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Abstract

The performance of a mobile wireless network depends on the time-varying connectivity of the

network as nodes move around. Therefore, there has been a growing interest in the distribution of inter-

meeting times between two nodes in mobile wireless networks. We study the distribution of inter-meeting

times under the (generalized) Hybrid Random Walk mobility model. We show that when the (conditional)

probability that the two nodes can communicate directly with each other given that they are in the same

cell is small, the distribution of inter-meeting times can be well approximated using an exponential

distribution. In addition, the mean of the inter-meeting times can be estimated using the number of cells

in the network and the aforementioned conditional probability of having a communication link when

the two nodes are in the same cell. We also show that such an approximation does not hold for the

Random Walk mobility model.

I. INTRODUCTION

Recently there has been a growing interest in understanding the distribution of inter-meeting

times between mobile nodes in wireless networks (e.g., [1], [4], [9], [11], [15]). An inter-

meeting time between two nodes refers to the amount of time during which they stay unable to
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communicate directly with each other after they lose the “communication link” between them.1

Since the ability of a (multi-hop) wireless network to transfer information between a pair of nodes

in a timely manner depends critically on the (time-varying) network connectivity, understanding

the statistical properties of inter-meeting times is of much interest. Such an understanding is

even more pressing in Disruption Tolerant Networks (DTNs) that rely on intermittent and/or

sparse connectivity between nodes to forward information.

We summarize a few studies that are most relevant to this paper: Groenevelt et al. [8] studied

the distribution of inter-meeting times between two nodes under the popular Random Waypoint

(RWP) mobility model and suggested that the distribution can be well approximated by an

exponential distribution. Chaintreau et al. [3] examined several sets of traces collected in different

settings and reported an interesting observation that the empirical distributions exhibit a power

law over a wide range followed by an exponential tail. Karagiannis et al. [10], using different

sets of measurements, first illustrated the existence of a similar dichotomy in the empirical

distributions of inter-meeting times. Then, they demonstrated that such a dichotomy exists even

under a simple Random Walk (RW) mobility model on a circle. An interesting study by Cai

and Eun [2] suggests that, in most scenarios where the domain of mobility is bounded, the

distribution is expected to have an exponential tail. On the other hand, when the domain is

unbounded, a power law can emerge, hinting at the possibility that a bounded domain used for

simulation may be a main source of the emergence of an exponential tail in some cases.

The main contributions of this paper can be summarized as follows:

• First, we study the distribution of inter-meeting times under the Hybrid Random Walk

(HRW) mobility model, first introduced by Sharma et al. [14]. The HRW mobility model is a

generalization of the RW mobility model [5], which also includes the independent and identically

distributed (i.i.d.) mobility model used in [12]. In particular, we prove that as the network size

1We say that there is a communication link between two nodes if their achievable signal-to-noise ratio (SNR) is sufficiently

high to allow correct decoding of the signal from each other with a high probability.
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increases, the inter-meeting times can be well approximated using exponential random variables

(rvs) under the assumption that, given that two nodes are in the same cell, the (conditional)

probability that they can communicate directly with each other is small.

• We extend this result in two directions; first, we introduce a generalized HRW mobility

model, of which the HRW mobility model is a special case, and demonstrate that a similar

approximation of inter-meeting times using exponential rvs, holds under the generalized HRW

mobility model. Secondly, we allow heterogeneous mobility among the nodes and prove that

the same result is true under weak technical conditions, without assuming a large network size.

These findings suggest that the distribution of inter-meeting times is not sensitive to the details

of nodes’ mobility and may resemble an exponential distribution under a set of mild assumptions

when the nodes’ mobility is independent.

• Finally, we illustrate that, perhaps somewhat surprisingly, the same approximation does not

hold for the RW mobility model. This is a consequence of the fact that, under the RW mobility

model, the earlier assumption that when two nodes are in the same cell the conditional probability

of having a communication link between them is small, does not hold.

We emphasize the point that the aim of this paper is not to disprove the dichotomy exhibited

by empirical distributions of inter-meeting times (e.g., [3], [10]). Instead, our goals are (i) to

show that, when running simulation with a certain class of mobility models, including the HRW

mobility model, one may expect the distribution of inter-meeting times to resemble an exponential

distribution under some conditions and (ii) to provide some insight into the emergence of

exponential distributions. Moreover, our findings (Theorems 1 - 3 in Sections IV and VI) suggest

that the exponential tail of the distribution may be caused by factors other than a bounded domain

of mobility, which is suggested as one of main reasons for the emergence of exponential tail by

Cai and Eun [2] as mentioned earlier.

The rest of this paper is organized as follows: Section II describes the RW and HRW mobility

models, and Section III defines the inter-meeting times between two nodes. Our first result under
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the HRW mobility model is presented in Section IV, followed by a study under the RW mobility

model in Section V. Extensions to the generalized HRW mobility model and heterogeneous

mobility cases are discussed in Section VI. Simulation results are provided in Section VII.

II. BACKGROUND

In this section we describe two mobility models - the RW mobility model and the HRW

mobility model - that are the focus of this paper.

A. Random Walk mobility model

The RW mobility model was used by El Gamal et al. in [5] in the context of studying the

scaling laws of the network transport throughput for multi-hop wireless networks. For each fixed

n = 1, 2, · · ·, a unit square area is divided into a discrete torus of size n×n. Each of n2 rectangular

areas is called a cell, and each cell is identified by a pair (i, j), i, j ∈ {0, 1, · · · , n−1}, as shown

in Fig. 1.
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Fig. 1. The RW mobility model.

Time is slotted into contiguous timeslots t = 0, 1, · · ·. At timeslot t = 0, a node is initially

placed in one of n2 cells according to some probability mass function (pmf). After its initial
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placement, a node in a cell, say (i, j), first selects one of the adjacent cells, i.e., cells (i + 1, j),

(i − 1, j), (i, j + 1), and (i, j − 1),2 with equal probability of 1/4 independently of the past,

and moves to the selected cell at timeslot t = 1. The node then repeats this process in every

subsequent timeslot.

The location of a node at timeslot t = 0, 1, · · · , is denoted by C (n)(t), which indicates the

cell where the node lies. From the description of the RW mobility model, it is clear that the

discrete-time stochastic process {C (n)(t); t = 0, 1, · · ·} is a time homogeneous Markov chain

with state space {(i, j) | i, j ∈ {0, 1, · · · , n − 1}}.

