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Abstract—In this paper we address the problem of deploying
heterogeneous mobile sensors over a target area. We show how
traditional approaches designed for homogeneous networks fail
when adopted in the heterogeneous operative setting.

Unfortunately, network and device homogeneity is an unre-
alistic assumption in most practical deployments. In order to
deal with realistic scenarios, we introduce VorLag, a general-
ization of the Voronoi approach based on Laguerre geometry.
We theoretically prove the appropriateness of our approach
to the management of heterogeneous networks. In addition
we demonstrate that VorLag can be extended to deal with
dynamically generated events or uneven energy depletion due
to communications.

Furthermore, by means of simulations, we show that VorLag
provides a very stable sensor behavior, with fast and guaranteed
termination and moderate energy consumption. We also show
that VorLag performs better than other methods based on virtual
forces.

I. INTRODUCTION

The deployment of mobile sensors is attractive in many
scenarios. Mobile sensors may be used for environmental
monitoring to track the dispersion of pollutants, gas plumes
or fires. They may also be used for public safety, for example
to monitor the release of harmful agents as a result of an
accident. In such scenarios it is difficult to achieve an exact
sensor placement through manual means. Instead, sensors
may be deployed somewhat randomly from a distance, and
then reposition themselves to provide the required sensing
coverage.

The potential of such applications has inspired a great deal
of work on algorithms for deploying mobile sensors. Most
of this work has addressed the deployment of homogeneous
sensors to achieve a uniform coverage of a certain density in
a specific Area of Interest (AoI). In this paper we address two
more practical and challenging problems: (i) the deployment
of heterogeneous sensors to achieve full coverage, and ii) the
deployment of sensors to achieve coverage of varying density
within an AoI. The first application accommodates sensors that
may have different sensing ranges due to design or operating
conditions, for example depleted battery supplies or damage
to a transducer. The second application addresses the need for
a higher density of sensing resources at a particular site where
perhaps an event has been detected and requires more analysis.

We propose an algorithm which is based on a generalization
of the Voronoi approach presented in [1]. We find that the
original algorithm does not solve the problems of deployment

with heterogeneous sensors or varying density over a field.
We discover that in these scenarios, sensors do not move to
cover the required area, but instead stop moving when they
wrongly perceive that they have covered their maximum area.
To solve this problem we introduce the notion of Laguerre
distance into the Voronoi algorithm, and with some other
modifications show that the resulting algorithm, which we call
VorLag, is able to solve both deployment problems effectively.
The primary additions to the original Voronoi algorithm are
the use of the Laguerre distance and the redefinition of several
algorithm parameters to ensure algorithm termination and
improve convergence time.

We compare VorLag with another class of well accepted
deployment algorithms based on virtual forces. We modify
one particular virtual force algorithm so that it may operate
in scenarios requiring the use of heterogeneous sensors or
deployment of varying density. We find that VorLag has
better performance and characteristics than the virtual force
algorithm. Because the virtual force algorithm balances the
distance between sensors, and does not specifically target
sensor heterogeneity or a specific coverage density, it takes
longer to converge, and under some circumstances is not
guaranteed to converge at all. Also, we find that unlike VorLag,
the virtual force algorithm requires offline tuning of several
parameters which have a large impact on its performance; a
priori knowledge of the density of deployed sensors is required
for the proper tuning of these parameters which makes the
algorithm impractical.

In summary, our contributions are:

• We identify the limitations and their root causes when us-
ing Voronoi-based algorithms with heterogeneous sensors
and when deploying sensors with varying density;

• We generalize a previously proposed Voronoi-based al-
gorithm with the notion of Laguerre distance to solve the
problem of deploying heterogeneous mobile sensors;

• We extend the new algorithm to execute in environments
in which a varying coverage density is required;

• We extend a virtual force based algorithm to operate in
these two scenarios;

• We compare the performance of the VorLag and virtual
force algorithm and determine the fundamental causes
behind the limitations of the virtual force algorithm.

The VorLag algorithm is practical in that it provides very



stable sensor behavior, with fast and guaranteed termination
and moderate energy consumption. It does not require manual
tuning or perfect knowledge of the operating conditions,
and works properly if the sensor positioning is imprecise.
The algorithm only requires loose synchronization and local
communication. Because it converges quickly and does not
require a priori knowledge of the deployment environment,
it is also well suited for dynamic environments in which the
sensing density requirements change over time.

The paper is organized as follows. Related work is presented
in Section II. In Section III we motivate the problem and
introduce some preliminary concepts. Section IV presents the
algorithm VorLag. In Section V we address the problem of
density driven deployment. Section VI summarizes a virtual
force based algorithm that we use for performance compar-
isons whose results are shown in Section VII. Section VIII
concludes the paper with some final remarks.

