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Abstract

3G networks are currently overloaded, due to the increasing popularity of various applications

for smartphones. Offloading mobile data traffic through opportunistic communications is a promising

solution to partially solve this problem, because there is almost no monetary cost for it. We propose

to exploit opportunistic communications to facilitate information dissemination in the emerging Mobile

Social Networks (MoSoNets) and thus reduce the amount of mobile data traffic. As a case study, we

investigate the target-set selection problem for information delivery. In particular, we study how to

select the target set with only k users, such that we can minimize the mobile data traffic over cellular

networks. We propose three algorithms, called Greedy, Heuristic, and Random, for this problem

and evaluate their performance through an extensive trace-driven simulation study. Our simulation results

verify the efficiency of these algorithms for both synthetic and real-world mobility traces. For example,

the Heuristic algorithm can offload mobile data traffic by up to 73.66% for a real-world mobility

trace. Moreover, to investigate the feasibility of opportunistic communications for mobile phones, we

implement a proof-of-concept prototype, called Opp-Off, on Nokia N900 smartphones, which utilizes

their Bluetooth interface for device/service discovery and content transfer.

Index Terms

Mobile data offloading, target-set selection, opportunistic communications, mobile social networks,

implementation, trace-driven simulation.
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I. INTRODUCTION

Due to the proliferation of smartphones (e.g., Apple’s iPhone and Nokia N95), mobile oper-

ating systems (e.g., Google’s Android and Symbian OS), and online social networking services,

Mobile Social Networks (MoSoNets) have begun to attract increasing attention in recent years.

The development of MoSoNets has already evolved from the simple extensions of online social

networking sites to powerful mobile social software and applications [17], [20], [32], [34],

[36]. Currently, a large percentage of mobile data traffic is generated by these mobile social

applications and mobile broadband-based PCs [2]. A side effect of the explosion of these

applications, along with other mobile applications, is that 3G cellular networks are currently

overloaded. According to AT&T’s media newsroom, its network experienced a 5,000 percent

surge of mobile data traffic in the past three years1. Thus, it is imperative to develop novel

architectures and protocols for this critical problem.

Mobile data offloading, also referred to as mobile cellular traffic offloading, is the use of

complementary network communication technologies to deliver mobile data traffic originally

planned for transmission over cellular networks. In the original delay-tolerant approach, delay

is usually caused by intermittent connectivity [19]. For instance, motivated by the fact that the

coverage of WLAN hotspots may be very limited, and thus mobile users may not always be able

to connect to the Internet through them, Pitkänen et al. [40] explore opportunistic web access

via WLAN hotspots for mobile phone users. We propose to intentionally delay the delivery of

information over cellular networks and offload it through the free opportunistic communications,

with the goal of reducing mobile data traffic.

In this paper, we study the target-set selection problem as the first step toward bootstrapping

mobile data offloading for information delivery in MoSoNets. The information to be delivered

in mobile networks may include multimedia newspapers, weather forecasts, movie trailers etc.,

generated by content service providers. As an example, in addition to traditional written text and

photos, multimedia newspapers may contain news video clips, music, and small computer games.

Benefiting from the delay-tolerant nature of non-real-time applications, service providers may

deliver the information to only a small fraction of selected users (i.e., target-users), to reduce

1http://www.att.com/gen/press-room?pid=4800&cdvn=news&newsarticleid=30838 (AT&T Launches Pilot Wi-Fi Project in

Times Square, verified in Oct. 2010)



3

Mobile-to-Mobile Offloading

Cellular Delivery

Fig. 1. A snapshot of the contact graph for a small group of

subscribed mobile users.

Fig. 2. The social graph of mobile users shown in Figure 1.

mobile data traffic and thus their operation cost. As shown in Figure 1, target-users can then

help to further propagate the information among all the subscribed users through their social

participation, when their mobile phones are within the transmission range of each other and can

communicate opportunistically. Non-target-users can also disseminate the information after they

get it from target-users or others. The major advantage of this mobile data offloading approach

is that there is almost no monetary cost associated with opportunistic communications, which

are realized through either WiFi or Bluetooth technology.

We investigate how to choose the initial target set with only k users, such that we can

minimize the amount of mobile data traffic. We can translate this objective into maximizing

the expected number of users that can receive the delivered information through opportunistic

communications2. The larger this number is, the less the mobile data traffic will be. To offload

other downstream and upstream data (that may contain private information) through the others

phones as relay, we must pay special attention to protect the users’ privacy. Thus, we focus on

popular information delivery in this paper.

It follows from the work of Nemhauser et al. [37] that if the information dissemination function

that maps the initial target set to the expected number of infected users is submodular (discussed

in detail in Section IV), a natural greedy algorithm can achieve a provable approximation ratio

of (1 − 1/e) (the best known result so far), where e is the base of the natural logarithm. Thus,

if we can prove the submodularity of the information dissemination function, we will be able

to apply the greedy algorithm to our target-set selection problem. Our first contribution is that

2We call these users the infected users, similar to the infected individuals in the Susceptible-Infected-Recovered (SIR) epidemic

model for the transmission of communicable disease through individuals.
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by extending the result of Kempe, Kleinberg, and Tardos [29] we prove that the information

dissemination function is submodular for the contact graph of mobile users, which changes

dynamically over time. However, although this greedy algorithm achieves the best known result,

it requires the knowledge of user mobility in the future, which may not be practical.

Our second contribution is to exploit the regularity of human mobility [23], [33] and apply

the target set identified using mobility history to future information delivery. For example, we

determine the target set using the greedy algorithm based on today’s user mobility history of

a given period, and then use it as the target set for tomorrow’s information delivery during

the same period. We show through an extensive trace-driven simulation study that this heuristic

algorithm always outperforms the simple random selection algorithm (wherein the k target users

are chosen randomly), and can offload up to 73.66% of mobile data traffic for a real-world

mobility trace. The simulation results also indicate that social participation is a key enabling

factor for opportunistic-communication based mobile data offloading.

The third contribution of this paper is that we evaluate the feasibility of opportunistic com-

munications for moving phones by building a prototype, called Opp-Off, as the first step

in the implementation of the proposed information dissemination framework. We compare the

energy-consumption performance of both Bluetooth and WiFi interfaces for device discovery

and choose Bluetooth as the candidate technology for Opp-Off. We also evaluate the device

discovery probability, the amount of transferred data, and the duration of data transfer between

a static phone and a moving phone. The experimental results show that these two phones can

exchange up to 1.48 MB data during their short contacts.

This paper is organized as follows. We briefly review related work in Section II. We then

present the system model and formulate the problem in Section III. In Section IV, we propose

three algorithms for the target-set selection problem. We investigate the feasibility of oppor-

tunistic communications for mobile phones through a prototype implementation in Section V. In

Section VI, we evaluate the performance of the three proposed algorithms through trace-driven

simulations. We discuss several practical issues in Section VII, and then conclude.

