CSTS

and CSTR. This result conforms with the previous result as
it shows that using a greedy strategy under linear cost
strategies incurs lower cost and minimizes usage of the
expensive network. These results show that linear pricing
schemes, which are equivalent to current usage-based
schemes, are not effective pricing strategies to minimize
the heterogeneous user resource-aggressive behavior in
WLANs. The same result can be intuitively generalized for
concave pricing profiles. Hence, in the rest of our study, we
consider pricing profiles with convex shapes.

5.1.2 Nonlinear Pricing Strategies

Fig. 5 plots the average session cost rate versus cost
coefficient ratio for nonlinear pricing profiles. In this figure,
the cost profile of the expensive network uses the coefficients
shown in Table 1. The figure shows that controlled streaming
policies realize the lowest cost followed by GSTS and GMS.
For example, with one order of magnitude difference in the
service cost of both networks, the monetary cost incurred
using GMS is 1.5 times that of GSTS. Additionally, the figure
shows that as the WLAN becomes cheaper, the incurred cost
of these algorithms converges, specifically as the cost ratio
increases beyond 30 as shown in the subplot. In contrast to
the linear pricing case, the figure shows that the controlled
streaming strategies result in a noticeable suboptimal cost
margin to the ideal cost. However, the largest cost gap
between the controlled streaming strategies cost and the
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TABLE 1
Simulation Parameters

Fig. 4. Session cost versus cost coefficient ratio for linear pricing
profiles.

Fig. 5. Session cost versus cost ratio for nonlinear pricing profiles.



ideal case is less than 27 percent. This cost difference is
because the ideal cost is obtained with complete information
of the residence times in different zones. Hence, it optimizes
the streaming rates for the entire session in comparison to an
optimization cycle as is the case for the presented algorithms.
The ideal solution only represents a benchmark that is
practically infeasible.

Fig. 6 plots the average executed-VHO signaling of
different algorithms versus cost coefficient ratio for nonlinear
pricing profiles. In this context, an executed VHO corre-
sponds to a resource allocation request after network switch-
ing. Note that when the application pauses streaming on
moving to the expensive network policy, it will not request
resource allocation on moving to the expensive network as
long as it has sufficient media in its buffer. Clearly, the figure
shows a noticeable difference in the VHO signaling load in
the integrated network. This difference is due to minimizing
the usage of the expensive network, especially for the
algorithms that pause the streaming in the expensive net-
work. Additionally, the figure shows that GMS produces the
least signaling followed by GSTS, CSTS, and CSTR.

Typically, GMS has the least signaling load in both
networks as it aggressively maximizes the buffered media
in the cheaper network. This behavior consequently mini-
mizes the probability of the buffer depletion in the cellular
network. Additionally, it enables the application to com-
plete the stream download in fewer WLAN visits in
comparison to threshold based strategies. The greedy
behavior in WLANs also enables GSTS to successfully
buffer the media to the target threshold, and consequently,
minimizes its dependence on the cellular network as shown
in Fig. 6. Additionally, the greedy behavior slightly reduces
the number of WLANs visits of GSTS in comparison to
other threshold-based media streaming strategies. Last but
not least, the recourse phase in CSTR results in a noticeable
increase in the cellular VHO signaling load that reaches
3.8 times that of CSTS. This increase is interpreted by the
conservative rate choice of controlled streaming strategies
in cheaper networks and the high variability of user
mobility. Both factors do not allow the application in many
cases to secure enough media in the application buffer.
Hence, the application is forced to perform VHOs on
moving to the expensive cellular network.

Fig. 7 plots RTSP signaling load for different algorithms
versus the cost coefficient ratio for nonlinear pricing profiles.

