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Abstract—We consider sensor self-deployment problem, constructing FOCUSED coverage (F-coverage) around a Point of Interest
(PQI), with novel evaluation metric, coverage radius. We propose to deploy sensors in polygon layers over a locally-computable
equilateral triangle tessellation (TT) for optimal F-coverage formation, and introduce two types of deployment polygon, #-polygon
and C-polygon. We propose two strictly localized solution algorithms, Greedy Advance (GA) and Greedy-Rotation-Greedy (GRG). The
two algorithms drive sensors to move along the TT graph to surround POI. In GA, nodes greedily proceed as close to POI as they
can; in GRG, when their greedy advance is blocked, nodes rotate around POI along locally computed #- or C- polygon to a vertex
where greedy advance can resume. We prove that they both yield a connected network with maximized hole-free area coverage. To
our knowledge they are the first localized sensor self-deployment algorithms that provide such coverage guarantee. We further analyze
their coverage radius property. Our study shows that GRG guarantees optimal or near optimal coverage radius. Through extensive
simulation we as well evaluate their performance on convergence time, energy consumption, and node collision.

Index Terms—Coverage, Self-deployment, Localized algorithms, Mobile sensor networks

1 INTRODUCTION

Ensor self-deployment is an important research issue
Sthat deals with autonomous coverage formation in
mobile sensor networks (MSN). Relevant research is
still on its initial stage, with emerging new problem
statements and development of basic self-deployment
techniques extendable to future more complex proto-
cols. Considering potentially large network scale, unpre-
dictable sensor failure, dynamic topological change, and
limited network bandwidth, a sensor self-deployment
algorithm should be carried out in a localized manner.
Term “localized” means that each sensor makes self-
deployment decision independently, using k-hop neigh-
borhood information for a constant k. In the case of
k =1, we call the algorithm strictly localized.

There exist a class of sensor network applications,
where sensors are designated to monitor concerned
events or environmental changes around a given strate-
gic site or coverage focus, called Point of Interest (POI).
For instance, in a battle field scenario, sensors are de-
ployed around a battalion headquarter to detect intru-
sion events, whose distance to the headquarter reflects
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their degree of danger. Another example are sensors scat-
tered around a chemical plant to monitor its distance-
dependent pollutional impact on the soil/air in the
vicinity. These applications uniquely require that an area
close to POI have higher priority to be covered than a
distant one. We call the coverage of such a surrounding
network FOCUSED coverage or F-coverage. In this article,
we address how to achieve optimal F-coverage through
sensor self-deployment approach.

1.1 F-coverage evaluation

The coverage region of a sensor network is the region
enclosed by the outer boundary of the network. A sensing
hole is a closed uncovered area inside the coverage
region. The coverage of a sensor network is measured
by area. It is defined as the subtraction of the total area
of sensing holes from the area of the coverage region.
Area and sensing hole are two key evaluation metrics
for traditional area coverage problem. They reflect the
sensitivity of a sensor network over a Region of Interest
(ROI). An ideal area coverage has maximized area and
no sensing holes. In the F-coverage problem, measuring
area and hole existence is no longer sufficient, because
distance from POI to uncovered areas is also important
and must be taken into consideration. In this case, we
introduce an additional metric, coverage radius.

Definition 1 (Coverage Radius): The radius of an F-
coverage is the radius of the maximal hole-free disc
enclosed by sensors and centered at POL

Optimal F-coverage has maximized coverage radius. If
number of sensors is unlimited and with sensing ranges
approaching zero, sensors can be deployed densely and
achieve close to circular coverage. The maximal hole-
free disc therefore has near circular shape. In this case,
coverage radius is called circular radius. Since the sensing



radius is finite, we consider here instead a discrete vari-
ant of coverage radius, referred to as polygonal radius. It is
alternatively measured by layer distance. Layer distance,
also called convex layers in computational geometry
or Tukey’s depth in statistics, represents the number
of successive complete convex polygons adjacently sur-
rounding POIL. More precisely, we consider a discrete
set of convex polygons P; (i = 1,2,---) composed of
sensors, centered at POI, and having a diameter of i x d
for some constant d. We count the total number of such
polygons lying completely in the coverage region.

1.2 Problem statement

We consider an asynchronous MSN of unknown size
n. The network is randomly deployed in a 2D free
field (e.g., an area on ocean surface in practice) and
possibly initially disconnected. Sensors bear the same
communication radius r. and the same sensing radius 7.
They move asynchronously possibly at different speeds.
Sensors know about the location of POI, denoted by F.
We place F at origin (0,0) without loss of generality.

