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Abstract—This paper studies the optimal investment and pricing decisions of a cognitive mobile virtual network operator (C-MVNO)
under spectrum supply uncertainty. Compared with a traditional MVNO who often leases spectrum via long-term contracts, a C-MVNO
can acquire spectrum dynamically in short-term by both sensing the empty “spectrum holes” of licensed bands and dynamically leasing
from the spectrum owner. As a result, a C-MVNO can make flexible investment and pricing decisions to match the current demands
of the secondary unlicensed users. Compared to dynamic spectrum leasing, spectrum sensing is typically cheaper, but the obtained
useful spectrum amount is random due to primary licensed users’ stochastic traffic. The C-MVNO needs to determine the optimal
amounts of spectrum sensing and leasing by evaluating the trade off between cost and uncertainty. The C-MVNO also needs to
determine the optimal price to sell the spectrum to the secondary unlicensed users, taking into account wireless heterogeneity of
users such as different maximum transmission power levels and channel gains. We model and analyze the interactions between the
C-MVNO and secondary unlicensed users as a Stackelberg game. We show several interesting properties of the network equilibrium,
including threshold structures of the optimal investment and pricing decisions, the independence of the optimal price on users’ wireless
characteristics, and guaranteed fair and predictable QoS among users. We prove that these properties hold for general SNR regime
and general continuous distributions of sensing uncertainty. We show that spectrum sensing can significantly improve the C-MVNO’s
expected profit and users’ payoffs.

Index Terms—Cognitive radio, spectrum trading, spectrum sensing, dynamic spectrum leasing, spectrum pricing, Stackelberg game,
Subgame Perfect equilibrium.

✦

1 INTRODUCTION

W IRELESS spectrum is typically considered as a
scarce resource, and is traditionally allocated

through static licensing. Field measurements show that,
however, most spectrum bands are often under-utilized
even in densely populated urban areas ( [2]). To achieve
more efficient spectrum utilization, people have pro-
posed various dynamic spectrum access approaches in-
cluding hierarchical-access and dynamic exclusive use
( [3]–[7]). Hierarchical-access allows a secondary (unli-
censed) network operator or users to opportunistically
access the spectrum without affecting the normal oper-
ation of the spectrum owner who serves the primary
(licensed) users. Dynamic exclusive use allows a spec-
trum owner to dynamically transfer and trade the usage
right of its licensed spectrum to a third party (e.g., a
secondary network operator or a secondary end-user) in
the spectrum market. This paper considers a secondary
operator who obtains spectrum resource via both spec-
trum sensing as in the hierarchical-access approach and
dynamic spectrum leasing as in the dynamic exclusive use
approach.
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Spectrum sensing obtains awareness of the spectrum
usage and existence of primary users, by using geoloca-
tion and database, beacons, or cognitive radios (e.g., [8]–
[11]). The primary users are oblivious to the presence of
secondary cognitive network operators or users. The sec-
ondary network operator or users can sense and utilize
the unused “spectrum holes” in the licensed spectrum
without violating the usage rights of the primary users
(e.g., [4], [7]). Since the secondary operator or users does
not know the primary users’ activities before sensing, the
amount of useful spectrum obtained through sensing is
uncertain (e.g. [12]–[15]).

With dynamic spectrum leasing, a spectrum owner
allows secondary users to operate in their temporarily
unused part of spectrum in exchange of economic return
(e.g., [5], [7], [16]). The dynamic spectrum leasing can be
short-term or even real-time (e.g., [17]–[19]), and can be
at a similar time scale of the spectrum sensing operation.

In this paper, we study the operation of a cognitive
radio network that consists a cognitive mobile virtual
network operator (C-MVNO) and a group of secondary
unlicensed users. The word “virtual” refers to the fact
that the operator does not own the wireless spectrum
bands or even the physical network infrastructure. The
C-MVNO serves as the interface between the spectrum
owner and the secondary end-users. The word “cog-
nitive” refers to the fact that the operator can obtain
spectrum resource through both spectrum sensing using
the cognitive radio technology and dynamic spectrum
leasing from the spectrum owner. The operator then
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resells the obtained spectrum (bandwidth) to secondary
users to maximize its profit. The proposed model is a
hybrid of the hierarchical-access and dynamic exclusive
use models. It is applicable in various network sce-
narios, such as achieving efficient utilization of the TV
spectrum in IEEE 802.22 standard [20]. This standard
suggests that the secondary system should operate on a
point-to-multipoint basis, i.e., the communications will
happen between secondary base stations and secondary
customer-premises equipment. The base stations can be
operated by one or several C-MVNOs introduced in this
paper.