II. RELATED WORK

In this section, we review the existing related work in three categories: cellular traffic offload-

ing, information diffusion/dissemination and mobile social networks.
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A. Cellular Traffic Offloading

There are two types of existing solutions to alleviate the traffic load on cellular networks:

offloading to femtocells and WiFi networks.

1) Femtocell for Indoor Environments: Originally, the femtocell technology (i.e., access point

base stations) was proposed to offer better indoor voice and data services of cellular networks.

Femtocells work on the same licensed spectrum as the macrocells of cellular networks and

thus do not require special hardware support on mobile phones. But customers may need to

install short-range base stations in residential or small-business environment, for which they

will provide Internet connections. Due to their small cell size, femtocells can lower transmission

power and achieve higher signal-to-interference-plus-noise ratio (SINR), thus reducing the energy

consumption of mobile phones. Cellular operators can reduce the traffic on their core networks

when indoor users switch from macrocells to femtocells. A literature review about the technical

details and challenges of femtocells can be found in Chandrasekhar et al. [13].

2) Cellular Traffic Offloading to WiFi Networks: Compared to femtocells, WiFi networks work

on the unlicensed frequency bands and thus cause no interference with 3G cellular networks.

As a result, cellular network operators, including AT&T, T-Mobile, Vodafone, and Orange,

have deployed or acquired WiFi networks worldwide [1]. Meanwhile, there are already several

offloading solutions and applications proposed from the industry. For instance, the Line2 iPhone

application (available at http://www.line2.com/) clones the phone’s own software and can initiate

voice calls over WiFi networks. iPassConnect3 enables end users to switch between 3G cellular

and WiFi connections smoothly, and provides them a one-touch login for more than 100,000

hotspots operated by 100+ providers. Recently, Balasubramanian et al. [4] have proposed a

scheme called Wiffler to augment mobile 3G networks using WiFi for delay-tolerant applications.

Offloading cellular traffic to femtocells and WiFi networks is limited by their network de-

ployment and relies on the availability of Internet access. Instead, we offload mobile data traffic

through opportunistic communications for information dissemination, in metropolitan areas.

B. Information Diffusion/Dissemination

Social networks can be thought of as the carrier of information flows in communities. Var-

ious wireless communication technologies can effectively help the propagation of information

3http://www.ipass.com/
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among mobile users. As a result, information diffusion/dissemination has been widely studied

in traditional social networks [15], [29], [41] and wireless networks [31], [36], [38].

1) Traditional Social Networks: Information diffusion has been extensively investigated through

viral marketing [41] and social networks [15], [29]. Domingos and Richardson [15], [41] in-

troduce a fundamental algorithmic problem of information diffusion: what is the initial subset

of k users we should target, if we want to propagate the information to the largest fraction of

the network? Kempe et al. [29] prove that for the influence maximization problem in social

networks, the information dissemination function is submodular for several classes of models.

They also leverage the co-authorship graph from arXiv in physics publications to demonstrate that

the proposed algorithm outperforms heuristics based on node centrality and distance centrality,

which are well-known metrics in social networks. Although our proof of the submodularity of

information dissemination function for the target-set selection problem investigated in this paper

is an extension of the result in Kempe et al. [29], we enhance the independent cascade model to

make it more realistic to study the information dissemination process in mobile social networks

(discussed in details in Section IV-A). Gruhl et al. [24] study the dynamic of information diffusion

in blogspace. They characterize information propagation along two dimensions: macroscopic

diffusion of topics, based on long-term changes of primary focus and short-term behavior of

fixed topic; and microscopic diffusion between individuals, using the theory of disease spreading.

In this paper, we exploit social participation and interaction to offload mobile data traffic.

2) Opportunistic Networks: There are also several existing works for information dissemi-

nation in wireless networks. 7DS [38] is a peer-to-peer data dissemination and sharing system

for mobile devices, aiming at increasing the data availability for users who have intermittent

connectivity. Due to the heterogeneity of access methods and the spatial locality of information,

when mobile devices fail to access Internet through their own connections, they can try to query

data from peers in their proximity, who either have the data cached, or have Internet access

and thus can download and forward the data to them. Lindemann and Waldhorst [31] model

the epidemic-like information dissemination in mobile ad hoc networks, using four variants of

7DS [38] as examples. They consider the spread of multiple data items by devices with limited

buffers and use the least recently used (LRU) approach as their buffer management scheme.

Similar to our work, Vukadinović and Karlsson [44] propose to utilize mobility-assisted

wireless podcasting to offload the cellular operator’s network. However, aiming to minimize the
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spectrum usage in cellular networks, they simply select p% of the subscribers with the strongest

propagation channels as target users which may include inactive users. Ioannidis et al. [28]

study the dissemination of content updates in MoSoNets, investigating how service providers

can optimally allocate bandwidth to keep the content updated as early as possible and how the

average age of content changes when the number of users increases. Compared to the above

works, we focus on the target-set selection problem to reduce mobile data traffic.

3) Other Wireless Networks: Diffusion has also been widely studied in wireless sensor net-

works and cellular networks. Directed diffusion [27] is a data-centric dissemination paradigm

for sensor networks, in the sense that the communication is for named data (attribute-value

pairs). It achieves energy efficiency by choosing empirically good paths, and by caching data

and processing it in-network. The parametric probabilistic sensor network routing protocol [6]

is a family of multi-path and light-weight routing protocols for sensor networks. It determines

the forwarding probability of intermediate sensors based on various parameters, including the

distance between these sensors, and the number of traveled hops of a message. Zhu et al. [49]

propose solutions to prevent the spread of worms in cellular networks by patching only a small

number of phones. They construct a social relationship graph of mobile users where the weights

of edges are determined by the amount of traffic between two mobile phones and use this graph

to represent the most likely spreading path of worms. After partitioning the graph, they can

select the optimal set of phones to separate these partitions and block the spreading of worms.

C. Mobile Social Networks

A recent trend for online social networking services, such as Facebook, is to turn mobile.

Meanwhile, native MoSoNets have been created, for example, Foursquare and Loopt. Motivated

by the fact that people are usually good resources for location, community, and time-specific

information, PeopleNet [36] is designed as a wireless virtual social network that mimics how

people seek information in real life. In PeopleNet, queries of a specific type are first propagated

through infrastructure networks to bazaars (i.e., geographic locations of users that are related

to the query). In a bazaar, these queries are further disseminated through peer-to-peer commu-

nications, to find the possible answers. WhozThat [7] is a system that combines online social

networks and mobile smartphones to build a local wireless networking infrastructure. It utilizes

wireless connections to online social networks to bind social networking IDs with location.
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WhozThat also provides an entire ecosystem to build complex context-aware applications.

