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Abstract—In mobile sensor networks, it is important to manage the mobility of the nodes in order to improve the performances of the

network. This paper addresses the problem of single target tracking in controlled mobility sensor networks. The proposed method

consists of estimating the current position of a single target. Estimated positions are then used to predict the following location of the

target. Once an area of interest is defined, the proposed approach consists of moving the mobile nodes in order to cover it in an optimal

way. It thus defines a strategy for choosing the set of new sensors locations. Each node is then assigned one position within the set in

the way to minimize the total traveled distance by the nodes. While the estimation and the prediction phases are performed using the

interval theory, relocating nodes employs the ant colony optimization algorithm. Simulations results corroborate the efficiency of the

proposed method compared to the target tracking methods considered for networks with static nodes.

Index Terms—Ant colony, controlled mobility, interval analysis, network coverage, state estimation, target tracking.
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1 INTRODUCTION

MOBILE Sensor Networks (MSN) are networks composed
of a large number of wireless devices having sensing,

processing, communication, and movement capabilities [1],
[2], [3]. The main constraint of sensor nodes is their limited
energy resources since their batteries are nonrenewable.
One important factor is thus to reduce the energy
consumption of the sensors in order to increase the lifetime
of the network. One can distinguish between two types of
mobility in MSN: the uncontrolled (also called passive)
mobility, where sensors are moved in an uncontrollable
manner, and the controlled mobility, where sensors are
moved in response to internal or external commands.
Passive mobility makes the use of MSN more challenging
since sensor nodes need to be relocated continuously;
whereas in controlled mobility, one could take advantage of
the mobility of the nodes to improve the accuracy of the
sensed data in the network.

MSN have a variety of applications in different fields,
such as military and environment monitoring [4], [5], [6].
One interesting application of MSN is target tracking. It
consists of estimating instantly the position of a moving
target. It is of great importance in surveillance and security
especially in military applications. This problem has been
mainly considered for networks having static nodes [7], [8],
[9]. For instance, in [8], authors present particle filtering

methods for target tracking using binary sensors, whereas
in [9], a clustering algorithm using the variational filter is
proposed. However, when sensors are able to move, it is
important to take advantage of their mobility in order to
improve the position estimation. This contribution focuses
on target tracking in MSN where nodes have a controlled
mobility. Different techniques have been proposed to
manage the mobility of the nodes [10], [11], [12]. These
techniques have mainly focused on upgrading the topology
of the network, improving the area coverage or increasing
the lifetime of the network, etc. A few methods have been
developed for target tracking in MSN [13], [14]. Researchers
in [13] have proposed a mobility management scheme
based on the Bayesian estimation theory. Nodes are thus
able to move to a new position chosen within a set of
candidate locations, being at one step away from the
current location. The movement decision is made upon
whether the new location will improve the tracking quality
or not. Note that many assumptions are made in this
method such that both the target and the sensor nodes are
supposed having constant velocities. The number of
candidate locations is limited, as well, in order to reduce
the complexity of the method. In a different scenario,
researchers in [14] have considered the problem of a mobile
target, called mouse, trying to avoid detection by mobile
sensor nodes, called cats.

In this paper, we propose a novel strategy for managing
sensors mobility, aiming at improving the tracking of a
single target. The method consists of four consecutive
phases that iterate at each time step as follows:

1. Estimating the current position of the target,
2. Predicting the next-step position of the target using

current and previous position estimates,
3. Computing a set of new locations to be taken by the

mobile nodes in the way to improve the estimation
process,
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4. Assigning each mobile node one new location within
the computed set using the ant colony optimization
algorithm (ACO).

The estimation phase is performed using interval analysis
[15]. The target positions are thus defined as two-dimen-
sional intervals including the real positions. Predicting the
next-step position leads to a region of interest to be covered.
The relocating phase consists thus of moving the nodes in
order to improve the estimation phase while minimizing
the energy consumption. The optimization phase is
performed using the Ant Colony Optimization algorithm
[16], [17]. Being a metaheuristic method, the ACO is able to
solve efficiently complex operational research problems.
Due to its stochastic nature, it affords the combinatorial
explosion in the number of possible solutions. Besides the
energy limitation, one important constraint is to maintain
the total coverage of the network while moving the sensor
nodes. In other words, the whole monitoring area should be
covered by sensors in order to be robust to any other
intruders. For this reason, we use two types of sensors:
static and mobile nodes. While mobile sensors are moved to
improve the quality of target tracking, static nodes are
uniformly distributed in order to ensure a continuous
coverage of the network independently of the movement of
the mobile ones.

The rest of the paper is organized as follows: In Sections 2
and 3, we describe the estimation and the prediction phases,
respectively. Section 4 introduces the relocation strategy
including the ant colony optimization algorithm. Simulation
results are given in Section 5. Section 6 concludes the paper.

2 ESTIMATION OF THE TARGET POSITION

Target tracking consists of finding the coordinates of the
moving target at each time step. In the following, we first
state the problem. We then describe the proposed algorithm.

2.1 Problem Statement

The proposed method consists of collecting connectivity
measurements to estimate the target position [18], [19]. A
connectivity measurement related to the ith sensor node is
given by one-bit information as follows:

yiðtÞ ¼
1; if sensor i detects the target;
0; otherwise:

�
ð1Þ

The generation of such measurements depends on the
status of the target. In fact, two cases could be encountered:

. Case 1—The target is active, and thus, it keeps on
communicating with the sensors. In other words, the
target broadcasts continuously signals in the net-
work. Assume that all these signals are emitted with
the same initial power. According to the Okumura-
Hata model [20], [21], the power of a signal
decreases monotonically with the increase of the
distance traveled by this signal. Let the sensing
range be a disk having r as radius and let �r be the
power of a target signal corresponding to a traveled
distance equal to r. Then, all sensor nodes receiving
target signals with powers larger than �r are located
at distances to the target less than r. These sensors

are assumed to detect the target and thus, they
generate connectivity measurements equal to 1. Only
the sensors detecting the target communicate their
measurements to the fusion center. Connectivity
measurements corresponding to other sensors are
assumed to be 0.