Compared with a traditional MVNO who only leases
spectrum through long-term contracts, a C-MVNO can
dynamically adjust its sensing and leasing decisions to
match the changes of users’ demand at a short time scale.
Moreover, sensing often offers a cheaper way to obtain
spectrum compared with leasing. The cost of sensing
mainly includes the sensing time and energy, and does
not include explicit cost paid to the spectrum owner.
With a mature spectrum sensing technology, sensing cost
should be reasonable low (otherwise there is no point
of using cognitive radio). Spectrum leasing, however,
involves direct negotiation with the spectrum owner.
When the spectrum owner determines the cost of leasing,
it needs to calculate its opportunity cost, i.e., how much
revenue the spectrum can provide if the spectrum owner
provides services directly over it. It is reasonable to
believe that the leasing cost is more expensive than the
sensing cost in most cases1. Although sensing is cheaper,
the amount of spectrum obtained through sensing is
often uncertain due to the stochastic nature of primary
users’ traffic. It is thus critical for a C-MVNO to find the
right balance between cost and uncertainty.

Our key results and contributions are summarized
as follows. For simplicity, we refer to the C-MVNO as
“operator”, secondary users as “users”, and “dynamic
leasing” as “leasing”.

• A Stackelberg game model: We model and analyze
the interactions between the operator and the users
in the spectrum market as a Stackelberg game. As
the leader, the operator makes the sensing, leasing,
and pricing decisions sequentially. As the followers,
users then purchase bandwidth from the operator
to maximize their payoffs. By using backward in-
duction, we prove the existence and uniqueness
of the equilibrium, and show how various system
parameters (i.e., sensing and leasing costs, users’
transmission power and channel conditions) affect
the equilibrium behavior.

• Threshold structures of the optimal investment and
pricing decisions: At the equilibrium, the operator
will sense the spectrum only if the sensing cost
is cheaper than a threshold. Furthermore, it will
lease some spectrum only if the resource obtained

1. The analysis of this paper also covers the case where sensing is
more expensive than leasing, which is a trivial case to study.

through sensing is below a threshold. Finally, the
operator will charge a constant price to the users if
the total bandwidth obtained through sensing and
leasing does not exceed a threshold. The thresholds
are easy to compute and the corresponding deci-
sions rules are easy to implement in practice.

• Fair and predictable QoS: The operator’s optimal pric-
ing decision is independent of the users’ wireless
characteristics. Each user receives a payoff that is
proportional to its channel gain and transmission
power, which leads to the same signal-to-noise
(SNR) for all users.

• Impact of spectrum sensing: We show that the avail-
ability of sensing always increases the operator’s
profit in the expected sense. The actual realization
of the profit at a particular time heavily depends
on the spectrum sensing results. Users always get
better payoffs when the operator performs spectrum
sensing.

Section 2 introduces the network model and prob-
lem formulation. In Section 3, we analyze the game
model through backward induction. We discuss various
insights obtained from the equilibrium analysis and
present some numerical results in Section 4. In Section
5, we show the impact of spectrum sensing on both the
operator and users. We conclude in Section 6 and outline
some future research directions.

1.1 Related Work

There is a growing interest in studying the investment
and pricing decisions of cognitive network operators
recently. Several auction mechanisms have been pro-
posed to study the investment problems of cognitive
network operators (e.g., [21], [22]). Other recent results
studied the pricing decisions of the cognitive network
operators who interact with a group of secondary users
(e.g., [23]–[30]). [21] considered users’ queueing delays
and obtained most results through simulations. [23] pre-
sented a recent survey on the spectrum sharing games
of network operators and cognitive radio networks.
[24] studied the competition among multiple service
providers without modeling users’ wireless details. [25]
considered a pricing competition game of two operators
and adopted a simplified wireless model for the users.
[26] derived users’ demand functions based on the ac-
ceptance probability model for the users. [27] explored
demand functions based on both quality-sensitive and
price-sensitive buyer population models. [28] formulated
the interaction between one primary user (monopolist)
and multiple secondary users as a Stackelberg game.
The primary user uses some secondary users as re-
lays and leases its bandwidth to those relays to collect
revenue. [29] studied a multiple-level spectrum market
among primary, secondary, and tertiary services where
global information is not available. [30] considered the
short-term spectrum trading between multiple primary
users and multiple secondary users. The spectrum buy-
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Fig. 1. Operator’s Investment in Spectrum Sensing and
Leasing