The goal is to develop strictly localized sensor self-
deployment algorithms that yield a network surround-
ing F' with an equilateral triangle tessellation (TT) lay-
out. This TT layout is desirable because it maximizes
the coverage area of a given number of sensors without
coverage gap when sensor separation is equal to /3
[2], [15], [18], and that it automatically maintains net-
work connectivity when r. > V3rs. As an additional
requirement, the final network should have maximized
coverage radius with respect to F.

We consider this new sensor self-deployment problem
under the following common assumptions: (1) 7
V/3rs; (2) sensors know their own spatial coordinates by
attached GPS devices or any effective localization algo-
rithm; (3) through lower-layer protocols (minor modifi-
cation may apply), sensors have the information about
their 1-hop neighbors, i.e., location, moving status, and
movement destination (if moving). In the sequel, we will
use terms “sensor” and “node” interchangeably.

1.3 Our contributions
We introduce an F-coverage evaluation metric, coverage
radius, which reflects the need to maximize the distance
from F' to uncovered areas. This leads to a novel sensor
self-deployment problem, F-coverage formation around a
given coverage focus. We convert this problem to vertex
coverage problem over a locally-computable equilateral
triangle tessellation (IT) and propose, by the coverage
radius definition, to locate sensors in polygon layers con-
centric to F' in TT. We introduce two types of deployment
polygon, H-polygon and C-polygon. The former are
hexagons. The latter are polygons best approximating
inscribed circles of, and thus requires less nodes than, the
former for achieving the same circular coverage radius.
We propose two strictly localized algorithms, Greedy
Advance (GA) and Greedy-Rotation-Greedy (GRG). In the
two algorithms, self-governing sensors align themselves
with the TT grid and locally compute virtual H- or C-
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Fig. 1. Equilateral triangle tessellation (Gr7).

polygons. In GA, sensors greedily proceed, from polygon
to polygon, as close to F' as they can; in GRG, when
their greedy advance is blocked, sensors rotate around
F along the polygon that they are traversing, to a vertex
where greedy advance can resume. In both algorithms,
when sensors are compactly placed or collide, they may
temporarily move away from F. Both GA and GRG are
resilient to dynamic node addition and removal (failure)
and work regardless of network disconnectivity.

We formally prove that the two algorithms both yield
a connected network of TT layout with hole-free cov-
erage. We also analyze their coverage radius property.
Our study indicates that GRG with #H-polygon (i.e.,
Hex-GRG) generates optimal hexagonal F-coverage and
near optimal circular F-coverage, and that GRG with C-
polygon (i.e.,, Cir-GRG) generates, compared with Hex-
GRG, circular F-coverage closer to the optimal using less
nodes. We evaluate the performance of GA and GRG
on convergence time, energy consumption, and node
collision through extensive simulation.

This article is an integration and generalization of
our previous work [11], [12], along with detailed and
extended analysis. It corrects a few mis-claims about
coverage radius maximization made in [12]. We briefly
review related work in Section 2. We introduce #-
polygon and C-polygon in Section 3. Then we propose
algorithms GA and GRG in Section 4, and present their
analytical and simulation study in Section 5 and 6. We
discuss possible extensions and practice issues in Section
7, followed by closing remarks presented in Section 8.

2 RELATED WORK

To our knowledge there is no previous work addressing
the F-coverage problem as identified here in this article.
Sensor self-deployment algorithms for coverage forma-
tion over ROI with no particular coverage focus exist in
the literature. Below we will review some of these related
work at very short length. An extensive survey can be
found in our recent article [13].

The most known sensor self-deployment approach
is vector-based (or virtual-force-based) approach. Algo-
rithms that belong to this category include [4], [15],
[16], to name a few. The basic idea is that each node
computes movement vectors in rounds using the relative
position of its neighbors and moves according to the
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vector summation. Although proposed solutions appear
efficient, they leave coverage holes and could be highly
inefficient in terms of coverage radius.

Heo and Varshney [8] presented a Voronoi diagram
based algorithm, which enables sensors to identify local
sensing holes using Voronoi diagram and align their
sensing range along their Voronoi polygons for mini-
mizing uncovered area. Similar algorithms are VOR [16]
and the one in [5]. In [5], sensors find centroids of their
Voronoi polygons based on a utility function, e.g. Gaus-
sian density function representing reduced monitoring
ability for a sensor with squared distance from POL
They move toward that centroid, exchange messages
and repeat the step until they stabilize. Voronoi diagram
based solutions are not localized since some links may
be very long, not between communication neighbors.
Further, coverage radius is again not considered.

