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Abstract—Recent developments in nanotechnology have enabled the fabrication of nanomachines with very limited sensing,
computation, communication, and action capabilities. The network of communicating nanomachines is envisaged as nanonet-
works that are designed to accomplish complex tasks such as drug delivery and health monitoring. For the realization of future
nanonetworks, it is essential to develop novel and efficient communication and networking paradigms. In this paper, the first step
towards designing a mobile ad hoc molecular nanonetwork (MAMNET) with electrochemical communication is taken. MAMNET
consists of mobile nanomachines and infostations that share nanoscale information using electrochemical communication
whenever they have a physical contact with each other. In MAMNET, the intermittent connectivity introduced by the mobility
of nanomachines and infostations is a critical issue to be addressed. In this paper, an analytical framework that incorporates
the effect of mobility into the performance of electrochemical communication among nanomachines is presented. Using the
analytical model, numerical analysis for the performance evaluation of MAMNET is obtained. Results reveal that MAMNET
achieves adequately high throughput performance to enable frontier nanonetwork applications with acceptable communication
latency.

Index Terms—Nanomachines, Molecular neuro-spike communication, Mobile ad hoc molecular nanonetworks, Epidemic
spreading, Delay and throughput performance.
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1 INTRODUCTION

Rapid growth in nanotechnology provides favorable devel-
opment in miniaturization and fabrication of nanomachines
with simple sensing, computation, communication, and
action capabilities. In literature, three different ways are
proposed for the development of nanomachines, namely,
bottom-up, top-down and bio-hybrid approaches [1]. In
bottom-up approach, the molecules or atoms are assembled
to form nanomachines. In top-down approach, the design
of nanomachines is realized by downsizing current micro-
electronic devices. The third approach is the bio-hybrid
approach. In this approach, biological entities can either
be genetically modified to develop nanomachines or used
as the building blocks of nanomachines. In nature, there are
already many molecular-scale phenomena consisting of an
arranged set of molecules, which are able to perform very
simple tasks. These phenomena can be envisaged as nature-
made nanomachines. For example, a chloroplast in a plant
cell stands as a nanomachine including arrays of molecules
that act as tuned optical antennas for absorption and trans-
formation of solar energy. Mitochondrion can be envisioned
as a nanomachine used for controlled combustion of organic
molecules to generate adenosine triphosphate (ATP) for
fulfilling energy needs of cellular activities. A flagellar
motor attached on the membrane of many bacterial cells is
a highly structured combination of proteins for providing
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cellular movement [4]. Nature-made nanomachines can be
exploited to learn and understand the principles governing
the operation of nanomachines and their interactions [4].

The limited capabilities of nanomachines also limit the
applications that can be achieved by a single nanomachine.
However, the networks of communicating nanomachines,
i.e., nanonetworks, are expected to enable very large set of
new applications in various research fields such as genetic
engineering, health monitoring, and military surveillance
systems [1]. For the realization of frontier nanonetworks, it
is imperative to develop new and efficient communication
and networking techniques. The aim of these techniques
is to overcome unique challenges and requirements of
nanonetworks. These challenges and requirements can be
briefed as follows:

• Scale of the nanomachines is on the order of microm-
eters, therefore, classical transceiver circuitries cannot
be mounted into nanomachines.

• Current encoding and decoding techniques are not
feasible due to very limited processing capability of
nanomachines.

• For in-vivo application scenarios, nanomachines need
to be biocompatible in order not to be rejected by the
organism.

• Mobility of nanomachines is governed by the physical
rules in nano domain [11].

• Nanomachines are extremely susceptible to any
change in the communication environment such as
rapid concentration change or quaking.

• Communication or noise signal characteristics cannot
be easily anticipated due to severely unreliable nature
of the communication medium.
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In literature, different communication techniques,
namely, acoustic, electromagnetic, molecular, and
nanomechanical, are proposed for the communication
of nanomachines [14]. Traditional electromagnetic and
acoustic communication technologies cannot be directly
used in the communication between nanomachines because
of the size restrictions. Nanomechanical communication
requires a strict physical contact between transmitter and
receiver in order to enable information transmission, which
makes it inconvenient for many application scenarios. On
the other hand, molecular communication, which is already
used by biological entities, is a promising approach for
the communication of nanomachines.

Molecular communication is inspired by the natural
nanoscale communication techniques. In living organisms,
cells communicate in various ways. Existing communi-
cation paradigms between cells may be adopted for the
realization of nanonetworks [5]. In [8], a design of a
molecular communication system based on intercellular
calcium signaling is introduced. In [7] and [10], molecular
communication systems using biological molecular motors
and vesicles as communication carriers are introduced.
Molecular communication channel is modeled as a binary
symmetric channel and mutual information and capacity
expressions are derived for that channel in [6]. A flagellated
bacteria and catalytic nanomotors based molecular nanonet-
works is proposed in [3]. In [12], a computational model
for mobile nanomachines using molecular communication
is introduced. In [2], the first realistic and very comprehen-
sive physical channel model of diffusion-based molecular
communication has been developed.

In literature, generally, nanomachines are considered as
immobile nodes. However, mobile nanomachines may be
indispensable for many nanonetwork applications. A possi-
ble example that necessitates the mobile nanomachines is a
nanonetwork designed for coordinated cancer cell detection
by identifying cancer cells and informing a central con-
troller to take an appropriate action. Clearly, these applica-
tions necessitate the realization of mobile ad hoc molecular
nanonetworks (MAMNET). In MAMNET, nanomachines
collect some environmental information such as a chemical
state, or the existence of a certain concentration level and
deliver the information collected by mobile nanomachines
to mobile infostations as shown in Fig. 1. The infostations
are central control units that make decisions according
to the collected information, or gateways that connect
MAMNET to a micro-device.

However, the mobility of nanomachines also incurs a
new set of crucial challenges that must be addressed for
the realization of MAMNET. One of the main challenges
introduced by the mobility is the intermittent connectivity,
i.e., nanomachines can communicate only when they are
in physical contact. Therefore, this intermittent connectiv-
ity clearly imposes a high level of latency on nanoscale
communication. To the best of our knowledge, the feasi-
bility and performance of an ad hoc nanonetwork that is
composed of mobile nanomachines communicating through
electrochemical means have not yet been investigated.

NM1 senses a
chemical substance

S

Inf. Transmitted 
from NM1 to NM2

NM1

Inf. Transmitted 
from NM2 to IS

Fig. 1. Information flow in MAMNET.

The aim of this paper is to introduce the concept of
MAMNET and provide an analytical framework in order
to show feasibility of MAMNET. The communication of
nanomachines is inspired by the cellular communication
paradigm in immune system. In immune system, the im-
mune response starts by the recognition of antigens by T-
cells. However, T-cells cannot directly recognize antigens.
First, antigen presenting cells (APCs) recognize the antigen
entering the body. Then, APCs and T-cells collide and ad-
here to each other, which forms an immunological synapse
by the interaction of complex molecules on the surface of
APCs with T-cell receptors [13]. This allows the transfer
of antigen information to T-cells and the immune response
starts.

In MAMNET, the communication of mobile nanoma-
chines is similar to the natural cellular communication
in immune system and enabled by three main phases,
namely, collision, adhesion and transmission. In collision
phase, nanomachines randomly collide with each other.
In adhesion phase, nanomachines stuck to each other.
Finally, the information is transmitted in the transmission
phase. For the transmission of information, we introduce
a new communication paradigm, called molecular neuro-
spike communication, that is inspired by electrochemi-
cal communication among biological neuron cells. After
the adhesion phase, molecular neuro-spike communication
scheme enables the communication of adherent nanoma-
chines. These three phases briefly mentioned above jointly
provide the communication of nanomachines and infosta-
tions in MAMNET.