ing behaviors of secondary users are modeled as an
evolutionary game, while selling behaviors of primary
users are modeled as a noncooperative game. [26]–[30]
obtained most interesting results through simulations.
There are only few papers (e.g., [19], [29], [31]) that
jointly considered the spectrum investment and service
pricing problem as this paper. None of the above work
considered the impact of supply uncertainty due to
spectrum sensing.

Our model of spectrum uncertainty is related to the
random-yield model in supply chain management (e.g.,
[32]–[34]). The unique wireless aspects of the system
model lead to new solutions and insights in our problem.

Our paper represents a first attempt of understanding
how spectrum uncertainty impacts the economic deci-
sions of an cognitive radio operator. To obtain sharp
insights, we focus on a stylized model where a monopo-
list operator faces a group of secondary users. There are
many more interesting research issues in this area. Some
are further discussed in Section 6.

2 NETWORK MODEL

2.1 Background on Spectrum Sensing and Leasing

To illustrate the opportunity and trade-off of spectrum
sensing and leasing, we consider a spectrum owner who
divides its licensed spectrum into two types:

• Service Band: This band is reserved for serving the
spectrum owner’s primary users (PUs). Since the
PUs’ traffic is stochastic, there will be some unused
spectrum which changes dynamically. The operator
can sense and utilize the unused portions. There are
no explicit communications between the spectrum
owner and the operator.

• Transference Band: The spectrum owner temporarily
does not use this band. The operator can lease the
bandwidth through explicit communications with
the spectrum owner. No sensing is allowed in this
band.

Due to the short-term property of both sensing and
leasing, the operator needs to make both the sensing and
leasing decisions in each time slot.

The example in Fig. 1 demonstrates the dynamic
opportunities for spectrum sensing, the uncertainty of
sensing outcome, and the impact of sensing or leasing

TABLE 1
Key Notations

Symbol Physical Meaning

Bs Sensing bandwidth
Bl Leasing bandwidth
Cs Unit sensing cost
Cl Unit leasing cost

α ∈ [0, 1] Sensing realization factor
I = {1, · · · , I} Set of secondary users

π Unit price
wi User i’s bandwidth allocation
ri User i’s data rate

Pmax
i

User i’s maximum transmission power
hi User i’s channel gain
n0 Noise power density

gi = Pmax
i

hi/n0 User i’s wireless characteristic
SNRi = gi/wi User i’s SNR
G =

∑

i∈I
gi Users’ aggregate wireless characteristics

R Operator’s profit

decisions. The spectrum owner’s entire band is divided
into small 34 channels2.

• Time slot 1: PUs use channels 1−4 and 11−15. The
operator is unaware of this and senses channels 3−8.
As a result, it obtains 4 unused channels (5 − 8).
It leases additional 9 channels (20 − 28) from the
transference band.

• Time slot 2: PUs change their behavior and use
channels 1− 6. The operator senses channels 5− 14
and obtains 8 unused channels (7 − 14). It leases
additional 5 channels (23−27) from the transference
band.

In this paper, we will only study the operator’s deci-
sions within a single time slot. We choose the time slot
length such that primary users’ activities remain roughly
unchanged within a single time slot. This means that it
is enough for the operator to sense at the beginning of
each time slot. For traffic types such as TV programs,
data transfer, and even VoIP voice sessions, the length
of the time slot can be reasonable long. For readers who
are interested in the optimization of the time slot length
to balance sensing and data transmission, see [14].