II. RELATED WORK

Various approaches have been proposed to self-deploy mo-
bile sensors. The virtual force approach (VFA) models the
interactions among sensors as a combination of attractive and
repulsive forces. As a result of these antagonist forces, the
sensors spread throughout the environment. One of the first
algorithms based on VFA was presented in [2].

Drawbacks of VFA include complex required tuning of
several parameters and an oscillatory behavior of sensors.
Possible improvements to decrease the oscillations include
the introduction of dissipative forces [2], [3] or the definition
of arbitrary thresholds as stopping conditions [4], [5]. The
tuning of such thresholds is laborious and relies on an off-line
configuration.

The virtual force model is also at the basis of several other
proposals [6], [7], [8], [9]. Of these proposals we focus on
the one presented in [6] under which a dynamically calculated
constraint on the length of sensor movements prevents oscilla-
tions. This algorithm is described in more detail in Section VI
and is referred in this paper as a benchmark for performance
comparisons.

Techniques based on computational geometry model the
deployment problem in terms of Voronoi diagrams or Delau-
nay triangulations. According to [1], each sensor iteratively
calculates its Voronoi polygon, determines the existence of
coverage holes and moves to a better position if necessary.
This approach inspired our proposal and it can be obtained as
an instance of our general approach, when sensor capabilities
are homogeneous. A dual approach exploits Delaunay trian-
gulation [10]. This approach does not guarantee oscillation
avoidance if proper threshold parameters are not set.

Other approaches introduce techniques for sensor deploy-
ment in a different operative setting than we consider [11].
Finally, an approach based on the construction of a regular
triangular lattice is proposed in [12].

Recent papers [13], [14] focus on static sensor deployment
with variable density in order to mitigate the effects of the
uneven energy depletion due to communication with a sink

[15], [16]. The work [3] introduces a unified solution for
sensor deployment and relocation to adapt the density to
the proximity of events of interest. The work [17] addresses
the problem of sensor heterogeneity specifically, but under
assumptions on the network topology that are very restrictive
with respect to those considered in this paper.

We conclude this section by pointing out that the idea of
using generalized Voronoi diagrams is not new in the area
of sensor networks [18]. Nevertheless, to the best of our
knowledge, none of the previous work uses the approach
proposed here to address the problem of heterogeneous mobile
sensor deployment or deployment of varying density.

III. MOTIVATION AND PRELIMINARIES

In the following subsections we show the limits of existing
Voronoi based approaches to guide sensor movements and give
the basics of our new algorithm.

A. Traditional Voronoi approach

A Voronoi diagram partitions the AoI into smaller polygonal
regions so that each polygon is better covered by the sensor to
which it belongs, rather than by any other one. The Voronoi
algorithm is designed for homogeneous sensors. It provides
that each sensor calculates its Voronoi polygon, and move
towards its vertices if they are uncovered. Thus, each edge
of the diagram lies on a line which partitions the AoI in two
half planes, each one covered better by either one or the other
of the two generating sensors. This property of the Voronoi
diagram no longer holds in the case of heterogeneous sensors,
but it is a necessary property for the diagram to guide sensor
movements towards coverage holes, according to the Voronoi
algorithm.

Figure 1(a) shows an example in which the line “Vor” is
equidistant from the points s1 and s2. It is easy to see that
since this line does not cross the intersection between the two
circles, it does not partition the plane as required. Instead, the
line labelled “VorLag” is drawn so as to assign each sensor to
the half plane that it can cover best. Later in the paper we will
show that this line is also equidistant from the points s1 and
s2 but it is so in the Laguerre geometry. Figure 1(b) shows
another case in which the Voronoi axis does not properly
partition the AoI as it is done by the VorLag axis.

In order to show what kind of problems may occur when
using the Voronoi algorithm in the case of heterogeneous
sensors, we consider the example of Figure 2 in which sensors
are deployed over a rectangular AoI, where the left zone is
covered redundantly and the right zone is largely uncovered.
The use of this algorithm produces no movements in such a
configuration. The sensors with a small sensing circle (sensors
10-14) do not move, as their sensing range is completely
included by their Voronoi polygon. The sensors with larger
sensing circles (sensors 0-9), do not move either, because
they already cover their own polygon completely. We can
conclude that Figure 2 represents a critical configuration for
the Voronoi algorithm for which the bad bisector placement
leads to a barrier effect. This effect is one of the reasons of
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Fig. 1. Different positions of the line which is equidistant to s1 and s2

according to the Euclidean (Vor) and to the Laguerre distance (VorLag) in the
case of (a) intersecting and (b) non-intersecting circles.
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Fig. 2. Critical configuration for the traditional Voronoi algorithm.

the inapplicability of the traditional Voronoi approach even in
the case of varying density requirements as will be more clear
in Section V.