B. Hybrid Random Walk mobility model

The HRW mobility model can be viewed as a generalization of the RW mobility model in the

previous subsection [14]. It is parameterized by β, 0 ≤ β ≤ 1/2. For each fixed n = 1, 2, · · ·, the

unit square area is first divided into a discrete torus of nβ × nβ cells. Each cell is then further

divided into n(1−2β)/2 ×n(1−2β)/2 subcells. Thus, there are a total of n subcells. A subcell �(n) in

the unit square area is uniquely identified by a pair �(n) = (c(n), s(n)), where c(n) = (c
(n)
1 , c

(n)
2 )

with c
(n)
1 , c

(n)
2 ∈ {0, 1, · · · , nβ − 1} specifies the cell to which the subcell �(n) belongs, and

s(n) = (s
(n)
1 , s

(n)
2 ) with s

(n)
1 , s

(n)
2 ∈ {0, 1, · · · , n(1−2β)/2 −1} designates the position of the subcell

within the cell c(n).

The location of a node at timeslot t = 0, 1, · · · is given by the subcell in which the node lies

and is denoted by L(n)(t) = (C(n)(t), S(n)(t)). Here, C(n)(t) = (C
(n)
1 (t), C

(n)
2 (t)) is the cell at

which the node is located, and S (n)(t) = (S
(n)
1 (t), S

(n)
2 (t)) provides the position of the subcell

within C (n)(t) where the node resides. The initial location L(n)(0) of the node at timeslot t = 0

is selected as follows: First, a cell C (n)(0) is chosen according to some pmf. Then, one of the

subcells in the cell C (n)(0) is selected according to the discrete uniform distribution over the set

of n1−2β subcells in the cell.

2All operations are modulo n operations.
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The transition of a node from one subcell at timeslot t = 0, 1, · · · , to another subcell at timeslot

t+1 is described by the following: A node located at subcell �(n) at timeslot t first selects one of

the adjacent cells with equal probability of 1/4 (as in the RW mobility model). Then, it chooses

one of the subcells in the selected adjacent cell with equal probability of n−(1−2β), independently

of the past and the selected cell. Hence,

L(n) := {L(n)(t); t = 0, 1, · · ·} = {(C(n)(t), S(n)(t)); t = 0, 1, · · ·} ,

which we call the trajectory of the node, is a discrete-time stochastic process where C(n) :=

{C(n)(t); t = 0, 1, · · ·} evolves according to the RW mobility model (hence is a time homo-

geneous Markov chain) and S(n) := {S(n)(t); t = 0, 1, · · ·} is a sequence of i.i.d. rvs. The

stochastic processes C(n) and S(n) are mutually independent because the subcells are selected

independently of the past and selected cells as explained earlier.

When β = 0.5, the HRW mobility model reduces to the usual RW mobility model since there

is only one subcell in each cell. On the other hand, when β = 0, a node moves according to

the i.i.d. mobility model used in [12]. This is because there is only one cell consisting of n

subcells and the node selects one of the subcells with equal probability n−1 in each timeslot,

independently of the past.

III. INTER-MEETING TIMES

In this paper we are interested in studying the distribution of inter-meeting times as the network

size becomes large. To this end we investigate the asymptotic distribution of inter-meeting times

(under appropriate scaling) as the network size increases. This is done by introducing a parametric

scenario with a sequence of networks in which the number of subcells increases (e.g., [5], [14]).

We assume a discrete-time model where the time is divided into contiguous timeslots t = 0, 1, · · ·
throughout the rest of the paper.
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A. The HRW mobility model under consideration

In the current and following sections we consider the HRW mobility model described in

subsection II-B, but in a slightly more general form: For each fixed n = 1, 2, · · ·, the unit square

area is divided into a discrete torus of h1(n) × h1(n) cells. Each cell is then further divided

into h2(n) × h2(n) subcells. Both h1(n) and h2(n) are assumed to be positive integers. It is

clear that the total number of subcells is (h1(n) × h2(n))2 =: N(n). Let C(n) = {(i, j) | i, j ∈
{0, 1, · · · , h1(n) − 1}} be the set of cells and S(n) = {(a, b) | a, b ∈ {0, 1, · · · , h2(n) − 1}} be

the set of subcells in a cell.

subcells

C(t)

p

p

p

l

u

d

p r

:

cells 

Fig. 2. The HRW mobility model.

A node residing in a subcell at timeslot t = 0, 1, · · ·, (i) selects one of the four neighboring

cells with corresponding probability pl, pr, pu and pd (as shown in Fig. 2) and (ii) picks one of

the subcells in the selected cell according to some pmf P (n) over the set S(n), independently of

the past and the selected cell. Then, the node moves to the chosen subcell at timeslot t+1.3 This

process is repeated in each of subsequent timeslots. We assume that the probabilities p l, pr, pu

and pd are strictly positive.

3We assume that the node moves to a new subcell at the beginning of each timeslot.
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B. Inter-meeting times between two nodes

For each n = 1, 2, · · · , we have two nodes i = 0, 1, moving according to the HRW mobility

model on a discrete torus with N(n) subcells as described in the previous subsection. The

location of node i at time t = 0, 1, · · · , is given by the subcell L
(n)
i (t) = (C

(n)
i (t), S

(n)
i (t)) at

which the node is located. As described in subsection II-B, C
(n)
i (t) ∈ C(n) and S

(n)
i (t) ∈ S(n)

denote the cell and the subcell within C
(n)
i (t), respectively, of node i’s location at timeslot t.

The trajectory of node i = 0, 1, is given by

L
(n)
i := {L(n)

i (t); t = 0, 1, · · ·} = {(C(n)
i (t), S

(n)
i (t)); t = 0, 1, · · ·} .

The stochastic processes L
(n)
i , i = 0, 1, are assumed mutually independent.

Definition 1: We say that two nodes are in contact at timeslot t if they are in the same subcell,

i.e., L
(n)
0 (t) = L

(n)
1 (t). Similarly, two nodes are said to meet at timeslot t if (i) L

(n)
0 (t − 1) �=

L
(n)
1 (t − 1) and (ii) L

(n)
0 (t) = L

(n)
1 (t).

Throughout the paper we assume that two nodes can communicate directly with each other

at timeslot t = 0, 1, · · ·, if and only if they are in contact during the timeslot t.

Define U(n) = {U (n)(t); t = 0, 1, · · ·}, where

U (n)(t) = 1
{
L

(n)
0 (t) = L

(n)
1 (t)

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 , if L
(n)
0 (t) = L

(n)
1 (t)

0 , otherwise
.

The rvs U (n)(t), t = 0, 1, · · · , are indicator functions of the event that the two nodes are in

contact at timeslot t.

Let M(n) := {M (n)(k); k = 0, 1, · · ·} be a sequence of non-negative integers defined as

follows: (i) M (n)(0) = 0, and (ii) for k ≥ 1,

M (n)(k) = inf{t ≥ M (n)(k − 1) + 1 | U (n)(t − 1) = 0 and U (n)(t) = 1} .