Yang et al. [17] presented a scan-based sensor deploy-
ment scheme. The target field is partitioned into a mesh,
and nodes are treated as load. The goal is converted to
load balancing among mesh cells through multi-rounds
of scan. This approach requires the network to be dense
enough so that load balancing can be proceeded in the
entire field. As the authors admitted, it may generate
huge message overhead when the network is very dense
due to the increased number of rounds of scans.

Bartolini et al. [3] presented a snap and spread self-
deployment scheme. Sensors simultaneously construct a
hexagonal tiling portion by pushing and pulling sensors
to hexagon centers. Tilling portions of different sensors
merge when they meet. The algorithm is not purely
localized because, according to the implementation pre-
sented in [3], in a pull process for filling adjacent empty
hexagons, a snapped sensor has to visit (by sending a
message) every other hexagon in the worst case before
finding an unsnapped sensor.

Existing algorithms, when used for focused coverage
formation problem, do not provide (and even do not
study) guarantee on coverage radius. In worst case, the
resulting coverage radius can be as bad as 0 (mean-
ing that POI is located outside the network or on the
network border). Besides, they have major weaknesses
such as unrealistic assumptions (e.g., initial connectivity
out of randomized placement or fixed network size), re-
quirement for global computation (e.g., Voronoi diagram
construction or clustering), vulnerability to node failure,

(d) Joint corner ( X)

(c) Concave corner( vV )

and so on. The unsuitability and the incompleteness of
previous work motivate our research presented here.

3 DEPLOYMENT POLYGONS

An equilateral triangle tessellation (TT) is a planar graph
composed of congruent equilateral triangles, as shown
in Fig. 1. Given a common orientation, say the North,
and edge length /., nodes are able to compute a unique
TT containing F' as vertex. Denote this TT by Grr. Two
vertices are neighboring or adjacent to each other if there
is an edge between them. With knowledge of its own
location, each node can determine whether it is located
at a vertex in G and which vertex (if so), and adjacent
vertices (in communication range).

If we deploy sensors at vertices around F' in Grr,
we automatically obtain a network with the required
TT layout; if we further assure that no empty vertex
exist in the coverage region, and that the coverage region
have an (approximate) circular shape centered at F', we
as well achieve the desired F-coverage with no sensing
hole and with (near) maximized radius. By this means,
we actually convert the F-coverage problem to a vertex
coverage problem over Grr.

In our work, TT edge length [, is set to v/3rs because
it ensures connectivity and minimizes sensing range
overlapping [2], [15], [18]. By coverage radius definition,
sensors should be deployed in polygon layers for opti-
mal F-coverage. In the following, we introduce two types
of deployment polygon in Grr, which will be used later
in our proposed sensor self-deployment algorithms.

The residence polygon of a vertex is the polygon that
the vertex belongs to; the residence vertex of a node is
the vertex at which the node is located. We denote by
|ab| the Euclidean distance of two points (nodes) a and
b and by |S| the size of a set S. Let SP(u, v) be the set of
edges along the shortest path connecting vertices v and
v in Gpp. The TT distance of u and v is |SP(u,v)].

3.1 H-polygon
Definition 2 (H-polygon): An H-polygon (#;) of layer
distance 7 is a polygon whose perimeter is composed of
successive vertices that have equal TT distance i to F.
Each H-polygon is an hexagon. In Grr, a vertex v(#
F) has two neighborhood patterns along H-polygon:
1) edge (—): v is located on polygon edge (Fig. 2(a));
2) convex corner (A): v is located at convex polygon
corner (Fig. 2(b)).
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In Fig. 1, vertices a and b both reside on H4 respectively
with edge and convex corner neighborhood patterns.
H-polygons are concentric to F, as shown in Fig. 1
where Hy, - -+ ,H4 and H;5 are highlighted by thick black
lines. Each H-polygon #H; (i > 1) is composed of 6:
vertices. The total number vy (i) of vertices enclosed
by H; (inclusive) is the sum of number of composing
vertices of all #; (j < ¢) plus 1 (counting for F'). That is,

v (i) =1+ 6g=3i(i+1)+1

q=1

)

Then the optimal hexagonal coverage radius vy (n) (in
layer distance) that n nodes can provide over Grr is

@

v (n) = max(i|lvg (i) < n)

3.2 C-polygon
For simplicity, we abuse the definition of layer distance
to allow concave polygons and define C-polygon below:

Definition 3 (C-polygon): A C-polygon (C;) of layer dis-
tance ¢ is a minimum area polygon enclosing the max-
imal inscribed circle C(#H;) of H; and consisting of
successive vertices.