The remainder of this paper is organized as follows. In
Section 2, we give an overview of MAMNET, and underline
the design issues and assumptions. Then, we model the
collision and adhesion of nanomachines in Section 3. In
Section 4, we introduce molecular neuro-spike communi-
cation of adherent nanomachines and an analytical capacity
expression for molecular neuro-spike channel. In Section
5, we derive the distribution of communication latency
and find average throughput in MAMNET. We present the
numerical results in Section 6 and give concluding remarks
in Section 7.
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2 MOBILE AD HOC MOLECULAR NANONET-
WORK COMMUNICATION MODEL
MAMNET is composed of two kinds of mobile nanonodes,
namely, nanomachines and infostations as shown in Fig. 1.
Nanomachines and infostations are assumed as genetically
modified cells with additional capabilities. Nanomachines
are assumed to sense the environment and gather some
environmental information to deliver infostations. Based on
the collected information coming from nanomachines, in-
fostations are assumed to make decision for an appropriate
action. Furthermore, infostations may also be considered as
gateways that connect MAMNET to a micro-device.

Nanomachines and infostations do not always have a
direct communication interface because of mobility. In
order for a nanomachine to transmit collected information
to an infostation, the nanomachine and the infostation
should first collide, then adhere to each other. Since the
system volume containing MAMNET is much larger than
the size of a single nanonode, the meeting probability
of a nanomachine and an infostation is very low. Thus,
intermediary nanomachines can be used as relay nodes that
help the communication between the nanomachines and the
infostations as follows.

Fig. 1 describes the information flow in MAMNET.
Nanomachine 1 is assumed to be the source of the in-
formation that is to be communicated to the infostation.
Nanomachine 1 transmits the information to every nanoma-
chine, i.e., relay node, with which it collides and adheres.
The nanomachines that acquire the information follow the
same strategy and this clearly increases the probability of
information delivery. Note that this communication strategy
is clearly similar to the spreading of epidemic disease.

Here, we assume that nanomachines and infostations do
not have any additional capability for mobility or collision.
As will be detailed in Section 3, nanomachines diffuse in
the environment and randomly collide with each other. The
collided nanonodes adhere to each other via the surface
mounting molecules called, ligands and receptors. This phe-
nomenon is commonly known as the ligand-receptor bind-
ing process. According to this process, ligand molecules on
the surface of one biological entity, i.e., nanonode, bind to
the receptors of an other nanonode. Once a certain number
of bonds is established between the nanonodes, they can
adhere to each other.

The performance of MAMNET directly depends on the
interaction of nanonodes that are triggered by collision and
adhesion of nanomachines and infostation. Therefore, it is
important to investigate the collision rate, i.e., the number
of collisions occur per unit time, and the adhesion prob-
ability of collided nanomachines and infostations. Next, a
detailed analytical analysis of collision and adhesion phases
in MAMNET is given.

3 COLLISION AND ADHESION OF NANOMA-
CHINES
In nature, the behaviors of cells are significantly affected
by contacts with other cells [17]. In their environment,

r1

r12 = r1 + r2
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v12δt

Nanonode 2

r2
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2  v12δt
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Fig. 2. Collision of two nanomachines. Nanomachine
1 and nanomachine 2 collide in the time interval δt if
nanomachine 2 is in the collision volume δVcoll in δt.

mobile biological cells collide with each other and cellu-
lar adhesion occurs between the collided cells. The cell
adhesion is accomplished by the ligand-receptor binding
process on the surface of the cells. The adhesion has a
critical role in intracellular and intercellular signaling, i.e.,
communication, that governs basic cellular activities and
coordinates cell actions [19].

In this paper, we adopt the natural cellular communica-
tion for the communication among nanomachines. Similar
to living cells, nanomachines should be in physical contact
with each other in order to communicate. The physical
contact is established through the collision and adhesion
of nanonodes that are modeled as follows.

3.1 Collision of Nanomachines

As in traditional mobile ad hoc networks (MANET), in
MAMNET stochastic nature of nanomachine collision rate
is governed by some mobility models such as brownian
motion and random waypoint. Since nanomachines do not
have any capability for controlling their movement, they are
assumed to freely diffuse in the aqueous medium. Hence,
the mobility of nanomachines is governed by the dynamics
of Brownian motion that explains the movement of small
particles that freely diffuse in an aqueous medium.

Nanomachines with radius r are assumed to be contained
in a volume V and moving according to Brownian motion.
Here, we assume that V >> r. In order to find the collision
rate of nanomachines, we first obtain the probability that
the nanomachines collide within the next infinitesimal time
interval δt, given that the first nanomachine’s center is
located at the position (x1, y1, z1). Two nanomachines
collide in the next δt, only if the second nanomachine is in
the volume that is covered by the first nanomachine with
respect to the second nanomachine. This collision volume
δVcoll is shown in Fig. 2 and expressed as

δVcoll = πr212υ12δt (1)

where r12 = r1 + r2 and υ12 is the relative velocity of the
first nanomachine with respect to the second nanomachine.
By using the relative velocity, the second nanomachine
is considered as stationary while the first nanomachine
is considered moving with velocity υ12 rather than υ1.
Thus, the probability that the second nanomachine, i. e.,
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two nanomachines collide, is located in volume δVcoll is
expressed by

px1,y1,z1 =

∫∫∫
δVcoll

f(x, y, z) dx dy dz (2)

where f(x, y, z) is the probability density function (pdf)
of spatial node distribution in the volume V . For small
values of r, the points f(x, y, z) in V can be approximated
by f(x1, y1, z1). This gives the probability of a collision
within the next infinitesimally small time interval, given
that the first node’s starting position is (x1, y1, z1), i.e.,

px1,y1,z1 ≈ πr212υ12δtf(x1, y1, z1) (3)

The first node’s starting position can be changed. Therefore,
by integrating px1,y1,z1 over all starting positions of the
first node, the probability of collision within the next
infinitesimally small time interval δt can be obtained as

p =

∫∫∫
V

px1,y1,z1f(x1, y1, z1) dx1 dy1 dz1

≈ πr212υ12δt

∫∫∫
V

f2(x1, y1, z1) dx1 dy1 dz1 (4)

(4) is specific to the relative speed υ12. Averaging the
relative velocity over the velocity distributions of the nanon-
odes, the collision rate for nanodes can be approximated as

Rc ≈ πr212E[υnn]

∫∫∫
V

f2(x1, y1, z1) dx1 dy1 dz1 (5)

where E[υnn] is the average relative speed of the nanoma-
chines. In order to evaluate the collision rate, the spatial
node distribution f(x, y, z), and average relative speed
E[υnn] for the nanomachines moving according to Brow-
nian motion are required. Note that the effect of average
relative speed on performance is discussed in Section 6. In
[16], it is shown that the steady-state node distribution in
Brownian motion is uniform. Thus, f(x, y, z) = 1/V and
Rc can be also approximated as

Rc ≈ πr212E[υnn]

∫∫∫
V

1/V 2 dx1 dy1 dz1

≈ πr212E[υnn]

V
(6)

Since the size of nanomachines are identical, r12 can be
given as r12 = 2r, where r is the radius of a nanomachine.
Then, from (6), the collision rate for nanomachines can be
expressed as

Rc ≈
4πr2E[υnn]

V
(7)

The collision rate of an infostation and a nanomachine
follows a similar argument except that infostations could
have a different radius compared to nanomachines. For
nanomachine-infostation r12 is set as r12 = r+ri, where ri
is the radius of an infostation. Then, similar to the collision

21 3 M-1 M

Surface of nanomachine 1

Surface of nanomachine 2

Fig. 3. Nanomachine Adhesion. Nanomachine 1 and
Nanomachine 2 are attached to each other by M ligand
receptor pairs.

rate of nanomachines, the collision rate of an infostation
and a nanomachine can be written as

Ric ≈
π(r + ri)

2E[υni]

V
(8)

where E[υni] is the average relative speed of the nanoma-
chine and infostation.

