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Achieving Guaranteed Anonymity in GPS

Traces via Uncertainty-Aware Path Cloaking

Baik Hoh, Marco Gruteser, Hui Xiong, Senior Member, IEEE, and Ansaf Alrabady

Abstract—The integration of Global Positioning System (GPS) receivers and sensors into mobile devices has enabled collaborative
sensing applications, which monitor the dynamics of environments through opportunistic collection of data from many users’ devices.
One example that motivates this paper is a probe-vehicle-based automotive traffic monitoring system, which estimates traffic congestion
from GPS velocity measurements reported from many drivers. This paper considers the problem of achieving guaranteed anonymity in a
locational data set that includes location traces from many users, while maintaining high data accuracy. We consider two methods to
reidentify anonymous location traces, target tracking, and home identification, and observe that known privacy algorithms cannot
achieve high application accuracy requirements or fail to provide privacy guarantees for drivers in low-density areas. To overcome these
challenges, we derive a novel time-to-confusion criterion to characterize privacy in a locational data set and propose a disclosure control
algorithm (called uncertainty-aware path cloaking algorithm) that selectively reveals GPS samples to limit the maximum time-to-
confusionfor all vehicles. Through trace-driven simulations using real GPS traces from 312 vehicles, we demonstrate that this algorithm
effectively limits tracking risks, in particular, by eliminating tracking outliers. It also achieves significant data accuracy improvements
compared to known algorithms. We then present two enhancements to the algorithm. First, it also addresses the home identification risk
by reducing location information revealed at the start and end of trips. Second, it also considers heading information reported by users in
the tracking model. This version can thus protect users who are moving in dense areas but in a different direction from the majority.

Index Terms—Privacy, GPS, traffic monitoring, uncertainty, anonymity, cloaking.
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COLLABORATIVE sensing networks (e.g., [31], [1], [3], [9])
anonymously aggregate location-tagged sensing infor-
mation from a large number of users to monitor their
environment. However, sharing anonymous location-tagged
sensing information from users can raise serious privacy
concerns. At first glance, rendering the location traces
anonymous (i.e., removing identity information) before
sharing them with application service providers or third
parties appears to be a suitable solution. However, a time-
series trace of anonymous location data exhibits spatiotem-
poral correlation between successive updates, potentially
allowing an adversary to follow anonymous location
updates and eventually reidentifying the users. Reidentifica-
tion is possible, for example, because Global Satellite
Navigation System (GNSS) location readings are often
precise enough to identify a driver’s home or workplace.
This allows linking homeowner, telephone, or employee
records with the anonymous traces.

1. Basic anonymization is known to not fully protect against reidentifica-
tion in many data sets. Examples are census database [36], search engine
logs [10], and movie rating [35].
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Motivated by an increasing number of data breaches and
the potential for these reidentification attacks at network/
application service providers, we consider the challenge of
designing disclosure control algorithms for location traces.
Prior privacy techniques for location data such as spatial
cloaking techniques based on k-anonymity [20], [19] and best-
effort algorithms (e.g., [39], [11], [22]) do not simultaneously
meet both the privacy and the data accuracy requirements for
collaborative sensing applications. This raises the problem of
guaranteeing anonymity in a data set of location traces while
maintaining high data accuracy and integrity.

To overcome these challenges, we develop a novel privacy
metric, called Time-To-Confusion, to characterize the privacy
implication of anonymous location traces and propose an
uncertainty-aware path cloaking algorithm that guarantees a
maximum time-to-confusion and provides high data accu-
racy. Time-To-Confusion effectively captures how long an
adversary can follow an anonymous user at a specified level
of confidence and depends on parameters such as sampling
frequency and user density. The uncertainty-aware path
cloaking algorithm then determines which location samples
from a set of users can be revealed anonymously given a
maximum allowable time-to-confusion parameter. As in
other location privacy solutions [20], [22], this algorithm
relies on a trustworthy privacy server, which receives
location updates from all participating users and controls
disclosure of samples to third-party applications. It can
operate online—it does not require all traces to be complete.
The algorithm also protects against home identification risks,
and can handle location traces that also report directional
(heading) information with each location update by taking
the direction information into consideration when computing
tracking uncertainty. We evaluate our proposed solution
using an automotive traffic monitoring case study. The
evaluation uses real GPS traces from 312 vehicles collected
mostly over suburban areas of a large city in the United States.
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Contributions. In summary, this paper offers the
following specific contributions:

e Formal definition of a novel time-to-confusion
metric to evaluate privacy in a set of location traces.
This metric describes how long an individual user
can be tracked.

e Development of an uncertainty-aware path cloaking
algorithm that can guarantee a specified maximum
time-to-confusion and protect against home identi-
fication risks.

e Demonstration through experiments on real-world
GPS traces that this algorithm limits maximum time-
to-confusion while providing more accurate location
data than a random sampling baseline algorithm. In
particular, it offers guaranteed protection for users
that move into low-density areas.

This work extends our earlier paper [25] by providing a
formal definition for the time-to-confusion concept, by
including heading information in the tracking uncertainty
model, by addressing the additional home identification
risk model, and by evaluating these extensions using the
real-world GPS traces. It also includes an expanded
discussion of privacy risks in anonymous GPS traces.

Overview. The remainder of the paper is structured as
follows: Section 2 briefly introduces collaborative sensing
applications and our specific case study, the automotive
traffic monitoring system. Section 3 presents possible
inference attacks on anonymous location databases and
evaluates known privacy algorithms. In Section 4, we
describe the threat model and introduce the time-to-confu-
sion metric that captures the time an adversary can track with
high confidence. After enumerating several existing algo-
rithms in Section 5, we present the uncertainty-aware privacy
algorithm in Section 6. Sections 7 and 8 present the
experimental results obtained with real-world location
traces, which demonstrate the privacy and data accuracy
advantages. We then discuss limitations, extensions, and
future directions in Section 9. Section 10 reviews related
work, and finally, Section 11 concludes the paper.

2 COLLABORATIVE SENSING APPLICATIONS

Collaborative sensing applications rely on the availability of
periodic location updates provided by ever more cost-
effective GNSS chips. The applications that actively use
GNSS location traces span the intelligent transportation
domain (e.g., [42], [26], [24]), pollution monitoring (e.g., [7],
[9]), pedestrian flow monitoring for marketing [4], and
urban planning [3]. In this paper, we select automotive
traffic monitoring as a case study.

2.1 Traffic Monitoring with Probe Vehicles

Automotive traffic monitoring application aims to provide
estimates of current travel time for routes using real-time
traffic-flow information. Traffic-flow information is derived
from probe vehicle speed readings on road segments.

The probe vehicles use on-board GPS receivers [42] (or
GPS-enabled mobile devices) and cellular communications
(or WiFi [26]) to periodically report records with the
following parameters to traffic information systems: latitude,
longitude, time, and speed (with heading). A central traffic
monitoring system stores them in a database for real-time and
historical traffic analysis. From this information, the system
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Fig. 1. Traffic monitoring architecture comprising three entities: probe
vehicles, communication service provider, and traffic monitoring service
provider. Traffic monitoring builds a real-time congestion map from
vehicle speed and position reports.

can estimate current mean vehicle speed, which can be used
tobuild a real-time congestion map (e.g., a congestion index).
Estimated traffic information can then be broadcasted to
subscribers or made available through a Web interface, where
drivers can access it through their navigation systems or from
home or office computers. Fig. 1 illustrates this architecture.
In this approach, probe vehicles replace infrastructure
sensors such as loop detectors and cameras, thereby
reducing the installation/maintenance cost. Moreover, it
can more cost-effectively achieve wide road coverage since
the system can use existing devices such as navigation
systems or even GPS smart phones carried by drivers to
collect the speed and position measurements [23], [13].
Using such aftermarket or handheld devices, the necessary
penetration rate (fraction of vehicles equipped with sensing
devices) for reliable traffic status estimation can be achieved
relatively quickly. This rate is estimated at 5 percent [17].

2.2 Real-World GPS Trace Collection

We have offline collected a data set containing GPS traces
from 312 volunteer drivers driving in a large US city and its
suburban area for a week. The collected traces, which are
similar to a data set of real deployments (e.g., [5], [6]),
covered the 70 km x 70 km region as depicted in Fig. 2a. To
protect drivers’ privacy, no specific information about the
vehicles or drivers is known to the authors. Each GPS sample
comprises vehicle ID, time stamp, longitude, latitude,
velocity, and heading information. Samples are recorded
every minute, while the vehicle’s ignition is on. The collected
traces contain temporal gaps in the following cases: when
the vehicle is parked with its ignition switched off, when the
GPS reception is lost (e.g., due to obstruction from high-rise
buildings), or when the receiver is still in the process of
acquiring the satellite fix. Because the traces do not contain
information about ignition and GPS receiver status, we
assume that a gap longer than 10 min indicates that the
vehicle was parked. Fig. 2b illustrates the distribution of
gaps in the traces of around 312 vehicles. Each dot represents
a received data sample. We refer to the parts of a trace
between two gaps longer than 10 min as a trip.