The noticeable difference between the RTSP signaling in
WLANs and cellular networks is due to adopting a proactive
VHO strategy. Hence, most of the RTSP messages are
transmitted in the cheaper network just after moving into
the dual zone or proactively before leaving the WLAN.
Hence, RTSP signaling in the 3G system corresponds to the
buffer depletion to the QoS threshold �q. The figure shows
that GMS produces the lowest RTSP signaling in both
networks for the same reasons behind the low VHO
signaling of GMS. The figure also shows that GSTS produces
higher signaling load than both CSTS and CSTR although the
latter algorithms perform more WLAN VHOs as shown in
Fig. 6. This result is due to the greedy behavior of GSTS that
enables the application to secure the required media and
consequently perform rate readjustment in the WLAN. The
figure also shows that CSTS and CSTR send more RTSP
messages in the cellular network. These messages reflect the
frequency of the application buffer depletion in the cellular
network. The figure also shows that the recourse part in the
CSTR streaming policy slightly reduces the RTSP signaling
load in the cellular system as it prolongs the time required to
deplete the buffer to �q.

Fig. 8 plots the average executed horizontal handoff
(HHO) signaling load for different algorithms versus the cost
coefficient ratio for nonlinear pricing profiles. In this context,
an executed HHO corresponds to a cell transition during
which the user is located in a unique coverage zone while the
application is streaming. Note that the user will not request
resource allocation if it is crossing cells through a dual
coverage zone or if it is relying on the buffered data. Hence,
in the latter two cases, the application will not initiate any
HHO procedure. Clearly, the figure shows that GMS
produces the least signaling load followed by GSTS, CSTS,
and then CSTR. The figure shows also that introducing a
recourse phase in CSTR leads to significant increase in the
HHO signaling load. This increase reaches three times the
signaling load of CSTS and 10 times of that of GMS.

To sum up, we find that the policy component of the
proposed streaming strategies have different impacts on
different performance metrics. The greedy behavior in the
cheaper network successfully enables the application to
buffer the media and significantly reduces the signaling
load as shown for GMS and GSTS. However, it increases the
session cost, especially for relatively expensive WLANs.
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Fig. 6. Session VHO versus cost ratio for nonlinear pricing profiles. Fig. 7. Session RTSP signaling versus cost ratio for nonlinear pricing
profiles.



Stopping the stream on moving to the expensive network
represents an effective approach to reduce the signaling
load, especially when combined with greedy streaming that
ensures buffering the targeted amount. The controlled
streaming proves its ability to significantly reduce the
session monetary cost, irrespective of the adopted policy in
the expensive network.

5.2 Algorithm Cost Weights and Performance
Tuning

In this section, we investigate the impact of the algorithm
cost weights, i.e., km, ks, and kq, on different performance
metrics. The shown results are produced assuming the
default cost parameters shown in Table 1. Additionally, we
set ks ¼ kq ¼ k and vary k while keeping km ¼ 1 and we
assume zero cost for signaling in WLANs, i.e., �is ¼ 0.

Fig. 9 shows the average session cost rate versus the
signaling and QoS cost weights for different algorithms. The
figure shows that CSTR has the lowest monetary cost
followed by GSTS, GSTS, and them GMS. Additionally, the
figure shows that the monetary cost of GSTS, CSTR, and
CSTS can be tuned by varying the weights of different costs.
The figure shows also that the lowest monetary cost for
CSTS is attained with kq ¼ ks ¼ 0, i.e., when only the
monetary cost is considered in the optimization framework.
In contrast, the lowest monetary cost for CSTR and CSTS is
realized with km ¼ ks ¼ kq ¼ 1, i.e., all costs are equally
considered in the objective function.

Fig. 10 plots the average session VHO signaling load for
different algorithms versus their corresponding cost
weights. Clearly, the figure shows that the variation of cost
weights slightly reduces the VHO signaling in WLANs as it
triggers the streaming strategy to increase the buffering
threshold. In contrast, the figure shows that changing the
cost coefficient has significant impact on VHO signaling of
controlled streaming strategy in the cellular networks. For
example, the 3G VHO signaling load of CSTR drops to
approximately 30 percent as the cost weight k changes from
0 to 1. This drop is interpreted by securing enough data in
the buffer before exiting the cheaper network by increasing
the streaming rate. Furthermore, the figure also shows that
CSTR always produces the largest signaling load in 3G
networks for all cost weights due to the recourse strategy in
the cellular network.