Then, M (n)(k), k ≥ 1, denotes the time at which the two nodes meet for the k-th time, with the

first meeting taking place at M (n)(1) ≥ 1. Thus, we refer to the sequence M(n) as the meeting
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times. The inter-meeting times are given by I (n) = {I(n)(k); k = 1, 2, · · ·} with

I(n)(k) := M (n)(k) − (H (n)(k) + 1) ,

where

H (n)(k) := max{0, sup{t ≤ M (n)(k) − 1 | U (n)(t) = 1}} (1)

is the maximum of zero and the last timeslot during which the two nodes were in contact before

their k-th meeting occurs, i.e., M (n)(k).

An example is shown in Fig. 3. In this example, the first three meetings take place at M (n)(1) =

1, M (n)(2) = 4, and M (n)(3) = 8. According to our definition in (1), H (n)(1) = 0, H (n)(2) = 1,

and H (n)(3) = 6. Thus, the first three inter-meeting times are equal to I (n)(1) = 0, I(n)(2) = 2,

and I(n)(3) = 1. It is clear from the example that the inter-meeting times I (n)(k), k ≥ 2, indeed

refer to the number of timeslots during which the two nodes are not in contact with each other.

t
1 6t=0 2 3 4 5 7 8 9 10 11

U  (t)
(n)

0

1

0

inter−meeting times

contact timesmeeting times

Fig. 3. Plot of indicator functions U(n)(t), t = 0, 1, 2, · · ·.

Recall from the description of the HRW mobility model that the selection of the next cell and

the subcell within the chosen cell is (i) independent of the past and (ii) determined according

to the same fixed probabilities (i.e., pl, pr, pu, pd and P (n)(s), s ∈ S(n)) for all t = 0, 1, · · ·.
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Therefore, as nodes move on a discrete torus, from the viewpoint of the nodes, each time two

nodes meet at timeslot t, they start anew from the same conditions they were in the last time they

met. This suggests that the number of timeslots that elapse between two consecutive meetings,

M (n)(k + 1) − M (n)(k), k ≥ 1, are i.i.d.

Note (from the example in Fig. 3) that the difference M (n)(k + 1) − M (n)(k), k ≥ 1, is the

sum of two independent rvs - (i) the number of consecutive timeslots the two nodes spend in

contact following their k-th meeting and (ii) the (k + 1)-th inter-meeting time I (n)(k + 1). This

tells us that the inter-meeting times I (n)(k), k ≥ 2, are i.i.d. rvs, while the distribution of I (n)(1)

may be different; I (n)(1) can be zero (as it is in the example), whereas I (n)(k) ≥ 1 for all k ≥ 2.

IV. DISTRIBUTIONAL CONVERGENCE OF INTER-MEETING TIMES UNDER THE HRW

MOBILITY MODEL

In this section we examine the distribution of the inter-meeting times I (n)(k), k ≥ 2,4 between

two nodes under the HRW mobility model. In particular, we are interested in their distribution

as the size of the network N(n) becomes large with increasing n.

For each n = 1, 2, · · · , define p(n) :=
∑

s∈S(n)(P (n)(s))2 > 0. Note that this is the probability

that the two nodes are in contact conditional on the event that they are in the same cell. In

other words, p(n) = Pr
[
L

(n)
0 (t) = L

(n)
1 (t) | C

(n)
0 (t) = C

(n)
1 (t)

]
= Pr

[
S

(n)
0 (t) = S

(n)
1 (t)

]
> 0,

t = 0, 1, · · ·. We first introduce the following assumptions on h1(n) and p(n).

Assumption 1: (i) {h1(n); n = 1, 2, · · ·} is a sequence of odd positive integers. (ii) limn→∞ p(n)

= 0.

If h1(n) is an even positive integer, depending on the initial locations of the two nodes,

they may never meet.5 Thus, in order to ensure that the two nodes will eventually meet with

4We do not investigate the distribution of I(n)(1) as it depends on the initial locations of the nodes and, more importantly,

does not refer to a real inter-meeting time between two consecutive meetings as mentioned in the previous section.
5This is a consequence of the Markov chains C

(n)
i , i = 0, 1, being periodic as it takes an even number of timeslots to return

to the same cell.
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probability one, we assume that h1(n) is odd. The second assumption implies that the conditional

probability that the two nodes are in contact provided that they are in the same cell, decreases

to zero as n → ∞. This necessarily implies that h2(n) → ∞ as n → ∞, i.e., the number of

subcells in a cell grows unbounded. For example, this assumption holds if a node selects each

subcell with equal probability 1/(h2(n))2 while h2(n) → ∞. Note that we do not assume the

sequence {h1(n); n = 1, 2, · · ·} grows to infinity as n → ∞.

Theorem 1: Under Assumption 1 we have the following distributional convergence:

lim
n→∞Pr

[
I(n)(2)

(h1(n))2/p(n)
≤ x

]
=

⎧⎪⎪⎨
⎪⎪⎩

1 − e−x , x > 0

0 , x ≤ 0
(2)

In other words, the rvs I(n)(2)

(h1(n))2/p(n) , n = 1, 2, · · · , converge in distribution to an exponential rv

with parameter one as n → ∞.

Since I(n)(k), k ≥ 2, are i.i.d. rvs, Theorem 1 tells us that, for all sufficiently large n, the

inter-meeting times can be well approximated using exponential rvs with mean (h1(n))2/p(n).

Proof: In order to prove the theorem, we first introduce two other sequences of rvs that are

closely related to the meeting times, M (n)(k), and inter-meeting times, I (n)(k). Define Z(n) :=

{Z(n)(k); k = 0, 1, · · ·} to be a sequence of non-negative integers, where (i) Z (n)(0) = 0, and

(ii) for k ≥ 1,

Z(n)(k) = inf

{
t ≥ 0

∣∣∣ t∑
τ=0

U (n)(τ) ≥ k

}
.

Note that at the end of timeslot Z (n)(k) the nodes will have spent k timeslots in contact with

each other. We call the rvs Z(n)(k), k = 1, 2, · · ·, the contact times throughout the paper. The

sequence of inter-contact times is denoted by X (n) := {X(n)(k); k = 1, 2, · · ·}, where X(n)(k) :=

Z(n)(k) − Z(n)(k − 1) is the time between the (k − 1)-th and k-th contacts.

In the earlier example in Fig. 3, the first six contacts occur at Z (n)(1) = 1, Z(n)(2) =

4, Z(n)(3) = 5, Z(n)(4) = 6, Z(n)(5) = 8, and Z(n)(6) = 9. The first six inter-contact times

are X(n)(1) = 1, X(n)(2) = 3, X(n)(3) = 1, X(n)(4) = 1, X(n)(5) = 2, and X(n)(6) = 1. Thus,
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when two nodes meet and remain in contact for more than one consecutive timeslots, although

they meet only once, we assume that they make multiple counts of contact during the period.