C; best approximates circle C'(#;) without radius re-
duction (thus named C-polygon), and it must be com-
pletely contained in, or overlapped by, H; because oth-
erwise it is not the minimum area polygon. In Fig. 1,
C(H14) and C(Hi5) are shown as dotted or dashed
circles, and Cy4 and C;5 are marked and labeled.

Lemma 1: A vertex belongs to C; if and only if it itself
does not reside inside C(#;) and at least one of its
neighboring vertices lies inside C(H;).

Knowing #;, and C(H;) and according to Lemma 1,
one may compute the total number v (i) of vertices
enclosed by C; (inclusive)

N %10 fori <7
ve(d) = {VH@) —p(i) fori>T | ®
where p(i) = 632, %! (2[4 — ¢ = VBIT—37) | + 1)

represents the number of vertices that exist inside #,; or
on its perimeter, but fall outside C;. The computation is
omitted here for space limit and can be found in [9].

The optimal (i.e., maximum) circular coverage radius
vc(n) that n nodes can provide over Gpr is

(4)

ve(n) = grs max(ive (1) < n)

oF

(a) Lemma 2
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Fig. 4. Pictures for Lemma 2 and 3

From Eqn. (3), C-polygon is equivalent to #-polygon for
the first 7 layers, and then it requires less nodes than H-
polygon for producing the same circular coverage radius
(in Euclidean distance) (see Fig. 3). Below we study
localized computation of C-polygon and its properties.

Six neighboring vertices of a vertex v define a circle
of radius [, = v/3r, that is centered at v. For v to belong
to C;, this circle has to intersect C'(#;). Denote by R; the
radius of C(H;). R; = ih, where h = 3r, is the height
of TT triangle. Hence, v can belong only to such C; that
|[vF| < R; + l.. It can be derived that a satisfactory ¢ is
either U”—:lj or L@J — 1. Summarizing,

Theorem 1: A vertex v residing on C; for i = L@J
will also reside on C;_; if and only if it is adjacent to a
vertex w such that [wF| < 3(i — 1)r,.

Lemma 2: Any two different C-polygons share no
common TT edges.

Proof: Assume for the sake of contradiction that a TT
edge uv is part of C; and C; (¢ > j). Let w be the common
vertex neighbor of u and v that resides on the same side
of uv as C;. Let d = |wF|. By Lemma 1, v and v must
not lie inside C'(H;); whereas, w must be located inside
C(H;) (thus inside C(#;)), namely, d < R; (radius of
C(M;)). Draw line segment vF'. It intersects C(#;) at v'.
Translate Auvw for vector vo/ and obtain Au/v'w’. Then
rotate Au'v'w’ around v’ to obtain Au”’v”w” such that
u” =/, u” is located on C(H;) and w” inside C(H;).
This translation and rotation process is shown in Fig.
4(a). Notice that w” is located on C(H;-1), ie., |[w"F| =
R,_1 > R, and obviously |w” F'| < d. Therefore we have
d > Rj, which contradicts our previous result. I

Lemma 3: On a C-polygon, the two vertex neighbors
of any vertex are not adjacent to each other.

Proof: Consider an arbitrary vertex v on an arbitrary
C-polygon C;. By Lemma 1, v must not lie inside C'(#,).
Denote the six vertex neighbors of v by a,b,c,d, | and
r. Further, let [ and r be the two located on C;. Assume
for the sake of contradiction that [ and r are adjacent to
each other, as shown in Fig. 4(b).

By Lemma 1, at least one of the four vertices a,b,c
and d lies inside C(#;) so that v is located on C;. Let
a be that vertex. Then b must be inside C(H;), because,
otherwise, b will be on C; as well, which is not possible.
Since b is inside C'(#;), ¢ must be inside C(H;) for the
same reason. This way, every vertex neighbor of v other
than [ and r is inside C'(#;), giving us a contradictory



result: v itself must be located inside C(H,;). 0
By Lemma 2 and 3 and through exhaustive enumera-
tion, we obtain the following theorem:
Theorem 2: In Grr, a vertex v(# F') has four and only
four possible neighborhood patterns along C-polygon:

1) edge (—): v has one residence C-polygon, and is
located on a polygon edge (Fig. 2(a));
2) convex corner (A): v has one residence C-polygon,
and is located at convex polygon corner (Fig. 2(b));
3) concave corner (V): v has one residence C-polygon,
and is located at concave polygon corner (Fig. 2(c));
4) joint corner (x): v has two residence C-polygons
(Fig. 2(d)).
In Fig. 1, vertices ¢, d, f all have only one residence
C-polygon Ci4; their neighborhood patterns are edge,
convex corner, and concave corner, respectively. Vertex e
is a joint corner vertex, shared by Ci4 and Cis.