Micro-Blog [20] is a social participatory sensing application that can enable the sharing and

querying of content through mobile phones. In Micro-Blog, mobile phones periodically send

their location information to remote servers. When queries, for example, about parking facilities

around a beach, cannot be satisfied by the current content available on the server, they will

be directed to users in the specific geographic area who may be able to answer these queries.

CenceMe [34] is a people-centric sensing application that infers individual’s sensing presence

through off-the-shelf sensor-enabled mobile phones and then shares this information using social

network portals such as Facebook and MySpace. In this paper, we study how social participation

can help to disseminate information among mobile users.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we describe the system model of MoSoNets and the target-set selection problem

we propose to solve.

A. Model of MoSoNets

No matter which online social networking service we are using now, we are going to see only

a piece of our actual social network. However, MoSoNets can integrate not only friends from

all the major social networking sites, but also work colleagues and family members who are

hidden from these online services. Moreover, MoSoNets can also provide a platform to signal

face-to-face interactions among nearby people who probably should know each other [17]. There

are two kinds of typical connections in MoSoNets, similar to the small-world networks [46]:

• Local connections realized by short-range communications, through WiFi or Bluetooth

networks. When two mobile phones are within the transmission range of each other, their

owners may start to exchange information, although they may not be familiar with each

other. This opportunistic communication heavily depends on the mobility pattern of users

and usually we can construct contact graphs (as shown in Figure 1, as a snapshot) for

them. Their major advantage is that they do not require infrastructure support and there is

no monetary cost.

• Remote connections realized by long-range communications, through cellular networks (e.g.,

EDGE, EVDO, or HSPA). This communication happens only between friends in real life. It
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may be used sporadically, compared to the short-range communications. Usually users need

to pay for such data transmissions. We can construct a social graph, as shown in Figure 2,

based on the social relationship of mobile users. Users connected by an edge are friends

of each other. There are three communities depicted by different colors. Users in the same

community form a clique. There are also connections between different communities. The

friend relationship within a community is not shown here for clarity.

The study of traditional social networks focuses on social graph, and contact graph has been

extensively investigated for opportunistic communications. We advocate that MoSoNets can be

viewed as a marriage of traditional social networks with emerging opportunistic networks. We

can exploit both types of communication to facilitate information dissemination in MoSoNets.

On one hand, friends can actively forward (push) information whenever they want. On the other

hand, mobile users that are in contact can also pull information from each other locally. We note

that Chierichetti et al. [14] recently study a similar push-pull strategy for rumour spreading.

Meanwhile, Burleigh proposes Contact Graph Routing [11] for delay-tolerant networks, where

connectivity changes are scheduled and planned, rather than discovered or predicted.

B. Problem Statement

As we mentioned in Section I, we aim to study how to choose the initial target set with

only k users, such that we can maximize the expected number of infected users. This number

will translate into the decrease of mobile data traffic. If there are totally n subscribed users and

m users finally receive the information before the deadline, the amount of reduced mobile data

traffic will be n−(k+(n−m)) = m−k. For a given mobile user, delivery delay is defined to be

the time between when a service provider delivers the information to the k users until a copy of

it is received by that user. Service providers will send the information to a user directly through

cellular networks, if he or she fails to receive the information before the delivery deadline.

How the information is propagated is determined by the behavior of mobile users, and we

exploit a probabilistic dissemination model in this paper. We define the pull probability to be the

probability that mobile users pull the information from their peers during one of their contacts.

The value of pull probability p may not be the same for different types of information and might

change as time goes on, which reflects the dynamics of information popularity. After mobile users

receive the information from either the service providers or their peers, they may also forward
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it, through cellular networks (e.g., MMS, Multimedia Messaging Service), to their friends with

probability q. Usually, p > q, because users may prefer the free opportunistic communications.

Moreover, short-range communications consume much less energy, in terms of data transmission,

than long-range ones. For example, it was reported in a measurement study that to download 10

KB data, WiFi consumes one-sixth of 3G’s energy and one-third of GSM’s energy [5]. We do

not consider the push-based approach for opportunistic communications in this paper and leave

it as a future work.

The modeling of information dissemination through opportunistic communications can be

viewed as a combination of three sub-processes. First, to protect their privacy, mobile users have

the control of whether or not to share a piece of information with their geographical neighbors and

share it with probability p1. Second, mobile users may want to explore the information in their

proximity only when they are not busy and mobile phones may not always be able to discover

each other during their short contacts. Thus they can find the meta-data of a piece of information

with probability p2. Finally, based on these meta-data, mobile users will decide whether or not

to fetch the information from their geographical neighbors and pull it with probability p3. As a

result, p = p1 · p2 · p3.

IV. TARGET-SET SELECTION

We first prove the submodularity of the information dissemination function for the contact

graph of mobile users, which leads to the greedy algorithm. The information dissemination

function is the function that maps the target set to the expected number of infected users of the

information dissemination process. Then we present the details of the greedy algorithm and the

proposed heuristic algorithm.

A. Submodularity of the Information Dissemination Function

If we can prove that the information dissemination function is submodular, we can then apply

the well-known greedy algorithm proposed by Nemhauser et al. [37] to identify the target set.

For any subset S of the users, the information dissemination function g(S) gives the final number

of infected usres when S is the initial target set. The function g(·) is submodular if it satisfies

the diminishing returns rule. That is, the marginal gain of adding a user, say u, into the target
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set S is greater than or equal to that of adding the same user into a superset S ′ of S:

g(S ∪ {u}) − g(S) ≥ g(S ′ ∪ {u}) − g(S ′),

for all users u and all pairs of sets S ⊆ S ′. We prove the submodularity of the information

dissemination function by extending the approach developed in Kempe et al. [29].

Our proof of the submodularity differs from that in Kempe et al. [29] in two ways. First, Kempe

et al. [29] prove that the information diffusion function is submodular for the independent cascade

model [22] of influence maximization. In that model, when a node u becomes active, it has a

single chance to activate any currently inactive neighbor v with probability pu,v. In comparison,

in our extended independent cascade model, mobile users have the chance to pull/exchange

information for every contact. There are also several other diffusion models in the literature [43]

and some of them were derived from another basic model, the linear threshold model [29]. Our

enhanced independent cascade model is more realistic than these previous models, as it can

account for multiple contacts among mobile users.

Second, as we mentioned in Section III, compared to the information diffusion in traditional

social networks [29], the contact graph of MoSoNets changes dynamically and mobile users can

pull information from their peers at every contact. To solve this problem, we generate a time-

stamped contact graph, which is also called time-expanded graph in the literature, e.g., in Hoppe

and Tardos [25]. Note that the delay-tolerance threshold (i.e., the delivery deadline) determines

the information dissemination duration (from when service providers deliver information to target

users to the delivery deadline). As a result, only edges whose corresponding contacts occur before

the threshold will be included in this time-stamped graph.