As a result, while the nodes stay in contact in consecutive timeslots, the inter-meeting times are

equal to one.

One can argue that, for a similar reason that the inter-meeting times I (n)(k), k ≥ 2, are i.i.d.

(explained at the end of the previous section), the inter-contact times X (n)(k), k ≥ 2, are also

i.i.d.6 In addition, the distribution of the inter-meeting times I (n)(k), k ≥ 2, is the same as the

conditional distribution of X (n)(2)−1 given the event {X (n)(2) > 1}. This can be seen from the

earlier example in Fig. 3. Note that inter-meeting times I (n)(2) and I(n)(3) are equal to the first

two inter-contact times greater than one, namely X (n)(2) and X(n)(5), minus one, respectively.

With a little abuse of notation, we denote this fact by

I(n)(2) =st [X(n)(2) − 1 | X(n)(2) > 1] , (3)

where =st denotes equality in law.

We introduce a lemma that is used to complete the proof. The proof of the lemma is provided

in the appendix.

Lemma 1: Under Assumption 1 the following distributional convergence holds:

lim
n→∞Pr

[
X(n)(2)

(h1(n))2/p(n)
≤ x

]
=

⎧⎪⎪⎨
⎪⎪⎩

1 − e−x , x > 0

0 , x ≤ 0
(4)

The lemma states that, under Assumption 1, the (appropriately scaled) inter-contact times con-

verge in distribution to an exponential rv with parameter one.

In light of Lemma 1, in order to complete the proof of the theorem, it suffices to show that,

for all x > 0,

lim
n→∞Pr

[
X(n)(2)

(h1(n))2/p(n)
> x

]
= lim

n→∞Pr

[
I(n)(2)

(h1(n))2/p(n)
> x

]
.

6The distribution of X(n)(1) is different from that of X(n)(k), k ≥ 2. Note that X(n)(1) can be zero, whereas X(n)(k) ≥ 1

for all k ≥ 2. In this sense, X(n)(1) is not a real inter-contact time, and we do not concern ourselves with X(n)(1).
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For notational simplicity, let I (n) and X(n) denote the rvs with the same distribution as I (n)(2)

and X(n)(2), respectively. For any x > 0,

Pr

[
I(n)

(h1(n))2/p(n)
> x

]

= Pr

[
X(n) − 1

(h1(n))2/p(n)
> x

∣∣∣ X(n) > 1

]

= Pr

[
X(n) > 1

∣∣∣ X(n) − 1

(h1(n))2/p(n)
> x

]
× Pr

[
X(n) − 1

(h1(n))2/p(n)
> x

]/
Pr

[
X(n) > 1

]
,

where the first equality follows from (3), and the second equality is an application of the Bayes’

rule [16, p.20].

First, Pr
[
X(n) > 1

]
= 1 − Pr

[
X(n) = 1

]
≥ 1 − p(n) because Pr

[
X(n) = 1

]
= p(n) · (p2

u +

p2
d +p2

l +p2
r) ≤ p(n). Since p(n) → 0 by Assumption 1(ii), limn→∞ Pr

[
X(n) > 1

]
= 1. Secondly,

for any x > 0,

Pr

[
X(n) > 1

∣∣∣ X(n) − 1

(h1(n))2/p(n)
> x

]
= Pr

[
X(n) > 1

∣∣∣ X(n) >
x · (h1(n))2

p(n)
+ 1

]
= 1 .

Therefore,

lim
n→∞Pr

[
I(n)

(h1(n))2/p(n)
> x

]
= lim

n→∞Pr

[
X(n) − 1

(h1(n))2/p(n)
> x

]

= lim
n→∞Pr

[
X(n)

(h1(n))2/p(n)
> x +

p(n)

(h1(n))2

]

= lim
n→∞Pr

[
X(n)

(h1(n))2/p(n)
> x

]

= exp(−x) ,

where the third equality follows from the assumption that p(n) → 0 as n → ∞ while h1(n) ≥ 1,

and the last equality is a consequence of Lemma 1. As a result, both inter-contact times and

inter-meeting times (appropriately scaled) converge in distribution to an exponential rv with

parameter one under Assumption 1. This completes the proof of the theorem.

V. DISTRIBUTION OF INTER-MEETING TIMES UNDER THE RW MOBILITY MODEL

In this section we study the distribution of inter-meeting times under the RW mobility model

described in subsection II-A, which is a special case of the HRW mobility model with h2(n) =
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1. We show that, unlike in the HRW mobility model under Assumption 1, the (appropriately

scaled) inter-meeting times under the RW mobility model do not converge in distribution to an

exponential rv as h1(n) → ∞. As we will explain, this is a consequence of the fact that the RW

mobility model does not satisfy Assumption 1(ii) in Section IV.

A. Role of Assumption 1(ii)

We consider the same setting employed in Section IV with the HRW mobility model. Suppose

that Assumption 1(ii) does not hold and there exists p > 0 such that p(n) ≥ p for all n ≥ 1.

Note that this can happen even when h2(n) increases unbounded. Clearly, from (3)

Pr
[
I(n)(2) = 1

]
= Pr

[
X(n)(2) = 2|X(n)(2) > 1

]
=

Pr
[
X(n)(2) = 2

]
1 − Pr [X(n)(2) = 1]

.

Since Pr
[
X(n)(2) = 1

]
= p(n) × (p2

u + p2
d + p2

l + p2
r) ≥ p × (p2

u + p2
d + p2

l + p2
r), we have the

following lower bound.

Pr
[
I(n)(2) = 1

]
≥ Pr

[
X(n)(2) = 2

]
1 − p · (p2

u + p2
d + p2

l + p2
r)

(5)

For every t = 0, 1, · · ·, let us define the following events:

A(n)(t) = {C(n)
0 (t) = C

(n)
1 (t)} and B(n)(t) = {L(n)

0 (t) = L
(n)
1 (t)} = {U (n)(t) = 1}

We can rewrite Pr
[
X(n)(2) = 2

]
as

Pr
[
X(n)(2) = 2

]
= Pr

[
B(n)(2) ∩ (B(n)(1))c | B(n)(0)

]

= Pr
[
A(n)(2) ∩ (B(n)(1))c | B(n)(0)

]
× Pr

[
B(n)(2) | A(n)(2)

]
,

where Bc denotes the complement of the event B, and the second equality follows from the

assumption that subcells are chosen independently of the past and selected cells.