3.3 Neighborhood division

We generally denote by P; deployment polygon (simply
polygon), whether H-polygon or C-polygon, of layer dis-
tance i (¢ > 1) and by v/(¢) the total number of its enclosed
vertices. The neighborhood pattern set in C-polygon is a
superset of that in H-polygon, and thus serves as the
neighborhood pattern set for generalized P;.

Nodes are able to compute all polygons P; and thus
the neighborhood pattern of any vertex. But, since we
are aiming at strictly localized algorithm, they only de-
termine the neighborhood patterns of the vertices within
their communication range on the fly.

Each vertex v (# F) has at least one and at most
two residence polygons, depending on its neighborhood
pattern Pat(v). For generalization purpose, suppose v
has two residence polygons. Let the outer one be P;
and the inner one Py . ¢ = i — 1 if v indeed resides on
two different polygons, and i’ = i otherwise. The layer
distance d(v) of v to F' is equal to the layer distance of
its inner residence polygon, i.e., d(v) = i’. The left-hand
(right-hand) side of v is the clockwise (resp., counter-
clockwise) direction around F.

As shown in Fig. 2, the vertex neighbors of v may
be divided into four disjoint groups: left-hand neigh-
bors, right-hand neighbors, inward neighbors, and outward
neighbors. The first two groups share the same residence
polygons P; and Py with v, while the last two groups
respectively belong to Py —; and P;;1. We define four
multi sets NX(v), Nf(v), N°(v) and N (v), with respect
to these four groups, to ease future presentation.

NZL(v) contains two elements, denoted by Inn(NL(v))
and Out(NL(v)), respectively the left-hand vertex neigh-
bors of v on Py and P;. When i’ = i, Inn(Nt(v)) =
Out(N*E(v)), refers to the same only left-hand vertex
neighbor. N (v) is composed of three elements, denoted
as Ltm(N9(v)), Mid(N®(v)), and Rtm(N®(v)). When v
has three outward vertex neighbors, they respectively
represent the leftmost, the middle, and the rightmost
one. When v has two such neighbors, Ltm (N’ (v)) refers
to the left one, and Mid(N!(v)) = Rtm(N*(v)) refers to

the right one. When v has one outward vertex neighbor,
Ltm(N9(v)) = Mid(N*(v)) = Rtm(N!(v)) implies this
only outward vertex neighbor. N%(v) and N(v) are
similarly defined as N*(v) and N©(v).

4 F-COVERAGE BY SELF-DEPLOYMENT

In this section, we propose two strictly localized sensor
self-deployment algorithms, Greedy Advance (GA) and
Greedy-Rotation-Greedy (GRG), which are both resilient to
node failure and able to operate regardless of network
partition. They are composed of a set of simple hop se-
lection rules. By these rules, nodes make self-deployment
decision using merely 1-hop neighborhood information
and move asynchronously toward F. They stop when
no eligible next hop is available and resume deployment
movement whenever possible.

Both GA and GRG require use of deployment poly-
gon P, which is un-specified in algorithm definition
for generalization purpose. The previously introduced
‘H-polygon and C-polygon are two special cases. For
hexagonal F-coverage, H-polygon should be adopted
(version Hex-GA and Hex-GRG); for circular F-coverage,
C-polygon is engaged (version Cir-GA and Cir-GRG).

For simplicity, a TT vertex v is considered occupied if
a node is not moving and is located in close proximity
to v, or if a node is moving toward v; F is considered
occupied in the case that it is not physically occupiable.

4.1 Greedy Advance (GA)

In GA, a node moves greedily along TT edges as close
to F in terms of layer distance as it can. Generally
speaking, it moves step by step, each step from current
residence vertex w to an empty (i.e., unoccupied) inward
vertex neighbor v € N’(w) determined by a number
of hop selection rules. When multiple such vertices are
available, a random choice is made.

When multiple nodes are present at the same vertex
at the same time, collision occurs. Rules are necessary
for avoiding node collision which is not desirable since
each vertex is expected to be occupied by at most one
node for coverage maximization. Below we introduce
GA rules including the priority rule, the forbiddance rule
and the innermost-layer rule. We assume for the time
being that nodes are initially located at distinct vertices
of Grr. This assumption rarely holds in practice. We
relax it immediately after, by a few extra rules.