Generally it is hard to compute exactly the underlying information dissemination function g(·)

and obtain a closed form expression of it. However, as in Kempe et al. [29], we can estimate

the value of g(·) by Monte Carlo sampling. For each pair of users u and v, if they are in contact

` times during the information dissemination process, there will be ` time-stamped edges in the

graph, one for each contact. Suppose u’s pull probability for v during a given contact t is pu,v,t.4

We can view this random event as flipping a coin of bias pu,v,t. Note that whether we flip the

coin at the beginning of information dissemination or when u and v are in contact t will not

4We can define the pull probability pv,u,t accordingly.
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affect the final results. Thus, we can assume that for every contact t of each pair of users u and

v, we flip a coin of bias pu,v,t at the beginning of the process and save the result to check later.

After we get all the results of coin flips, we mark the edges with successful pulling of

information as active and the remaining edges as inactive. Since we already know the results of

the coin flips (i.e., whether a mobile user can infect his/her peers for a given contact) and the

initial target set, we can calculate the number of infected users at the end of the information

dissemination process. In fact, one possible set of results of the coin flips stands for a sample

point in the probability space. Suppose z is a sample point and define gz(S) to be the number

of infected users when S is the initial target set. Then gz(S) is a deterministic quantity for a

fixed contact trace. Further define I(u, z) to be the set of users that have a path from u, for

which all the edges on it are active and their time-stamps satisfy the monotonically increasing

requirement5. We have

gz(S) = ∪u∈SI(u, z).

We now prove that the function gz(S) is submodular for a given z. Consider two sets S and

S ′, S ⊆ S ′. gz(S ∪ {u}) − gz(S) is the number of users in I(u, z) that are not in ∪v∈SI(v, z).

Note that ∪v∈S′I(v, z) is at least as large as ∪v∈SI(v, z). We then have

gz(S ∪ {u}) − gz(S) ≥ gz(S
′ ∪ {u}) − gz(S

′).

Since g(S) =
∑

z Prob(z) · gz(S), we thus obtain that g(·) is submodular, because it is a non-

negative linear combination of a family of submodular functions.

B. Greedy, Heuristic, and Random Algorithms

We present three algorithms for the target-set selection problem, called Greedy, Heuristic,

and Random. For the Greedy algorithm, initially the target set is empty. We evaluate the

information dissemination function g({u}) for every user u, and select the most active user (i.e.,

the one that can infect the largest number of uninfected users) into the target set. Then we repeat

this process, in each round selecting the next user from the rest with the maximum increase of

g(·) into the target set, until we get the k users. Target-set selection is an NP-hard problem for

both the independent cascade model and the linear threshold model [29]. Let S∗ be the optimal

5This requirement reflects the temporal evolution of the information dissemination process along the paths.
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target set, Nemhauser et al. [37] show that if the function g(·) is non-negative, monotone and

submodular, and at each time we select a user that gives the maximum marginal gain of g(·) to

get a target set S with k users, then g(S) ≥ (1 − 1/e) · g(S∗). Thus, given that the information

dissemination function satisfies the above requirements, the Greedy algorithm approximates

the optimum solution to within a factor of (1−1/e). However, we note that the limitation of the

Greedy algorithm is that it requires the knowledge of user mobility during the dissemination

process, which may not be available at the very beginning.

To make the Greedy algorithm practical, we propose to exploit the regularity of human

mobility [23], [33], which leads to the Heuristic algorithm. Based on a six-month trace

of the locations of 100,000 anonymized mobile phone users, Gonzalez et al. [23] identify that

human mobility shows a very high degree of temporal and spatial regularity, and that each

individual returns to a few highly frequented locations with a significant probability. Benefiting

from the regularity of human mobility, the Heuristic algorithm identifies the target set using

the history of user mobility, and then uses this set for information delivery in the future. That is,

for a given period [s, t] of a day d, we apply the Greedy algorithm to determine the target set

S of the same history period [s, t] of the day d− c based on mobility history, where c is a small

integer (usually 1 or 2), and then for information delivery of [s, t] of the day d, service providers

send the information to mobile users in S at the beginning to bootstrap the dissemination process.

To enable the Greedy algorithm, the information dissemination protocol can collect the contact

information of the subscribed users. At the end of a day, users can upload the information to

the service providers through either their PCs or the WiFi interfaces on their phones.

Finally, for the Random algorithm, the service providers select k target users randomly from

all the subscribed users. As we will show in Section VI, although this algorithm is simple, it is

still effective in the offloading process. Before presenting the simulation results, we introduce

our prototype implementation in the next section, which verifies the feasibility of mobile data

offloading through opportunistic communications in practice.

V. IMPLEMENTATION

In this section, we evaluate the feasibility of opportunistic communications for moving mobile

phones through a proof-of-concept prototype implementation that we built for the proposed

information dissemination framework, called Opp-Off. In a recent work, Zahn et al. [48]
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investigate the content dissemination for devices mounted on moving vehicles. However, there is

very little work about whether it is feasible to support opportunistic communications on mobile

phones. Since it is hard to deploy the proposed offloading solution on a large user base (e.g.,

more than 100 users), we focus on the feasibility of opportunistic communications between

two mobile phones in this section and evaluate the performance of proposed target-set selection

algorithms through trace-driven simulation for large data sets in Section VI.

A. Bluetooth or WiFi

The two common local wireless communication technologies available on most smartphones

are Bluetooth and WiFi (a.k.a., IEEE 802.11). There are three major phases during opportunistic

communications: device discovery, content/service discovery, and data transfer. In the following,

we discuss how to support opportunistic communications using Bluetooth and WiFi separately.

The Bluetooth specification (Version 2.1) [9] defines all layers of a typical network protocol

stack, from the baseband radio layer to application layer. It operates in the 2.4 GHz frequency

band, shared with other devices [30] (e.g., IEEE 802.11 stations and microwave ovens). Thus,

for channel access control Bluetooth uses Frequency-Hopping Spread Spectrum (FHSS) to avoid

interference with coexisting devices.