. Case 2—The target is passive and thus noncooperat-
ing. In this case, object-detecting systems (such as
radar sensors) could be used to detect whether the
target is within the sensing range of the sensors.
Then, each node detecting the target generates a
connectivity measurement equal to 1 and commu-
nicates it to the fusion center. Similarly to the first
case, connectivity measurements of other sensors are
set to 0 at the fusion center.

Let I be the set of indices of sensors detecting the target.
Having a circular sensing range of radius r, then for each
sensor i, i 2 I, the distance between the target and the
considered sensor is less than r. This leads us to a set of
observation equations as follows:

ðx1ðtÞ � si;1ðtÞÞ2 þ ðx2ðtÞ � si;2ðtÞÞ2 � r2; i 2 I; ð2Þ

where xxðtÞ ¼ ðx1ðtÞ; x2ðtÞÞ is the unknown coordinates
vector of the target at time t and ssiðtÞ ¼ ðsi;1ðtÞ; si;2ðtÞÞ is
the coordinates vector of the ith sensor at time t. Note that,
if the sensing range is not homogenous, its maximal value
could be considered in the observation equations. The
target falls thus within the overlapping region of all
observation disks centered on the sensors detecting it.

2.2 Interval-Based Estimation

In order to solve the estimation problem given in (2), we
use the interval analysis. In the following we briefly recall
the basic tools of interval analysis. We then introduce the
interval-based algorithm.

2.2.1 Interval Analysis

A real interval, denoted ½x�, is a closed subset of IR given as
follows [22]:

½x� ¼ ½x; x� ¼ fx 2 IR j x � x � xg; ð3Þ

where x and x are the lower and upper scalar endpoints
of the interval, respectively. ½x� could also be defined by
its center and its width given by Cð½x�Þ ¼ xþx

2 and
Wð½x�Þ ¼ x� x, respectively. A multidimensional interval
of IRn, also called box, is given by the cartesian product of
n real intervals as follows:

½xx� ¼ ½x1� � � � � � ½xn�: ð4Þ

An interval has a dual nature as sets and real numbers. The
interval theory takes advantage of this duality to extend all
arithmetic and set operations to intervals [15]. Some
definitions of interval operators are given in Table 1. Note
that all operators could be extended to boxes.

2.2.2 Localization Algorithm

The key idea of the method consists of considering the
target position as a two-dimensional box [18], [19]. In other
words, the proposed method aims at computing the
minimal box that includes all possible solutions of the
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problem. In this way, the target position is a rectangular

area including the unknown location of the target and all

incertitude over its value.
Resolving the estimation problem using the interval

theory consists thus of expressing all observation equations

in the interval framework as follows:

½½x1�ðtÞ � si;1ðtÞ�2 þ ½½x2�ðtÞ � si;2ðtÞ�2 � ½0; r2�; i 2 I; ð5Þ

where ½xx�ðtÞ ¼ ½x1�ðtÞ � ½x2�ðtÞ is the target boxed position at

time t. The problem is then defined as a constraint

satisfaction problem. An initial domain, for instance the

whole deployment area, is thus contracted in order to

obtain the smallest box including the exact scalar solution.

The algorithm used to perform the contraction is called the

Waltz contractor [15], [23]. It is a forward-backward

algorithm that iterates all constraints without any prior

order until no contraction is possible. Each equation (5)

yields two constraints expressing each coordinate as a

function of the other as follows:

½x1�ðtÞ � ½si;1ðtÞ � bi;1; si;1ðtÞ þ bi;1�
½x2�ðtÞ � ½si;2ðtÞ � bi;2; si;2ðtÞ þ bi;2�

�
; i 2 I; ð6Þ

where

½bi;1� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ½½x2�ðtÞ � si;2ðtÞ�2

q
and ½bi;2� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ½½x1�ðtÞ � si;1ðtÞ�2

q
. Equations (6) are iter-

ated using the Waltz algorithm in order to reduce the initial

domain, denoted ½X1� � ½X2�, as much as possible. The

estimation algorithm given at time t is shown in Algorithm 1,

where Wð½x�Þ ¼ x� x is the width of the real interval ½x�.
Fig. 1 shows an illustration of the estimation phase.

Algorithm 1. Estimation algorithm

Input: Indices of sensors observing the target I;

Output: Target coordinates ½x1�ðtÞ and ½x2�ðtÞ;
Initialization: ½x1�ðtÞ ¼ ½X1�, ½x2�ðtÞ ¼ ½X2�,
A ¼ Wð½x1�ðtÞÞ:Wð½x2�ðtÞÞ, Aold ¼ Aþ 1;
while A < Aold do

Aold ¼ A;

for i 2 I do

½bi;1�ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ½½x2�ðtÞ � si;2ðtÞ�2

q
;

½x1�ðtÞ ¼ ½x1�ðtÞ \ ½si;1ðtÞ � bi;1; si;1ðtÞ þ bi;1�;

½bi;2�ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ½½x1�ðtÞ � si;1ðtÞ�2

q
;