2.3 Data Quality Metrics and Requirements

There exists a trade-off between data quality (or its utility)
and the degree of privacy in data privacy algorithms because
each algorithm introduces unavoidable data modifications
such as omission, perturbation, or generalization of a datum
to increase privacy. To evaluate privacy algorithms mean-
ingfully, we first discuss data quality requirements and
metrics for the traffic monitoring application.
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Fig. 2. Spatiotemporal distribution of location reports in real-world data set. (a) 70 km x 70 km road network with cell weights indicating the busiest

areas. (b) Temporal distribution of GPS traces for 312 vehicles.

The application represents a road map as a graph
comprising a set of road segments, where each road
segment describes a stretch of road between two intersec-
tions. Generating the congestion map then proceeds in three
steps: Mapping new GPS samples to road segments,
computing mean road segment speed, and inferring a
congestion index (e.g., by comparing current mean speed
on a road segment of interest with its free-flow speed).

Mapping GPS samples onto road segments requires high
spatial precision and accuracy. Consider that two different
parallel road segments (with traffic flow in same direction)
may be only about 10 m apart, as on the New Jersey Turnpike,
for example. Cayford and Johnson [13] showed, however, that
using tracking algorithms, the correct road can be deter-
mined in 98.4 percent of all surface streets and 98.9 percent of
all freeways if the location system provides a spatial accuracy
of 100 m and updates in 1 s intervals. When reducing the
update interval from 1 to 45 s, the correctly determined roads
drop from 99.5 to 98 percent (at 50 m spatial accuracy).
Therefore, to maintain high road mapping accuracy at the
1minsample interval for our data traces, we can assume thata
minimum spatial accuracy of 100 m is needed.

Another important data quality requirement is road
coverage, which describes the fraction of road segments
from which speeds updates were received in a given time
interval. It primarily depends on the distribution of vehicles
and the penetration rate, the percentage of vehicles carrying
the traffic monitoring equipment. To achieve high coverage,
these systems aim at a minimum penetration rate of 3 (for
freeways) to 5 percent (for surface streets) [17], but during
the initial deployment phase, penetration rates may be
much lower. Thus, privacy algorithms must offer protection
even under low deployment densities.

Since road coverage is often reduced by the privacy
algorithms, for example, if the algorithm omits all location
samples from a specific road segment, we select road
coverage as a key evaluation metric. In particular, we
measure relative weighted coverage metric, which is based on
the following rationale: First, it is weighted by traffic volume.
While probe-vehicle-based traffic monitoring aims to extend
traffic monitoring beyond a few key routes, information
from busier roadways is certainly more important than from
low traffic routes. Second, it is measured relative to the
coverage from the original data set before privacy algorithms
are applied because road coverage is fundamentally limited
by the number of probe vehicles on roads.

To measure the effect of removed samples on road
coverage, relative weighted coverage first assigns each

location sample a weight, depending on how busy the area
around this sample is. Then, it divides the sum of weighted
location samples from modified (after privacy algorithm
processing) traces by the sum of weighted location samples
from the original traces. To estimate these weights for our
data set, we divide the area into 1 km x 1 km grid cells and
count the number of location samples n; emanating from
each cell ¢ over one day in the original traces. The resulting
weights for each cell are overlaid on the road map in Fig. 2a.
The weights are normalized with the sum of weights over
all samples so that the relative weighted road coverage for
the original data set is equal to 1. More precisely, the weight
for all samples in cell ¢ equals

n;
g

With these weights, relative weighted road coverage for a
set of location samples L is then defined as } . ; w,(), where
the function ¢ returns the cell index in which the specified
location sample lies.

In summary, we can measure data quality for a traffic
monitoring application through the relative weighted road
coverage, where we consider a road segment covered if a
data sample with sub-100 m accuracy is available. Table 1
summarizes the key system parameters and requirements
that we will assume in the following sections.

w; =

3 ADVERSARY MODEL

Monitoring a vehicle’s movements can reveal driver’s
sensitive information particularly in the United States, where
peoples’ lifestyle heavily relies on automobiles. Knowing
either the origin or the destination of a trip can reveal
information about a driver’s health, lifestyle, or political
associations if it is associated with driver identity. While
privacy is only compromised if both sensitive information

TABLE 1
Traffic Monitoring System Data Requirements

Parameter Requirement
100m

Imin

Spatial Accuracy
Sample Interval

Delay few minutes
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Fig. 3. Place identification example. Determining which building a driver visited is possible in left scenario because trip endpoints (shown by the
markers) cluster denser than nearby homes. (a) Well-clustered destinations (b) Noisy originations due to GPS signal acquisition delay.

TABLE 2
Adaptive k-Means Clustering for Home Identification

1. Drop location samples with too high speed (> 1m/s) from all vehicles (i.e., remaining samples contain the candidate trip

endpoints).
2. Select a target region of interest to improve computational efficiency, and drop samples outside this region.
3. Apply pair-wise clustering algorithm to samples in target region and store the returned cluster centroids.
4.

Filter the candidate home locations out of all centroids using two heuristics (A:arrival time and B:zoning information).

and identity of data subjects are known, naive anonymiza-
tion is not sufficient to protect privacy. Identities can often be
reconstructed through inference attacks that combine the
anonymous data set with other external data sources [35].

Two such inference techniques for location traces are
tracking and home identification. They together allow
reconstructing likely identities of some drivers and allow to
follow them to potentially sensitive locations. This privacy
leakage scenario assumes that an adversary has gained access
to anonymous location traces, for example, by accidental or
intentional disclosure of location traces by insiders.” This
data set of anonymous location samples has the form

M = {<7TL1¢1, s amk1,i1>7 (ml«,tzv .- 'amk27t2>7 ey

<m1,tn7 s 7mk7nt7v,>}7

where m;;; stands for the ith location sample received during
time interval ¢;, ki, ..., k, denotes the number of different
samples (from different subjects) received during each
quantized time interval ¢y, ..., t,. We assume that each data
subject will provide at most one location sample per time
interval and the order of the samples is randomized at each
time instant (i.e., the index ¢ conveys no information about
the data subject that generated the sample, or whether it is the
same subject that generated a prior sample). Also note that
each sample m;;, is a tuple containing both a location and a
speed information. We distinguish two different cases:
speed-only and speed-with-heading information. In the
speed-only case, m;, = (i, Yis;,vig,)- In the speed-with-
heading information, every sample contains a speed vector
My, = (Tit; Yi; vjftj, vfﬁtj). Without loss of generality, we
assume a two-dimensional space.

The adversary may combine the anonymous location data
set M with data obtained from other sources to reidentify
drivers. A likely approach is that the adversary will use a data

2. Such data breaches are not uncommon; a study [2] reports that
217,551,182 records with sensitive personal information have been involved
in data breaches since 2005 in the United States.

set of identifying locations, these are locations usually only
visited by a unique user identity. Therefore, the adversary can
identify the originator of sample m; 4; that stems from such an
identifying location. The best-known source of such identify-
ing locations is home locations; an adversary could derive a
data set of identities and locations by geocoding residential
addresses obtained from telephone white pages, for example.

3.1 Home Identification

Home identification seeks to determine users’ home
positions given the anonymous location data set M. We
assume that the number of participating users may be much
smaller than the number of people living in the area. Thus,
identifying such candidate home locations is important,
since simply matching all location samples to all residential
addresses would lead to too many false positives.

Recent studies [24], [32] demonstrated that clustering can
be an effective tool for home identification. In particular,
clustering promises to group a set of anonymous location
samples (with low-to-zero speed) that likely belong to the
same destination, and the centroid of each cluster provides
a good estimate of the destination. Fig. 3a shows a sample
scenario, where GPS samples cluster precisely on a single
home’s driveway. In contrast, we found that trip origins are
usually harder to identify, likely because the first GPS
samples are farther away from the exact destinations due to
the receiver’s GPS acquisition delay after power on, as
shown in Fig. 3b. Details on home identification algorithm
can be found in Section 3.

In this work, we use the clustering-based home identifica-
tion algorithm presented in [24]. As summarized in Table 2, it
first extracts low-speed location samples to concentrate on
samples where drivers are likely to approach a home. It then
clusters samples from multiple days of data using a
maximum cluster diameter parameter, which can be esti-
mated from the population density in the region. The
clustering algorithm repeatedly combines the closest clusters
until any further combining would create clusters larger than
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Fig. 4. Heading information helps tracking performance. White symbols denote origins of trips and white rectangles represent destinations of the
corresponding trips (a). Two samples at 7' = 466 constitute a candidate set with high tracking uncertainty when an adversary tracks location
samples, but one of them drops out, considering their driving directions. (a) Trips in the morning peak time of the day. (b) Likelihood computation

based on direction and distance.

the specified maximum diameter. In our simulations, we use
a value of 100 m for this threshold which we derive from the
actual home density in the region. The centroids of these
clusters are now likely to point to frequently visited
destinations. Finally, it filters out clusters located in non-
residential zones® or clusters with many daytime arrivals.

3.2 Tracking

Target tracking techniques can be used to reconstruct paths
from anonymous samples or segments [21]. For example,
target tracking techniques can allow an adversary to follow
the traces reported by a vehicle from an identifying home to
other potentially sensitive locations, thereby learning who
visited these sensitive places.