Clearly, Pr
[
B(n)(2) | A(n)(2)

]
= Pr

[
S

(n)
0 (2) = S

(n)
1 (2)

]
= p(n) by the definition of p(n).
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Thus, we can lower bound Pr
[
X(n)(2) = 2

]
as follows:

Pr
[
X(n)(2) = 2

]
= p(n) · Pr

[
A(n)(2) ∩ (B(n)(1))c | B(n)(0)

]

= p(n) ·
(
Pr

[
A(n)(2) ∩ (B(n)(1))c ∩ A(n)(1) | B(n)(0)

]

+Pr
[
A(n)(2) ∩ (B(n)(1))c ∩ (A(n)(1))c | B(n)(0)

] )

≥ p · Pr
[
A(n)(2) ∩ (B(n)(1))c ∩ (A(n)(1))c | B(n)(0)

]

= p · Pr
[
A(n)(2) ∩ (A(n)(1))c | B(n)(0)

]
(6)

where the second equality follows from the fact that {A(n)(1), (A(n)(1))c} is an event space,

and the last equality is a consequence of the relation (A(n)(1))c ⊂ (B(n)(1))c.

Note that Pr
[
A(n)(2) ∩ (A(n)(1))c | B(n)(0)

]
is the probability that two nodes starting in the

same subcell at timeslot t = 0, will (i) first move to different cells at timeslot t = 1 and (ii)

then arrive at a common cell at timeslot t = 2. Clearly, this probability, denoted by ζ , is strictly

positive and does not depend on n. Thus, from (5) and (6),

Pr
[
I(n)(2) = 1

]
≥ p · ζ

1 − p · (p2
u + p2

d + p2
l + p2

r)
≥ p · ζ > 0 . (7)

Equation (7) implies that if h1(n) → ∞ as n → ∞, for all ε > 0,

lim sup
n→∞

Pr

[
I(n)(2)

(h1(n))2/p(n)
≤ ε

]
= lim sup

n→∞
Pr

[
I(n)(2) ≤ ε (h1(n))2

p(n)

]

≥ lim sup
n→∞

Pr
[
I(n)(2) ≤ ε (h1(n))2

]

≥ lim sup
n→∞

Pr
[
I(n)(2) = 1

]

≥ p · ζ , (8)

where the second inequality is a consequence of the assumption that ε · (h1(n))2 → ∞, and the

last inequality follows from (7). Because (8) is true for all ε > 0, we have

lim
ε↓0

(
lim sup

n→∞
Pr

[
I(n)(2)

(h1(n))2/p(n)
≤ ε

])
≥ p · ζ . (9)

In order for the rvs I(n)(2)

(h1(n))2/p(n) to converge in distribution to an exponential rv with parameter

one as n → ∞, the limit on the left-hand side of (9) must equal zero (because an exponential
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rv is a non-negative continuous rv). Hence, (9) implies that the rvs I(n)(2)
(h1(n))2/p(n) do not converge

in distribution to an exponential rv with parameter one as n → ∞.

B. Implication for the RW mobility model

Consider the case where the pmf P (n) is a discrete uniform distribution over the set S (n) of

subcells in a cell (as in the HRW mobility model described in subsection II-B). In this case,

the finding above suggests that if the number of subcells in a cell does not grow unbounded,

i.e., there exists some finite constant B such that h2(n) ≤ B for all n ≥ 1, then the rvs

I(n)(2)
(h1(n))2/p(n)

= I(n)(2)
(h1(n)·h2(n))2

do not converge in distribution to an exponential rv as n → ∞
because p(n) = (h2(n))−2 ≥ B−2 for all n.

As mentioned earlier, the RW mobility model is a special case of the HRW mobility model

with h2(n) = 1 for all n ≥ 1. Therefore, (appropriately scaled) inter-meeting times under the RW

mobility model do not converge in distribution to an exponential rv as h1(n) → ∞. However,

when β < 0.5 in the HRW mobility model described in subsection II-B, the number of subcells

in a cell, n1−2β , grows unbounded and the (appropriately scaled) inter-meeting times converge

to an exponential rv as n → ∞.

VI. GENERALIZED HRW MOBILITY MODEL AND HETEROGENEOUS MOBILITY

In this section we extend our results on the HRW mobility model in Section IV in two direc-

tions: First, we generalize the HRW mobility model by allowing nodes to move to non-adjacent

cells. Secondly, we remove the assumption that the mobility of the nodes is homogeneous. Our

findings show that a similar approximation of inter-meeting times using exponential rvs is still

valid in these cases as well. These results suggest that, under certain assumptions, the distribution

of inter-meeting times is not sensitive to the details of nodes’ mobility. We also briefly comment

on the independence of nodes’ mobility.
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A. Generalized HRW mobility model

In the HRW mobility model studied in Section IV (and also in the RW mobility model

examined in Section V), a move by a node from one timeslot to next is restricted to one of the

four neighboring cells of the current location (see Fig. 2). We relax this constraint as follows:

Suppose that the trajectory of a node is given by L(n) = {(C(n)(t), S(n)(t)); t = 0, 1, · · ·} as

before. For each n = 1, 2, · · ·, let {ΔC(n)(t); t = 0, 1, · · ·} be a sequence of i.i.d. rvs with some

pmf Q(n) over the set {(i, j) | i, j ∈ {−
(h1(n) − 1)/2�, · · · , �(h2(n) − 1)/2
}} =: ΔC(n). The

transition of a node from the current cell C (n)(t) at timeslot t to another cell at timeslot t + 1

is now determined by ΔC (n)(t). More precisely, a node in cell C (n)(t) at timeslot t = 0, 1, · · · ,
moves to the cell C (n)(t + 1) = C(n)(t) + ΔC(n)(t) at timeslot t + 1.7

This model allows the node to remain in the same cell for more than one timeslot if Q(n)((0, 0))

= Pr
[
ΔC(n)(t) = (0, 0)

]
> 0. Moreover, when Q(n)(Δc) > 0 for all Δc ∈ ΔC(n), a node

located in some cell C (n)(t) at timeslot t can transition to any cell in C (n) at timeslot t + 1.

However, unlike in the i.i.d. mobility model [12], the probability with which a cell is selected

for the following timeslot can depend on the current location of the node. The selection of a

subcell S(n)(t + 1) within the selected cell C (n)(t + 1) for timeslot t + 1 is as described in

subsection III-A for the HRW mobility model.

It is clear that C(n) = {C(n)(t); t = 0, 1, · · ·} is a time homogeneous Markov chain with the

state space C(n), where the transition probabilities are determined by the pmf Q(n). The HRW

mobility model described in subsection III-A is a special case of this generalized HRW mobility

model with the probability Q(n)(Δc), Δc = (Δc1, Δc2) ∈ ΔC(n), being strictly positive if and

only if ||Δc||1 = |Δc1| + |Δc2| = 1, where ||·|| denotes the L1-norm.

We impose the following assumptions on the Markov chain C (n) and the conditional probability

p(n).

7All additions are modulo h1(n).
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Assumption 2: (i) For each n = 1, 2, · · ·, the Markov chain C(n) is irreducible and aperiodic.