The collision rates Rc and Ric are essential to under-
stand the interaction rate of nanomachines and infostations.
However, the collision rates are not the ultimate parameters
that affect the MAMNET performance since the collided
nanomachines should also adhere with each other to enable
molecular neuro-spike communication. Next, the adhesion
of nanomachines is modeled.

3.2 Adhesion of nanomachines

After the collision between nanomachines, the collided
nanomachines adhere with each other via the binding of the
surface molecules called ligands and receptors, as shown
in Fig. 3. In nature, the binding process of two cells,
i.e., cell adhesion, is an important issue. Cell adhesion
is involved in a variety of processes such as migration,
invasion, embryogenesis, wound healing and cell-to-cell
communication [19].

In this paper, the natural cellular adhesion paradigm is
adopted to enable the adhesion of nanomachines. In liter-
ature, there exists several research efforts on modeling the
adhesion between cells [9], [17]. Here, the adhesion model
developed in [9] is adopted. Accordingly, nanomachines
are assumed to have ligands and receptors which mediate
adhesion. The adhesion process is heavily affected by the
density of ligands and receptors and the contact area of the
collided nanomachines.

Adhesion is considered as a random event and the
state of the system is considered as a probability vector
[p0, p1, ..., pn, ..., pAcmmin] where mmin is the minimum of
surface densities of receptors and ligands and Ac is the area
of contact [9]. In other words, adhesion could be mediated
by any number of bonds ranging from 0 to Acmmin. For
forming any number of bonds, there is a defined likelihood
given by pn. Here, nanomachines are assumed to adhere
when at least c bonds are formed between them. Hence, our
aim is to derive the probability that nanomachines adhere
via at least c bonds, and the closed-form expression of pn
is needed in deriving this. In [9], a closed-form expression
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is found for pn under a set of certain assumptions for
two cells, such as either ligands or receptors outnumbers
the other one. When two nanomachines are just brought
together (t = 0), there is no bond, hence,

pn(0) =

{
1 , n = 0

0 , n ̸= 0
(9)

With the contact of nanomachines, bonds start to form
according to a single step reversible reaction. The chemical
reaction of vr receptors (designated Mr) binding to vl
ligands (designated Ml) to form vb bonds (designated Mb)
can be expressed as

vrMr + vlMl

k0
f ,k

0
r−−−→ vbMb (10)

where k0f and k0r are the forward and reverse rate constants,
respectively.

In the stochastic model of ligand-receptor binding pro-
cess, the state of the system, described by the single
step reversible chemical reaction in (10), is represented by
the probability vector [p0, p1, ..., pn, ..., pAcmmin

]. In [15],
a stochastic model of ligand-receptor binding process is
discussed and master equations are derived in order to
describe the state of the system. Actually, these master
equations can be used to describe the rate of change in
probability pn(t). However, it may not possible to obtain
closed-form solutions for the master equations. However,
in the current literature, two simplified versions of master
equations are discussed in order to obtain closed-form
expressions. In [9], a simplified version is discussed under
the condition that either ligands or receptors excessively
outnumber the other one. Under that condition and with
vr = vl = vb = 1, i.e., a bond is formed by the binding of a
ligand to a receptor, the master equations can be simplified
as [9]

dpn
dt

=
[
Acmmin − (n− 1)

]
mmaxk

0
fpn−1 −

−
[
(Acmmin − n)mmaxk

0
f + nk0r

]
pn + (n+ 1)k0rpn+1 (11)

Assuming either ligands or receptors excessively out-
number the other one, pn(t) is found to be in the form
of binomial distribution and can be given as [9]

pn(t) =

(
Acmmin

n

)
[p(t)]n[1− p(t)]Acmmin−n (12)

where p(t) is the probability of forming one bond given by

p(t) =
1− e−kt

1 + (mmaxK0
a)

−1
(13)

where K0
a = k0f/k

0
r is the equilibrium association constant

and k = mmaxk
0
f + k0r is the overall rate of reaction.

After the collision event between two nanomachines,
they are assumed to stay in contact with each other during
an average contact duration τc. τc is affected by the phys-
ical properties of the environment, relative velocities and
physical surface properties of the nanomachines. The effect
of τc on performance is discussed in Section 6. We also

Plasma membrane of NM 1

Plasma membrane of NM 2

Neurotransmitter mol .

Ligand Gated 
Channel (Open )

Ligand Gated 
Channel (Closed)

Synaptic
Cleft

Presynaptic neuronPostsynaptic neuron

Fig. 4. Neuro-spike transmission between nanoma-
chines. Neurotransmitters emitted from the transmitter
nanomachine (TN), diffuse through the gap between
the nanomachines and reach the receiver nanoma-
chine (RN).

assume that the collided nanomachines adhere with each
other if at least c bonds are formed during a contact duration
τc. Hence, the probability that the collided nanomachines
adhere with each other, i.e., Ra, can be given as

Ra = 1−
c−1∑
i=0

pi(τc) (14)

Note that we do not present a different adhesion rate
for the nanomachine-infostation interaction. This is because
the physical properties used in the derivation of adhesion
rates are the same for both nanomachines and infostations.
The adhesion probability derived in this section is very
important to understand the interaction of nanomachines.
The communication between nanomachines can only be
possible after successful adhesion.

4 MOLECULAR NEURO-SPIKE COMMUNI-
CATION

In this section, molecular neuro-spike communication is
explained in detail. First, the basics of molecular neuro-
spike communication are introduced. Then, its channel ca-
pacity and error probability are analytically investigated. Fi-
nally, successful information transmission probability in the
molecular neuro-spike communication channel is derived to
be used for the performance evaluation of MAMNET.

4.1 Basics of Molecular Neuro-Spike Communica-
tion
When a nanomachine that has an information collide and
successfully adhere to another nanomachine, it transmits
its information to this nanomachine by means of molecular
neuro-spike communication. The nanomachine that trans-
mits the information is called the transmitter nanomachine



6

Spike Bit 0

Spike Bit 1

Spike Bit 0

Spike Bit 1

PF

PM

1-PF

1-PM

Fig. 5. Channel model of synaptic transmission. Trans-
mission probabilities are shown for the binary channel.

(TN) and the nanomachine that receives the information is
called the receiver nanomachine (RN). After the adhesion
of nanomachines, there exists a small gap, synapse, between
the TN and RN. This synapse is the communication media
for nanomachines. Since TN and RN cannot remain adhered
for a long time, a fast and reliable communication paradigm
is needed to enable the information transmission between
nanomachines. Among the existing inter-cellular communi-
cation paradigms, the communication between neuron cells
is the fastest one. Therefore, in our model, we adopt the
principles of neural communication to enable the informa-
tion transmission among nanomachines.