These algorithms generally predict the target position
using the last known speed and heading information and
then decide which next sample to link to the same vehicle
through Maximum Likelihood Detection. If multiple candi-
date samples exist, the algorithm chooses the one with the
highest a posteriori probability based on a probability model
of distance and time deviations from the prediction (in our
evaluation, we assume a strong adversary with a good model
of these deviations). Tracking starts with an arbitrary sample
m;y,; in the set M. Following are the key tracking steps.

Prediction. We predict the next measurement from the
same vehicle,

Mig,, = (x,;,tj + vﬁtj x At, Yig; + vi{tj * At),
using the known speed.

Selection. We compute how likely each of the measure-
ments collected at time instant ¢;,; is the next measurement
of vehicle for which we predicted movements: P(m,;, |;4,,,)
for an arbitrary measurement from pth user at the time
instantt, (t; < t, < t;). The Bayes rule and the assumption on
equal priori probabilities on all hypotheses simplify the a
posteriori probability into a function dependent on the
distance between the predicted position 1i2;,,, and the actual
position m,;, . Smaller distances imply greater likelihood.

3. In our experiment, we manually eliminated centroids located outside
residential areas by plotting and checking them on the satellite imagery of
Google Earth. However, this process could be automated with GIS city
zoning information.

Out of all k, samples, we select the sample with index p that
maximizes this probability (i.e., that is closest to the
predicted position). Let N (s, M;) denote a function that
returns the sample closest to a predicted position and M; is a
subset of M that includes location samples collected only
after the time instant ¢;.

Update and repeat. The process uses the selected
sample m,; as new starting points and repeats with the

prediction step.

3.3 Enhanced Tracking Models

Several tracking enhancements are possible. We also
consider the following models in our experiments and
discuss the potential effect of other models in Section 9:

e Reacquisition. Under the reacquisition model, an
adversary skips samples with high tracking confusion
under certain conditions, and thus, may be able to
reacquire the correct trace even after a point of
confusion. We predict several steps ahead and use
the closest match among all steps, the step which
minimizes the confusion metric. We will define the
confusion metric in Section 4. This change simply
increases the number of hypotheses in the selection
step of our previous description. Thus, given the
sample m;;, we predict its movement for w time
intervals as follows: for Vi € 1,...w,

= - - y ;
Wiy, = (@i, + Uiy, At yig + 0y At i).

e Heading information. Using the knowledge of a
driving direction can also enhance tracking perfor-
mance. This is particularly the case when updates are
frequent enough so that direction does not change
significantly between updates. Consider the scenario
in Fig. 4a, where a single vehicle is driving against
rush hour traffic. Using the algorithm described so
far, tracking might easily fail because a car on the
opposite lane may actually be closer to the predicted
position than the vehicle we intend to track. By using
heading information in the tracking metric, however,
tracking is straightforward in this case where only a
single vehicle continues to drive in this direction.
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At each step, the likelihood that a particular
candidate sample belongs to the tracked vehicle is
now dependent both on distance and heading
information. We represent this through a joint prob-
ability density function as follows: For an arbitrary
measurement from the pth user at the time instant ¢,
(tj < tq < tk)/

P(mp,tq|mi7tﬁ1) = Pempﬁdistance((s) * PempJLeading(e)7

where ¢ and 0 denote the distance gap and heading
gap between m; ;. and m,; , respectively.

This pdf models general knowledge about peo-
ples” movement patterns. Tracking performance
improves if the model closely fits movement patterns
in the data set. In our study, we analyze a worst-case
scenario, where the adversary has a perfect pdf model
(which we empirically derived from the data itself).
The empirical PDF of heading difference between two
adjacent location samples is depicted in Fig. 10a.

In addition, we included a heuristic to reduce the
computational complexity. It is also based on the
observation that users driving at higher speeds
more likely maintain their directions. Thus, we do
not consider candidate location samples with a head-
ing difference of more than 90 degrees, if the last
known speed of the vehicle was high.

While we use a relatively straightforward tracking model
in this study, the metrics and algorithms developed here can
also be used with more sophisticated tracking models. We
chose the simpler model because we did not observe
significantimprovements in tracking performance with other
algorithms in our evaluations scenario, as we discuss in
Section 9.

4 THE TIME-TO-CONFUSION PRIVACY METRIC

We first present a novel privacy metric for location traces
called time-to-confusion and then discuss a related metric for
evaluating home identification risks.

We observe that the degree of privacy risk strongly
depends on how long an adversary can follow a vehicle.
For a privacy breach, a trace must contain a privacy-
sensitive event (e.g., visited a sensitive destination) and the
adversary must be able to identify the driver generating
this trace. Both the probability that sensitive information is
included and the probability of identification increase with
longer traces. Identification may be possible, for example, if
the vehicle returns to a known home or work location of a
specific individual.

We therefore characterize privacy in terms of the max-
imum possible tracking time. We refer to this time as time-to-
confusion since it is usually limited by areas of confusion,
where too many users are traveling, so that an adversary
cannot track a user with a high degree of certainty.

Tracking uncertainty. To formally define this metric, let us
start by considering the uncertainty inherent in a single
tracking step. Inspired by the use of entropy in anonymous
communication systems [37], we use information-theoretic
metrics to measure uncertainty or confusion in tracking. We
denote the uncertainty by U(-). For any point on the trace,
Tracking Uncertainty is defined as U = — Y p; log p;, where p;
denotes the probability that location sample ¢ belongs to the
vehicle currently tracked. Lower values of U indicate more

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.9, NO.8, AUGUST 2010

certainty or lower privacy. Given no other information than
the set of location samples, intuitively, the probability for a
sample reported at time ¢ is high, if the sample lies close to the
predicted position of the vehicle at time ¢ and if no other
samples at the same time are close to the vehicle. We can then
also define the inverse, tracking confidence, as C' = (1 — U).

Empirically, we found that distances of the correct
sample to the predicted position appear monotonically
decreasing in Fig. 6b. Therefore, we compute the probability
p; for a given location sample by first evaluating the
exponential function

d

pi=er
for every candidate sample and then normalizing all p; to
obtain p;. The parameter ;1 can be interpreted as a distance
difference that can be considered very significant. We obtain
the value of p from empirical pdf of distance deviation in
Fig. 6b which we fit with exponential function using
unconstrained nonlinear minimization (p is 2,094 meters).

The proposed algorithm is not dependent on the use of an
exponential function for estimating the probability that a
location sample belongs to the same trace. It does assume,
however, that a publicly known “best” tracking model exists
and that the adversary does not have any better tracking
capabilities. In this paper, we have empirically derived this
probability model by fitting an exponential function.

Given this uncertainty definition, we can now define
linkability. We present definitions on linkability and traceable
path that we use for defining a novel privacy metric for
location traces, a time-to-confusion.

Definition 1. An arbitrary sample m;;, in the set M is said to be
linkable to the sample m,, if the following conditions hold:
1)t <t;<t, 2) mg, = N(miy,,M,), where N(-) is a
function that returns the sample closest to a predicted position
and M; is a subset of M that includes location samples collected
only after the time instant t;, and 3) U(m;,, M,) < Uy, where
Uy, is an uncertainty threshold and U(-) computes the entropy
for this tracking step as described before.

) From the above definition, we build a function Track(mi‘tj ,
M;), which returns my;, only if m;;, is linkable.

Definition 2. We call a traceable Eath a set P={mi,,
Track(miyg,, Mj), ..., Track™(mg;,, M;)}, applying Track(-)
function repeatedly until its return value does not exist.

Finally, we measure the degree of privacy as the Mean
Time to Confusion (MTTC), the time that an adversary could
correctly follow a trace. Note that this includes time while a
user remains stationary unless otherwise specified. More
specifically, the time to confusion is the tracking time
between two points, where the adversary reached confu-
sion (i.e.,, could not determine the next sample with
sufficient certainty).

Definition 3. For a given set P = {m;,,, Track(miy,, Mj), ...,
Track™(my,, M)}, we compute total tracking time by time
difference between the first location sample and the last
location sample of P, and we call it Time-To-Confusion.

As privacy metrics in this paper, we compute the median
and maximum Time-To-Confusion over all traceable paths.
The median over all TTCs is obtained by applying the
function Track to every location sample in the set M.
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The MTTC can then be defined as the median tracking
time during which uncertainty stays below a confusion
threshold. If the uncertainty threshold is chosen high,
tracking times increase but so also does the number of false
positives (following incorrect traces). Since the adversary
cannot easily distinguish correct tracks and false positives,
we assume that high uncertainty thresholds will be used.

Uncertainty in home identification. We measure the
home identification risk through a similar uncertainty
metric. To calculate an uncertainty, we measure distance
between a cluster centroid and each of the five nearest
homes from it. For each distance, we assign a likelihood by
computing a probability,

d;
ﬁi =€ #,
normalize all likelihoods for five corresponding candidates,
and calculate the entropy. In the experiment conducted in
this study, we chose to consider the five nearest homes to
balance accuracy of uncertainty computation with the time
needed to conduct the (partially manual) experiment.

We chose this metric because building density signifi-
cantly affects the accuracy of the home identification
technique. In dense areas, false positives can be caused by
many vehicles waiting at traffic lights or stop signs that shift
the cluster centroid to a neighbor’s house, for example. In
areas with few buildings, this is less likely.