For two Bluetooth devices to discover each other, one of them (inquiring device) sends out

inquiry messages periodically and waits for responses; another one (scanning device) listens to

the wireless channels and sends back responses after receiving inquiries [16]. The duration of

a Bluetooth time slot is 625 µs. During the device discovery procedure, an inquiring device

uses two trains of 16 frequency bands each, selected from 79 frequency bands of 1 MHz width

in the range 2402-2480 MHz. The 32 bands are selected based on a pseudo-random scheme

and the device switches trains every 2.56 seconds. The inquiring device sends out two inquiry

messages on two different frequency bands in every time slot and waits for responses on the

same frequency bands during the next time slot. Two parameters, scan window and scan interval,

control the duration and frequency of scanning devices. After the device receives an inquiry

message, it will wait for 625 µs (i.e., the duration of a time slot) before sending out a response

on the same frequency band, which completes the device discovery procedure. To increase the

device discovery probability and reduce the discovery time, an interlaced inquiry scan mode was

proposed in Bluetooth Version 1.2.
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Bluetooth defines a Service Discovery Protocol (SDP) to allow devices to discover services

provided by others. SDP determines the Bluetooth profiles (e.g., Headset Profile and Advanced

Audio Distribution Profile) that are supported by the devices. Bluetooth uses a 128-bit Universally

Unique Identifier (UUID) to identify each service. When a device installs a new service, it will

register the service with its local SDP server. To discover services supported by others, a device

can connect to their SDP servers and search through their service records [47].

There are two types of commonly used Bluetooth transport protocols, L2CAP (Logical Link

Control & Adaptation Protocol) and RFCOMM (Radio Frequency Communications). L2CAP is

built upon Asynchronous and Connection-less Link (ACL) and multiplexes data transmissions

from higher-level protocols and applications. RFCOMM is on top of L2CAP in the protocol

stack. It is designed to emulate RS-232 serial ports and supports services similar to TCP. The

nominal data rate of Bluetooth Version 2.0 + EDR (extended data rate) is 3 Mbps and can be

up to 24 Mbps for Version 3.0 + HS (high speed). Since the Bluetooth specification has more

than 1400 pages [9], we refer interested readers to Smith et al. [42] and Drula et al. [16] for

detailed introduction of the Bluetooth protocol stack.

The key concepts of WiFi-based device discovery are well understood. IEEE 802.11 standard

defines several operation modes, including infrastructure and ad hoc modes. Stations in these

modes will periodically send out Beacon messages to announce the presence of a network. A

Beacon message contains timestamp (for synchronization), Beacon interval, capability informa-

tion, service set identifier etc. The default Beacon interval for most of WiFi device drivers in

Linux kernel is 100 ms. To support opportunistic communications, the WiFi interface of mobile

phones need to operate in ad hoc mode, since they cannot form a network if they both operate

in infrastructure mode. Besides sending out Beacon messages, they will also scan the wireless

channels to discover peers. For two mobile phones to communicate with each other, they are

required to form an Independent Basic Service Set (IBSS). Compared to Bluetooth, there is

no service discovery protocol defined in IEEE 802.11 standard. After setting up a wireless

connection, mobile phones can exchange data using either UDP or TCP. The maximal data rate

of WiFi is 54 Mbps for 802.11g and can be up to 600 Mbps (theoretically) for 802.11n.

We conducted two groups of experiments to study battery life of mobile phones for different

Bluetooth inquiry and WiFi scanning intervals, 1, 3, 10 and 30 seconds. We use Nokia N900

smartphones for the measurement study. Its default OS, Maemo 5, is an open source Linux
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distribution with kernel version 2.6.28. The WiFi chipset is Texas Instruments WL1251 which

runs with the wl12xx device driver6. Its Bluetooth chipset is Broadcom BCM2048 and we use

the default BlueZ7 Linux Bluetooth protocol stack for it. We show the measurement results

in Figure 3. To save battery life, we also did another group of experiments for WiFi-based

device discovery, during which we turned on the WiFi interface only when scanning, shown

as WiFi Scanning (Sleep) in Figure 3. For Bluetooth, the inquiry lasts for 10.24 seconds (i.e.,

4 trains), which is the standard value [26]. We measure the WiFi scanning duration on Nokia

N900 smartphones using a scheme based on the implementation of iwlist command. During our

experiments, the WiFi interface run in station mode and was not associated with any access

point. The experimental results show that the duration is always less than 1 second for 802.11g,

which has 11 channels in North America.

There are two observations from Figure 3. First, WiFi scanning will reduce battery life of a

fully charged new N900 phone from longer than 310 hours to around only 5 hours. Although

turning off the WiFi interface when not scanning can increase battery life, it will also decrease

the device discovery probability, because a mobile phone with WiFi interface off cannot be

discovered by others. Given the fact that the WiFi scanning duration is less than 1 second, if we

turn off the WiFi interface when not scanning, for large scanning intervals most of the time the

mobile phones stay in a non-discoverable state. Second, Bluetooth inquiry will not drain battery

very quickly. Even when the inquiry interval is 1 second, the battery life is still around 20 hours

6http://wireless.kernel.org/en/users/Drivers/wl12xx/
7http://www.bluez.org/
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and thus mobile users may not need to charge their phones during the daytime. Although WiFi

can provide longer communication range and higher bandwidth, the high energy consumption

makes it not suitable for device discovery. Thus, these results indicate that compared to WiFi,

Bluetooth may be a better candidate for Opp-Off.

B. Opp-Off Implementation

We implement a simplified version of Opp-Off using Bluetooth for two reasons. First, as

we have demonstrated that the energy consumption of WiFi scanning is much higher than

that of Bluetooth inquiry. Second, Bluetooth is available on almost all the modern mobile

phones. Whereas, only relatively few smartphones have WiFi interface. When mobile phones

run Opp-Off, the program first starts a content server as a thread and then the main part

is a loop that performs device discovery using Bluetooth inquiry (hci inquiry function call in

BlueZ). After two phones discover each other, they will start another client thread to connect

to the content servers on the remote phones. If they can establish a connection, they will start

transmitting data packets until the content transfer is finished or the connection is broken (e.g.,

because they are not within the Bluetooth communication range of each other due to movement).

In our current implementation, the inquiry duration is 10.24 seconds. We use the default

values for other Bluetooth parameters, such as scan window and scan interval. The RFCOMM

data packet length is 1000 bytes, which is smaller than the 1017-byte default MTU on our

N900 phones. To guarantee that the data transfer is not affected by inquiry procedure, the

device discovery procedure will be skipped once the connection is established. That is, a mobile

phone cannot connect to multiple peers simultaneously. However, note that the connection is

bi-directional. For example, after Alice’s client connects to Bob’s server, Alice’s server can still

accept connections from Bob’s client.

C. Evaluation

We evaluate the device discovery probability, the number of transferred bytes and transfer

duration between two mobile phones for different inquiry intervals. During the experiments, we

emulate the opportunistic communication between Alice and Bob’s mobile phones, as shown in

Figure 4. In this scenario, the position of Alice and her N900 phone is fixed and Bob passes by

Alice with his N900 phone. The communication range of a Class 2 Bluetooth device is around



18

Inquiry Interval (s) 1 3 10 30

Device Discovery Probability 40% 20% 50% 100%

TABLE I

THE DEVICE DISCOVERY PROBABILITY FOR 10 RUNS OF EXPERIMENT FOR DIFFERENT BLUETOOTH INQUIRY INTERVALS.