½x2�ðtÞ ¼ ½x2�ðtÞ \ ½si;2ðtÞ � bi;2; si;2ðtÞ þ bi;2�;
end

A ¼ Wð½x1�ðtÞÞ:Wð½x2�ðtÞÞ;
end

3 PREDICTION OF THE TARGET NEXT-STEP

POSITION

Let xð1Þ; . . . ; xðtÞ be all available estimated positions of the

target. Then, a kth order prediction model is given as

follows:

bxxðtþ 1Þ ¼ ffðxxðtÞ; . . . ; xxðt� kÞÞ; ð7Þ

where ff is the prediction function and bxxðtþ 1Þ is the
predicted position of the target regarding time tþ 1. All

available information about the target motion could be used

to refine the prediction model. In this paper, we propose a
second order prediction model as follows:

bxxðtþ 1Þ ¼ xxðtÞ þ�t:vvðtÞ þ�t2

2
:�ðtÞ; ð8Þ

where �t is the time period falling between two following

time-steps and vvðtÞ and �ðtÞ are the respective estimate
vectors of the instant velocity and the instant acceleration at

time t given by

vvðtÞ ¼ xxðtÞ � xxðt� 1Þ
�t

;

�ðtÞ ¼ vvðtÞ � vvðt� 1Þ
�t

:

8><>: ð9Þ

In the interval framework, the prediction model is

formulated as follows:

½bxx�ðtþ 1Þ ¼ ½xx�ðtÞ þ�t:½vv�ðtÞ þ�t2

2
:½��ðtÞ; ð10Þ

where ½bxx�ðtþ 1Þ is the predicted position box of the target,

½vv�ðtÞ¼½½xx�ðtÞ�½xx�ðt�1Þ�=�t and ½��ðtÞ¼½½vv�ðtÞ�½vv�ðt�1Þ�=�t.

Using intervals, the prediction phase yields a box including

the next-step position of the target.

4 RELOCATION OF THE MOBILE SENSORS

The goal of the method consists of moving the sensors in an

energy-aware manner in order to better cover the prediction
box, also called area of interest. The relocation should be

performed without leaving any uncovered area. In the

following, we first address the coverage problem. We then
set the new locations that should be taken by the nodes. We

finally introduce the positioning of the nodes using the ant

colony optimization algorithm.

4.1 Coverage Problem

One main constraint of sensors relocation is to maintain
network coverage. Let r be the sensing range of the sensors.

Then, each sensor covers an r-disk of the deployment area.
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Definitions of Some Operators Applied to Intervals

Fig. 1. An illustration of the estimation phase.



Moving the nodes may yield uncovered regions, which
makes the network exposed to intruders. We propose to use
hybrid sensor nodes to address this problem: mobile and
static nodes. While mobile nodes are moved to improve the
tracking, static nodes are used to ensure continuous
coverage. In order to have total coverage, the whole
deployment area should be filled with the minimal number
of sensing disks without leaving any uncovered region.
Many algorithms, based on the disk packing theory, have
been proposed for solving such problems [24], [25], [26].
These algorithms aim at packing equal disks, in an optimal
manner, into a square area. In this paper, we propose a
simple technique, using the squares inscribed in the sensing
disks having

ffiffiffi
2
p

:r as side. Putting these squares side by side
leads to uniformly arranged static nodes. Let ½X1; X1� �
½X2; X2� be the deployment area. The static nodes positions
are thus given by the combinations of the following
coordinates:

Sðf;1Þ;p ¼ b1 þ
ffiffiffi
2
p

2
:rþ ðp� 1Þ:

ffiffiffi
2
p

:r; 1 � p � K1;

Sðf;2Þ;q ¼ b2 þ
ffiffiffi
2
p

2
:rþ ðq � 1Þ:

ffiffiffi
2
p

:r; 1 � q � K2;

8>><>>: ð11Þ

where b1 ¼ X1 �
K1:

ffiffi
2
p

:r�ðX1�X1Þ
2 , b2 ¼ X2 �

K2:
ffiffi
2
p

:r�ðX2�X2Þ
2 ,

K1 ¼ X1�X1ffiffi
2
p

:r
, and K2 ¼ X2�X2ffiffi

2
p

:r
. If K1 or K2 are not integer,

one should take the closest upper integer value. Static nodes

disks are thus symmetric with respect to the total deploy-

ment area. The total number of static nodes required to

cover the whole area is equal to Kf ¼ K1:K2. Fig. 2 shows

an illustration of the proposed distribution of the static

nodes. Note that, while only mobile nodes are used in the

relocation phase, both static and mobile nodes are used in

the estimation phase.

4.2 Definition of Sensors New Locations

In this section, we propose a strategy to define a set of
locations to be taken by the mobile nodes. The goal of this
strategy is to cover an area of interest in the best way. We
propose thus to use all mobile nodes closer than a certain
distance around the area of interest. Only close nodes are
thus considered in order to limit the traveled distance and

so to reduce the energy consumption. Let Km be the
number of the considered mobile nodes. Then, the number
of positions to be defined is equal to Km.

The proposed method is based on the triangulation
principle. Consider only three nodes and a single point to
be localized. The triangulation-based idea consists of
constructing an equilateral triangle with the sensors. The
barycenter of the triangle should fall at the point of interest.
Let r be the sensing range of the sensors. Using these
sensors in the estimation phase leads to the overlapping
area of the sensing r-disks. Note that the overlapping region
gets smaller as the triangle sides become larger. In other
words, the resolution is related to the distances falling
between the nodes. An illustration is given in Fig. 3. Let us
denote by sensor triangle, or simply �S , the triangle
composed of sensors and by target triangle, or simply �T ,
the triangle included in the intersection region of the
sensing disks. Assume that �S ¼ �S:r and �T ¼ �T :r are the
sides lengths of the triangles �S and �T , then

�T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:ð4� �2

SÞ
q

� �S
2

ð12Þ

(see the Appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TMC.2011.154). Knowing that the target is
going to fall within a specific box ½bxx�ðtþ 1Þ in the following
step leads us to cover at best the considered area of interest.
The key idea consists thus of arranging the nodes in the way
to fill ½bxx�ðtþ 1Þ with target triangles �T . However, filling
the box with independent triangles having each its own
sensors leads us either to use large triangles or to increase
the number of considered sensors. In fact, in such a case,
one is able to define Km

3 independent triangles. While the
number of mobile sensors is limited, enlarging the target
triangles induces a loss in the accuracy of the estimation.