5 EXISTING PRIVACY ALGORITHMS

Several techniques have been proposed to protect against
location privacy breaches through inference methods.
However, we are aware of only one class of techniques,
spatial cloaking algorithms for k-anonymity, which can

guarantee a defined degree of anonymity for all users.
Other algorithms can be categorized as best-effort algo-
rithms that increase average privacy levels, but offer no
specific guaranteed privacy level for an individual user. We
briefly review these algorithms and evaluate their effect on
data quality and their level of privacy protection.

5.1 Spatial Cloaking for Guaranteed Privacy

k-anonymity [36] formalizes the notion of strong anonymity
and complementary algorithms exist to anonymize database
tables. The key idea underlying these algorithms is to
generalize a data record until it is indistinguishable from the
records of at least k& — 1 other individuals. Specifically, for
location information, spatial cloaking algorithms have been
proposed [20], [19] that reduce the spatial accuracy of each
location sample until it meets the k-anonymity constraint. To
achieve this, the algorithms require knowledge of the nearby
vehicles’ positions, thus, they are usually implemented on a
trusted server with access to all vehicles’ current position.
k-anonymous data sets produced with known algorithms
cannot meet traffic monitoring’s accuracy requirements.
Fig. 5b shows the spatial accuracy results obtained after
applying a spatial cloaking algorithm to guarantee
k-anonymity of each sample. We use the same data set in
Section 7.1 so that we could directly compare k-anonymity
with our proposed solution in terms of spatial accuracy. The
results were obtained with the CliqueCloak algorithm [19],
which, to our knowledge, achieves the best accuracy. The
results show that even for very low privacy settings, k=3,
location error remains close to 1,000 m for an emulated
deployment of 2,000 vehicles, far over the accuracy requirement
of the traffic monitoring application. While these results can be
expected to improve with increased penetration rates as the
deployment case of 5,500 vehicles shows 500 m for k=3
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(indeed, Gruteser and Grunwald [20] show that median
accuracies of 125 meters and below can be obtained when
all vehicles act as probes), other privacy approaches are
necessary to enable probe systems operating with lower
penetration rates.

5.2 Best-Effort Algorithms for Probabilistic Privacy
Given that in dense environments paths from many drivers
cross, drivers intuitively enjoy a degree of anonymity,
similar to that of a person walking through an inner city
crowd. Thus, Tang et al. [39] lay out a set of privacy
guidelines and suggest that the sampling frequency, with
which probes send position updates, should be limited to
larger intervals. The authors mention that a sample interval
of 10 min appears suitable to maintain privacy, although the
choice appears somewhat arbitrary (for reference, a typical
consumer GPS chipset implementation offers a maximum
sampling frequency of 1 Hz). We refer to data collection
with reduced sampling frequency as subsampling.

Other best-effort algorithms suppress information only in
certain high-density areas rather than uniformly over the
traces as the subsampling approach. The motivation for
these algorithms is that path suppression in high-density
areas increases the chance for confusing or mixing several
different traces. This approach was first proposed by
Beresford and Stajano [11]. The path confusion [22] algo-
rithm also concentrates on such high-density areas although
it perturbs location samples rather than suppressing them.
These techniques increase the chance of confusion in high-
density areas, but they also cannot guarantee strong privacy
in low-density areas where paths only infrequently meet.
Thus, in terms of worst-case privacy guarantees, their
advantage over subsampling remains unclear.
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5.3 Privacy of Best-Effort Subsampling

We conjecture that the performance of inference attacks
depends on the sampling interval and the user density.
Here, we investigate this parameter space through tracking
and home identification experiments on real week-long GPS
traces from 312 probe vehicles.

Fig. 7 illustrates the percentage of paths that can be
tracked longer than 15 mins, the median trip time in the US.
This means that for about half these tracked trips, the
adversary can observe both origin and destination of the trip.
The graph shows the percentage of tracked paths dependent
on user densities and sampling intervals. This datum is
empirically derived using the tracking model described in
Section 3 from 24 hours of traces in the suburban area (see
Fig. 2a). As evident, the tracking time appears to follow an
exponential function as either the sampling interval or the
probe density increases. We observe that even LBSs with a
seemingly large 10-minute sampling interval allow long
tracking for 7 percent of users in our high user density
scenario (2,000 probe vehicles in our road network).

In this subsequent case study, we characterize how easily
an adversary can link multiple trips to the same individual,
instead of just tracking a single trip. Linking multiple trips is
challenging because vehicles will not update their location
while turned off, thus, the tracking model has to evaluate at
every point in time whether nearby location updates are
generated by other vehicles passing by, or whether the
tracked vehicle has started a new trip. We account for this by
using a different likelihood model in our tracking algorithm
and by looking ahead several hours in time. We empirically
obtain the distribution of time deviation between two
successive trips as shown in Fig. 8b. With this CDF of time
deviation and an empirically fitted PDF of distance deviation
(exhibiting quite similar pattern to Fig. 6b), we can
characterize the likelihood that a given location sample
stems from a new trip of the same tracked vehicle.

We apply this tracking model against paths of 315
different users with a duration of 2.5 days to measure the
total tracking duration. Each probe vehicle’s trace consists of
multiple trips (2-13 trips per day) as shown in Fig. 8a. Fig. 8c
depicts the path tracking performance over 2.5 days on
70 longest tracked traces out of 315 users. We plot each traced
trace in terms of total time, tracking time, and travel time.
Total time denotes the whole time duration between the
origin of the first trip to the destination of the last trip of a
single probe vehicle, tracking time describes how long an
adversary follows the vehicle including parking time, and
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Fig. 8. Some statistics on collected real GPS traces. The rightmost figure shows some of tracking outliers stretches over multiple trips. (a) Number of
trips in each vehicle’s trace. (b) Parking time cumulative distribution. (c) Traceable paths.
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Fig. 9. Plausible home locations in two target regions (in white rectangles) according to manual inspection. The study considered a total of 65 homes in
a 25 km x 25 km area. (a) Four different sampling intervals are depicted by four circles and the specific parameter is next to each mark. (b) Original
location traces have one location report per minute, which corresponds to 1 minute interval. (a) Plausible home locations. (b) Home identification rate.

finally, travel time only measures the driving time. We
observe that many tracking outliers go beyond a single trip,
even stretching up to a few trips.

Home identification risks versus sampling intervals.
Let us now examine the level of protection offered by
subsampling against the home identification technique. We
again use the same location traces and consider subsam-
pling intervals of 1, 10, 15, and 20 min. We measure the
home identification rate, meaning how many homes out of
the total (65 home locations shown in Fig. 9a) are correctly
detected, and the false positives rate, meaning how many
are incorrect among the estimated home locations. The
home locations were obtained by manually inspecting all
traces in the depicted target region.

Again, Fig. 9b demonstrates that longer sampling inter-
vals do not necessarily address the privacy problem. The
figure shows the home identification uncertainty for each
centroid returned from the clustering procedure described
earlier, on data sets with sampling intervals of 1, 10, 15, and
20 min. The different bars show the number of correct home
identifications for different uncertainty thresholds. Presum-
ably, an adversary will only select locations with high
certainty to reduce false positives. Note that even with a
sampling interval of 20 minutes, the adversary can still
correctly identify a home with high certainty. Reductions in
sampling frequency can reduce the probability that samples
are taken nearby a driver’s home, but this probability is also
a function of the length of the trace. If location traces are
never discarded, sufficient samples around a user’s home
will eventually be available. When taking 0.6 as a threshold,
an adversary correctly locates 10, 10, 7, and 5 homes under 1,
10, 15, and 20 minutes, respectively. The number of correct
centroids by an adversary increases up to 15, 12, 10, and
8 homes with a 0.8 threshold.

5.4 Summary

In summary, we observe the following about existing
algorithms:

e Spatial cloaking algorithms that can achieve a
guaranteed privacy level for all drivers fail to
provide sufficient spatial accuracy for the range of
user densities studied in our deployment. For k = 3,
spatial accuracy remains over 1,000 m, for probe
deployments of 2,000 and 5,500 vehicles, one order
of magnitude over the applications accuracy require-
ment. Thus, they are not suitable for probe vehicle

systems that operate with low probe densities, or are
incrementally deployed over a longer time period.

e Best-effort privacy techniques such as subsampling
improve privacy but fail to provide a defined level of
privacy for all users. The tracking algorithm described
in Section 3 will be able to track some subscribers,
particularly those in lower density regions.

e Similarly, best-effort privacy techniques do not fully
protect against home identification. While the
evaluated home identification intrusion technique
suffered from many false positives, this mechanism
is at least effective as an automated prefiltering step
that can be followed by manual inspection.

To provide a high degree of privacy protection, more
sophisticated data suppression mechanisms are needed that
can guarantee a level of privacy for all users while
maintaining high data quality.