In human body, there already exist at least two types
of natural synapses between cells, namely, the neuronal
synapse and the immunological synapse. These specialized
contacts directly transfer highly controlled secretory signals
between the adjacent cells [18]. The neuronal synapse is
formed between the neurons and it retains the connectiv-
ity of the neuron cells throughout the life, whereas the
immunological synapse is formed by the instant contacts
of immune cells. Although nervous system and immune
system have totally different roles in human life, in both
systems cells need to communicate, and this is accom-
plished in the synapse. Therefore, synapses play a critical
role in the cell-to-cell communication.

In nervous system, neural signals propagate in the form
of electrochemical waves. These electrochemical waves
are basically action potentials that propagate along ax-
ons and transmitted to other neurons. Action potential is
basically an electrical pulse which has approximately 80
mV amplitude. At synapse, action potentials or spikes are
electrochemically transmitted from one neuron to another.
The signal is transmitted by means of chemical messengers
called neurotransmitters. Neurotransmitters are contained in
vesicles. The coming pulse or action potential, releases the
neurotransmitters on the pre-synaptic neuron, and then, the
neurotransmitters bind to the receptors on the post-synaptic
neuron. Binding of a neurotransmitter to a receptor opens a
channel which lies between inside and outside of the post-
synaptic neuron. These channels allow the flow of ions to
the neuron. The net movement of ions causes the membrane
potential of the post-synaptic neuron to change rapidly. In
this way, spikes or action potentials are transmitted to the
next neuron.

In this work, we adopt the principles of neural commu-
nication to develop molecular neuro-spike communication
model. The communication between nanomachines is re-
alized with spike transmission as shown in Fig. 4. The

communication process based on molecular neuro-spike
communication involves the following steps:

1) Encoding: Similar to the traditional digital commu-
nication, we define 2 bit levels, i.e., spike bit 0 and
spike bit 1 corresponding to logic 0 and 1. The
information is encoded on the concentration of the
released neurotransmitter molecules. For spike bit 1,
neurotransmitters are released to the channel, whereas
for spike bit 0 no releasing occurs.

2) Transmission: Actually, this process initiates the elec-
trochemical signaling. Whenever a TN wants to send
a spike bit 1, it simply activates the release of vesicles
that contain neurotransmitters.

3) Signal Propagation: The released neurotransmitters
propagate in the synaptic channel formed between
the adherent nanomachines. The aim of the neuro-
transmitters is to bind to the receptors on the RN.

4) Reception: The neurotransmitters released into the
synaptic channel reach the RN and bind to the recep-
tors on the RN membrane as in Fig. 4. The binding
of neurotransmitters to receptors opens ligand gated
channels that let the flow of ions into or out of the
RN. The flow of ions changes the membrane voltage.

5) Decoding: RN nanomachine monitors the plasma
membrane voltage for certain time periods. If RN
observes a rapid change in the membrane voltage it
decides the received bit as spike bit 1, otherwise the
decision is spike bit 0.

In an ideal channel, the spike bit sent by a TN should be
perfectly received by the receiver nanomachine. However,
in practice there exist two kinds of errors as shown in Fig.
5, namely, false alarm and miss detection errors. The false
alarm and miss detection probabilities, i.e., PF and PM ,
respectively, can be defined as

PF = Prob[Y = 1|X = 0]

PM = Prob[Y = 0|X = 1] (15)

where X and Y are the input and output symbols, re-
spectively. In order to derive these probabilities, a close
look at neuronal synapse would be helpful. In [20], a
cortical synapse is modeled as a binary channel and the
information-theoretical capacity is derived for two different
coding paradigms, i.e., signal estimation and signal detec-
tion. Although this synaptic transmission model ignores
certain aspects like paired-pulse facilitation, vesicle deple-
tion, calcium buffering, it represents a simplified and com-
pact picture of synaptic transmission. Therefore, we adopt
the synaptic transmission model in [20] and accordingly
derive the channel capacity expression.

In Fig. 6, the block diagram of the channel model of
synaptic transmission is shown. The input to the channel,
X(t), is a spike bit. If the input is spike bit 1, vesicles
containing neurotransmitters are released by the TN to the
synaptic cleft. For spike bit 0, no vesicles are released.

Neurotransmitters binding to the receptors on the RN
membrane open channels that let the flow of ions. The
flow of ions create an Excitatory Postsynaptic Potential
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Fig. 6. Block diagram of the channel model of synap-
tic transmission [20]. Spikes sent from the transmit-
ter nanomachines pass through a filtering process
and an additive gaussian noise is corrupted at the
post-synaptic membrane. The decision by the receiver
nanomachine is based on the matched filter.

(EPSP) on the RN. In Fig. 6, EPSP profile or shape of
RN is modeled by a filter with impulse response h(t) [20].
In Fig. 6, the random variable q, which has probability
density P (q), models the variability in the size of EPSP.
The number of neurotransmitter molecules released by the
TN, the number of available postsynaptic receptors on the
RN and several other factors affect this variability. In Fig.
6, there exists also an additive noise, n(t), coupled to the
response of RN. The noise n(t) accounts for the other noise
sources in the membrane of the RN such as thermal noise
and channel noise [21].

4.2 Information Theoretical Capacity of Molecular
Neuro-Spike Communication

In molecular neuro-spike communication, at the receiver
side, the aim of RN is to optimally detect the presence
or absence of a single spike through the knowledge of
membrane voltage Vm(t). In [20], it is shown that the
optimal decision rule for spike detection is to compare
the correlation r between Vm(t) and h(t) to a threshold
θ. Thus, the decision rule can be written as

r ≥ θ ⇒ Y = 1,

r < θ ⇒ Y = 0 (16)

With this decision rule, the false alarm and miss detection
probabilities are written as

PF = Prob[r ≥ θ|X = 0]

PM = Prob[r < θ|X = 1] (17)

In [20], the probabilities of miss detection and false alarm
are derived for both stochastic and deterministic vesicle
release processes. In our model, we use the probabilities
derived for deterministic vesicle release, i.e.,

PF =
1

2
[1− Erf(θ)] (18)

PM =
1

2

[
1 +

∫ ∞

0

Erf(θ − q
√
SNR)P (q) dq

]
(19)

where Erf(x) is the error function and SNR is the signal-
to-noise ratio on the post-synaptic potential.

Based on the false alarm and miss detection probabilities,
the molecular neuro-spike channel can now be modeled
as a binary symmetric channel. TN emits spike bit 1 with

probability p1 and spike bit 0 with probability (1−p1) Then,
the probability of error for one spike bit can be written as

PE = p1PM + (1− p1)PF (20)

The value of PE depends both on the threshold θ and
SNR. For small values of θ, PM is low whereas PF is
high. On the other hand, for large values of θ, PF is low
whereas PM is high. Therefore, PE should be evaluated
with varying θ in order to find an optimum value for θ. In
Fig. 7(a), the dependencies of PE , PM and PF on θ are
shown for a fixed value of SNR = 10 assuming an equally-
likely prior probability (p1 = 0.5). With decreasing SNR,
the probability of error increases. Furthermore, SNR also
has an impact on the optimum value of threshold. As can
be seen in Fig. 7(b), the optimum value of θ becomes closer
to 0 as the value of SNR decreases.