B. Voronoi diagrams in the Laguerre geometry

One of the most interesting generalizations of Voronoi dia-
grams concerns the notion of distance. The notion of Euclidean
distance can be replaced by a variety of different formulations,
among which we chose to use the one by Laguerre [19]. This
choice is attractive as it preserves the property of generating
straight edges, instead of complex curves, that is required
for the Voronoi algorithm to work. The Laguerre-Voronoi
diagrams are constituted by portions of straight lines which
are perpendicular to the line segments connecting the centers
of the associated generating points.

Given a circle C with center C = (xC , yC) and radius rC ,
and a point of the plane S = (xS , yS) ∈ <2, the Laguerre
distance dL(C, S) between the circle C and the point S is
defined in terms of the Euclidean distance dE(C,S) between
points C and S: d2

L(C, S) = d2
E(C,S) − r2

C .
It should be noted that this metric is not a distance in the

mathematical sense. Actually d2
L(C, S) can be negative. The

sign of d2
L(C, S) depends on the position of S with respect to

the circle C. It is negative or positive if S lies inside or outside
circle C respectively.

Lemma 1. Given two circles C1 and C2 with non coincident
centers C1 and C2, and radii r1 and r2, respectively, the locus
of the points equally distant, in the Laguerre geometry, from

Fig. 3. Example of Voronoi-Laguerre diagram with empty and null polygons

the two circles is a straight line, called the radical axis of C1

and C2.
The radical axis is perpendicular to the segment connecting

the centers C1 and C2 of the two circles. This axis is located
at distance k from C1, with k , dE(C1,C2)

2 +
r2

1
−r2

2

2dE(C1,C2)
.

The proof of Lemma 1 is an application of the Laguerre
notion of distance, and it is omitted due to space limitations.

We now define the Voronoi-Laguerre diagram of n circles
as follows. Given n circles in the plane Ci with centers Ci =
(xi, yi) and radii ri, the Voronoi-Laguerre polygon V (Ci) for
circle Ci is defined as

V (Ci) = {P ∈ <2|d2
L(Ci, P ) ≤ d2

L(Cj , P ) ∀j 6= i}.

Obviously, if ri = rj for all i, j ∈ {1, 2, · · · , N}, the Voronoi-
Laguerre diagram reduces to the ordinary Voronoi diagram.

We highlight that the polygon V (Ci) may not contain any
point of the plane. In this case, the Voronoi-Laguerre polygon
V (Ci) is called a null polygon. We also note that the point
Ci, that is the center of Ci, may not lay inside V (Ci), even if
this polygon is not null. A non-null Voronoi-Laguerre polygon
V (Ci) that does not contain the center of its generating circle
is called an empty polygon.

Figure 3 shows an example of Voronoi-Laguerre diagram
that contains both null and empty polygons. Namely, the
Voronoi-Laguerre polygon of the circle C6 is null, and the
polygons of the circles C4 and C5 are empty. On the contrary
the polygons of the circles C1, C2 and C3 are non-empty and
consequently non-null.

The following theorem is fundamental for the formulation
of the Voronoi-Laguerre algorithm that we will present in the
next section.

Theorem III.1. Given n circles Ci with centers Ci = (xi, yi)
and radii ri, i = 1, . . . , n, consider the Voronoi-Laguerre
polygon V (Ci) for circle Ci. The intersection of V (Ci) with
all circles Cj , with i 6= j, is contained in Ci. In other words, it
does not exist any point in V (Ci) contained in some Cj , j 6= i
that is not also contained in Ci.

Proof: By contradiction, assume there exists a point P ∈
V (Ci) contained in Cj for some j 6= i but not contained in
Ci. In view of the definition of Voronoi-Laguerre polygon, it



must be dL(Ci, P ) < dL(Cj , P ) that is, equivalently,

d2
E(Ci, P ) − r2

i < d2
E(Cj , P ) − r2

j . (1)

On the other hand, If P is contained in Cj but not in Ci,
then dE(Cj , P ) ≤ rj and dE(Ci, P ) > ri. Substituting
these inequalities in Equation 1 we get 0 < 0, which is a
contradiction.

Theorem III.1 motivates the important modifications we
introduce to account for heterogeneous sensors. In the next
section, we show how the concept of a Voronoi-Laguerre
diagram can be applied to partition the AoI to support sensor
movements.