6 PATH PRIVACY PRESERVING MECHANISM

Throughout this section, we develop a disclosure control
algorithm that provides privacy guarantee even for users
driving in low-density areas. Given a maximum allowable
time-to-confusion and a tracking uncertainty threshold, the
algorithm can control the release of a stream of received
position samples to maintain the tracking time bounds.
Since the algorithm must be aware of the positions of
other vehicles, we develop a centralized solution that relies
on a trustworthy privacy server. This server filters traces
and identities, and thus, prevents exposing sensitive
location and identity data to untrusted external service
providers. Specifically, it limits the chance that several
successive location samples can be linked to the same user,
since such partially reconstructed trajectory could act as a
quasi-identifier and allow reidentification of users. The use
of a trusted location server is widely accepted because it
allows users to select one service provider they trust rather
than sharing sensitive information with many service
providers and it is a natural model for intermediaries that
already have access to location information (e.g., cellular
service providers) but may need to share it with others.
We first consider the stepwise tracking model without
the possibility of path reacquisition. We observe that a
specified maximum time to confusion (for a given un-
certainty level) can be guaranteed if the algorithm only
reveals location samples when 1) the time since the last
point of confusion is less than the maximum specified time
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to confusion or 2) the tracking uncertainty is currently
above the specified threshold.

Algorithm 1 shows how this idea can be implemented.
Note that it describes processing of data from a single time
interval, it would be repeated for each subsequent time slot
with the state in the vehicle objects maintained. It takes as
input the set of GPS samples reported at time ¢ (v.current-
GPSSample updated for each vehicle), the maximum time
to confusion (confusionTimeout), and the associated un-
certainty threshold (confusionLevel). Its output is a set of
GPS samples that can be published while maintaining the
specified privacy guarantees.

Algorithm 1. Uncertainty-aware privacy algorithm
1: // Determines which location samples can be release
while maintaining privacy guarantee.
2: releaseSet = releaseCandidates = {}
3: for all vehicles v do

4: if start of trip then

5: v.lastConfusionTime = t

6: else

7: v.predictedPos = v.lastVisible.position +

(t-v.lastVisible.time) * v.LastVisible.speed
8: end if

10: // release all vehicles below timeout
11: if t - v.]astConfusionTime < confusionTimeout then

12: add v to releaseSet

13: else

14: // consider release of others dependent on
uncertainty

15:  v.dependencies = k vehicles closest to the
predictedPos

16:  if uncertainty(v.predictedPos, v.dependencies) >
confusionLevel then

17: add v to releaseCandidates

18: end if

19:  end if

20: end for

21:

22: // prune releaseCandidates
23: for all v € releaseCandidates do

24:  if 3w € v.dependencies, w > releaseCandidates
U releaseSet then
25: if uncertainty(v.predictedPos, v.dependencies N

(releaseCandidates U releaseSet)) <
confusionLevel then

26: delete v from releaseCandidates
27: end if

28: end if

29: end for

30: repeat pruning until no more candidates to remove

31: releaseSet = releaseSet U releaseCandidates

32:

33: // release GPS samples and update time of confusion

34: for all v € releaseSet do

35:  publish v.currentGPSSample

36:  v.lastVisible = v.currentGPSSample

37:  neighbors = k closest vehicles to v.predictedPos
in releaseSet

38:  if uncertainty(v.predictedPos, neighbors) >=
confusionLevel then

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.9, NO.8, AUGUST 2010

39: v.lastConfusionTime=t
40: end if
41: end for

The algorithm proceeds as follows: It first predicts the
current position of each vehicle based on prior observations
(line 7f.); note that speed is a vector that includes heading
information. Second, it identifies the vehicles that can be
safely revealed because less time than confusionTimeout
has passed since the last point of confusion (line 11f.) Third,
it identifies a set of vehicles that can be revealed because
current tracking uncertainty is higher than specified in
confusionLevel (lines 14-30). Finally, it updates the time of
the last confusion point and the last visible GPS sample for
each vehicle (line 32ff., the latter is needed for path
prediction in the uncertainty calculation). This step can
only be performed when the set of revealed GPS samples
had been decided, since confusion should only be calcu-
lated over the revealed samples.

The third step relies on several approximations. To reduce
the computational complexity, it calculates tracking uncer-
tainty only with the k closest samples to the prediction point,
rather than with all samples reported at time ¢. This is a
conservative approximation, since uncertainty would in-
crease if additional samples are taken into account (see the
proof in the Appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TMC.2010.62). We illustrate the effect of k on the
computation complexity and the number of released samples
in Section 7. Second, it builds a set of releaseCandidates since
uncertainty should only be calculated with released samples,
but the set of released samples is not determined yet. The
algorithm subsequently prunes the candidate set until only
vehicles remain who meet the uncertainty threshold. The key
property to achieve after the pruning step is that V v €
releaseCandidates, uncertainty(v.predictedPos, k closest
neighbors in releaseSet U releaseCandidates) > confusion-
Level. The algorithm uses the approximation of calculating
the k closest neighbors before the pruning phase, and
ensuring during pruning that only vehicles remain if all &
neighbors are in the set. While this approximation could be
improved in order to release more samples, the current
version is sufficient to maintain the privacy guarantee.

6.1 Algorithm Extensions for the Reacquisition

Tracking Model
The algorithm described so far does not provide adequate
privacy guarantees under the reacquisition tracking model
because it only ensures a single point of confusion after the
maximum time to confusion has expired.

We observe that such reacquisitions are only possible
over short timescales, since movements after more than
several minutes become too unpredictable. To verify this
assumption, Fig. 10b shows the longest reacquisition and
distribution of reacquisition length in minutes, empirically
obtained from our data set. As expected, no reacquisitions
occur over gaps longer than 10 minutes. Thus, the following
extensions can prevent reacquisitions within a time window
w. For the experiments reported in the following section, we
set w = 10:

o After the confusionTimeout expires: In addition to
maintaining confusion from the last released posi-
tion, it is calculated from every prior released



HOH ET AL.: ACHIEVING GUARANTEED ANONYMITY IN GPS TRACES VIA UNCERTAINTY-AWARE PATH CLOAKING

0 W o 4 B0 100 120 140 180 1

Direction changs [deg]

(@)

1099

%
|
L]

Cumulatve Satritnsten hunction
s & &8 o
“ & i m
L‘
o>

—8— Origrat gaptime | |
O— Reacquisition time

B
ot

Fig. 10. (a) PDF of heading difference between successive locations. Joint PDF is computed by the multiplication of PDFs of distance gap and
direction change. (b) Cumulative distribution function of reacquisitions. No reacquisition occurs over gaps longer than 10 minutes.

location sample (of the same vehicle) within the last
w minutes. Samples can only be released if all these
confusion values are above the confusion threshold.

e Before the confusionTimeout expires: Every re-
leased sample must maintain confusion to any
samples that are released during the last w minutes
and before the confusionTimeout was last reset.

6.2 Algorithm Extensions for the Place
Identification Attack

The proposed algorithm, by virtue of its design, automati-
cally identifies the low-density areas and removes location
samples in those areas. This property of the algorithm helps
prevent home identification since home identification is the
easiest in lower density residential areas, and the algorithm
removes location samples in these areas.

To further strengthen protection for sensitive origins or
destinations such as hospitals, intuitively, one needs to
remove all location updates until between the sensitive place
and high-confusion (i.e., crowded) area. To incorporate this
into the algorithm, we introduce two extensions as follows:

e  First, we modified the algorithm not to apply time-
out windowing until the confusion for at least one
location update exceeds confusionLevel. This means
that for traces originating in a lower density area,
location updates will not be filtered out until the
user has arrived in a higher density area where
confusion exceeds the specified threshold.

e Second, we modified the algorithm to disable time-
out windowing during last Ty, minutes before a
location trace stops. The T}, interval should be the
same length as the maximum TTC. This means that
the last part of a trace leading to a destination in a
low-confusion area will not be released. Since the
algorithm does not know a priori where the
destination is or when a trace will stop, it has to
delay the release of all location samples by Ty,urd
minutes. This delay allows discarding the last
updates if a trace stops.

7 EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of
the proposed privacy preserving techniques. Specifically,
we demonstrate the effectiveness of our proposed techni-
ques for privacy protection in the analysis of GPS traces.
The analysis of the evaluation includes privacy preservation

against home identification and target tracking attacks.
Also, we evaluate how our proposed privacy preserving
techniques can maintain the quality of service for the traffic
monitoring application.

7.1 Experimental Setup

Experimental data sets. Throughout the experiments, we
used (offline collected) real GPS traces from 312 probe
vehicles in our trace-driven simulations. In the experiments,
we first applied privacy preserving techniques (i.e., the
proposed one and the baseline) on the GPS traces and then
measured the performance of privacy protection using
target tracking and home identification techniques on these
privacy-preserved GPS traces.

Since target tracking typically is only effective for a short
time period, we only use 24-hour GPS traces out of a set of
week-long GPS traces. This approach helps create a high-
density scenario (500 and 2,000 probe vehicles on a 70 km?
region) with a limited number of probe vehicles. We overlay
GPS traces of different volunteer drivers at the same time
frame (24 hours) of different dates. This overlay method has
a limitation in that it generates similar routes by aggregating
GPS traces from the same set of drivers. However, we still
believe that it provides insights into higher density scenar-
ios. We will revisit this limitation in Section 9.

Evaluation metrics. In our experiments, we applied the
following metrics to evaluate our privacy preserving
algorithms for GPS traces.