10 meters, which is the case for most mobile phones. Nokia N900 phones are equipped with

Class 1 Bluetooth interface and thus the communication range is much longer than 10 meters.

Thus we choose two points in a line with the distance from each end-point to the location of

Alice’s phone to be around 10 meters. For a single experiment, Bob walks from one end-point

to another, starting Opp-Off at one end-point and terminating it at another. Considering the

moderate human walking speed is around 1 m/s, the contact duration of these two phones is

about 20 seconds. If two Bluetooth devices enter inquiry status simultaneously with the same

inquiry duration and interval, they will not be able to discover each other, because a Bluetooth

device in inquiry status cannot respond inquiry messages from other devices. We start Opp-Off

on these two phones randomly to avoid such synchronization.

We choose 4 Bluetooth inquiry intervals, 1, 3, 10 and 30 seconds and run the experiments

10 times for each interval. We show the device discovery probability in Table I. Due a single

experiment, if Alice and Bob’s phones cannot discover each other, we say that they miss an

opportunistic-communication opportunity. As we can see from this table, increasing the inquiry

interval may increase the device discovery probability. When the inquiry interval is 30 seconds,

these two phones can discover each other for all the 10 runs. One of the possible reasons is

that during the inquiry interval, mobile phones are in inquiry scan status, and with fixed inquiry

duration, longer inquiry scan duration can increase the chance that mobile phones receive the

inquiry messages on the channel they are monitoring.

For the 30-second Bluetooth inquiry interval, we also plot the number of transferred bytes and

the duration of data transfer for both directions of the 10 runs in Figure 5 and Figure 6. For 3

out of the 10 runs, both clients on Alice and Bob’s phones can connect to the servers running on

the other phone. The maximum number of transferred bytes for both directions is 1,517.58 KB

during the short contact of these two mobile phones. The average number of transferred bytes

is 563.25 KB and the average duration of data transfer is 12.02 seconds. Note that, in practice

if mobile phones have longer communication range, as Nokia N900 phones, they might be able
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to exchange much more data through opportunistic communications.

To summarize, the above study shows that it is feasible to exploit the free opportunistic commu-

nications for mobile data offloading, even for the short contact during of moving mobile phones.

In our current Opp-Off prototype, we only implemented the opportunistic communication part

and we are currently working on the whole information dissemination framework.

D. Extensions

The unique features of various wireless technologies make them suitable for different tasks.

For example, Bluetooth may be suitable for device discovery due to its low energy consumption,

but WiFi may be a better solution for content transfer, because the energy consumption per bit for

WiFi is lower than that of Bluetooth. To increase battery lifetime, CoolSpots [39] investigates the

policies to enable mobile devices to automatically switch between multiple radio interfaces (e.g.,

WiFi and Bluetooth). Ananthanarayanan and Stoica propose Blue-Fi [3], a system that predicts

WiFi availability through Bluetooth contact patterns and cell-tower information. It allows devices

to intelligently turn on their WiFi interface only when there is a WiFi access point in its proximity,

thus reducing the energy consumption for discovery.

Motivated by the success of these previous works, we are evaluating the pros and cons of

WiFi and Bluetooth for different phases. Sticking with one technology may not be the best

solution and thus we plan to combine them to make the whole procedure more effective, that is,

using Bluetooth for device and service discovery and WiFi for content transfer. Another possible

extension is to adaptively adjust the inquiry interval according to human mobility patterns and
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develop energy conscious device discovery protocols [16], [45]. If mobile phones send out inquiry

messages infrequently, the device discovery probability may be very low. On the other hand,

frequent inquiries may be energy inefficient. We are investigating the trade-off between device

discovery probability and energy consumption for mobile phones.

Since it is hard to find a large number of mobile users for the performance evaluation of

opportunistic-communication based offloading in the wild, we use trace-driven simulation to

evaluate the three proposed algorithms in the next section.

VI. SIMULATION

We now introduce the mobility traces that we use for performance evaluation, and then present

the results from a trace-driven simulator developed in C. The simulator first loads contact events

from real-world traces or generates contact events based on the movement history from the

synthetic traces. It then replays the contact events for the given information dissemination periods.

At the beginning of each contact, the simulator determines randomly whether a mobile user can

get the information from the peer based on the pre-configured pull probability.

A. Mobility Traces

1) Synthetic Mobility Trace: We use the SIGMA-SPECTRUM simulator [8] to generate a

synthetic mobility trace in the region of Portland, Oregon. The simulator combines different real-

world data sources and realistic models, including an urban mobility model, synthetic population

(according to U.S. Census data) and road-network data of Portland. The trace records the location

of mobile users every 30 seconds. We randomly choose 10,000 people from the entire population

of the city (around 1,600,000 people) as the subscribed users. The information dissemination

periods start from 7:00AM with different durations. Note that the duration of the information

dissemination period is, in fact, also the delay-tolerance threshold for mobile users (i.e., the

maximum delay they need to tolerate). We use this trace to evaluate the performance of the

Random algorithm for different pull probabilities and delay-tolerance thresholds.

2) Traces From Real-World Experiments: To evaluate the performance of the Heuristic

algorithm, we need the mobility traces of different days, which is not available in the SIGMA-

SPECTRUM simulator. To this end, we exploit two real-world mobility traces from the Haggle

project [12] and the Reality Mining project [18].
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History Delivery

#1 2006-04-24 11:00AM 2006-04-25 11:00AM

#2 2006-04-25 11:00AM 2006-04-26 11:00AM

#3 2006-04-25 12:00PM 2006-04-26 12:00PM

TABLE II

THE START TIME OF THREE SELECTED 1-HOUR PERIODS

FROM INFOCOM06 TRACE.

History Delivery

#1 2004-10-25 12:00PM 2004-10-28 12:00PM

#2 2004-11-15 12:00PM 2004-11-22 12:00PM

#3 2004-12-06 12:00PM 2004-12-07 12:00PM

TABLE III

THE START TIME OF THREE SELECTED 6-HOUR PERIODS

FROM REALITY MINING TRACE.