IV. A VORONOI-LAGUERRE APPROACH FOR
HETEROGENEOUS SENSOR DEPLOYMENT

A. Assumptions

1) The sensing and communication radii of sensor i are ri

and rtx
i , respectively, with ri S rj , rtx

i S rtx
j , ∀i 6= j.

2) The communication and the sensing radii of any two
sensors are such that ri + rj < min{rtx

i , rtx
j },∀i 6= j,

that is any two sensors are able to communicate while
their circles are touching.

3) Each sensor knows the coordinates of the AoI and can
determine its own location (e.g. using low cost GPS,
notice that the algorithm is not particularly sensitive to
inexact location).

4) The sensors are loosely synchronized (in order to pro-
vide a round-based execution).

5) Sensors move at possibly different speeds vi.

B. The idea

Our deployment algorithm, called VorLag, is based on the
local calculation of the Voronoi-Laguerre diagram determined
by the sensor locations over the AoI and their related sensing
radii. Such a diagram partitions the AoI into disjoint polygons,
each of them related to only one generating sensor. In view
of Theorem III.1, if a sensor cannot detect a phenomenon in
its polygon, no other sensor can detect it. Hence each sensor
uses the information related to its Voronoi-Laguerre polygon
to determine the presence of coverage holes and to decide
future movements.

Our sensor deployment protocol runs iteratively. In each
round, the sensors broadcast their locations and construct
their local Voronoi-Laguerre polygons on the basis of the
information received from neighbors. Each sensor evaluates
the existence of coverage holes within its polygon and makes
movements decisions accordingly.

It should be noted that in the Voronoi-Laguerre diagrams,
there are some interesting situations that do not occur with
ordinary Voronoi diagrams. First, the polygon of a sensor
may possibly be null (the sensor has no polygon: this can
happen when its sensing range is completely included in the
union of the sensing circles of other sensors). In this case, the
sensor should not move, as there is no direction that it can
take to locally improve its coverage, and it should wait for
other sensors to make place. Second, a sensor may be situated
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Fig. 4. Execution of the VorLag algorithm under an initial configuration that
is critical for the traditional Voronoi approach: (a) initial configuration, (b)
round 6, (c) round 9, (d) round 12 - final configuration.

outside of its polygon, that is therefore necessarily empty. In
this case, even if the polygon is completely covered, the sensor
should move towards its polygon, as it is the portion of the
AoI where it can contribute a better coverage. Even if the
sensor covers its polygon completely, it can still improve the
coverage regularity and uniformity by moving towards its own
polygon.

In Figure 4 we show progressive runs of the algorithm
execution under the initial configuration of Figure 2, that is
not critical for VorLag, as there is no barrier effect.

C. The details

In this subsection we describe the algorithm in more de-
tail: we first provide the description of the Voronoi-Laguerre
diagram construction and of the way it guides the basic move-
ments of the sensors, then we detail an algorithm optimization,
namely movement adjustment.

To construct its Voronoi-Laguerre polygon, each sensor
calculates the radical axes it generates with respect to all its
neighbors, by using the locally available information. Each
radical axis divides the plane into two half-planes, one of
which must be eliminated; the intersection of all the remaining
half-planes, is the Voronoi-Laguerre polygon of the sensor.

Notice that, due to the limited communication range, some
nodes may construct the Voronoi polygon while out of com-
munication range of their neighbors. Hence we account for
some inaccuracies in the local construction of the polygons.
This is true for the original Voronoi algorithm and remains
true even for its generalization in the Laguerre geometry.



Notice that this polygon can be null, and when not null it
can be empty. If a sensor has a null polygon, it does not move,
as a null polygon is generated only when the sensor is in an
overcrowded area. If the sensor has a non-null polygon, the
algorithm determines the target location of the sensor s as the
point inside its Voronoi-Laguerre polygon whose distance to
the farthest Voronoi-Laguerre vertex is minimized. This point
is called miniMax of the polygon of s, denoted as Om(s).
Positioning sensors in their miniMax points can reduce the
variance of the distances to the Voronoi-Laguerre vertices, re-
sulting in a more regularly shaped Voronoi-Laguerre polygon,
which better utilizes the sensors sensing capabilities.

We define ~vi,Om(si) as the vector directed from the position
held by si to Om(si) and dmaxi as the maximum distance
that the sensor si is allowed to traverse in a single round
along ~vi,Om(si). The introduction of dmaxi is necessary to
avoid an excessive movement in the case of inaccurate polygon
construction due to the limited communication range. We set
dmaxi = rtx

2 − ri. It should be noted that dmaxi, together with
the minimum sensor speed vmini, influence the duration of
the algorithm round as it is determined by dmaxi/vmini, plus
the communication phase during which neighbouring sensors
exchange their positions.