Notice that it is only when N (v) (a multi set) contains
multiple distinct vertices that greedy advance may cause
node collision at vertex v(# F). According to Fig. 2,
this is the case when Pat(v) = “ —7"|“ A”. Examine the
corresponding graphs Fig. 2(a) and 2(b). If two nodes are
greedily moving to v from vertices e (i.e., Ltm(N®(v)))
and d (i.e., Mid(N®(v))) in parallel, they may collide
at v. But this situation can be avoided by the following
priority rule as the two nodes are actually neighboring
each other and know the potential collision.

Rule 1 (Priority rule): For two nodes aiming at a ver-
tex v (# F) from two different vertices Ltm(N©(v))



and Mid(N©(v)), the one from Ltm(N®(v)) has higher
priority to proceed.

If Pat(v) = “A” and the two nodes are from vertices
e (i.e., Ltm(N©(v))) and ¢ (i.e., Rtm(N©(v))), they could
also collide at v. In this case, because they are not adja-
cent to each other, the collision is not locally avoidable.
To eliminate this undesirable situation, we introduce the
following conservative forbiddance rule.

Rule 2 (Forbiddance rule): In the case of Pat(v) = “A”,
a node located at Rtm(N®(v)) does not take vertex v
(# F) as greedy next hop.

In Fig. 2, greedy advances to vertex v are shown
as lines with solid arrows. Among them, the dashed
have lower priority (by the priority rule), and the gray
is forbidden (by the forbiddance rule). Note: when
Pat(v) = “A7” (Fig. 2(b)), greedy advance to b from c
is allowed, whichever neighborhood pattern that ¢ has,
as long as b is not occupied. Thus the forbiddance rule
itself does not block a node’s advance toward F.

Now let us examine F' (see Fig. 1). All 6 adjacent
vertices of I are located on P; and are outward vertex
neighbors of F. If F is not occupied, then the final
F-coverage will have the worst radius, equal to 0, by
definition. We can ensure the occupancy of F' by the
following innermost-layer rule.

Rule 3 (Innermost-layer rule): A node located at a ver-
tex on P; moves to F as long as F' is to its knowledge
unoccupied.

The above aggressive innermost-layer rule may induce
greedy-greedy collision (i.e., multiple greedily advancing
nodes colliding) at F. Such a collision takes place at most
once, because a node will stay at F" after it reaches F' and
no node will try to move to F' once F' is occupied.

We now relax the temporary assumption that nodes
are initially located at distinct TT vertices by introducing
the alignment rule:

Rule 4 (Alignment Rule): A node located inside or on
the border of a TT triangle moves to the triangle ver-
tex that is occupied by the least number of nodes. If
more than one such triangle vertex exists, the closest is
selected. A random choice is made in case of tie.

This alignment rule is however very likely to cause
node collision and thus deployment redundancy at some
vertices. This leads us to develop a new type of node
movement, retreat, for collision resolution. Retreat is the
opposite to greedy advance. It happens from a vertex
on P; (i > 0) to a neighboring vertex on P;y; that
is occupied by the least number of nodes. In case of
tie, a random choice is made. Here Py = F. By nodal
retreat, permanent collision no longer exists; both GA
and GRG gain the ability to spread out compactly-
placed sensors. The following retreat rule defines when
to perform retreat movement.

Rule 5 (Retreat Rule): After some nodes collide ata TT
vertex, they enter a local ranking process, during which
each of them is assigned a rank. The node with the
highest rank makes its next deployment decision first;
the others follow in accordance with the decreasing order

of their ranks. If the ¢-th node decides to stay at the
vertex, every node with rank lower than t retreats.

The retreat rule does not specify how local ranking is
conducted. It can be done either at random or according
to certain criterion (if available) such as residual energy
or node ID or the combination thereof. The colliding
nodes are able to do the ranking locally and indepen-
dently because they are neighboring each other.

4.2 Greedy-Rotation-Greedy (GRG)

GRG involves, in addition to greedy advance, a new
type of movement, rotation, which guides nodes around
blocking peers. Rotation is along nodal residence poly-
gon, and is restricted to a particular, say the counter-
clockwise, direction so as to avoid unnecessary collision
among rotating nodes. Specifically, a node located at
vertex v tries rotation by moving to inner right-hand
vertex neighbor Inn(N%(v)) when GA fails.