As a consequence, we propose to use structures of �S

where mobile sensors are rigidly linked. All target triangles
generated by a given structure are thus fixed one to the
other. This approach needs less sensors than the one above
for the same number of target triangles. An example of a
structure of ten sensors is illustrated in Fig. 4. Such a
structure leads to 10 target triangles which would need
30 independent sensors. Note that we show in dark gray the
areas covered by at least three sensors, whereas the whole
coverage zone of the structure is shown in light gray. Using
triangle structures, one is able to cover every single point of
the box of interest with at least three sensors. For this
reason, �S is set to r leading to a �T equal to r too. In such a
case, all the points of the box are covered in the same
manner leading to a guaranteed structure. An illustration is
given in Fig. 5a. Let K1 be the number of the sensors needed
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in the first down row and let K2 be the number of rows.
Having the type of structures of Fig. 5a, rows having odd
indices are thus composed of K1 sensors whereas those of
even indices have K1 þ 1 sensors. In order to guarantee a
coverage of the whole box even for points close to the
borders, K1 and K2 are set as follows:

K1 ¼ intu
cW1

�S

( )
þ 1;

K2 ¼ intu
cW2ffiffi
3
p

2 :�S

( )
þ 1;

8>>>><>>>>: ð13Þ

where cW1 and cW2 are the widths of ½bx1�ðtþ 1Þ and
½bx2�ðtþ 1Þ, respectively,

ffiffi
3
p

2 :r is the height of the sensor
triangle and intufxg is the smallest integer equal or greater
than x. In a different manner, one could choose larger
sensor triangles leading to more resolution at specific zones
but less guarantee in the total prediction area. The target
triangles are thus smaller but the box of interest will not be
wholly covered by at least three sensors. Note that for
�S ¼

ffiffiffi
3
p

:r, �T ¼ 0 and thus the target triangle becomes a
single point. Then, for more resolution, one should choose
�S higher than r but less than

ffiffiffi
3
p

:r. An illustration is given
in Fig. 5b. Once �S is chosen, the number of sensors in a row
or a column are given by

K1 ¼ intl
cW1

�S

( )
þ 1;

K2 ¼ intu
cW2ffiffi
3
p

2 :�S

( )
þ 1;

8>>>><>>>>: ð14Þ

where intlfxg is the highest integer equal or lower than x. It
yields 1 if x is less than 1. Note that, in this approach, we
choose the lower integer for K1 to have all target triangles
falling the most probably inside the area of interest.

The total number of sensors needed to define the
structure in both cases is thus equal to Ks ¼ K1:

K2þ�
2 þ

ðK1 þ 1Þ: K2��
2 where � ¼ 1 if K2 is odd and 0 otherwise.

The positions of the sensors are then given by the
combination of the following coordinates:

Sðm;1Þ;i ¼
bbo;1 þ ði� 1Þ:�S; if j is odd ð1 � i � K1Þ;bbe;1 þ ði� 1Þ:�S; if j is even ð1 � i � K1 þ 1Þ;

(
Sðm;2Þ;j ¼ bb2 þ ðj� 1Þ:

ffiffiffi
3
p

2
:�S; 1 � j � K2;

8>>><>>>:
ð15Þ

where bbo;1 ¼ bx1 � K1:�S�bW1

2 , bbe;1 ¼ bx1 �
ðK1þ1Þ:�S�bW1

2 , and

bb2 ¼ bx2 �
K2:

ffiffi
3
p

2 :�S �cW2

2
:

The positions we obtain are thus symmetric with respect to
the area of interest. Note that in the first approach, if
Ks > Km, one could keep the closest Km positions to the
center, whereas when Ks is less than Km, one could either
move only Ks sensors or add Km �Ks positions uniformly
deployed between the Ks ones. For instance, barycenters of
the triangles of the structure could be chosen. In the second
approach, if Ks > Km, one could also keep the closest Km

positions to the center. When Ks is less than Km, the
barycenters of the triangles of the structure could also be
defined as additional positions. If some sensors are
remaining, then they could have random positions. Note
that according to the plot, less sensors are needed to cover a
given box while using the second approach.

4.3 Optimization of Sensors Positioning Using Ant
Colony

Having the set of positions that must be taken by the sensors,
one should assign each sensor one position within the set
while minimizing the traveled distance of the nodes. The
problem is thus defined as an optimization algorithm that is
solved using the ACO. In the following, we first introduce
the ACO. We then apply it to the relocation problem.

4.3.1 Ant Colony Optimization Algorithm

The ACO is a probabilistic method for solving complex
computational problems. This algorithm was first devel-
oped to solve the traveling salesman problem [16]. It has
been applied efficiently afterwards in different fields such
as quadratic assignment problems [27], vehicle routing [28],
or assembly lines design [29]. The main idea of ACO
consists of imitating the behavior of real ants in their way
to find the shortest path to get food sources. A path is thus
generated according to two elements: a chemical substance
called pheromone and the visibility of the ant. Let
fðx1; . . . ; xnÞ be a function of n variables whose values
are taken from a specific set S. Optimizing f consists of
finding the n-permutation of ðx1; . . . ; xnÞ over all possible
permutations that optimizes the function f . In such
problems, the function f is called objective function or
fitness function, whereas x1; . . . ; xn are called the decision
variables. Let m be the cardinal of S, then the number of all
possible n-permutations is equal to m!