Tracking Time. Minimizing tracking time reduces the risk
that an adversary can correlate an identity with sensitive
locations. We use time to confusion (TTC), which we defined in
Section 3 as a privacy metric, to measure the tracking
duration. To better demonstrate the bounded privacy
protection of our proposed algorithm, we report two
statistics: the maximum value of TTC and the median value
of TTC.

(Relative) Weighted Road Coverage. Through this metric,
we measure the data quality that the privacy-preserved
traces provide for the traffic monitoring applications. Also,
this metric captures the value of each sample based on
whether sampled on busier roads or not. Since privacy
protection techniques, in general, incur a trade-off between
privacy protection and quality of service, our proposed
solution aims to provide reasonable privacy protection
while delivering the same road coverage for satisfying the
need of the traffic monitoring applications. In this paper, we
use relative road coverage as we defined in Section 2.1. In
addition to this metric, we also provide the percentage of
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Fig. 11. Uncertainty-aware privacy algorithm removes more samples in low-density areas in which vehicles could be easily tracked. Gray dots
indicate released location samples and black ones denote removed samples. (a) Snapshot of privacy preserving GPS traces generated by
uncertainty-aware path cloaking at off-peak time (over 1.5 hours) in a high-density scenario. (b) Snapshot of privacy preserving GPS traces
generated by uncertainty-aware path cloaking algorithm at peak time (over 1.5 hours) in a high-density scenario.

released location sample compared to the original traces
which we consider 100 percent. Note that both metrics are
normalized by values of the original GPS traces.

Home Identification Rate. This metric measures the
percentage of plausible home position identifications. This
measure acts as a proxy for the chance of reidentifying a
user. Since no ground truth is available, we have manually
inspected the unmodified traces and chosen selected 65 traces,
where the vehicle visited one residential building signifi-
cantly more frequently than others. We marked the position
of this building as a likely real home position and measure
which percentage of these positions is also selected by the
automated home identification algorithm based on the
privacy-enhanced traces. We also measure false positives,
positions selected by the algorithm that do not match the
manually chosen ones, to provide an indication of the
accuracy of the algorithm.

7.2 Snapshots of Privacy Preserving GPS Traces

Before evaluating the performance of our proposed techni-
que, let us compare the privacy-preserved GPS traces
generated by the proposed path cloaking algorithm with
the original GPS traces to highlight major changes in the
modified traces. Figs. 11a and 11b show both in a high user
density scenario for off-peak (over 1.5 hours at 10 am) and
peak time (over 1.5 hours at 5 pm), respectively. Gray dots
indicate released location samples while black dots illus-
trate samples removed by path cloaking. We observe two
characteristics from these traces. First, uncertainty-aware
path cloaking removes fewer location samples at peak time,
and second, it retains more location samples within the
presumably busier downtown area. This illustrates how the
algorithm, by virtue of its design, retains information on
busier roads, where traffic information is most valuable.

7.3 Balancing Computation Load against Data
Quality Using &

To illustrate the effect of the parameter k£ (chosen by the
system designer) in the uncertainty-aware path cloaking
algorithm on the computational load and the data quality, we
conduct experiments where we vary k (i.e., k = 2, 3, 5, 10, 20).
We measure the computational load in terms of simulation
time (seconds) with our Java implementation on an Intel
Core2 Duo Processor (2.0 GHz) with 2 GB RAM and the data
quality in terms of the number of retained samples. As
shown in Fig. 12, there exists a trade-off between data
quality and computational complexity. A larger k results in

increased computational complexity of the cloaking algo-
rithm. However, the more accurate confusion computation
with larger k values helps retain more GPS samples in the
filtered trace. A smaller k leads to removing more GPS
samples, which, in turn, can reduce the quality of the data set.
Note, however, that a smaller k£ always provides a lower
bound on real uncertainty, thus, it is always a conservative
choice from a privacy perspective. In Section 8, we use the
two most relevant candidates in tracking uncertainty
computation (k = 2).

8 RESuLTS

The following target tracking experiment illustrates how the
path cloaking algorithm prevents an adversary from
reconstructing an individual’s path and locating an indivi-
dual’s home using the cleansed GPS traces. Specifically, we
compare our uncertainty-aware privacy algorithm and its
with-reacquisition version with random subsampling in
terms of maximum and median TTC for configurations
that produce the same number of released location samples
(as a metric of data quality). Also, we compare the same
algorithms in terms of home identification rate against the
number of released location samples. We evaluate the
effectiveness of our proposed privacy preserving algo-
rithms by answering the following questions:
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Fig. 12. Choosing k creates a trade-off between data quality and
computation complexity. While reducing the computation complexity, the
case of k=2 provides a lower bound on uncertainty. This leads to
retaining smaller numbers of GPS samples.
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Fig. 13. Maximum/median tracking duration for different privacy algorithms in high-density scenarios (2,000 vehicles/1,600 sqm). The uncertainty-
aware privacy algorithm outperforms random sampling for a given number of released location samples. (a) The maximum value of TTC using
uncertainty-aware privacy algorithm without reacquisition. (b) The median value of TTC using uncertainty-aware privacy algorithm without reacquisition.

e Do uncertainty-aware privacy algorithms effec-
tively limit tracking time (i.e., guarantee time-to-
confusion)? Are these limits maintained even in
low user density scenarios?

e How does the average tracking time allowed by path
cloaking compare to the subsampling baseline, at the
same data quality level?

e How are the results affected by the choice of data
quality metric (percentage of released location
samples versus relative weighted road coverage)?

e Do the proposed algorithms effectively suppress
home identification risks? How efficient is it com-
pared to the subsampling baseline for the same data
quality level?

e How much quality should the proposed solutions
sacrifice for protecting driver’s privacy against
target tracking model that utilizes driving direction
information?

8.1 Protection against Target Tracking

Throughout the results presented in the following sections,
one graph depicts many experiment trials, where one trial
comprises the following steps. We first apply a privacy
algorithm to the low-density (500 vehicle) or high-density
(2,000 vehicle) data set generated from the 312 original
vehicle traces. We then remove vehicle identifiers and
execute the target tracking algorithm (see Section 3) to
measure tracking time for the first 312 vehicles. For each
vehicle, we compute the tracking time starting from each
sample of the trace and report the maximum. One data
point shown in the graph then corresponds to the median or
maximum over the 312 vehicle tracking times computed for
one trial. For each graph, these trials are then repeated with
different uncertainty thresholds for the path cloaking
algorithms and different probabilities of removal in the
subsampling algorithm.

Bounded tracking time without reacquisition. First, we
ascertain whether the uncertainty-aware privacy algorithm
guarantees bounded tracking under the no reacquisition
tracking assumption. Figs. 13a and 13b show the maximum
and median tracking time plotted against the relative
amount of released location samples, respectively, for a
high-density scenario with 2,000 vehicles in the 70 km x
70 km area. Fig. 13a shows results for the uncertainty-aware
privacy algorithm (marked with +) for varying uncertainty
levels with time-out fixed at 5 minutes and for the random
subsampling algorithm for varying probabilities of removal.

Since the configuration parameters from these algorithms are
not directly comparable, the graph shows the percentage of
released location samples on the x-axis, allowing comparison
of TTC at the same data quality level. Also note that graph
compares the algorithms in terms of maximum tracking time
to illustrate differences in tracking time variance and
outliers. During tracking, we set the adversary’s uncertainty
threshold to 0.4. This means that the adversary will give up
tracking if at any point the uncertainty level rises above this
threshold, because the correct trace cannot be determined. A
0.4 uncertainty level corresponds to a minimum probability
of 0.92 for the most probable next location sample.

As evident from the data, the uncertainty-aware privacy
algorithm effectively limits time to confusion to 5 min, except
for very low privacy settings (i.e., low uncertainty threshold
less than 0.4), while the random sampling algorithm allows
some vehicles to be tracked up to about 35 min. Our proposed
algorithm can release up to 92.5 percent of original location
samples while achieving the bounded tracking property.

In Fig. 13b, we see that naturally occurring crossings and
merges in the paths of nearby vehicles lowers median TTC
to 1 or 2 minutes (with reacquisition it would be higher,
though). However, with random subsampling (20 percent
removal), about 15 percent of vehicles (34 out of 233) can
still be tracked longer than 10 minutes. The uncertainty-
aware path cloaking can guarantee the specified maximum
tracking time of 5 min even for these vehicles with higher
data quality, removing only 17.5 percent of samples.

Dependence on reacquisition and density. We now
repeat the same experiment under the reacquisition track-
ing model, where an adversary may skip ahead over a point
of confusion. Fig. 14a (note scaled x-axis) shows that the
uncertainty-aware privacy algorithm with reacquisition
extensions can also effectively limit tracking time under
this model, while subsampling allows a worst-case tracking
time of 42 min. The maximum allowable amount of released
location samples is decreased compared to that of Fig. 13.