2.2 Notations and Assumptions

We consider a cognitive network with one operator and
a set I = {1, . . . , I} of users. The operator has the
cognitive capability and can sense the unused spectrum.
One way to realize this is to let the operator construct
a sensor network that is dedicated to sensing the radio
environment in space and time [35]. The operator will
collect the sensing information from the sensor network
and provide it to the unlicensed users, or providing
“sensing as service”. If the operator owns several base
stations, then each base station is responsible for collect-
ing sensing information in a certain geographical area.
As mentioned in [35], there has been significant current

2. Channel 16 is the guard band between the service and transference
bands.
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Fig. 2. A Stackelberg Game

research efforts in the context of an European project
SENDORA [36], which aims at developing techniques
based on sensor networks for supporting coexistence of
licensed and unlicensed wireless users in a same area.
The users are equipped with software defined radios and
can tune to transmit in a wide range of frequencies as
instructed by the operator, but do not necessarily have
the cognitive sensing capacity. Since the secondary users
do not worry about sensing, they can spend most of
their time and energy on actual data transmissions. Such
a network structure puts most of the implementation
complexity at the operator side and reduces the user
equipment complexity, and thus might be easier to im-
plement in practice than a “full” cognitive network.

The key notations of this paper are listed in Table 1
with some explanations as follows.

• Investment decisions Bs and Bl: the operator’s sensing
and leasing bandwidths, respectively.

• Sensing realization factor α: when the operator senses
a total bandwidth of Bs, only a proportion of α ∈
[0, 1] is unused and can be used by the operator. α
is a random variable and depends on the primary
users’ activities. With perfect sensing results, users
can use bandwidth up to Bsα without generating
interferences to the primary users.

• Cost parameters Cs and Cl: the operator’s fixed sens-
ing and leasing costs per unit bandwidth, respec-
tively. Sensing cost Cs depends on the operator’s
sensing technologies. When the operator senses
spectrum, it needs to spend time and energy on
channel sampling and signal processing ( [37]). Sens-
ing over different channels often needs to be done
sequentially due to the potentially large number of
channels open to opportunistic spectrum access and
the limited power/hardware capacity of cognitive
radios ( [38]). The larger sensing bandwidth and the
more channels, the longer time and higher energy it
requires ( [39]). For simplicity, we assume that total
sensing cost is linear in the sensing bandwidth Bs.
Leasing cost Cl is determined through the negotia-
tion between the operator and the spectrum owner
and is assumed to be larger than Cs.

• Pricing decision π: the operator’s choice of price per
unit bandwidth to the users.

2.3 A Stackelberg Game

We consider a Stackelberg Game between the operator
and the users as shown in Fig. 2. The operator is the
Stackelberg leader: it first decides the sensing amount
Bs in Stage I, then decides the leasing amount Bl in
Stage II (based on the sensing result Bsα), and then
announces the price π to the users in Stage III (based
on the total supply Bsα + Bl). Finally, the users choose
their bandwidth demands to maximize their individual
payoffs in Stage IV.

We note that “sensing followed by leasing” is optimal
for the operator to maximize profit. Since sensing is
cheaper than leasing, the operator should lease only
if sensing does not provide enough resource. If the
operator determines sensing and leasing simultaneously,
then it is likely to “over-lease” (compared with “sensing
followed by leasing”) to avoid having too little resource
when α is small. “Leasing before sensing” can not
improve the operator’s profit either due to the same
reason.

3 BACKWARD INDUCTION OF THE FOUR-
STAGE GAME

The Stackelberg game falls into the class of dynamic
game, and the common solution concept is the Subgame
Perfect Equilibrium (SPE, or simply as equilibrium in this
paper). A general technique for determining the SPE is
the backward induction ( [40]). We will start with Stage
IV and analyze the users’ behaviors given the operator’s
investment and pricing decisions. Then we will look at
Stage III and analyze how the operator makes the pricing
decision given investment decisions and the possible
reactions of the users in Stage IV. Finally we proceed to
derive the operator’s optimal leasing decision in Stage
II and then the optimal sensing decision in Stage I. The
backward induction captures the sequential dependence
of the decisions in four stages.

3.1 Spectrum Allocation in Stage IV

In Stage IV, end-users determine their bandwidth de-
mands given the unit price π announced by the operator
in stage III.