The performance of the molecular neuro-spike communi-
cation can be further quantified by the mutual information.
The transition matrix of the molecular neuro-spike channel
can be written as follows

P (Y |X) =
(
p1(1− PM ) (1− p1)PF

p1PM (1− p1)(1− PF )

)
(21)

Using the transition matrix in (21), the mutual information
I(X;Y ) between X and Y can be derived as follows

I(X;Y ) = H(Y )−H(Y |X)

= H
(
p1PM + (1− p1)(1− PF )

)
−

(
p1H(PM ) + (1− p1)H(PF )

)
(22)

where H(z) denotes the binary entropy function H(z) =
−z log2(z) − (1 − z) log2(1 − z). Mutual information
corresponds to how much one can guess about the input
with the knowledge of the output. θ and SNR have a direct
effect on the value of mutual information. For low SNR
values, mutual information can be very low. However, as
SNR increases the mutual information increases as well,
as shown in Fig. 7(c). The optimum value of θ, changes
with SNR.

In a synaptic channel, spikes can be transmitted by 3 ms
differences which is composed of a 0.5 ms action potential
pulse and 2.5 ms of recovery time. Thus, a theoretical
bandwidth of 333 bps can be reached. This corresponds to
an ideal synaptic channel with I(X;Y ) = 1, i.e., every bit
transmitted contains exactly 1 bit of information. However,
in practice there exist channel errors and this rate cannot
be achieved.

The capacity of the molecular-neuro spike channel can
be obtained by maximizing the mutual information over all
input distributions, i.e.,

C = max
pX

(I(X;Y )) (23)

As can be seen in Fig. 7(d), the mutual information can
be at most 0.57 for the channel under consideration. This
corresponds to a bandwidth of approximately 333×0.57 ≈
190 bps. Even if it is slightly larger than half of the ideal
bandwidth of an ideal synaptic channel, it is a considerably
high bandwidth.
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Fig. 7. (a) False alarm, miss and channel error probabilities in molecular neuro-spike channel for a fixed value
of SNR = 10 with varying θ, (p1 = 0.5). (b) Channel error probability in molecular neuro-spike channel with
varying θ for different values of SNR, (p1 = 0.5). (c) Mutual information with varying SNR for different values of
θ, (p1 = 0.5). (d) Mutual information with varying p1 for different values of θ, (SNR = 10).

By analyzing single spike bit error probability and
channel capacity expressions, it is shown that molecular
neuro-spike channel promises a reliable and fast commu-
nication. Therefore, molecular neuro-spike communication
stands as a promising solution for the communication
of adherent nanomachines in MAMNET. In evaluating
the performance of MAMNET, information transmission
probability is needed. Information transmission probability
can be described as the successful transmission of all the
information from TN to RN.

The information collected by the TN is encoded to
spikes and sent to the RN. The probability of successful
information transmission is analogous to the successful
transmission of all spike bits in the message. Hence,
successful information transmission probability is

Rt = (1− PE)
n (24)

where n is the number of spike bits contained in the
message. The probability in (24) is used in the analytical
model of MAMNET.

5 MATHEMATICAL MODEL OF MOBILE AD
HOC MOLECULAR NANONETWORK

In this section, a closed form expression for average
message delivery delay is also derived for MAMNET.
Furthermore, average throughput and system throughput
expressions are obtained. The propagation of a single mes-
sage is modeled using the principles of epidemic disease
spreading. For this purpose, a store-carry-forward scheme
is proposed. When a nanomachine having an information

S I RβSI γ I

Fig. 8. S-I-R Model. Markov chain model of an epi-
demic disease spreading. S, I, R represents the sus-
ceptible, infected and the recovered states respectively.

encounters with another nanomachine that does not have a
copy of the information, it forwards the information to this
nanomachine.

In mobile ad hoc networks with intermittent connectiv-
ity, many routing protocols inspired by epidemic disease
spreading have been previously developed [22], [23], [24].
Similar to these works, inspiring by epidemic disease
spreading nanomachines can be in three different states,
i.e., infected, suspicious and recovered. The message which
should be transmitted to an infostation, is analogous to the
agent of a disease. An infected nanomachine is the one that
has a copy of the message. A nanomachine is said to be
suspicious when it does not have a copy of the message,
but could potentially acquire a copy of the message from
the infected ones. A nanomachine is recovered after it has
offloaded the message to the infostation.

Our model is developed upon the Markov model devised
for the basic epidemic disease spreading [25]. In Fig. 8,
S, I and R are the susceptible, infected and recovered
states, respectively. S(t), I(t) and R(t) are the numbers
of nanomachines in the susceptible, infected and recovered
states, respectively. In MAMNET, β represents the rate of
contacts, that ends with successful transmission between
two nanomachines, per nanomachine and γ represents the
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rate of contacts, that ends with successful transmission, be-
tween a nanomachine and an infostation, per nanomachine.
The model is based on three assumptions, which can be
adopted for our model as follows.

i. An infected nanomachine makes contacts, that
are ended with the successful transmission of
message, with β(N−1) others per unit time where
N represents the total number of nanomachines in
MAMNET. β expresses the total rate including
collision (Rc), adhesion (Ra) and transmission
rates (Rt) for nanomachines. Therefore, β =
Rc × Ra × Rt. Since S/(N − 1) proportion of
these contacts are with the suspicious ones, the
number of infections per unit time can be derived
as

(
β(N − 1)

)(
S/(N − 1)

)
I = βSI .

ii. γ expresses the rate with which infected nanoma-
chines become non-infected (recovered) and
therefore, it contains infostation-nanomachine col-
lision, adhesion and transmission rates. Therefore,
γ can be given as γ = Ric×Ra×Rt. If there are
more than one infostation, the parameter γ should
be multiplied by the number of infostations. This
is because, the delivery of message to any infos-
tation means recovery.

iii. The total number of individuals in the system is
constant.

The message delivery delay Td is defined as the time
elapsed from an information message is first generated
by a nanomachine to the time when this message is first
offloaded to an infostation. The initial conditions for the
system can be defined as follows. At time t = 0, only one
nanomachine is infected, i.e., I(0) = 1, S(0) = N−1. Until
offloading, the entire number of nanomachines N will be
contained in either I state or S state, i.e., S+I = N,R(t) =
0 for t < Td. At the time of offloading, R(Td) = 1.

In order to find message delay distribution, it should be
required that the transient solution of the Markov Chain
given in Fig. 8 and modeled as

dI

dt
= βSI = βNI − βI2 (25)

For I(0) = 1, the solution of (25) is given in [22] as

I(t) =
N

1 + (N − 1)e−βNt
(26)

Using (26), the cumulative distribution function (CDF)
of the message delay can be found. The CDF describes the
probability that the message is delivered to an infostation by
time t and denoted by F (t) = Pr(Td < t). The differential
equation for F (t) can be written as [22]

dF

dt
= lim

ϵ→0

F (t+ ϵ)− F (t)

ϵ
(27)

where ϵ is an arbitrary positive small number close to 0.
Note that, F (t) = 1 − Pr(Td > t) and F (t + ϵ) =
1 − Pr(Td > t + ϵ). In order to find F (t) using (27),
the probability Pr(T ≥ t + ϵ) is needed. Assuming

Pr(event in [0, t)) is independent of Pr(event in [t, t+ϵ)),

Pr(Td > t+ ϵ | Td > t)

= 1− Pr(t < Td < t+ ϵ | Td > t)

= 1− ϵγI(t) (28)