We use the INFOCMO06 trace collected by the Haggle project for 4 days (from 2006-

04-24 to 2006-04-27) during INFOCOM 2006 in Barcelona, Spain. This trace recorded the

mobility of students and researchers attending the student workshop, using 78 iMotes which had

a communication range of around 30 meters. We select 3 pairs of 1-hour periods from the trace as

shown in Table II. Thus, the delay-tolerance threshold is 1 hour for this trace. To exploit the 24-

hour regularity of human mobility and evaluate the performance of the Heuristic algorithm,

we use the target set identified by the Greedy algorithm for the periods in the second column

(“History”) to predict the mobility of users for the periods in the third column (“Delivery”) of

the same row. We define active users as those who have at least 1 contact with others during

the delivery periods. As a result, the numbers of active users for these periods are 70, 66 and

66. We can also use other thresholds instead of 1. But they may exclude some inactive users for

the simulation and thus reduce the (already small) number of simulated users.

The Reality Mining trace was collected using 100 Nokia 6600 smartphones carried by people

from the MIT Media Laboratory and Sloan Business School, from 2004-07-26 to 2005-05-05.

The information in this trace includes call logs, neighboring Bluetooth devices, and associated

cell-tower IDs, etc. The contact trace of these users identified by the Bluetooth scanning is very

sparse and thus is not suitable for the simulation. As in Ioannidis et al. [28], we instead consider

that two mobile users are in contact of each other if their phones are associated with the same

cell tower. Even this cell-tower based contact trace is sparse: this is the reason that we use

6-hour periods for the simulation. Therefore, the delay-tolerance threshold is 6 hours for this

trace. Similar to Table II, we show the 3 pairs of 6-hour periods from the trace in Table III.

Benefiting from the long duration of the Reality Mining project, we can also exploit the 3-day

(#1 of Table III) and 1-week (#2 of Table III) regularity of human mobility. The numbers of

active users for these three periods are 61, 71 and 53 for the Reality Mining trace. For both
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Fig. 7. Performance of Random algorithm for different pull

probabilities (Portland city data set).
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traces, we use only active users in the simulation.

B. Simulation Results

In this section, we present the simulation results of the Random, Heuristic, and Greedy

algorithms. In the simulation, we emulate the information delivery of multimedia newspapers

(with size around several MB). Each direct cellular delivery consumes one message containing

the newspaper and for simplicity we assume there is no further packetization. The simulated

duration of a single run is determined by the corresponding delay-tolerance threshold. Our goal

here is to determine the target set which leads to the most efficient mobile data offloading.

1) Pull Probability: We first evaluate the performance of Random algorithm for different pull

probabilities using the Portland trace. We show the mobile data traffic load for different sizes

of target set, from 5 to 3,000, and pull probabilities, 0.01, 0.05 and 0.1, in Figure 7. The x-axis

is the size of target set and the y-axis show the mobile traffic load, in terms of the number of

cellular messages. Every user who fails to receive the information before the delivery deadline

will consume a cellular message. Moreover, each user in the target set will also consume a

cellular message. The delivery deadline is 1 hour. For each combination of the size of target

set and pull probability, we run the simulation 10,000 times and report the average value. The

horizontal dotted line shows the amount of cellular messages without offloading, which is the

same as the total number of subscribed users. As we can see from this figure, even for the very

simple random algorithm, it can reduce the amount of mobile data traffic by up to 81.42% when

the pull probability is 0.1. When we reduce the pull probability to 0.01, it can still offload mobile
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data traffic by up to 69.73%.

There are two main observations from this figure. First, the amount of mobile data traffic

decreases as the pull probability increases. It is because when mobile users are all active in

information propagation, a large number of users can get the delivered information from their

peers through opportunistic communications, and thus avoid the data transmissions over cellular

networks. Hence, active social participation is a key enabling factor of efficient information

delivery. Second, as the size of target set increases, the amount of mobile data traffic first

decreases and then increases. The reasons are: (1). when the size of target set is small, the

expected number of users that can receive the information through opportunistic communications

is also small and thus a large number of users need to get the information through cellular

networks; (2). when the size of target set is large, although it can make more users receive

the information through opportunistic communications, the users in the target set will directly

generate a large amount of mobile data traffic.

For the three curves in Figure 7, the pull probability is fixed for all the contacts of these

mobile users. We also tried different probabilities for different contacts, uniformly and randomly

selected between 0.01 and 0.1. The result looks very similar to the curve with pull probability

0.05. Thus, we omit that result for clarity. Note that, since information service providers will

deliver information to those users who cannot receive it before delay-tolerance threshold, the

delivery percentage is always 100% in our mobile data offloading solutions.

2) Delay-Tolerance Threshold: We then evaluate the performance of Random algorithm for

different delay-tolerance thresholds for the Portland trace. We show the traffic load over cellular

networks for five delay-tolerance thresholds, 0.5, 1, 2, 3 and 6 hours, in Figure 8, as different

types of data have different delay-tolerance requirements. The pull probability is 0.01. We also

run the simulation 10,000 times for a point in that plot and report the average value. As we

can see from this figure, if mobile users are willing to tolerate longer delay we may be able

to offload more traffic from cellular networks. However, the benefit of increasing the delay-

tolerance threshold from 2 hours to 3 hours is not very significant, compared to that from 1

hour to 2 hours. One possible reason is that when we increase the threshold to 2 hours, most

of the active users can receive the delivered information through opportunistic communications

and thus the improvement of increasing it to 3 hours is limited.
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Fig. 9. Performance of Random algorithm for different pull

probabilities (Utah state data set).
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3) Another Synthetic Mobility Trace: We also validate the simulation results about pull

probability and delay-tolerance threshold on a smaller synthetic mobility trace, again generated

by the SIGMA-SPECTRUM simulator [8]. This time, we randomly choose 1,000 people around

the Salt Lake City area as subscribed users. Other settings are similar to those of the Portland

trace. We plot the results in Figure 9 and Figure 10, which show comparable trends as in Figure 7

and Figure 8.

4) Comparing Random, Heuristic, and Greedy: We compare the performance of Random,

Heuristic and Greedy algorithms using the two real-world traces. To verify the regularity

of human mobility, we show in Table IV the IDs of the top 5 most active users for 2 pairs of

selected periods, for the INFOCOM06 trace and the Reality Mining trace. The numbers in the

parentheses are the expected number of infected users when each of the active users is selected

as the single user in the target set. From this table, we can see that the most active user (with ID

43) for the period 2006-04-25 11:00AM-12:00PM is the second most active user for the period

2006-04-26 11:00AM-12:00PM for the INFOCOM06 trace. For the Reality Mining trace, the

most active user for the period 2004-12-06 12:00PM-06:00PM is also the most active one for

the period 2004-12-07 12:00PM-06:00PM. For almost all the other periods, the most active user

of the History period is in the top 5 most active users of the Delivery period. We summarize

the two traces and the parameters used in the simulation in Table V.