(ii) limn→∞ p(n) = 0, where p(n) =
∑

s∈S(n)(P (n)(s))2 as defined in Section IV.

Since the state space C(n) is finite for every n = 1, 2, · · ·, Assumption 2(i) implies that the

Markov chain C(n) is also positive recurrent and, hence, ergodic [13, p.177]. Furthermore, it does

not allow the case where the probability of staying in the same cell is one, i.e., Q(n)((0, 0)) < 1.

One can verify that the unique stationary distribution π (n) of the Markov chain C(n) under the

ergodicity assumption is the uniform distribution over the state space C (n). This in turn tells us

that, starting from any cell, the expected number of timeslots it takes to come back to the same

starting cell, is equal to the number of cells (h1(n))2 in the network [7, Theorem (17), p.232].

Consider the same set-up we used in Section IV: For each n = 1, 2, · · ·, there are two nodes

i = 0, 1, that move according to the generalized HRW mobility model with some pmfs P (n) and

Q(n). The trajectory of node i = 0, 1, is again denoted by

L
(n)
i = {L(n)

i (t); t = 0, 1, · · ·} = {(C(n)
i (t), S

(n)
i (t)); t = 0, 1, · · ·} .

We assume that L
(n)
i , i = 0, 1, are mutually independent, and let I (n) = {I(n)(k); k = 1, 2, · · ·}

be the sequence of inter-meeting times defined in subsection III-B. Assumption 2(i) guarantees

that the two nodes will eventually meet with probability one, regardless of their initial locations.

We state the following theorem without a proof. The proof is a simple modification of that

of Theorem 1.

Theorem 2: Under Assumption 2,

lim
n→∞Pr

[
I(n)(2)

(h1(n))2/p(n)
≤ x

]
=

⎧⎪⎪⎨
⎪⎪⎩

1 − e−x , x > 0

0 , x ≤ 0 .
(10)

Theorem 2 states that if the Markov chains C
(n)
i , i = 0, 1, are ergodic and p(n) decreases

to zero as n → ∞, the inter-meeting times can be well approximated by exponential rvs for

sufficiently large n without having to impose any further restrictions on the nodes’ mobility
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between cells. It is noteworthy that not only the limiting distribution is still exponential, but also

the details of mobility between cells determined by the pmf Q(n) do not change the parameter of

the limiting exponential distribution. Hence, one can view this as an insensitivity result because,

under some assumptions, the details of transitions by the nodes between cells do not significantly

affect the distribution of the inter-meeting times for sufficiently large n.

B. Heterogeneous mobility

Throughout our analysis in Section IV and in the previous subsection, we assumed that the

mobility of the two nodes is homogeneous. In other words, we assumed that the pmfs Q (n) and

P (n) for choosing the next cell and subcell, respectively, are identical for both nodes. Our results,

however, continue to hold even when heterogeneous mobility is allowed among the nodes under

some mild technical conditions: Suppose that Q
(n)
i and P

(n)
i , i = 0, 1, denote node i’s pmfs for

determining the next cell and subcell, respectively. We allow P
(n)
0 and P

(n)
1 and, also, Q

(n)
0 and

Q
(n)
1 to be different.

The trajectory of node i = 0, 1, is given by

L
(n)
i = {L(n)

i (t); t = 0, 1, · · ·} = {(C(n)
i (t), S

(n)
i (t)); t = 0, 1, · · ·}

as before. Again, C
(n)
i = {C(n)

i (t); t = 0, 1, · · ·}, i = 0, 1, are time homogeneous Markov chains

with the transition probabilities determined by Q
(n)
i . Define ς(n) :=

∑
s∈S(n)(P

(n)
0 (s) × P

(n)
1 (s)),

which is the probability that the two nodes are in contact given that they are in the same cell,

i.e., ς(n) = Pr[L
(n)
0 (t) = L

(n)
1 (t) | C

(n)
0 (t) = C

(n)
1 (t)] = Pr

[
S

(n)
0 (t) = S

(n)
1 (t)

]
, t = 0, 1, · · ·.

We impose the following assumptions on the Markov chains C
(n)
i , i = 0, 1, and the conditional

probabilities ς (n), n = 1, 2, · · ·.

Assumption 3: (i) For each n = 1, 2, · · ·, the Markov chains C
(n)
i , i = 0, 1, are irreducible and

aperiodic. (ii) ς (n) > 0 for all n = 1, 2, · · ·, and limn→∞ ς(n) = 0.
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If ς(n) = 0, the two nodes never meet with probability one. Thus, in order to ensure that

the nodes are in contact with a strictly positive probability when they are in the same cell and,

hence, eventually meet with probability one, we need to assume ς (n) > 0. In addition, one should

note that, unlike in the homogeneous mobility case where the assumption p (n) → 0 necessarily

means that the number of subcells increases unbounded (because h2(n) → ∞), Assumption 3(ii)

does not require that the number of subcells in the network grow unbounded. In other words,

even when there exists some finite bound on the total number of subcells in the network for all

n ≥ 1, Assumption 3(ii) can still be satisfied.

We state the following distributional convergence result without a proof, which is similar to

that of Theorem 1.

Theorem 3: Under Assumption 3,

lim
n→∞Pr

[
I(n)(2)

(h1(n))2/ς(n)
≤ x

]
=

⎧⎪⎪⎨
⎪⎪⎩

1 − e−x , x > 0

0 , x ≤ 0 .
(11)

Theorem 3 tells us that even when the nodes’ mobility is not homogeneous and the network

size is not large, if the conditional probability ς (n) is small, inter-meeting times can still be well

approximated by exponential rvs. This finding again suggests that the distribution of inter-meeting

times is rather insensitive to the details of nodes’ mobility and may resemble an exponential

distribution under a broad set of assumptions, without having to assume a large network size.

C. Independence of nodes’ mobility and the bounded domain of mobility

Although we assumed that the trajectories of the two nodes L
(n)
i , i = 0, 1, are mutually

independent throughout, we can relax this assumption as follows: Suppose that when two

nodes meet, they coordinate their movements so that they can stay in contact while exchanging

information. During this period they may not follow the (generalized) HRW mobility model.

Once they complete the transfer of message(s), they resume following the (generalized) HRW
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mobility model, independently of each other, until they meet again, at which point they repeat

the process. It is clear that, under this assumption, the distribution of the inter-meeting times

remains the same as before, whereas the number of consecutive timeslots they spend in contact

after a meeting may change. Hence, all of our results still hold.

Cai and Eun [2] suggested that the bounded domain of mobility used in simulation may be

one of main culprits for the emergence of an exponential tail in the distribution of inter-meeting

times. Our results (Theorems 1 - 3), however, state that even as the domain becomes large (in

fact, grows unbounded), the distribution of inter-meeting times exhibits an exponential tail. Thus,

this suggests that the bounded domain alone does not account for the emergence of exponential

tail in the distribution of inter-meeting times observed in simulation.