ðm�nÞ! with m! being the
factorial of m. Evaluating all solutions requires too much
computational time especially for large-size problems. In
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Fig. 4. An example of a structure of 10 mobile sensors.



such cases, using optimization algorithms such as ACO
becomes crucial to reduce the time of computation.

Starting with an initial solution, ACO moves toward
optimal solutions using an efficient memory-based search
technique. The generation of solutions basically employs
two parameters: visibility and pheromone. These para-
meters correspond to a priori and a posteriori information
about the solutions, respectively. While visibility remains
unchanged, pheromone is modified during the optimiza-
tion process according to solutions evaluation. Technically,
the ACO algorithm considers a fixed number of ants Ka,
each of which generating one solution at every iteration.
Solutions are thus encoded by assigning each decision
variable, one after the other, a specific value of S. Let
S ¼ fa1; . . . ; amg. An ant k, k 2 f1; . . . ; Kag, having assigned
the variable xi a value aj, will assign the variable xiþ1 the
value al chosen as follows:

l ¼ argmaxu2JkðiÞ
�
��ðiÞ;j;u:	



ðiÞ;j;u

�
; if q � q0;

l�; otherwise;

�
ð16Þ

where:

�ðiÞ;j;u: The amount of pheromone of setting xiþ1 ¼ au
knowing that xi ¼ aj,

	ðiÞ;j;u: The ant visibility or desirability to choose the

value au for xiþ1 going from aj,

� and 
: Parameters defining the relative importance of

pheromone versus visibility,

q: A random number generated at each iteration

between 0 and 1,

q0: A parameter (0 < q0 < 1) defining the relative
importance of exploitation against exploration,

JkðiÞ: The indices set of values of S not yet assigned by

ant k,

l�: A random variable computed according to a

specific distribution P �.

Note that the first variable is assigned random values of S.
The probability distribution P � is defined as follows:

P �ðuÞ ¼
��ðiÞ;j;u:	



ðiÞ;j;uP

v2JkðiÞ �
�
ðiÞ;j;v:	



ðiÞ;j;v

; if u 2 JkðiÞ;

0; otherwise:

8><>: ð17Þ

Using the pseudorandom rule, the next state is either
deterministic depending of 	 and � (q � q0) or random,
chosen with the probability distribution P � (q > q0). The
method provides thus a direct way to balance between
exploration of new states and exploitation of a priori and
accumulated knowledge.

At the end of each iteration, i.e., when all ants have
completed a solution, the pheromone of the entire system
evaporates. The pheromone corresponding to all solutions
is thus updated locally as follows:

�ðiÞ;j;l ¼ ð1� �Þ:�ðiÞ;j;l þ �:�0; ð18Þ

where 1 � i � Km � 1, fj; lg 2 ant solutions, �0 is the initial
pheromone amount, and � is a parameter falling between 0
and 1. Solutions are then evaluated, each of them yielding a
value of the fitness function. Only the best solution is used
to update its corresponding pheromone as follows:

�ðiÞ;j;l ¼ ð1� �Þ:�ðiÞ;j;l þ �:��; ð19Þ

where fj; lg 2 the best solution and �� is a function of the
best solution. This mechanism is called the global update.

4.3.2 Sensors Relocation

The relocation problem consists of minimizing the total
distance traveled by the nodes while moving to their new
positions. The fitness function is thus equal to the sum of the
distances traveled by the moving nodes, whereas the
decision variables are the sensors coordinates. These vari-
ables take their values within the set of the positions already
defined. Let ss1ðtÞ; . . . ; ssKm

ðtÞ be the sensors coordinates at
time t. Then, ss1ðtþ 1Þ; . . . ; ssKm

ðtþ 1Þ are their new coordi-
nates. The fitness function is thus computed as follows:

fðss1; . . . ; ssKm
Þ ¼

XKm

i¼1

kssiðtÞ; ssiðtþ 1Þk; ð20Þ

where k	; 	k is the euclidian distance operator. Let
aa1; . . . ; aaKm

be the set of positions. Then, the number of all
possible solutions is equal to Km!.

Resolving the problem using ACO consists of iterating
the set of (16), (17), (18), (19) until a maximal number of
iterations MaxIter is performed. Defining all parameters is
required in order to do it. The visibility is thus defined
according to the traveled distance by the nodes as follows:

	ðiÞ;j;l ¼
1

kssiðtÞ; aajk þ kssiþ1ðtÞ; aalk
; ð21Þ

where 	ðiÞ;j;l is the ant visibility to set ssiþ1ðtþ 1Þ ¼ aal after
setting ssiðtþ 1Þ ¼ aaj. The visibility thus increases when the
traveled distance decreases. While the visibility varies from
a state to the other, the initial value of pheromone is chosen
constant for all the states and �� is set to 1

fmin
where fmin

is the minimal total distance corresponding to the best
solution. �, 
, �, q0, �0, Ka, and MaxIter are chosen
according to several tests. After all iterations are performed,
the sensors are assigned the Km-permutation of positions
corresponding to the minimal value of the fitness function
over all iterations. The relocation method for a given time-
step t is illustrated in Algorithm 2 where Vk is the vector of
indices of the positions assigned to the sensors by ant k, n is
the set difference operator, randomðAÞ yields a uniformly
distributed random number of the set A and randomP � ðAÞ
yields a random number of A computed according to the
specific distribution P �.