We plot in Figure 11 and Figure 12 the traffic load over cellular networks for the 6 pairs of

periods listed in Table II and Table III. Due to the small number of mobile users in the traces,

we set the size of target set to be 5. For the Random and Heuristic algorithms, we simulate
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Start at No. 1 No. 2 No. 3 No. 4 No. 5

2006-04-25 43 53 40 73 78

11:00AM (31.18) (31.17) (30.77) (29.46) (29.31)

2006-04-26 68 43 69 60 30

11:00AM (18.08) (16.67) (15.78) (14.98) (14.86)

2004-12-06 94 15 80 97 7

12:00PM (34.07) (34.03) (34.01) (33.61) (33.57)

2004-12-07 94 95 15 92 7

12:00PM (26.22) (26.07) (25.97) (25.79) (25.31)

TABLE IV

THE TOP 5 MOST ACTIVE USERS FOR DIFFERENT PERIODS

AND THE EXPECTED NUMBER USERS THAT THEY CAN INFECT.

Haggle MIT Reality

Trace INFOCOM06 Mining

Network type Bluetooth Bluetooth

Device type iMote Nokia 6600

Number of devices 78 100

Duration of trace 4 days 9 months

Regularity 1 day 1, 3, 7 days

Simulated duration 1 hour 6 hours

Pull probability 0.01 0.001

# of Active users ≤ 70 ≤ 71

TABLE V

SUMMARY OF TWO REAL-WORLD TRACES.

the information dissemination process 100,000 times and report the averaged values. For the

Greedy algorithm, we run the simulation 10,000 times to determine the marginal gain for each

user. After we identify the target users, we also run the simulation 100,000 times and report

the averaged values. In these figures, the Base shows the amount of mobile data traffic without

offloading, which is the same as the number of active users during these periods.

The performance of these algorithms depends on the pull probability. The pull probability

is 0.01 for the INFOCOM06 trace and 0.001 for the Reality Mining trace. For high pull

probabilities, there is no significant difference among them. As we can see from these figures,

Greedy performs the best, followed by the Heuristic algorithm, for all the cases. Compared

to the Base, the Random algorithm can reduce the amount of mobile data traffic by up to 53.91%

for the INFOCOM06 trace and 70.72% for the Reality Mining trace. Owing to the regularity of

human mobility, Heuristic can further reduce the amount of mobile data traffic of Random

by up to 18.95% for the INFOCOM06 trace and 12.25% for the Reality Mining trace. Although

Greedy and Heuristic perform better than Random, the difference is not very significant.

One of the possible reasons is that due to the small number of mobile users and their limited

active area, even if we choose the target users randomly, with high probability the information

will be disseminated to some very active users quickly, who will then affect a large number

of other users. Compared to the Greedy and Heuristic algorithms, a unique advantage of

the Random algorithm is that information service providers can avoid collecting the contact

information from subscribed users, which may make them feel comfortable to participate in the
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Fig. 11. Performance comparison of Random, Heuristic,

and Greedy algorithms for the INFOCOM06 data set.
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Fig. 12. Performance comparison of Random, Heuristic,

and Greedy algorithms for the Reality Mining data set.

information dissemination.

We note that due to the incompleteness of the real-world traces (e.g., caused by hardware

errors), some users in the target set of the History period may not be active during the Delivery

period (i.e., they have no contacts with other users for the delivery period). In these cases, we

replace them with randomly selected users. We have not evaluated how the push-based approach

can help the information dissemination among friends, because there is no information about

the social graph of mobile users for the above traces. However, we note that it is possible to

construct the graph through the analysis of traffic between mobile users [49], or historical data

of mobile users, such as proximity and location at a given time [18]. We leave the evaluation

of push-based approach as a future work.

VII. DISCUSSION

In this section, we discuss several practical issues for the large-scale deployment of our

proposed mobile data offloading solution.

A. Incentives

The integration of effective incentive schemes into mobile data offloading is a challenging

problem. For information service providers, with the offloading solution they can decrease

the number of cellular messages and thus reduce their operation cost. As a result, they may

reduce the subscription fee for their customers. To encourage social participation of mobile

users, information service providers can also exploit other incentives: see, e.g., the Coupons

approach of Garyfalos and Almeroth [21]. This system appends a sorted list of user IDs to a
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propagated message, which records the sequence of users who helped to disseminate the message.

Similarly, information service providers can ask mobile users to optionally report when they got

the delivered information and from where. Then they can offer discounts to mobile users who

actively help the information delivery process. Recently, Misra et al. [35] propose a solution that

provides incentives for peer-assisted services. Their goal is to develop an economic framework

that creates the right incentives for both users and providers. They exploit a cooperative game

theory approach to determine the ideal incentive structure through fluid Shapley value. Applying

this scheme into our mobile data offloading solution is our ongoing work.

B. Energy Consumption

Energy consumption may be the most important issue for the deployment of mobile applica-

tions. As we mentioned in Section V, the three main phases of opportunistic communications

are device and content discovery, and data transfer. Although we have chosen Bluetooth for

device discovery, we use fixed parameters (e.g., inquiry duration and interval, and inquiry scan

window and interval) in our current implementation. We believe dynamically changing these

parameters according to user mobility patterns may make the device discovery procedure more

energy efficient. For example, when users are not moving, larger inquiry interval may be a better

choice. Since device discovery is a common component for several mobile applications like Social

Serendipity [17] and Media Sharing [32], its energy consumption can also be amortized by them.

Moreover, for data transfer, we suggested to replace Bluetooth using WiFi to save battery life.

C. Privacy

Unlike some existing protocols which determine whether to exchange information during the

contact period [10], we aim to provide a general platform for information dissemination among

mobile users. It is the users, not the platform, who make the decision about whether or not

to share the information with peers and thus can protect their content privacy. They can opt-in

and opt-out of the information dissemination process anytime they want, by turning off only

the information dissemination application (not necessarily the 3G radio). Moreover, information

service providers select only the users in target set and will not dynamically tag them or others as

relays. Mobile users will act as relays only when they participate in the information dissemination

process and have already held the information that others may be interested in. We finally note
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that we require only the contact information among the users and there is no need to track

mobile users’ locations to enable our proposed solution.

VIII. CONCLUSION

We propose to offload mobile data traffic through opportunistic communications and investigate

the target-set selection problem for information delivery in MoSoNets. We present three algo-

rithms for this problem, Random, Heuristic, and Greedy, and evaluate their performance

through trace-driven simulation, using both large-scale synthetic and real-world mobility traces.

The simulation results show that Greedy performs the best, followed by Heuristic. Although

the Greedy algorithm may not be practical, it is the basis of the Heuristic algorithm which

exploits the regularity of human mobility. We also implement a prototype of the information

delivery framework using Nokia N900 smartphones and study its feasibility for moving phones.

Our preliminary experimental results show that during their short contacts mobile phones can

exchange up to 1.48 MB data.
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