Let us now investigate whether the privacy guarantee is
also maintained in a very low user density scenario with
only 500 probe vehicles. Fig. 14b shows that this is indeed
the case with the reacquisition model. Note that the privacy
is also guaranteed in the case without the reacquisition
model (refer to conference version [25]). While subsampling
allows a longer maximum TTC due to the low user density,
our proposed scheme still preserves the maximum TTC
guarantee of 5 minutes for uncertainty thresholds between
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Fig. 14. Maximum value of TTC under the reacquisition tracking model. The uncertainty-aware path cloaking (with reacquisition) version outperforms
a random subsampling at a given range of sample removal regardless of density. (a) High-density scenario (2,000 vehicles/1,600 sqm). (b) Low-

density scenario (5,000 vehicles/1,600 sqm).
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Fig. 15. Time-to-confusion advantages of uncertainty-aware path cloaking become even more pronounced when comparing algorithms with the
traffic-monitoring-specific (relative) weighted road coverage data quality metric. (a) Comparison of maximum TTC against weighted road coverage in
high-density scenario (uncertainty-aware privacy algorithm). (b) Comparison of maximum TTC against weighted road coverage in high-density

scenario ((with reacquisition) uncertainty-aware privacy algorithm).

TABLE 3
Quality-of-Service Enhancement in Each of Uncertainty-Aware Privacy Algorithm (with Reacquisition) Uncertainty-Aware
Privacy Algorithm, and Random Sampling Compared to the QoS Level Which Original Traces Can Achieve

QoS metrics

Released location samples

Weighted road coverage

Original traces 100% 100%
Uncertainty-aware privacy (5min,0.95) 81% 95.0%
Random sampling (0.8) 80% 79.3%
(with reacq) Uncertainty-aware (5min,0.4) 53.2% 55.6%
Random sampling (0.53) 53% 52.9%

0.4 and 0.99. Compared to the high-density scenario, our
proposed algorithm requires removing more samples to
achieve the bounded tracking property in the lower user
density scenario.

Quality-of-service analysis. So far, we have measured
quality of service in terms of the percentage of samples
removed by the algorithm. Since samples in higher density
areas are more important for the traffic monitoring
application, the benefits of our proposed privacy algorithm
are even more significant if we consider relative weighted
road coverage as shown in Figs. 15a and 15b. We select a few
points from Figs. 15a and 15b for random sampling and
uncertainty-aware path cloaking to have similar numbers of
released location samples for a fair comparison, and we
observed how each approach has improved weighted road

coverage. More details are shown in Table 3. It shows that
the uncertainty-aware privacy algorithm achieves a relative
weighted road coverage similar to that of original location
traces even though the actual number of released location
samples is lower than that of the original location traces.
Fig. 11 explains this result; the algorithm retains most
samples in high-density areas and removes most from
lower densities. However, the uncertainty-aware privacy
algorithm with reacquisition extensions provides a slight
improvement of relative QoS for weighted road coverage.

8.2 Protection against Home Identification

In this section, we demonstrate the effectiveness of our
proposed algorithm against the home identification techni-
ques of a map-aware adversary.
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Fig. 16. Note that removing 70 percent of location traces still allows 19 out of 37 homes identified correctly and 4 homes narrowed down within 50 m.
(a) Home identification details. (b) Random sampling versus path cloaking.

The following experiment illustrates how an uncertainty-
aware path cloaking algorithm suppresses the home
identification risk. We compare our proposed algorithm
with the random subsampling baseline that we also used in
the target tracking analysis, but now focus on the trade-off
between home identification risks and data quality.

We select the subset of 37 homes marked by (white)
house symbol in Fig. 9a for this evaluation. These lie in
dense residential areas and are home locations, where
complete one-week set of arrivals and departures has been
recorded. Such longer traces will make it easier for the
adversary to determine the home location, thus they
represent the worst-case privacy within our data set. In this
experiment, we did not overlay GPS traces from different
dates, since this would lead to unrealistic distributions of
user near home locations. Thus, we can only consider a
relatively low-density scenario with 312 week-long traces.

Fig. 16a shows the home identification depending on
algorithm parameters. For random subsampling, we varied a
probability of anonymous location sample selection in
the range 0.3-0.8. To achieve a similar percentage of release
location samples (i.e., similar data quality), we varied the
uncertainty threshold in the path cloaking algorithm from 0.9
to 0.4. After executing the home identification algorithm, we
evaluate the following metrics: 1) number of cluster centroids
that exactly point to correct homes (buildings), 2) number of
clusters centroids that are located within 50 m from the
correct home, and 3) number of clusters that point to other
buildings or homes that are not found in a set of manually
identified homes (or the so-called false positive). Each bar in
Fig. 16a represents a tuple of three numbers for each method.
Note that with the baseline subsampling algorithm, even
after removing 70 percent of location data, 19 out of 37 homes
can still be correctly identified and 4 additional homes can be
narrowed down to within 50 m. The path cloaking algorithm,
however, significantly reduces the number of homes that can
be identified, and in the 0.9 uncertainty threshold case, does
not allow any home to be identified.

To enable a more precise comparison in terms of quality of
service, we also provide a quality versus privacy graph in
Fig. 16b. Recall that we only use 312 traces so that more
location samples must be withheld than what we observed in
target tracking analysis with identical values of uncertainty
threshold. For our proposed technique, we plot two different
metrics, true positive meaning how many homes are correct
among the estimated home locations, and home identification
rate, meaning how many homes out of 37 manually identified
homes are correctly detected. The former metric is more
meaningful to evaluate the confidence of an adversary who
does not know a priori users’” home locations. The latter

metric describes the absolute number of correctly identified
homes. Note that random subsampling returns a constant
level of true positive even though we decrease a selection
probability. Compared to random subsampling techniques,
the proposed path cloaking techniques better preserve user
privacy against home identification attack.

Protection against place identification. The uncertainty-
aware path cloaking algorithm will also offer protection for
other places travelers visit, particularly those not that
popular. By removing location updates from low-density
areas, it pushes out centroids of an adversary’s clustering
toward high-density roads, which frequently protects
against building identification. It does allow some location
samples close to buildings where many different users visit
at the same time such as shopping malls or large work sites as
shown in Fig. 17b, however. One can argue that places visited
by large numbers of different people tend to be less private
than places visited only by few people. It also does not
compromise user privacy because the popular destinations
such as shopping malls generally do not allow inferences
about a single user’s identity. The two snapshots in Fig. 17
qualitatively illustrate our observations.

8.3 Outlier Removal against Adversary Model with
Heading Information
Heading information does not help track an anonymous
target a lot in relatively large sample interval such as
1 minute in our data set. The benefit becomes larger when
either time interval decreases or vehicles do not change
their driving directions much (e.g., when running on a
straight highway). For instance, heading information can be
used in pruning unlikely hypotheses by assigning higher
likelihoods to candidate samples with similar heading
information because vehicles do not change directions
abruptly while driving on highways. We observed several
cases in the analysis of real GPS traces, where the enhanced
algorithm in Section 6 prevents tracking outliers, utilizing
heading information in tracking uncertainty computation.
Fig. 18 illustrates one example observed in our collected
location traces. Fig. 18a shows real GPS traces from five
different probe vehicles, one of which (colored in green) runs
in an opposite direction from others. Fig. 18b displays two
different sets of the modified location traces: 1) the modified
location traces that our uncertainty-aware path cloaking
computes without heading information and 2) with heading
information. Note that our modified version of the algorithm
effectively senses the dissimilarity between the heading
information of the target and those of candidate samples,
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Fig. 17. The uncertainty-aware path cloaking pushes clusters toward
roads from residential areas (see (a)). However, it still leaves clusters near
destinations such as workplaces, where multiple users visit at the same
time (as shownin (b)). The symbol of white house and the rectangle symbol
depict manually identified homes and the estimated homes, respectively.
(a) Clusters around homes after uncertainty-aware patch cloaking.
(b) Clusters around workplaces after uncertainty-aware patch cloaking.

and finally, removes the trajectory of the target until a few
samples with a similar direction exist.

To show that our uncertainty-aware path cloaking
algorithm detects outliers based on driving behaviors (i.e.,
speed and direction) as well as density, we measure how
many samples are additionally removed out from original
traces if heading information is considered. Table 4
summarizes the percentage of released samples (relative
to original traces) and the relative weighted road coverage
of two modified traces, depending on whether heading
information is considered or not.

9 DISCUSSION

In this section, we discuss the limitation of the data set and
the experiment, the possible extensions of our proposed
algorithm, and some future directions.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.9, NO.8, AUGUST 2010

Ground truth. Since the real home addresses are
unavailable (driver identities were omitted in the data set
for privacy reasons), we manually inspected the unmodified
week-long traces to identify likely home locations for use as
ground truth. We overlayed the traces on satellite images for
this purpose. This inspection led to 65 reference locations,
shown in Fig. 9a. These were chosen because they contained
a single home that stood out as a likely home location and
the drivers visited this home much more frequently at night
than other locations. Therefore, we believe the manual
inspection provides a reasonable approximation of real
home locations.

Prior knowledge on subjects. In this work, we assume
thatan adversary does not have any a priori knowledge about
the subjects being tracked when we develop inference attack
models. We cannot rule out that inferences are possible with
additional information about subjects. For example, if the
destination and a likely path of a subject’s trip are a priori
known, tracking probabilities may change and it may make it
easier to link anonymous location updates to this subject. Of
course, in this model, there is less sensitive information to
protect because the destination is already known, but it still
leaks some information about the exact timing and speed of
the trip, making it possible to determine whether a subject
was present at an accident site, for example. Still, we believe
that the cloaking algorithm significantly raises the bar for
extracting information from traces.