Algorithm 2. Relocation algorithm
Input: Sensors coordinates ss1ðtÞ; . . . ; ssKm

ðtÞ and available

positions aa1; . . . ; aaKm
;

Output: Sensors new coordinates

ss1ðtþ 1Þ; . . . ; ssKm
ðtþ 1Þ;

Initialization:

for 1 � i � Km � 1 do

for 1 � j � Km do

for 1 � l � Km do

	ðiÞ;j;l ¼ 1
kssiðtÞ;aajkþkssiþ1ðtÞ;aalk ;

�ðiÞ;j;l ¼ �0;

end

end

end
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while iter �MaxIter do

q ¼ randomð½0; 1�Þ;
for 1 � k � Ka do

Vkð1Þ ¼ randomðf1; . . . ; KmgÞ;
Jkð1Þ ¼ f1; . . . ; Kmg n Vkð1Þ;
for 1 � i � Km � 1 do

if q � q0 then

Vkðiþ 1Þ ¼ argmaxu2JkðiÞf��ðiÞ;VkðiÞ;u:	


ðiÞ;VkðiÞ;ug;

Jkðiþ 1Þ ¼ JkðiÞ n Vkðiþ 1Þ;
�ðiÞ;VkðiÞ;Vkðiþ1Þ ¼ ð1� �Þ:�ðiÞ;VkðiÞ;Vkðiþ1Þ þ �:�0;

end

if q > q0 then

for u 2 JkðiÞ do

P �ðuÞ ¼
��ðiÞ;VkðiÞ;u

:	
ðiÞ;VkðiÞ;uP
v2JkðiÞ

��ðiÞ;VkðiÞ;v
:	
ðiÞ;VkðiÞ;v

;

end

for u 62 JkðiÞ do

P �ðuÞ ¼ 0;

Vkðiþ 1Þ ¼ randomP � ðf1; . . . ; KmgÞ;
Jkðiþ 1Þ ¼ JkðiÞ n Vkðiþ 1Þ;
�ðiÞ;VkðiÞ;Vkðiþ1Þ ¼ ð1� �Þ:�ðiÞ;VkðiÞ;Vkðiþ1Þ þ �:�0;

end

end

end

for 1 � k � Ka do

ObðkÞ ¼
PKm

i¼1 kssiðtÞ; aaVkðiÞk;
end

k� ¼ argmin1�k�Ka
Ob;

Citer ¼ Vk� , MinObðiterÞ ¼ Obðk�Þ;
�� ¼ 1

Obðk�Þ ;
for 1 � i � Km � 1 do

�ðiÞ;Vk� ðiÞ;Vk� ðiþ1Þ ¼ ð1� �Þ:�ðiÞ;Vk� ðiÞ;Vk� ðiþ1Þ þ �:�� ;

end

end

iter� ¼ argmin1�iter�MaxIterMinOb;

for 1 � i � Km do

ssiðtþ 1Þ ¼ Citer� ðiÞ;
end

5 SIMULATIONS

In order to evaluate the effectiveness of the proposed
method, we suppose a target moving in a ½0; 100 m� �
½0; 100 m� deployment area. The sensing range of sensors is
set to 10 m. The number of required static nodes is thus
equal to K1:K2 where K1¼K2¼ intuf100=10:

ffiffiffi
2
p
g ¼ 8. A

100-steps target trajectory is illustrated in Fig. 6. It shows
static nodes as well. It is obvious that every single point of
the area is covered by at least one static node. Note that
static nodes are not required to have the same sensing
range as for mobile nodes. The plot shows as well the
initial positions of the mobile sensors. In the following, we
first compare the proposed method to an interval-based
method developed for static sensor networks. We then
compare the guaranteed relocation-based approach of our
method to the accuracy-based one. We evaluate afterwards
the sensitivity of the proposed method to the sensing range
of the mobile sensors. We then compare the estimation
technique based on intervals to a Monte-Carlo-based
technique. We evaluate afterwards the second-order pre-
diction model. We finally illustrate the effectiveness of the
ant colony optimization algorithm. Note that all simula-
tions are performed on an Intel(R) Core(TM)2 CPU
(2.40 GHz, 1.00 GB RAM) using MATLAB 7.9.

5.1 Comparison of the Proposed Method to an
Interval-Based Method for Static Sensor
Networks

In this section, we compare our method to a target tracking
method developed for static sensor networks. We thus
propose an interval-based method performing a similar
estimation as our method. The sensors are deployed
uniformly for the static method whereas for our method,
the mobile nodes are initially deployed in a random
manner. Hundred sensors are used for both methods. In
particular, 64 static sensors and 36 mobile ones are
considered for our method. Note that all mobile nodes are
used at each time step. This leads to 36! ¼ 3:7199:1041

possible solutions. Fig. 7 shows the estimated boxes
obtained with both methods. We are using large sensor
triangles for sensors relocation is this example with
�S ¼ 10:

ffiffiffi
2
p

m, �0 ¼ 10, � ¼ 0:7, 
 ¼ 0:3, � ¼ 0:6, q0 ¼ 0:75,
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Fig. 6. An illustration of the target trajectory with uniformly deployed
static nodes and initial positions of mobile sensors.

Fig. 7. An illustration of the estimated boxes obtained with both our
method (CM) and the static method.



and Ka ¼ 10. Using these values of parameters, the optimal
solution is obtained with at most 10 iterations. The average
computational time is equal to 0:3125 s per time step for our
method. This time is mostly required for the optimization
phase since the static method takes around 0:000645 s per
time step. The average traveled distance is equal to
7:4539 m per time step for a mobile sensor, whereas it is
equal to 2:9806 m for the target. This difference is related to
the accuracy of the prediction model. In other words, when
the predicted box is large, more mobile sensors, flying
larger distances, are needed to ensure accurate estimation
of target positions.