VII. SIMULATION

In this section we present simulation results to validate our analysis in the previous sections.

First, we simulate the generalized HRW mobility model with two nodes and study the empirical

distribution of the inter-meeting times. Then, we repeat the simulation under the RW mobility

model.

A. The generalized HRW mobility model

In the first setting two nodes move according to the generalized HRW mobility model on a

unit square area divided into 25 = (h1)
2 cells. Each cell is then further divided into 100 = (h2)

2

subcells. We assume that the pmf Q(Δc), Δc ∈ {(i, j) | i, j ∈ {−2,−1, 0, 1, 2}} for selecting

a next cell, is equal to 1/12 if 1 ≤ ||Δc||1 ≤ 2 and 0 otherwise. In other words, a node in cell

C(t) at timeslot t moves to one of the 12 shaded cells in Fig. 4 with equal probability of 1/12 at

timeslot t + 1. We use the discrete uniform distribution for subcell selection with P (s) = 0.01,

s ∈ {(a, b) | a, b ∈ {0, 1, · · · , 9}}.

A total of 80,008 inter-meeting times are collected in the simulation. Their histogram as well

as the logarithm of the histogram are plotted in Fig. 5. The dotted line in Fig. 5(b) is the
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cells  

C(t)

Fig. 4. Transition between cells by a node under the generalized HRW mobility model.

logarithm of the exponential fitting curve obtained from the collected inter-meeting times, using

the expfit function in Matlab, which provided the fitting parameter of λ = 4.003 × 10−4. The

plotted logarithm of the histogram and that of the exponential fitting curve suggest that indeed

the distribution of the inter-meeting times closely resembles an exponential distribution with a

mean λ−1 � (h1 × h2)
2, corroborating our finding in Theorem 2.

B. The RW mobility model

In the second setting we run the simulation with the RW mobility model described in sub-

section II-A by setting h1 = 19 and h2 = 1, i.e., one subcell in each cell. We collect a total

of 103,791 inter-meeting times. Their histogram and the logarithm of the histogram are plotted

in Fig. 6. It is clear from the plots that there is a high concentration of inter-meeting times

close to the origin, which is consistent with our analysis in Section V. However, the plots also

suggest that the tail of the distribution is still exponential. The logarithm of the exponential

fitting curve for the tail with the fitting parameter λ = 1.19 × 10−3 is shown as the dotted line

in Fig. 6(b). Clearly, in this case the parameter λ is quite different from h−2
1 = 2.77× 10−3 due

to the concentration of the distribution close to the origin.
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VIII. CONCLUSION

We studied the distribution of inter-meeting times under the (generalized) HRW mobility

model. We showed that when the conditional probability that two nodes are in contact given

that they are in the same cell is small, the distribution of inter-meeting times can be well

approximated by an exponential distribution. Moreover, this approximation holds even when the

mobility of the two nodes is heterogeneous (under mild conditions). These findings indicate that

the distribution of inter-meeting times is insensitive to the details of nodes’ mobility, and an

exponential distribution may provide a good approximation for it in a broad set of settings. Our

findings are consistent with the recent observations that some distributions of inter-meeting times

from simulation resemble exponential distributions.

APPENDIX I

PROOF OF LEMMA 1

The proof of the lemma will proceed as follows: First, we will show that the inter-contact

times X (n)(k), k ≥ 2, can be written as a random sum of i.i.d. rvs, where the number of rvs in

the summation is geometrically distributed with parameter p(n). Second, using this observation,

we will prove that the Laplace transforms of the scaled inter-contact times X(n)(2)
(h1(n))2/p(n) converge

to that of an exponential rv with parameter one.

We first define the sequence of timeslots at which the two nodes visit the same cell together,

i.e., C
(n)
0 (t) = C

(n)
1 (t): Let W(n) := {W (n)(k); k = 0, 1, · · ·} be a sequence of non-negative

integers where (i) W (n)(0) = 0 and, (ii) for k ≥ 1,

W (n)(k) = inf

{
m ≥ 0

∣∣∣ m∑
t=0

1
{
C

(n)
0 (t) = C

(n)
1 (t)

}
≥ k

}
.

Since the two nodes must be in the same cell in order for them to be in contact, clearly the

sequence Z(n) of contact times defined in the proof of Theorem 1 is a subsequence of W (n).

Also, for all k = 1, 2, · · · , define

Y (n)(k) = W (n)(k) − W (n)(k − 1) .
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Then, the rvs Y (n)(k), k ≥ 2, denote the number of timeslots the two nodes need to arrive at a

common cell since their last visit to the same cell together. For the same reason explained at

the end of subsection III-B, the rvs Y (n)(k), k ≥ 2, are i.i.d.8

Let A(n)(0) = 0 and, for m ≥ 1,

A(n)(m) = sup
{
k ≥ 1 | W (n)(k) ≤ Z(n)(m)

}
.

The rvs A(n)(m), m ≥ 1, denote the number of times the two nodes arrive at a common cell

until the m-th contact occurs. For each m = 1, 2, · · ·, define B(n)(m) := A(n)(m)−A(n)(m−1).

The rvs B(n)(m), m ≥ 2, represent the number of visits to a common cell by the two nodes

between the (m−1)-th and m-th contacts. Recall that, given that the two nodes arrive at the same

cell, they choose the same subcell within the cell (hence, are in contact) with probability p(n),

independently of the past and the cell. As a result, the rvs B (n)(m), m ≥ 2, are i.i.d. geometric

rvs with parameter p(n).

We can now rewrite the contact times Z (n)(k) and the inter-contact times X (n)(k) using the

rvs W (n)(k) and Y (n)(k) as follows: For every m ≥ 1,

Z(n)(m) =
A(n)(m)∑

�=1

Y (n)(�) = W (n)(A(n)(m)) ,

and

X(n)(m) =
A(n)(m)∑

�=A(n)(m−1)+1

Y (n)(�) =
A(n)(m−1)+B(n)(m)∑

�=A(n)(m−1)+1

Y (n)(�) . (12)

Equation (12) suggests that the inter-contact times X (n)(m), m ≥ 2, can be written as a sum

of i.i.d. rvs Y (n)(�) and the number of rvs in the summation (i.e., B (n)(m)) is geometrically

distributed with parameter p(n) and independent of the rvs Y (n)(�), � ≥ 2. This completes the

first step of the proof.