Relaxing trust in location server. The algorithm described
so far relies on a trustworthy location server, since the
algorithm needs the full GPS traces of all vehicles. A fully
distributed algorithm poses a research challenge by itself,
since clients would need to monitor the positions of
neighboring cars, which again raises privacy and trust issues.
It also appears possible, though, to relax the trust assump-
tions in the location server through a hybrid approach, with
additional in-vehicle disclosure control based on coarser
information about neighbors. Since data quality would only
be marginally affected by missing updates in low-density
areas, one could devise schemes to inform vehicles of the
approximate probe density in their area. Then vehicles could
reduce location updates to the server in the most sensitive
low-density areas. To prevent spoofing of such density
information, further research could investigate data cross-
validation schemes or secure multiparty computation
schemes to compute density.

Data set limitations. We need to point out that the
tracking results can be affected by the choice of probe
vehicles. In our data set, most drivers shared the same
workplace. Thus, the workplace acted as a place of
confusion, where the tracking algorithms failed. A random
sample of the population would probably improve tracking
performance. This would cause both our proposed algo-
rithms and the random sampling method to remove more
samples to meet the maximum TTC. The performance gap
between them might also change from what we have
observed in our study. In addition, our method of over-
laying multiple data sets to create one high-density scenario
may not be entirely faithful in representing true traffic
conditions. Due to this overlay, some of the vehicles may
also be driven by the same driver on similar routes, creating
a further bias toward reduced tracking performance. None-
theless, we observed that naive anonymization is proble-
matic and our proposed algorithm filters out much less data
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Fig. 18. The enhanced uncertainty-aware path cloaking algorithm removes not only location traces in low-density areas but also a location trace
driving in a reverse direction from majority of surrounding probe vehicles. Each point is depicted by UTM coordinates (x, y) in meters. Modified trace
of user 1 without heading information allows a longer tracking (= 12 mins) against the enhanced adversary model. The reconstructed path of User 1
is same as the modified paths as shown in (b). (a) Original GPS traces of five anonymous Vehicles (users 1-5). (b) Modified GPS traces of user 1

without heading information (left) and with heading information (right).

TABLE 4

Quality-of-Service Degradation due to Enhanced Tracking

Probe Vehicles (500)

Probe Vehicles (2000)

w/o Heading (%)

w/ Heading (%)

w/o Heading (%)

w/ Heading (%)

Uncertainty threshold=0.9

Uncertainty threshold=0.95
Uncertainty threshold=0.98
Uncertainty threshold=0.99

74.2 (90.2)
69.2 (86.7)
62.0 (80.0)
55.7 (74.2)

64.1 (79.4) 84.4 (96.8) 73.6 (87.8)
53.8 (67.0) 80.9 (95.2) 64.1 (78.5)
40.6 (50.9) 75.2 (91.9) 48.9 (60.6)
34.9 (44.9) 70.2 (88.2) 40.2 (49.0)

Each entry denotes the percentage of released location samples, and each value in () denotes relative weighted road coverage.

than baseline algorithms. We still believe that our current
results provide a valuable step toward understanding the
tracking performance in probe vehicle scenarios.

Variants of target tracking algorithms. We also con-
sidered other possible tracking algorithms than the ones
described so far. We cannot rule out that more sophisticated
tracking techniques can achieve longer tracking times, but
the algorithms we experimented with only showed very
incremental gains compared to our tracking model.

e Linear Kalman Model: We observed that linear
Kalman filtering does not enhance the tracking
capability. The linear Kalman model is an effective
tool to estimate the state (e.g., position, speed, and
acceleration) of a system (e.g., vehicles) given a time
series of noisy observations. Accurately estimated
state then enables more accurate prediction of the
next position of the moving target. In our data set,
the noise in GPS samples on the order of a few
meters was not a dominant factor compared to the
relatively low sampling rate of one per minute.

e Tracking with road map information: If we use road
network information, we can achieve better pruning
over a set of hypotheses. For example, even though
two observed samples are near in euclidean distance,
it may be obvious that they do not belong to a same
user if they are on very different roadways. While
experiments we conducted on our data set did not
show significant improvements in tracking perfor-
mance, we generally expect that the use of map
information helps tracking. In our study, we have

focused on computationally simpler algorithms that
could be applied to massive number of targets traces
without sophisticated knowledge such as map
information or a prior knowledge on subjects to be
tracked. However, it is straightforward to extend the
presented privacy model and algorithm to take into
account road network information. Instead of using
euclidean distance in the tracking model, the algo-
rithm could match locations to road segments and
calculate the road distance between two locations.

10 RELATED WORK

Much work has focused on exploiting GPS or cellular phone
data for traffic monitoring. MIT’s CarTel [26] proposed to use
the unused bandwidth of open wireless hotspots to deliver
the GPS-based location and speed measurements of probe
vehicles to the central server for traffic data mining and
locating potholes. Previous study using cell-phone-based
traffic monitoring [13] investigates the use of triangulation-
based positioning technology to locate phones. Because of
poor quality position estimates (100 m accuracy), vehicle
speeds could not be consistently determined. Recently, Yoon
et al. [42] proposed to use cellular network as a delivery
method of GPS-based sensing information from probe
vehicles. Several systems have also been deployed [5], [6].
These projects, however, have not focused on privacy of
location information, and use only basic anonymization
techniques, if using privacy enhancing techniques at all.
Several recent studies [32], [24], [21] analyzed the privacy
risk of GPS traces and found that naive anonymization (i.e.,
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omitting identifiers from a data set) does not guarantee
anonymity due to a spatiotemporal correlation between
periodic location updates. This raises an urgent need for
stronger protection mechanisms.

Much research exists on guaranteeing anonymity in
database records and k-anonymity [36] solutions are avail-
able, but their application for time-series location data set is
questionable. The k-anonymity concept has been applied in
location-based services [20], [34], [19] for single independent
location updates. As shown in Section 5, these solutions can
provide sufficient accuracy for applications such as point-of-
interest queries in high-density scenarios, but they do not
achieve the high-accuracy requirements of traffic monitoring
applications with low penetration rates. In addition, a series
of cloaking boxes applied to periodic location updates still
allows an adversary to follow a target [41]. Many studies
have subsequently extended the k-anonymity concept to
allow cloaking through the use of hilbert curves [28], efficient
cloaking of paths [41], and cloaking algorithms for I-diversity
as well as k-anonymity [40]. Bettini et al. [12] recently
provided a formal framework to define attack scenarios,
defense techniques, and assumptions on the amount of
knowledge that is accessible by an adversary.

Privacy preserving data mining [8] and anonymous
communication are also not directly applicable to time-
series location data. Random perturbation approaches
cannot provide sufficient data accuracy and noise with
small variance may be sometimes filtered by advanced
signal processing techniques [30]. Anonymous communica-
tion techniques can relay messages between communication
partners without revealing the source and/or destination
identity (e.g., [14]), but does not protect potentially
revealing information in the message payload. The work
on measuring communication anonymity, however, [37]
inspired us to use entropy in defining time-to-confusion.

Closest to our work are the best-effort location data
protection algorithms [11], [33], [22], [27], which have in
common that they create areas of confusion where the traces
from several users converge. While these algorithms
successfully achieve better accuracy and a defined level of
privacy in such an area of confusion, they cannot provide
overall privacy guarantees because these areas of confusion
might not occur in lower density areas with few users.
Recently, two research groups, Apu et al. [29] and Andreas
et al. [31], proposed a privacy preserving data collection
architecture for collaborative sensing applications. How-
ever, both works do not consider inference attacks that
utilize existing correlation between location-based updates.

Another proposed approach builds on privacy policy
languages [16] and their location-oriented extensions [38] to
allow users (or their automated agents) to make more
informed decisions about data sharing. Such policies may
be enforced through access control mechanisms, such as [18],
[43] for spatiotemporal data. Using these approaches, data
can only be shared with trusted data consumers, while strong
anonymization also allows more public distribution of data.

11 CONCLUSIONS

In this paper, we have proposed the time-to-confusion
metric and cloaking algorithms to address privacy in an
anonymous set of time-series location traces. We considered
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two specific privacy risks in anonymous location traces—
target tracking and place identification—and found that
these allow tracking and reidentifying data subjects in
anonymous traces, particularly in areas with low user
density. We quantify the tracking risk through the time-to-
confusion metric and develop the uncertainty-aware path
cloaking algorithm, which can filter a set of anonymous GPS
traces to guarantee a maximum privacy-risk level (specified
as time-to-confusion).

Using a real-world GPS data set, we measure the privacy
gain and the achieved data quality for the proposed
solutions compared to a baseline random sampling techni-
que. We show that our uncertainty-aware path cloaking
effectively guarantees worst-case tracking bounds (i.e.,
outliers), while achieving significant data accuracy improve-
ments. Since the algorithm considers both density and
driving behaviors (i.e., speed and direction), it effectively
detects and removes traces that are sampled in low-density
areas or could be easily tracked due to differences in driving
direction from surrounding vehicles. It achieves better
privacy than a random sampling technique at the same level
of data quality. We also show that our solution is effective
against clustering-based place identification techniques.
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