Notice that rotation is always along inner residence
polygon. The intuition is that a node should not move
away from F' once it moves closer (in terms of layer
distance) to it. A node stops rotating when it reaches
a vertex where greedy advance can resume, or when
it returns to the vertex where it started rotating. To
properly react to neighbor failure, a return node resets
its rotation starting point to null whenever it finds its
rotation next hop becomes occupied.

In asynchronous environment, a node rotating on P;
might never be able to move onto P;_; despite the
vacancies on P;_, if its neighboring nodes on P;_;
rotate together with it and keep blocking its greedy
advance. However, by observing Fig. 2 we can find that
Rtm(N©(v)) is always adjacent to Out(N%(v)) regard-
less of Pat(v). If a node located at v discovers that some
node is rotating to Rtm(N©(v)), then it knows that the
node will proceed to Inn(N%(v)) through Rtm(N©(v))
(and Out(NE(v)) if Inn(NE(v)) # Out(NE(v))) if it itself
does not chose Inn(N%(v)) as rotation next hop. Thus
we introduce the following suspension rule:

Rule 6 (Suspension rule): A node located at vertex v
does not rotate to Inn(N%(v)) if any of its neighbors
is currently rotating to Rtm(N€(v)).

By the suspension rule, a node rotating on P; will
either meet an empty vertex on P,_;, surpassing some
P;—1 nodes in between, or is blocked by a node located
at a joint corner of P; and P;_;, or find no vacancy on
Pi—1 and stops at its rotation starting point. No rotation
loop will take place. Note: when the collision avoidance
rules to be defined in Section 4.2.2 are applied, the
suspension rule ought to be ignored if greedy advance
at Rtm(N©(v)) is forbidden by those rules.

Nodal rotation brings about greedy-rotation collision
that need to be taken care of. Examine Fig. 2. If a node
is moving to v from f while another node is moving to
v from e, they are likely to collide at v. This collision can
be prevented by a competition rule:

Rule 7 (Competition rule): When two nodes are com-
peting for v from two different vertices Out(NZ(v))



and Ltm(N€(v)) (Inn(NL(v)) and Out(NE(v))), the one
from Ltm(N9(v)) (resp., Out(NL(v))) wins.

If the two nodes are instead from f and an outward
vertex neighbor (e.g., d in Fig. 2(a), 2(b) and 2(d)) differ-
ent than e, they could also collide at v. But this greedy-
rotation collision is no longer avoidable by the above
rule. Depending on the way of handling this situation,
GRG has two variants: Collision alloWance (CW) and
Collision aVoidance (CV).

421 GRG/CW

In this variant, no additional restriction is applied.
Greedy-rotation collision is allowed and handled by
the retreat rule which defines movement order and
when to retreat. Through ordered decision making,
greedy-rotation collision could appear as a transient
phenomenon. However, there is no assurance that it
does not occur infinitely often. As illustrated in [11],
retreat movement may cause greedy-rotation collision
loop and endless movement in some rare scenarios. This
is due to the problematic rotation and retreat role switch,
which refreshes the rotating node’s rotation record. It
will not take place if we prevent the rotating node from
being retreated outwards, which in turn can be achieved
by enforcing the following ranking policy: a node that
rotates is always assigned the highest rank in a local
ranking process for collision resolution.

422 GRG/CV

The priority rule and the forbiddance rule preclude non-
POIl-based greedy-greedy collision but leave POI-based
(due to the innermost-layer rule) still possible. Uni-
directional rotation prohibits rotation-rotation collision.
Greedy-rotation collision is eliminated only in part by
the competition rule. It is because the rule relies on the
adjacency of the greedy prior hop and the rotation prior
hop of a vertex, which however does not always re-
main. In CRG/CYV, these collisions are totally precluded
through extra collision avoidance rules.

We say a node’s greedy advance to vertex v # F is
“safe” if and only if it will cause no greedy-rotation
collision at ». In order not to risk greedy-rotation col-
lision, the node must not greedily advance unless it
knows the movement is definitely safe. From local per-
spective, it is able to make such an assurance only
when its residence vertex is adjacent to both Inn(NZ(v))
and Out(Nt(v)). When Pat(v) = “ —"[“A7[“V 7,
Inn(NE(v)) = Out(NE(v)); when Pat(v) = “x”, v
has only one unique outward vertex neighbor, which
is adjacent to Out(NT(v)). We define a safety rule for
avoiding greedy-rotation collision.

Rule 8 (Safety rule): A node does not choose inward
vertex neighbor v as greedy next hop if its residence
vertex is not neighboring Inn(N%(v)).