Recall that p(n) → 0 as n → ∞ from Assumption 1(ii). Let B (n) be a geometric rv with

parameter p(n), which is independent of rvs Y (n)(�), � ≥ 1. For every s > 0, the Laplace

8While Y (n)(k) ≥ 1 for all k ≥ 2, Y (n)(1) can be zero when W (n)(1) = 0. Thus, the distribution of Y (n)(1) is different

from that of Y (n)(k), k ≥ 2.
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transform (LT) of the rv V (n) :=
∑B(n)

�=1 Y (n)(� + 1) is given by [6, p.429]

E
[
e−sV (n)

]
= E

[
e−s

∑B(n)

�=1
Y (n)(�+1)

]

= E

[
E

[
e−s

∑B(n)

�=1
Y (n)(�+1)

] ∣∣∣ B(n)

]

= E

[
E
[
e−s Y (n)(2)

]B(n)
]

, (13)

where the last equality follows from the fact that Y (n)(�), � ≥ 2, are i.i.d.

Let φ(n)(s) := E
[
e−s Y (n)(2)

]
be the LT of the rvs Y (n)(�), � ≥ 2. Then, from (13) we have

E
[
e−sV (n)

]
=

∞∑
b=1

(
φ(n)(s)b · (1 − p(n))b−1 · p(n)

)

=
p(n) φ(n)(s)

1 − φ(n)(s) (1 − p(n))
(14)

=
p(n) (1 − μ(n) s + s ξ(n)(s))

1 − (1 − μ(n) s + s ξ(n)(s)) (1 − p(n))
,

where μ(n) = E
[
Y (n)(2)

]
and ξ(n)(s) =

(
φ(n)(s) − (1 − μ(n) s)

)
/s.

Using the fact that C
(n)
i = {C(n)

i (t); t = 0, 1, · · ·}, i = 0, 1, are mutually independent ergodic

Markov chains under Assumption 1(i), one can show that μ(n) = (h1(n))2 [7, p.232]. In addition,

|ξ(n)(s)| is bounded as follows.

|ξ(n)(s)| =
∣∣∣∣∣φ

(n)(s) − 1 + μ(n) s

s

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞

0

e−sy − 1 + s y

s y
y dF (n)(y)

∣∣∣∣∣
≤
∫ ∞

0

∣∣∣∣∣e
−sy − 1 + s y

s y

∣∣∣∣∣ y dF (n)(y)

≤ Ξ ·
∫ ∞

0
y dF (n)(y)

= Ξ · μ(n) , (15)

where F (n) is the distribution of Y (n)(2), and the second inequality follows from the fact that∣∣∣ e−sy−1+sy
sy

∣∣∣ is upper bounded by a finite constant Ξ > 0.
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Let m(n) = μ(n) · E
[
B(n)

]
= μ(n)/p(n). From (14), the LT of rv V (n)/m(n) is

ζ (n)(s) := E
[
e−s(V (n)/m(n))

]
= E

[
e−(s/m(n))V (n)

]

=
p(n) φ(n)(s/m(n))

1 − φ(n)(s/m(n))(1 − p(n))

=
p(n)

(
1 − μ(n) s/m(n) + s ξ(n)(s/m(n))/m(n)

)
1 − (1 − μ(n) s/m(n) + s ξ(n)(s/m(n))/m(n)) (1 − p(n))

. (16)

Substituting m(n) = μ(n)/p(n) in (16) and after a little algebra, we can rewrite ζ (n)(s) as follows.

ζ (n)(s) =
p(n)

(
1 − μ(n) s p(n)/μ(n) + s ξ(n)(s p(n)/μ(n)) p(n)/μ(n)

)
1 − (1 − μ(n) s p(n)/μ(n) + s ξ(n)(s p(n)/μ(n)) p(n)/μ(n)) (1 − p(n))

=
p(n)

(
1 − s p(n) + s ξ(n)(s p(n)/μ(n)) p(n)/μ(n)

)
1 − ((1 − p(n)) − (1 − p(n)) s p(n) + (1 − p(n)) s ξ(n)(s p(n)/μ(n))p(n)/μ(n))

=
p(n)

(
1 − s p(n) + s ξ(n)(s p(n)/μ(n)) p(n)/μ(n)

)
p(n) + (1 − p(n)) s p(n) − (1 − p(n)) s ξ(n)(s p(n)/μ(n))p(n)/μ(n)

=
p(n)

(
1 − s p(n) + s ξ(n)(s p(n)/μ(n)) p(n)/μ(n)

)
p(n) (1 + (1 − p(n)) s − (1 − p(n)) s ξ(n)(s p(n)/μ(n))/μ(n))

=
1 − s p(n) + s ξ(n)(s p(n)/μ(n)) p(n)/μ(n)

1 + (1 − p(n)) s − (1 − p(n)) s ξ(n)(s p(n)/μ(n))/μ(n)
(17)

In order to complete the second step of the proof, we first prove that, for each n = 1, 2, · · ·,
lims↓0 ξ(n)(s) = 0. First, note that both the numerator, (φ(n)(s)−1+μ(n) s), and the denominator,

s, of ξ(n)(s) go to zero as s ↓ 0 because lims↓0 φ(n)(s) = 1. Therefore, using L’Hôpital’s rule,

we obtain

lim
s↓0

ξ(n)(s) = lim
s↓0

dφ(n)(s)/ds + μ(n)

1
. (18)

From the definition of φ(n)(s) = E
[
e−s Y (n)(2)

]
, we have lims↓0(dφ(n)(s)/ds) = E

[
−Y (n)(2)

]
=

−μ(n). Substituting this in (18) we get lims↓0 ξ(n)(s) = 0.

Since |ξ(n)(s)| is upper bounded by Ξ · μ(n) for all s > 0 from (15) and p(n) → 0, hence

p(n)/μ(n) → 0 and ξ(n)(s p(n)/μ(n)) → 0, as n → ∞ from Assumption 1(ii), we see that (17)

satisfies the following convergence for all s > 0.

ζ (n)(s) → 1

1 + s
=: ζ(s) as n → ∞
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Note that ζ(s) is the LT of the exponential distribution with parameter one [6, p.430]. The

facts that (i) ζ (n)(s) → ζ(s) for all s > 0 and (ii) lims↓0 ζ(s) = 1 together imply that the

rvs V (n)/m(n), n = 1, 2, · · · , converge in distribution to an exponential rv with parameter one

(Theorem 1 [6, p.430] and Theorem 2 [6, p.431]). The lemma now follows from the observation

that the rvs V (n) and X(n)(2) are identically distributed from (12), i.e., V (n) =st X(n)(2).
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Fig. 5. Empirical distribution with h1 = 5 and h2 = 10. (a) Histogram of the inter-meeting times, (b) log plot of the histogram

and exponential fitting.
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Fig. 6. Empirical distribution under the RW mobility model (h1 = 19 and h2 = 1). (a) Histogram of the inter-meeting times,

(b) log plot of the histogram and exponential fitting of the tail.