In order to reduce useless movements and to ensure al-
gorithm termination, we modify the movement-adjustment
scheme used in [1] which states that before moving to its
target location, a sensor checks whether the movement leads
to an increase in the local coverage of its own polygon.

Our first change is to introduce an exception that concerns
sensors having an empty polygon. These sensors continue to
move until they reach a point that belongs to their Voronoi-
Laguerre polygon, where they can contribute a better coverage.

Our second modification is to improve coverage close to the
boundaries of the AoI. We will refer to this new scheme as
movement adjustment over the extended AoI.

Let rmax = maxi=1···N ri be the maximum among the
sensing radii of the available sensors. We consider an extended
AoI, AoI’, by expanding the borders of the AoI with a band
whose thickness is rmax.

Each sensor calculates its coverage as the intersection of its
sensing disk with its Voronoi-Laguerre polygon, by consider-
ing the AoI’. The movement adjustment scheme becomes an
evaluation of the increase in the coverage of the region AoI’.
Notice that this new formulation of the movement adjustment
condition does not alter the calculation of the destination
or the perceived presence of coverage holes by a sensor.
Indeed, the miniMax and the coverage holes are determined by
considering the polygon calculated over the AoI, whereas only
the local coverage is calculated by considering the polygon
over the AoI’.

It is easy to see that the new formulation of this condition
permits a better coverage than by applying the original version
of movements adjustment presented in [1].

Theorem IV.1. The VorLag algorithm converges and termi-
nates.

Proof: The proof follows from the consideration that each
sensor is allowed to move only if it increases the coverage of
its local polygon. As all the polygons constitute a partition of
the AoI’, at each round the overall coverage of AoI’ is either
increasing or the algorithm terminates. Convergence follows
from the boundedness of the AoI’. Details are omitted due to
space limitation.

Theorem IV.2. At any fixed round t, the complexity of the
computation of each sensor s is O(∆t(s)), where ∆t(s) is
the number of sensors that are in radio proximity to s.

Proof: At each round t, sensor s discovers all ∆t(s)
sensors to which it is within radio proximity and computes
its Voronoi polygon in the Laguerre measure. This takes
O(∆t(s)) time. Then, s has to compute the miniMax point
of its Voronoi polygon in order to move towards it. Megiddo
[20] proposed a solution for the equivalent smallest enclosing
circle problem which is linear in the number of points that
must be included in the circle. It follows that, applying this
algorithm, the processing time of each sensor s at round t is
O(∆t(s)).

V. ON THE USE OF THE VORONOI LAGUERRE ALGORITHM
FOR DENSITY DRIVEN DEPLOYMENT

The algorithm described in Section IV finds a natural
extension to the case of applications in which a deployment of
homogeneous sensors is required at varying densities over the
AoI. This scenario may be motivated by a variety of reasons.
For example, as events occur in the AoI, it may be desirable to
have a high density of sensors near the event. As new events
appear or end, the density requirements will vary accordingly.
A non uniform density deployment may also be desirable in
a sensor network that centralizes communications towards a
small number of sinks. This may cause an unbalanced energy
depletion among sensors.

We translate the problem of how to deploy homogeneous
sensors under heterogeneous density requirements into our
previous problem of deploying heterogeneous sensors en-
dowed with position dependent sensing radii under uniform
coverage requirements. Observe that this translation can be
applied even when sensors are heterogeneous.

To extend our algorithm to accommodate deployments at
varying density we introduce two modifications: 1) we intro-
duce the concept of position dependent sensing radius, 2) we
introduce a new limitation to the maximum distance that each
sensor can traverse at each round.

Let us assume that the heterogeneous density requirements
are expressed by the function ρ(x, y), where x and y are the
coordinates over the AoI. To reach a deployment where the
distance among the sensors depends on the desired density in
the sensor locations, we define the position dependent sensing
radius r(x, y) as the radius of a regular hexagonal tessellation
that would be obtained by optimally deploying the sensors at
the desired density in the point of coordinates (x, y).

VorLag can be used in this new operative context with
variable density if we consider each of the uniform sensors



as endowed with a position dependent sensing radius.
It should be noticed that the use of position dependent radius

to modulate the deployment density would not be possible
under the ordinary Voronoi algorithm because of the barrier
effect shown in Figure 2.