From (28), Pr(Td > t+ ϵ) can be calculated as

Pr(Td > t+ ϵ) = Pr(Td > t)Pr(Td > t+ ϵ | Td > t)

= Pr(Td > t)(1− ϵγI(t)) (29)

This can be used to derive the differential equation for F (t),
i.e.,

dF

dt
= lim

ϵ→0

[1− Pr(Td > t+ ϵ)]− [1− Pr(Td > t)]

ϵ

= lim
ϵ→0

−1

ϵ
Pr(Td > t)(1− ϵγI(t)− 1)

= γI(t)Pr(Td > t)

= γ
N

1 + e−βNt(N − 1)
[1− F (t)] (30)

For the solution of (30), an initial condition is required.
Note that, F (0) represents the probability that the nanoma-
chine which generates the message is adherent with infos-
tation such that it can directly transmit the message to the
infostation. Therefore, F (0) can be given by

F (0) =
4π(r3i − r3)

3V
(31)

Using F (0), F (t) can be derived as

F (t) = 1−K

(
N − 1

N − 1 + eβNt

) γ
β

(32)

where K =
[
N−1
N

]−γ
β [1−F (0)]. Hence, the probability that

a message is delivered to an infostation for a given time can
be obtained. Conversely, the average time needed to deliver
the information to an infostation can also be calculated.
Average delivery delay can be found using CDF of message
delivery delay, i.e.,

E[Td] =

∞∫
0

1− F (t) dt =

∞∫
0

K

(
N − 1

N − 1 + eβNt

) γ
β

dt

Assuming γ/β ϵ N+, E[Td] can be analytically expressed
as

E[Td]=


F (0) lnN
γ(N−1)

, γ/β = 1
F (0)(1−N)

βN2

[∑γ/β
k=2

β
β+γ−kβ

(
N

N−1

)k
−(

N
N−1

)1+γ/β
logN

]
, γ/β ≥ 2

(33)

Note that, the analytical result in (33) are only valid for
γ/β ϵ N+. On the other hand, by numerically evaluating
the integral in (33), E[Td] can be calculated for any γ
and β. The numerical results for average delivery delay
are presented in Section 6.

Using the average delivery delay, average throughput of
MAMNET can also be calculated. Considering from an
infostation point of view, a message encoded by n spike bits
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TABLE 1
Simulation Parameters

Radius of a nanomachine (r) 7.5 (µm)
Radius of an infostation (ri) 15 (µm)
Average relative speed of nanoma-
chines (E[υnn])

1 (µm/sec)

Average relative speed of nanoma-
chines and infostation (E[υni])

1 (µm/sec)

Volume (V ) 1000000 (µm3)
Area of contact (Ac) 3 (µm2)
Surface density of receptors (mr) 100 (1/µm2)
Surface density of ligands (ml) 75 (1/µm2)
Forward binding rate (k0

f ) 1.32 × 10−7

(µm2/sec)
Reverse binding rate (k0

r) 0.36 (1/sec)
Contact time τc 1 (sec)
Minimum number of required bonds for
proper adhesion (c)

40

Prior probability of sending spike bit 1
(p1)

0.5

Threshold for decision of spike bit (θ) 1.1
Signal to noise ration on RN (SNR) 10
Length of message (n) 8 (bits)
Number of nanomachines (N) 20

is transmitted from a nanomachine source to an infostation
in an average time of E[Td]. Hence, the average throughput
of MAMNET can be described as

Tavg =
n

E[Td]
(34)

On the other hand, in the whole system, an average number
of I(E[Td]) nanomachines get infected, i.e., apart from
source, an average number of I(E[Td]) − 1 copies of
the message exist in the network. This means that, an
average of (I(E[Td]) − 1) × n spike bits are transmitted
between nanomachines until the message arrives into an
infostation. Also accounting for the n spike bits transmitted
to infostation, the system throughput can be written as

Tsys =
I(E[Td])n

E[Td]
(35)

Consequently, all aspects of MAMNET are covered
by this model. The expressions derived for E[Td], Tavg

and Tsys clearly describe the performance of MAMNET.
These expressions can be used to investigate the feasibility
and evaluate performance of MAMNET. Using the model
derived above, next, the performance of MAMNET is
evaluated.

6 PERFORMANCE ANALYSIS OF MOBILE
AD HOC MOLECULAR NANONETWORK

In this section, we evaluate the performance of MAMNET
by using average message delay, average throughput and
system throughput expressions derived in previous section.
We use MATLAB to obtain analytical results. The aim is
to investigate delay and throughput performance and gain
insight on the feasibility of MAMNET. The parameters

used in the analysis are given in Table 1. In the following
sections, the effect of these parameters is investigated.

6.1 Effect of Relative Speed and Size of Nanoma-
chines

We first observe the effect of relative speed and size
of nanomachines on average delay, average throughput
and system throughput. Nanomachines and infostation are
contained in a volume of 106 µm3. Nanomachine size
is on the order of typical mammalian cells, i.e. having a
diameter of 5-10 µm. Since infostations have more complex
roles than nanomachines, they are assumed to have larger
dimensions than nanomachines, e.g., around 10-20 µm.

In Fig. 9(a), Fig. 9(b) and Fig. 9(c), average message
delay, average throughput and system throughput are shown
for different r with varying E[υnn], respectively. For
r = 7.5 µm, average message delivery delay ranges from
a few hundreds to a thousand seconds. Although, these
can be considered as huge message delays for traditional
networks, these values are very reasonable for MAMNET.
The volume in nanomachines contained is 565 times larger
than a nanomachine volume. Furthermore, the average
relative speed of nanomachines is very low. Hence, the
collision rate in MAMNET is low, e.g., with the values
specified in Table 1, on average, only 14 collisions occur
between nanomachines in 1000 seconds. Therefore, it is
reasonable to end up with message delays on the order of
a few thousand seconds. The system throughput follows
a similar argument. Considering the effect of low collision
rate and the information message is encoded by 8 spike bits,
it is also reasonable to encounter with a system throughput
on the order of few spike bits per 10 seconds.

In Fig. 9(a), average message delivery delay decreases
with increasing relative speed of nanomachines. On the
other hand, in Fig. 9(b) and Fig. 9(c), average through-
put and system throughput increase with E[υnn]. This
is because, by increasing the relative speed of nanoma-
chines the collision rate is amplified and this causes more
nanomachines to get infected. Therefore, the number of
information transfers in MAMNET increases, which yields
a higher throughput. Moreover, the message is delivered to
an infostation more quickly.

Fig. 9(a), Fig. 9(b) and Fig. 9(c) also show the effect
of r on E[Td], Tavg and Tsys, respectively. The increase
in r also causes collision rate to increase and this yields
a higher throughput and lower message delivery delay.
Actually, r is analogous to the transmission range of
mobile nodes in traditional mobile ad hoc networks. The
larger the transmission range, the higher the probability
of meeting of nodes. However, the transmission range is
limited in traditional mobile ad hoc networks because of
limited power. Similarly, it seems reasonable to make larger
nanomachines to increase the performance, however, one
has to consider that these nanomachines can be used in
applications where the dimensions of the nanomachines is
a critical issue.
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Fig. 10. For varying average relative speed of nanomachine and infostation for different values of infostation
radius, the plot of (a) Average message delay. (b) Average throughput. (c) System throughput. (d) Average
number of infected nanomachines at the instant of message delivery.