Let tu be the time unit and assume that the estimation
error at a given time step is equal to the distance between
the real position of the target and the center of the estimated
box. Then, Fig. 8 shows the ratios of boxes areas and
estimation errors obtained with our method (CM) over
those obtained with the static method (St). The average ratio
of boxes areas is equal to 0.1249 whereas the average ratio of
estimation errors is equal to 0.3598. It is thus obvious that
moving nodes improves significantly the target tracking.

Fig. 9 shows the variation of the computation time per
time step with respect to the total number of sensors. It also
shows the variation of the relative boxes area and the relative
estimation error. We thus vary the total number of sensors

from 75 to 145. Note that 64 of all sensors are static for our
method. Compared to the static method, the performance of

our method increases with the increase of the number of
mobile nodes at the cost of the computational time.

5.2 Comparison of the Guarantee-Based Approach
to the Accuracy-Based One for Sensors
Relocation

In this section, we show the impact of the distances between
the sensors on the accuracy of estimation. For this reason,
we consider 80 sensors, 64 of them being static. We thus

compare our method with �S ¼ 10 m (GCM) to a second
version of it with �S ¼ 10:

ffiffiffi
2
p

m (ACM). Fig. 10 shows the
ratios curves of the boxes areas and the estimation errors

obtained with ACM over those obtained with GCM. Note
that we use the same number of nodes Ks for both methods.

Ks is defined at each time step as the minimal number of
nodes needed to cover the predicted box in a guaranteed
way. The plot shows that ACM boxes are smaller than GCM

boxes at some time steps and vice versa at others. Figs. 11
and 12 illustrate the relocated mobile sensors corresponding
to t ¼ 31tu obtained with ACM and GCM, respectively. The
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Fig. 8. An illustration of the relative boxes areas (in the top plot) and the
relative estimation errors (in the bottom plot).

Fig. 9. An illustration of the variation of the computation time, the relative
boxes areas, and the relative estimation errors with respect to the total
number of sensors.

Fig. 10. An illustration of the ratios curves of the boxes areas (in the top
plot) and the estimation errors (in the bottom plot) obtained with ACM
over GCM.

Fig. 11. An illustration of the relocated sensors obtained with ACM at
time t ¼ 31 tu.



predicted and estimated boxes are also given. The plot

shows that the real position falls within a target triangle

covered by at least three sensors using ACM, whereas it
falls within a larger target triangle with GCM. This leads to

a smaller box with ACM yielding more accuracy than GCM.
In a different manner, Figs. 13 and 14 illustrate the relocated

sensors corresponding to t ¼ 53tu obtained with ACM and

GCM, respectively. In this example, the exact position falls
outside the accurate target triangles with ACM leading to a

larger estimation box. Note that only mobile nodes are

involved in the estimation phase in this paragraph in order
to illustrate in a better way the impact of sensors triangles

size. Adding static sensors may lead to smaller estimation
boxes than the one obtained with only mobile nodes. The

average ratios of areas and errors with ACM over GCM are

equal to 3.5765 and 1.5132, respectively. It is thus obvious
that GCM works better than ACM for this example. In fact,

with few mobile sensors, the guaranteed method with �S ¼
r (GCM) covers in a better way the prediction box since
with ACM, the area covered by less than three sensors is too

large. Having a large number of mobile sensors, one is able
to use the ACM version with larger sensor triangles. The

method consists thus of covering the whole area with small

target triangles which refines the mesh leading to more
accuracy in the estimation.

5.3 Sensitivity of the Proposed Method to the
Sensing Range Value

In this section, we illustrate the dependence of the
performances of our method to the sensing range of mobile
nodes. For this reason, we assume that fixed sensors are
having a fixed sensing range equal to 10 m and that mobile
sensors are having a sensing range varying from 1 to 15 m.
Given the same surveillance area of Fig. 6 with a network
composed of 100 sensors, 64 fixed sensors are needed to
ensure the continuous coverage, and thus 36 mobile sensors
remain for following the target. The structures used in the
definition of sensor locations are guaranteed, and thus the
lengths of the triangle sides are equal to the sensing range of
mobile nodes. Note that the sensors that are able to move at
each time step are located at a distance less than 30 m to the
borders of the predicted box. Fig. 15 shows from top to
bottom: the average traveled distance per time step and per
mobile node (Movement in m), the average estimation error
per time step (Errors in m), the average area of estimated
boxes (E.B. areas in m2) and the average area of predicted
boxes (P.B. areas in m2) as functions of the sensing range. It is
obvious that the proposed method is more accurate with
smaller sensing ranges. The average computing time and the
average number of mobile sensors moved per time step vary
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Fig. 12. An illustration of the relocated sensors obtained with GCM at
time t ¼ 31 tu.

Fig. 13. An illustration of the relocated sensors obtained with ACM at
time t ¼ 53 tu.

Fig. 14. An illustration of the relocated sensors obtained with GCM at
time t ¼ 53 tu.

Fig. 15. An illustration of the average traveled distance (Movement in
m), the average estimation error (Errors in m), the average area of
estimated boxes (E.B. areas in m2) and the average area of predicted
boxes (P.B. areas in m2) as functions of the sensing range.



a little with different sensing range values. Their values are
around 0:3850 s and 30 nodes, respectively. Note that, as
expected, with larger sensing ranges, larger estimated boxes
are obtained, leading to less accuracy and thus more
estimation errors. Moreover, having more incertitude on
the estimated positions leads to larger predicted boxes,
forcing mobile sensors to travel larger distances. For these
reasons, one can say that the proposed method performs
better with mobile sensors having small sensing ranges.