Fig. 11 plots the average session RTSP signaling load for
different algorithms versus the algorithm signaling and QoS
costs. Clearly, the figure shows that the increase in cost weight
does not lead to significant changes in the RTSP signaling
load in WLAN. In contrast, the increase of k from 0 to 1 leads
to a significant drop in cellular RTSP signaling load to
40 percent. This drop is due to the decrease in VHOs to the
cellular systems as shown in Fig. 10 and the more con-
servative estimate of the streaming rate in the cellular
network on performing a VHO to it. Fig. 12 plots the average
session HHO signaling load for different algorithms versus
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Fig. 8. Session HHO versus cost ratio for nonlinear pricing profiles.

Fig. 9. Session cost rate versus algorithm cost weight.

Fig. 10. VHO rate versus algorithm cost weight.

Fig. 11. RTSP signaling versus algorithm cost weight.



the algorithm signaling and QoS cost weight. Clearly, the
figure shows significant drop in controlled streaming HHO
signaling load. Intuitively, this drop is a natural consequence
for decreasing the dependence on the cellular network due to
its expensive signaling load. The drop in the frequency of
both VHO and HHO leads to noticeable drop in the session
blocking probability4 as shown in Fig. 13

Clearly, Figs. 9, 10, 11, 12, and 13 show that the
performance of the presented algorithms are significantly
affected by the cost coefficient parameters. Additionally,
these figures indicate the user interest in reducing his
monetary cost and the operator interest in reducing the
signaling load do not intersect. For example, the minimum
cost for CSTS occurs at k ¼ 1 while the lowest signaling load
occurs as k!1. Hence, the choice of the cost coefficients
of the presented algorithms can be optimized to compro-
mise the tradeoff between user and operator perspectives.
In order to achieve this target, we define a total cost, Ctot,
that is defined as

Ctot ¼ Cm þ SVHO þ SHHO þ SRTSP
þ 100 � ðBHHO þBVHOÞ;

where Cm represents the session cost rate, SVHO, SHHO,
SRTSP , respectively, represent the signaling load in 3G
cellular system for VHO, HHO, and RTSP, and BHHO and
BVHO, respectively, represent the HHO and VHO blocking
probabilities. Fig. 14 plots the total cost for different
algorithms versus QoS and signaling cost coefficients for
km ¼ 1. Clearly, the Figure shows that the total cost for
CSTS and CSTR can be minimized by setting k ¼ 2 and
k ¼ 4, respectively. Considering the fact that the session
monetary cost rate for CSTR at k ¼ 4 is less that the
corresponding cost of CSTS at k ¼ 2, we find that using
CSTR with k ¼ 4 represents a better stream management
policy in this scenario.

6 CONCLUSION

The characteristic heterogeneity of different access technol-
ogies in next-generation integrated wireless systems brings
both benefits and challenges to the system design. In this

paper, media streaming optimization in two-tier systems is

investigated. Novel media streaming strategies that under-

stand the inherent system heterogeneity are developed.
Additionally, the design parameters of these strategies are

optimized using an analytical framework that accommo-

dates the limited processing power of mobile devices and
the real-time delay requirements of vertical handoffs. The

performance of the developed strategies is simulated under

different operating scenarios including different cost pro-

files of network operators and user mobility patterns. The
results show that current usage-based cost profiles will not

prevent user aggressive behavior especially in cheaper

networks. Additionally, the results show that the developed
streaming strategies realize noticeable monetary session

cost reductions under advanced cost profiles. As future

work, we are interested in extending the optimization
framework to consider cost optimization with QoS im-

provement using scalable video.
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