6.2 Effect of Relative Speed and Size of Infosta-
tions

Here, the effects of relative speed and the size of info-
stations on performance are discussed. E[Td], Tavg and
Tsys are shown for different infostation radius values with
varying relative speed in Fig. 10(a), Fig. 10(b) and Fig.
10(c), respectively. Increasing ri and E[υni] increases the
collision rate Ric of nanomachines and infostation. There-
fore, the interactions between nanomachines and infostation
increase which further yield a better delay performance and
higher average throughput.

However, the system throughput performance does not
have such a direct relation. This is because, system through-
put is defined as the average number of spike bits trans-
mitted in the system until the offloading of a message.
For E[υni] = 0.1, the collision rate of nanomachines and
infostations are extremely low, creating a high message
delivery delay. Until the delivery of the message almost

all of the nanomachines get infected. Doubling E[υni]
causes the message delivery delay to decrease significantly.
However, the number of infected nanomachines does not
change at the same pace (Fig. 10(d)). Thus, the throughput
increases significantly because of the significant decrease
in average message delivery delay. Further increasing of
E[υni] causes message delivery delay to decrease, and also
the number of infected nanomachines decreases as well.
Therefore, the system throughput performance decreases.

6.3 Effect of Contact Time
In Fig. 11(a), average message delay and system throughput
are shown with varying contact time. A long contact time
yields a high adhesion probability and more of the colli-
sions result with successful adhesion. Therefore, E[Td] de-
creases and Tsys increases with increasing τc. In Fig. 11(a),
after a certain value of τc, the performance of MAMNET
does not change. The reason can be observed more clearly
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in Fig. 11(b). The contact time of nanonodes has only an
effect on the adhesion probability. Actually, at τc = 1.1
second, the adhesion probability becomes 1, and after that
point, the adhesion rate does not change. For τc = 0.75
second, adhesion probability (Ra) is 0.3, i.e., approximately
one third of the collisions resulted in successful adhesion.
On the other hand, for τc = 1.1, Ra = 1, i.e., all the
collisions resulted in successful adhesion. Thus, E[Td] and
Tsys become constant after τc = 1.1 second.

6.4 Effect of Number of Bonds Required for Suc-
cessful Adhesion
Another critical parameter defined in Section 3 was the
number of bonds required for successful adhesion. The
effect of number of bonds required for successful adhesion
on MAMNET performance is analyzed in Fig. 11(c). With
the increase in the number of bonds required for successful
adhesion, the adhesion of nanomachines becomes more
difficult. Therefore, the adhesion probability decreases,
which implies a decrease in the interaction of nanoma-
chines. Hence, average message delivery delay increases
and system throughput decreases with increasing number
of bonds required for successful adhesion.

6.5 Effect of Molecular Neuro-Spike Communica-
tion Parameters
Here, the effects of molecular neuro-spike communica-
tion parameters on MAMNET performance are explored.
Synaptic variability, threshold used for spike detection
and signal-to-noise ratio on post-synaptic potential affect
molecular neuro-spike communication and thus, MAMNET
performance.

In Fig. 12(a), average message delivery delay is shown
with varying θ for different SNR. The effect of SNR
on delay performance is obvious. With decreasing SNR,
the transmission probability of information decreases and
this yields higher delays. The effect of the threshold used
for spike detection is more complicated. In Chapter 4,
it is pointed out that the choice of the threshold for
detection of spikes is very important for molecular neuro-
spike communication. There exists a critical value for θ
to achieve a high channel performance. In Fig. 12(a), the
average message delivery delay decreases until a certain
value of θ. After that point, E[Td] starts to increase. This
is because of the effect of θ on transmission probability.
In Fig. 12(b), the effects of the threshold used for spike
detection on transmission probability and average message
delivery delay are shown. It can be seen that, there exists a
critical value of θ which makes the transmission probability
maximum.

Similar arguments follow for the average throughput
and system throughput. The threshold value that makes
the transmission probability maximum also maximizes the
throughput. In Fig. 12(c) and 12(d), a reverse hook shape
exists for the average throughput and system throughput
with varying threshold. From Fig. 12(a), Fig. 12(c) and
Fig. 12(d), we deduce that the critical value of threshold

slightly changes with different SNR values. Therefore, a
threshold that goes well with all SNR values should be
chosen to achieve low message delivery delay and high
system throughput.

6.6 Effect of Number of Spike Bits Contained in a
Message
The number of spike bits used to encode a message is
a critical parameter. Because of the limited capabilities
of nanomachines, we do not expect them to generate a
large amount of information. Nanomachines sensing the
environment, generates information about the observed
phenomena. The information generated by nanomachines
are on the order of a few dozen of spike bits. The predefined
message strings, and their length are determined before
the deployment, and hence, nanomachines are accordingly
programmed. The length of the messages depends on the
diversity of the phenomena that is desired to be observed in
the deployment environment, e.g., with 8 bits 256 different
phenomena can be represented.

In Fig. 13(a), the performance of MAMNET is shown
for varying n. With increasing n, the performance of
MAMNET decreases. This is due to the decreased trans-
mission probability of a message. Note that, the successful
transmission probability of a message given in (24) expo-
nentially decreases with increasing message length. This
causes fewer nanomachines to get infected, and eventually,
a higher message delivery delay. On the other hand, having
more number of spike bits transmitted in a single message,
one can expect a higher system throughput. However,
the decrease in the successful message transmission prob-
ability overcomes the increase in the number of spike
bits contained in a message. Therefore, system throughput
decreases with increasing number of spike bits contained
in a message.

6.7 Effect of Number of Nanomachines
The number of nanomachines in MAMNET is also a critical
parameter for the performance MAMNET. In Fig. 13(b), av-
erage message delay and system throughput are shown for
varying number of nanomachines. The increasing number
of nanomachines increases the connectivity in MAMNET.
Therefore, the message can be delivered to an infostation in
a lower time. Furthermore, the system throughput increases
with increasing number of nanomachines.

7 CONCLUSION

In this paper, using the stochastic models for collision and
adhesion of nanomachines we first derive the rates for the
interaction of nanomachines. Then, using the principles of
neural communication we provide a new communication
paradigm for the realization of mobile ad hoc molecular
nanonetworks. We also investigate the performance of
molecular neuro-spike channel model by examining single
spike bit error probability and mutual information. Then
we model the flow of a single message in MAMNET by
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Fig. 11. (a) Average message delay and system throughput with varying contact time. (b) Adhesion probability
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Fig. 13. Average message delay and system throughput with varying (a) number of spike bits contained in the
message. (b) number of nanomachines.

using the principles of infectious disease spreading. We
evaluate the performance of MAMNET based on average
message delivery delay and system throughput expressions.
Our models and numerical analysis clearly show that a
mobile ad hoc nanonetwork can be realized with sufficiently

low message delivery delay and sufficiently high system
throughput. Numerical results also reveal that it is impera-
tive to efficiently and effectively regulate the parameters to
achieve better performance.



14

REFERENCES
[1] I. F. Akyildiz, F. Brunetti, C. Blazquez, “NanoNetworking: A New

Communication Paradigm”, Computer Networks Journal (Elsevier),
June 2008.

[2] M. Pierobon, I. F. Akyildiz, “A Physical Channel Model for Molec-
ular Communication in Nanonetworks”, IEEE Journal on Selected
Areas in Communications (J-SAC), Vol. 28, No. 4, May 2010, pp.
602-611.