As the sensing radius of sensor si varies with its own
position, the value of dmaxi no longer ensures that, at the desti-
nation, the sensor si will not overlap with the coverage disk of
other sensors that are out of communication range with respect
to its initial position. Hence, even the proper value of dmaxi

should be position dependent and calculated on the basis of the
sensing radius that the sensor si would have at the movement
destination (x′, y′). We set dmaxi(x

′, y′) = rtx

2 − r(x′, y′). As
the above value of dmaxi(x

′, y′) may be complex to calculate,
depending on the specific density function, we refer to the
following more conservative value, which does not depend
on the particular sensor, nor on the destination coordinates:
dmax = rtx

2 − max(x,y)∈AoIr(x, y).
Notice that this is a conservative condition with repect to

the one that would be imposed by using dmaxi(x
′, y′).

VI. ON THE USE OF THE VIRTUAL FORCE APPROACH FOR
THE DEPLOYMENT OF MOBILE HETEROGENEOUS SENSORS

In order to evaluate the performance of VorLag proposed
in this paper, we compare it with an algorithm based on vir-
tual forces called Parallel and Distributed Network Dynamics
(PDND), proposed in [6]. In PDND the force exerted by si to
sensor sj is modelled as a piecewise linear function. Therefore
it is repulsive when the distance between si and sj is lower
than an arbitrarily tuned parameter r∗; it is attractive when
the distance is larger, until it vanishes at another arbitrarily set
distance. The suggested formulation of this force respects the
condition of Lipschitz continuity that is necessary to ensure
the convergence of PDND. The single sensor movement is
limited by a dynamically set upper bound that guarantees
that the potential energy is always decreasing, hence avoiding
oscillations.

PDND works under the assumption that sensors are homo-
geneous in terms of sensing and communication capabilities.
In order to make the algorithm feasible for heterogeneous
sensors, namely sensors having different sensing radii, we
need to redefine the force that one sensor exerts on the others.
According to the algorithm PDND, this implies the definition
of the rest distance r∗ at which the force exerted by two
interacting sensors is null.

The setting of this parameter is critical, particularly when
the number of sensors to be deployed is small. To fairly
evaluate PDND, we propose two different settings for the value
of r∗, both obtained as a combination of the sensing radii of
two interacting sensors, ri and rj .

In the first case, to which we refer as PDNDSQRT we
consider r∗ =

√
3(ri + rj)/2. This choice is motivated by

a generalization of the optimum sensor positioning in the
case of sensors having identical radii r. In this case the
distance between two sensors is r∗ =

√
3r. This setting is

not convenient when the number of sensors is scarce, because

it generates extended overlapping areas when ri and rj are
significantly different.

The second choice of r∗, to which we refer as PDNDSUM,
aims to minimize the overlaps, hence r∗ = ri +rj ; that is two
sensors try to position themselves so that their sensing circles
are tangential.

When the number of sensors is relatively small, e.g. insuffi-
cient to guarantee the coverage completeness, PDNDSUM pro-
vides a better coverage than obtained with PDNDSQRT, whereas
when the number of sensors is much larger than necessary,
with PDNDSUM the forces exerted by sensors are higher than
with PDNDSQRT, thus causing more useless movements and
delays in the algorithm convergence.

The fact that the two choices of r∗ solve two distinct
aspects of the problem of coverage highlights that parameter
tuning is a critical issue for this algorithm. In fact, parameter
tuning is a critical issue for all the algorithms based on virtual
forces, as the inspiring model is inherently dynamic, and prone
to oscillations that must be controlled by introducing many
parameters.

The proposed modification of PDND that deals with the
case of heterogeneous sensors, can be applied as well to the
problem of deploying sensors at varying density, described in
Section V. To this purpose we modify the expression of the
force by substituting the position dependent sensing radius
(discussed in Section V) into the formulas for r∗ given by
both the algorithm variants PDNDSUM and PDNDSQRT.

VII. EXPERIMENTAL RESULTS

In order to evaluate the performance of VorLag and to
compare it with the two versions of PDND described in
Section VI, we developed a simulator on the basis of the
wireless module of the OPNET environment [21].

We ran three sets of experiments. In the first set we study
the deployment of heterogeneous sensors. In the second we
consider varying density requirements within the AoI. In the
last set, we consider time-varying density requirements due to
dynamic missions.

We perform these experiments to quantify the differences in
performance and behavior of VorLag and PDND caused by a
fundamental difference in the algorithms: VorLag specifically
targets a coverage density and then terminates, while PDND
terminates only when its forces are balanced. We expect that
this will result in VorLag converging to solutions faster than
PDND and using less energy. In fact, in some instances, we
expect that PDND will never converge while VorLag will
always terminate.

In all of the following experiments, we consider a random
deployment of sensors in an AoI of 80m × 80m. We set
the communication radius of all sensors rtx to 20m and the
sensor movement speed to 1m/sec. For PDND we use the
settings proposed in [6]: the length of a round is 1sec, and
the minimum movement threshold is 0.1m. For VorLag, the
duration of a round is determined by the distance maxi dmaxi

and by the sensor speed. The plotted results are obtained by
averaging the values of 20 simulation runs.