5.4 Comparison of the Interval-Based Estimation
Technique (IntE) to a Monte-Carlo-Based
Method

In this section, we illustrate the performances of the
Interval-based Estimation technique. We thus compare it
to a Monte-Carlo-based Estimation method (MCE) [30],
inspired by the works of Hu and Evans in [31] and Baggio
and Langendoen in [32]. In other words, MCE is an iterative
method, aiming at generating a fixed number of particles
Np, in the way to estimate the posterior distribution of the
unknown position. Practically, the MCE method iterates
two phases: the generation phase and the correction phase.
The first phase consists of generating Np random points
within a specific rectangular area, called initial domain;
whereas the second phase consists of filtering these points,
by only keeping those who satisfy all observation con-
straints. The initial domain could be the whole surveillance
area. In order to reduce the computation time of MCE, we
propose to use at each time step a smaller domain, defined
by the overlapping region of the squares covering the
sensing disks of sensors detecting the target. Both phases
are iterated until Np particles are kept in the memory. In
order to compare IntE to MCE, we first run the whole
controlled mobility method over 100 time steps, with
�S ¼ r ¼ 10 m. In this way, we can obtain the path of 100
positions that follows each mobile node. Then, MCE and
IntE are run using the same computed paths of mobile
nodes. Fig. 16 shows the boxes obtained with IntE and the
particles obtained with MCE, with Np set to 50. The
computing times are equal to 0:003922 s and 0:016657 s
with IntE and MCE, respectively. Let the estimation error be
the average distance between the centers of the boxes and
the exact positions for IntE and the average distance

between the barycenters of the particles and the exact
positions for MCE. Then, the estimation errors are equal to
1:4602 m for IntE and 1:8735 m for MSE. Moreover, it is
worth noting that with the MSE method, Np particles are
kept in the memory, whereas only one box is computed in
IntE at each time step. In consequence, the interval-based
method is more efficient than the Monte-Carlo-based
method in terms of computing time, memory consumption,
and accuracy.

5.5 Evaluation of the Prediction Model

In this section, we study the sensitivity of the method to the
prediction model performances. Being a second-order
model, the prediction model combines three consecutive
estimated positions in order to define a prediction box.
Compared to the estimated boxes, the prediction box is large
since it accumulates all incertitude given by the previous
estimates. The proposed model assumes that the accelera-
tion of the target is constant. When the target has abrupt
changes in direction, the prediction box may not cover the
real position. In order to illustrate such a case, we suppose a
target moving using a random walk mobility model [33].
The target is thus having an nonpredictable movement
having at each time period a random velocity varying
between 0 and 10 m:tu�1 and a random direction varying
between 0 and 2:�. The target trajectory and the estimated
boxes are shown in Fig. 17. While the prediction model
generates wrong predicted boxes at 35 time steps, estima-
tion remains mostly accurate. This is mainly due to the static
nodes covering the whole deployment area. Fig. 18 shows in
black the predicted box, the estimated box, and the real
position of the target given at time step t ¼ 18 tu. It also
shows in gray the predicted box, the estimated box and the
real position corresponding to time t ¼ 19 tu. It thus
demonstrates that even if the prediction model is not
working at a time step, it could perform correct prediction at
the following step.

5.6 Effectiveness of the Ant Colony Optimization

In this section, we illustrate the effectiveness of the ant
colony optimization algorithm. For this reason, we compare
it to the exact method where all possible permutations are
evaluated. We thus consider a network composed of 64
static sensors and 10 mobile nodes. All mobile nodes are
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Fig. 16. An illustration of the estimated boxes with IntE and the
estimated particles with MCE.

Fig. 17. An illustration of a nonpredictable target trajectory with the
estimated boxes.



relocated at each time step. The total number of possible
solutions is thus equal to 10! ¼ 3;628;800. Having a set of 10
positions, the exact method consists of generating all 10-
permutations of solutions where each mobile sensor is
assigned one position of the set. It then computes the total
traveled distance of the nodes. The permutation yielding
the minimal movement is finally chosen. We consider a
target moving over 100 time steps. At each time step, new
positions of sensors are defined and then both ACO
algorithm and the exact method are applied. Fig. 19 shows
the target trajectory and the estimated boxes obtained with
10 relocated mobile nodes. The average time required by
the ACO-based approach to perform one time-step compu-
tation is equal to 0:1821 s. Fig. 20 shows the relative
decrease of the computational time obtained with ACO
with respect to the computational time obtained with the
exact method in the top plot. This plot shows that the
computation time is increased for about 98 percent at all
time steps. The bottom plot shows the relative increase of
the traveled distance obtained with ACO with respect to the
exact method. The average decrease of computation time is
equal to 98.62 percent whereas the average increase of the
traveled distance is given by 3.39 percent. Note that the
computation time of the exact method highly increases with
the increase of the number of mobile nodes. While the
energy consumption is slightly increased, the ACO ensures

a substantial gain in terms of computation time. It is thus
crucial to use the ACO algorithm especially when the
number of mobile nodes increases.

6 CONCLUSION

In this paper, we proposed an original method for target
tracking in controlled mobility sensor networks. Having a
moving target at each time step, the method consists of
estimating the current position of the target and then
predicting its following position using a second-order
prediction model. A relocation of sensors is then
performed in order to optimize the target localization for
the following time step. A set of positions is thus defined
using a triangulation-based method. Each sensor is then
assigned one position of the set using an ant colony
optimization algorithm. While the relocation phase uses a
metaheuristic-based approach, estimation and prediction
phases employ interval analysis where target positions are
boxes including the real value. The proposed approach
uses a hybrid sensor network composed of both static and
mobile nodes. While mobile nodes are used for optimizing
the target tracking, static nodes ensure the total coverage
of the network. Simulation results illustrate the efficiency
of the proposed method compared to algorithms devel-
oped for static sensor networks. Future works will handle
the problem in a distributed manner where decisions are
locally made. One is also able to extend the method to a
multitarget tracking problem.
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