In Fig. 2, the greedy advances prevented by the above
rule are marked by “X” sign. Now we shall see how to
avoid greedy-greedy collision at F. This can be accom-
plished simply by replacing the inner-most layer rule
with the following gateway rule.

Rule 9 (Gateway rule): A vertex on P; is pre-defined as
the gateway to F. A node located on P; performs only
greedy advance if its residence vertex is the gateway, or
only rotation otherwise.

4.3 Execution examples

We have established three execution examples of GA,
GRG/CW and GRG/CV. Although these algorithms op-
erate regardless of network size and asynchrony and
how nodes are distributed, we considered for ease of
understanding a simple fully synchronized scenario,
where 7 nodes initially placed at distinct TT vertices start
the self-deployment algorithms simultaneously, make
deployment decision at the same time, and move step by
step at the same speed. In this setting, a sensor is not able
to know where its neighbors are moving and sometimes
has to make conservative decision (by assuming those
neighbors are static). For simplicity, we placed these
nodes within P,;. The execution procedure is the same
whether H-polygon or C-polygon is used as in this case
the two types of polygon are equivalent according to
Eqgn. (3). Due to space limit we are not able to present
these examples here, while details can be found in [11].

5 ANALYSIS

In this section, we first prove the correctness of the two
proposed algorithms GA and GRG. We prove that both
of them terminate and that they yield a connected net-
work with hole-free coverage. Afterwards, we analyze
their coverage radius property. We derive that GA has no
guarantee on coverage radius, and that GRG guarantees
(near) optimal coverage radius.

5.1 Correctness

Lemma 4: Both GA an GRG ensure that F' will be
occupied by a single node within finite time.

Proof: By the alignment rule, F' could be occupied
by multiple nodes during the initial node alignment. If
F is still empty after the alignment process terminates, it
will be eventually occupied by at least one node through
greedy advance, because the algorithms ensure a winner
in every competition for greedy advance. In any case, F’
becomes occupied within finite time. Once F' is occupied,
no node will move to it. If multiple nodes exist at F' at
some moment, one and only one of them will stay, and
the others will move onto P; by the retreat rule. O

Theorem 3: GA terminates within finite time.

Proof: In the initial alignment step all nodes move
toward their closest vertex notwithstanding the move-
ment decisions of any other nodes. Thus, the alignment
process terminates obviously within finite time. More-
over, by Lemma 4, F' will be occupied by a single node
within finite time. Henceforth, we safely assume that the
alignment process already passed and that F' has been
occupied by a single node.

The GA rules prevent a node from greedily moving
to an already occupied vertex. They also prevent two
nodes located at different vertices from greedily moving
to the same empty vertex. A node may leave a vertex by



retreat only if the vertex is occupied by another node.
Otherwise, the node has no reason to retreat. Hence, the
number of occupied vertices never decreases.

Assume for the sake of contradiction that GA never
terminates. Since the number of occupied vertices never
decreases, there exists an m < n where n is the network
size such that the algorithm runs infinitively long on m
occupied vertices. It is important to distinguish between
occupied vertices and the nodes actually occupying
those vertices. For the rest of the proof we assume that
GA already arrived at that maximum number m of
occupied vertices. This assumption does not mean that
this set may not change over time, but that the set of
occupied vertices will never again change in size.

Consider the currently occupied m vertices T =
{t1,...,tm}. Whenever an unoccupied vertex is visited
by a retreating node not colliding with a greedily ad-
vancing node, the number of occupied vertices increases
by one. This would contradict the assumption that GA
already arrived at the maximum number m of occupied
vertices. T' may only change due to a greedy advance.
Since m is fixed, the set 7' changes only by nodes per-
forming greedy advance. We will show that this greedy
advance is however possible finite number of times.

Define by > (T) the sum of the layer distance from F'
to the vertices in T, i.e.,, Y (T') = >, d(t). Recall that
we consider the occupied vertices not the nodes actually
occupying these vertices. Whenever T changes to 7" due
to greedy advance, a node moves from a polygon P;;
to a polygon P; (P;_; if the target vertex is joint corner
vertex). It follows, > (T") < > (T)—1. Since Y (T) > 0, it
follows that the set of occupied vertices can only change
a finite number of times.

If the algorithm does not terminate then there exist
infinite number of retreat only moves, which then occur
after the last performed greedy move. However we will
show now that the number of consecutive retreat moves
is also finite. Retreat only moves are possible only from
a vertex left occupied after moving by another node, to
another occupied vertex, as otherwise m would increase.
Retreating nodes always move from a polygon P; to
a polygon P;q. Thus, a change from 7" to T’ always
satisf