A. Heterogeneous sensors

In this set of experiments we consider a network composed
of heterogeneous sensors. Hence, we set the radius of each
sensor to a random value in the interval [1m,5m].

Notice that the termination of PDND is guaranteed as the
definition of the force fulfills the requirement of Lipschitz con-
tinuity and we use a positive minimum movement threshold.

We compare the algorithms in terms of deployment perfor-
mance (e.g. coverage and completion time) as well as energy
metrics (e.g. average traversed distance and total consumed
energy). In the experiments we progressively increase the
number of deployed sensors from 100 to 600.

Figure 5(a) shows the percentage of area that is covered at
the end of the deployment phase. As expected, the coverage
increases with the number of sensors and is complete with a
sufficient numbers of sensors with all the three algorithms.
PDNDSQRT achieves the lowest coverage because of large
overlaps of the sensing circles, a consequence of the smaller
distance at which sensors balance the forces.

As Figure 5(b) shows, all algorithms require a similar
amount of time to reach the final coverage when fewer sensors
are available. This is because when the number of deployed
sensors is near or below the minimum required to achieve
full coverage, virtually all available sensors must move, thus
increasing the deployment time. As the number of sensors
increases, VorLag requires significantly less time to achieve
the final deployment, since the initial deployment is random
and it terminates as soon as the area is completely covered.
PDND requires more time because of the nature of the virtual
forces: it is harder to find the balance of forces when there are
more sensors available than necessary. For example, with 450
sensors, VorLag converges in about 40% of the time required
by PDND.

Figure 5(c) shows the time needed to achieve 99% coverage
of the AoI. We do not study the time to achieve full coverage
because PDND does not achieve complete coverage. No point
is depicted for fewer than 300 sensors since the available
sensors are not sufficient to cover the entire area. VorLag
achieves the desired coverage faster in all the considered
scenarios. PDNDSQRT requires more sensors than PDNDSUM

and VorLag to achieve the same coverage. This is due to
the shorter distance at which forces are balanced. Moreover
PDNDSQRT requires a longer time than PDNDSUM since the
exerted forces have a smaller intensity, thus movements are
shorter.

In Figure 5(d) we focus on a particular execution with
300 sensors. This figure reinforces the point of the previous
results, showing that VorLag has a faster convergence to the
same coverage. It not only terminates sooner, but it achieves
a coverage of around 99% of the AoI in a few seconds of
execution. These results highlight the capability of the VorLag
algorithm to achieve satisfactory coverage in a very short
time. This is a crucial property in the case of mission critical
operating environments.
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Fig. 5. (a) Percentage of covered AoI, (b) completion time, (c) coverage
time and (d) Coverage over time.

We now compare the performance of the algorithms in
terms of energy consumption. A sensor consumes energy as a
consequence of movements (start/stop and traversed distance
[22]) and communications (sending and receiving messages).

Figure 6(a) shows the average distance traversed by sensors.
Since VorLag stops its movement as soon as the area is
completely covered, the traversed distance decreases as the
number of sensors increases. This is also true for PDND,
although sensors traverse longer distances with respect to
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Fig. 6. (a) Average traversed distance, (b) average number of start/stop
actions, (c) average consumed energy.

VorLag.
The average number of starting and stopping actions is

shown in Figure 6(b). PDND performs a higher number of
starting/stopping actions with respect to VorLag. This is due
to the short distance that a sensor moves in each round.
According to the definition of PDND, in order to guarantee
the convergence of the algorithm, once a sensor has calculated
the resulting force, it is allowed to move in the direction of
the force for a short distance that guarantees a decrease of the
potential energy in that direction. VorLag, on the other hand,
makes longer (but still accurate) movements, resulting in a
much lower number of starting stopping actions.

Figure 6(c) shows the unified energy consumption, which
includes the energy spent by sensors for communications and
movements, expressed in energy units. The reception of one
message corresponds to one energy unit, a single transmission
costs 1.125 units [23], a 1 meter movement costs 300 units
and a starting/stopping action costs the same as 1 meter of
movement.

(a) (b) (c)

Fig. 7. An example of (a) random initial deployment of 300 sensors, (b)
final deployment achieved by VorLag, (c) and PDNDSUM.

Because the energy spent for communication is generally
much smaller than for movements, the energy consumption
is dominated by the traversed distance and the number of
starting/stopping actions. VorLag consumes less energy than
PDND, whose performance is affected by the high number of
starting and stopping actions. Moreover VorLag shows once
again a good scalability with the number of sensors, as it
requires less energy as the number of available sensors grow.