[3] M, Gregori, and I. F. Akyildiz, “A New NanoNetwork Architecture
using Flagellated Bacteria and Catalytic Nanomotors,” IEEE Journal
of Selected Areas in Communications (JSAC), Vol. 28, No. 4, pp.
612-619, May 2010.

[4] G. M. Whitesides, “The Once and Future Nano-machine”, Scientific
American, 2001.

[5] S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M.
Moore and T. Nakano, “Molecular Communication”, in Proc. NSTI
Nanotech 2005, Anaheim, California, USA, 2005.

[6] B. Atakan, O. B. Akan, “On Channel Capacity and Error Compen-
sation in Molecular Communication”, Springer Trans. on Computa-
tional System Biology, vol. 10, 2008, pp. 59-80.

[7] M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A.
Kayasuga, H. Kojima, H. Sakakibara, K. Oiwa, “A Design of a
Molecular Communication System for Nanomachines Using Molec-
ular Motors”, in Proc. IEEE PERCOMW 2006, Italy, 2006.

[8] T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, K, Arima,
“Molecular Communication for Nanomachines Using Intercellular
Calcium Signaling”, in Proc. IEEE Conference on Nanotechnology
2005, Nagoya, Japan, July 2005.

[9] S. E. Chesla, P. Selveraj, C. Zu, “Measuring Two-Dimensional
Receptor-Ligand Binding Kinetics by Micropipette”, Biophysical
Journal, vol. 75, no. 3, September, 1998, pp. 1553-1572.

[10] Y. Moritani, S. Hiyama, T. Suda, “Molecular Communication among
Nanomachines Using Vesicles”, in Proc. NSTI Nanotechnology Con-
ference and Trade Show, 2006.

[11] B. Atakan, O. B. Akan, “Carbon nanotube-based nanoscale ad hoc
networks”, IEEE Communications Magazine, vol. 48, no. 6, 2010,
pp. 129-135.

[12] J. Wiedermann, L. Petru, “Communicating Mobile Nano-Machines
and Their Computational Power.”, in Proc. ICST Conference on
Nano-networks, Boston, USA, 2008.

[13] A. Grakoui, et. al., “The Immunological Synapse: A Molecular
Machine Controlling T Cell Activation”, Science, vol. 285, no. 5425,
1999, pp. 221-227.

[14] R.A. Freitas, “Nanomedicine, Volume I: Basic Capabilities”, Landes
Biosience, 1999.

[15] D. A. McQuarrie, “Kinetics of small systems I”, Chemical Physics,
vol. 38, 1963, pp. 433-436.

[16] D. M. Blaugh, G. Resta, P. Santi, “A statistical analysis of the long-
run node spatial distribution in mobile ad hoc networks”, Wireless
Networks, Vol 10, 2004, pp. 543-554.

[17] G. I. Bell, “Models for the specific adhesion of cells to cells”, Science
vol. 200. no. 4342, 12 May 1978, pp. 618-627.

[18] M. L. Dustin and D. R. Colman, “Neural and Immunological
Synaptic Relations”, Science vol. 298 no. 5594, 25 October 2002,
pp. 785-789.

[19] R. L. Juliano, “Signal transduction by cell adhesion receptors
and the cytoskeleton: functions of integrins, cadherins, selectins,
and immunoglobulin-superfamily members”, Annu. Rev. Pharmacol.
Toxicol. vol. 42, 2002, pp. 283-323.

[20] A. Manwani, “Information-theoretic analysis of neuronal communi-
cation”, Thesis(Phd), California Institute of Technology, 2000.

[21] L. J. DeFelice, “Introduction to membrane noise”, Plenum Press,
1981.

[22] Z. J. Haas, T. Small, “A new networking model for biological
applications of ad hoc sensor networks”, IEEE/ACM Trans. on
Networking, vol. 14, no 1, 2006, pp. 27-40.

[23] X. Zhang, G. Neglia, J. Kurose and D. Towsley, “Performance
modeling of epidemic routing”, Computer Networks, vol. 51, no.
10, 2007, pp. 2867-2891.

[24] A. Khelil, C. Becker, J. Tian, and K. Rothermel, “An epidemic
model for information diffusion in MANETs”, in Proc. 5th ACM
International Workshop on Modeling Analysis and Simulation of
Wireless and Mobile Systems, Atlanta, Georgia, September 2002.

[25] W. O. Kermack, A. G. McKendrick, “A contribution to the mathe-
matical theory of epidemics”, in Proc. R. Soc. Lond A, 115, 1927,
pp. 700-721

Aydin Guney received the B.Sc. and M.Sc.
degrees in electrical and electronics engi-
neering from Middle East Technical Uni-
versity, Ankara, Turkey, in 2007 and 2010,
respectively. He is currently pursuing his
Ph.D degree at the Department of Elec-
trical and Electronics Engineering, Middle
Easy Technical University, and at the same
time working as a test design engineer at
Aselsan Inc. and his current research inter-
ests include molecular communication and

nanonetworks.

Baris Atakan (S’05) received the B.Sc. and
M.Sc. degrees in electrical and electronics
engineering from Ankara University and Mid-
dle East Technical University, Ankara, Turkey,
in 2000 and 2005, respectively. He is cur-
rently a research assistant in the Next gen-
eration Wireless Communication Laboratory
and pursuing his Ph.D degree at the Depart-
ment of Electrical and Electronics Engineer-
ing, Koc University. His current research in-
terests include biologically-inspired commu-

nication protocols for Wireless Sensor Networks and Cognitive Radio
Networks, and nano-scale communication.

Ozgur B. Akan (M’00-SM’07) received the
B.S. and M.S. degrees in electrical and
electronics engineering from Bilkent Univer-
sity and Middle East Technical University,
Ankara, Turkey, in 1999 and 2001, respec-
tively. He received the Ph.D. degree in elec-
trical and computer engineering from the
Broadband and Wireless Networking Lab-
oratory, School of Electrical and Computer
Engineering, Georgia Institute of Technology,
Atlanta, in 2004. He is currently Associate

Professor with the Department of Electrical and Electronics Engi-
neering, Koc University and the Director of Next-generation Wireless
Communications Laboratory (NWCL). His current research interests
are in wireless communications, bio-inspired communications, nano-
scale and molecular communications, network information theory.

Dr. Akan is an Associate Editor for IEEE Transactions on Vehicular
Technology, International Journal of Communication Systems (Wi-
ley), Nano Communication Networks Journal (Elsevier). He served
as an Editor for ACM/Springer Wireless Networks (WINET) Journal
(2004-2010), as an Area Editor for AD HOC Networks Journal (El-
sevier) (2004-2008), as a Guest Editor for several special issues, as
the TPC Co-Chair for the 5th ICST Conference on Nano Networks,
as the TPC Co-Chair for the 13th ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems
(ACM MSWiM 2010), the General Co-Chair for The Third Interna-
tional Conference on Bio-Inspired Models of Network, Information,
and Computing Systems (ICST/IEEE BIONETICS 2008), the Euro-
pean Vice Chair for The Second International Conference on Nano-
Networks (ICST/ACM Nano-Net 2007), an International Vice Chair
for IEEE INFOCOM 2006, and in organizing committees and tech-
nical program committees of many other international conferences.
He is the Vice President for IEEE Communications Society - Turkey
Section. He is an IEEE Senior Member (Communications Society),
and a member of ACM. Dr. Akan received the IBM Faculty Award
twice in 2010 and 2008, Turkish Academy of Sciences Distinguished
Young Scientist Award 2008 (TUBA-GEBIP).