B. Density driven deployment

In the second set of experiments we consider the problem of
covering an AoI with varying density. In these experiments,
we assume that all sensors are homogeneous, i.e. have the
same sensing radius rs of 5m.
Figure 7(a) depicts a scenario with 300 sensors randomly

placed over an AoI where a central disk requires more sensors
than the rest of the area. The density requirement inside the
central high density disk is 0.1 sensors per unit area, while the
rest of the area only requires coverage. The smaller circles
around the sensors located inside the higher density disk
represent the higher density requirement, and therefore a lower
position-dependent radius.

Figure 7(b) shows the final deployment achieved by VorLag
(b), and by PDNDSUM. In these experiments we do not show the
variant PDNDSQRT because it performs similarly to PDNDSUM.

Note that, as the function representing the density require-
ments over the AoI is not continuous, the PDND force is
not Lipschitz continuous, hence the algorithm convergence is
not guaranteed. Setting a threshold on the minimum allowed
movement under PDND will also not guarantee its termination
because sensors do not stop moving as they do not reduce
the overall potential energy with their movements. In order to
have fair comparisons, we artificially terminate the execution
of both algorithms as soon as they reach full coverage of the
high density disk.

Figure 8(a) shows the completion time of the algorithms,
i.e. the time required to reach the coverage of the denser disk
at the required density level. VorLag outperforms PDND. In
Figure 8(b) we show the average traversed distance during the
deployment phase. VorLag shows a better behavior, allowing
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Fig. 8. (a) Completion time, (b) average traversed distance, (c) average
number of starting/stopping, (d) average consumed energy.

sensors to complete the deployment by traversing shorter
distances with respect to PDND.

Figures 8(c) and 8(d) show the average number of start-
ing/stopping actions and the average consumed energy, respec-
tively. These results are explained in a similar way to those
presented in Section VII-A.

C. Dynamic mission arrival

In the last set of experiments we study the capability of
the deployment algorithms to react to dynamically generated

(a) (b)

(c) (d)

Fig. 9. Dynamic mission arrival: (a)-(d) execution of VorLag.

(a) (b)

(c) (d)

Fig. 10. Dynamic mission arrival: (a)-(d) execution of PDND.

missions. A mission is seen as a change in the density
requirements over the AoI. Such a change aims at making
the sensor density high around the epicenter of the mission,
in order to have a better detection of the ongoing event. The
density of sensors around a mission is set to 0.1 sensors per
unit area, as in the previous experiments.

In these experiments we focus on the algorithm self-
reconfiguration capabilities, i.e. on the time to relocate sensors
in order to fulfill dynamic density requirements.

Figure 9(a) shows the initial deployment with 300 randomly
placed sensors.

The disk located at top left of the AoI represents a first
mission, known at the beginning of the deployment.
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Fig. 11. (a) Density over time of the first mission area and (b) the second
mission area.

Figures 9(b) and 10(b) show the deployment achieved by
VorLag and PDND for the first mission, respectively.

Once the first mission has ended a second one appears at
time t=7200 seconds, with the same density requirement, but
located on the bottom right corner of the AoI, as depicted in
Figure 9(c) and 10(c), and requires the network to reconfigure.
Figure 9(d) and 10(d) show the final deployments achieved by
VorLag and PDND respectively.

In Figures 11(a) and 11(b) we show the density over time of
the first and second mission area respectively. VorLag shows
a shorter configuration and reconfiguration time with respect
to PDND, although PDND shows a more regular deployment.
Note that in this context the goal of the algorithm is to achieve
a minimum required density on the mission’ locations and
simple coverage elsewhere. Once this is achieved, there is no
reason to move sensors in order to make the deployment more
regular. The VorLag algorithm achieves its goal faster than
PDND and does terminate, whereas PDND wastes energy with
useless movements whose side effect is the creation of a more
regular deployment pattern.

VIII. CONCLUSIONS

We introduce major modifications to the Voronoi based
approach to the problem of deploying mobile sensors over
an AoI. Unlike its original version, our approach works even
in the case of heterogeneous sensors, and in the case of
density requirements that vary over time and space. The
proposed algorithm is self-adaptive to runtime changes of the
operative conditions. It requires no prior knowledge of the
applicative scenario, and does not necessitate manual tuning

of its working parameters. We compared this algorithm with
its traditional counterpart, showing that it resolves stale and
critical situations. Furthermore we introduced modifications
to a virtual force based approach in order to make fair
performance comparisons. Extensive simulations show that our
algorithm outperforms the other approaches in many respects.
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