Each user can represent a transmitter-receiver node
pair in an ad hoc network, or a node that transmits to the
operator’s base station in an uplink scenario. We assume
that users access the spectrum provided by the opera-
tor through FDM (Frequency-division multiplexing) or
OFDM (Orthogonal frequency-division multiplexing) to
avoid mutual interferences. User i’s achievable rate (in
nats) is3:

ri(wi) = wi ln

(
1 +

Pmax
i hi

n0wi

)
, (1)

3. We assume that the operator only provides bandwidth without
restricting the application types. This assumption has been commonly
used in dynamic spectrum sharing literature, e.g., [16], [19], [24], [41].
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where wi is the allocated bandwidth from the operator,
Pmax
i is user i’s maximum transmission power, n0 is the

noise power per unit bandwidth, hi is user i’s channel
gain (between user i’s own transmitter and receiver in
an ad hoc network, or between user i’s transmitter to the
operator’s base station in an uplink scenario). To obtain
rate in (1), user i spreads its maximum transmission
power Pmax

k across the entire allocated bandwidth wi.
To simplify the notation, we let gi = Pmax

i hi/n0, thus
gi/wi is the user i’s signal-to-noise ratio (SNR). Here
we focus on best-effort users who are interested in
maximizing their data rates. Each user only knows its
local information (i.e., Pmax

i , hi, and n0) and does not
know anything about other users.

From a user’s point of view, it does not matter
whether the bandwidth has been obtained by the opera-
tor through spectrum sensing or dynamic leasing. Each
unit of allocated bandwidth is perfectly reliable for the
user.

To obtain closed-form solutions, we first focus on the
high SNR regime where SNR ≫ 1. This is motivated by the
fact that users often have limited choices of modulation
and coding schemes, and thus may not be able to decode
a transmission if the SNR is below a threshold. In the
high SNR regime, the rate in (1) can be approximated as

ri(wi) = wi ln

(
gi
wi

)
. (2)

Although the analytical solutions in Section 3 are derived
based on (2), we emphasize that all the major engineering
insights remain true in the general SNR regime. A formal
proof is in Section 4.

A user i’s payoff is a function of the allocated band-
width wi and the price π,

ui(π,wi) = wi ln

(
gi
wi

)
− πwi, (3)

i.e., the difference between the data rate and the linear
payment (πwi). Payoff ui(π,wi) is concave in wi, and the
unique bandwidth demand that maximizes the payoff is

w∗
i (π) = arg max

wi≥0
ui(π,wi) = gie

−(1+π), (4)

which is always positive, linear in gi, and decreasing
in price π. Since gi is linear in channel gain hi and
transmission power Pmax

i , then a user with a better
channel condition or a larger transmission power has
a larger demand.

Equation (4) shows that each user i achieves the same
SNR:

SNRi =
gi

w∗
i (π)

= e(1+π).

but a different payoff that is linear in gi,

ui(π,w
∗
i (π)) = gie

−(1+π).

We denote users’ aggregate wireless characteristics as
G =

∑
i∈I gi. The users’ total demand is

∑

i∈I

w∗
i (π) = Ge−(1+π). (5)

1
( )S

2
( )S

3
( )S

0 1

( )D

Fig. 3. Different intersection cases of D(π) and S(π)

Next, we will consider how the operator makes the
investment (sensing and leasing) and pricing decisions
in Stages I-III based on the total demand in eq. (5)4. In
particular, we will show that the operator will always
choose a price in Stage III such that the total demand
(as a function of price) does not exceed the total supply.

3.2 Optimal Pricing Strategy in Stage III

In Stage III, the operator determines the optimal pricing
considering users’ total demand (5), given the band-
width supply Bsα+Bl obtained in Stage II. The operator
profit is

R(Bs, α,Bl, π) = min

(
π
∑

i∈I

w∗
i (π), π (Bl +Bsα)

)

− (BsCs +BlCl) , (6)

which is the difference between the revenue and total
cost. The min operation denotes the fact that the operator
can only satisfy the demand up to its available supply.
The objective of Stage III is to find the optimal price
π∗ (Bs, α,Bl) that maximizes the profit, that is,

RIII(Bs, α,Bl) = max
π≥0

R(Bs, α,Bl, π). (7)

The subscript “III” denotes the best profit in Stage III.
Since the bandwidths Bs and Bl are given in this

stage, the total cost BsCs + BlCl is already fixed. The
only optimization is to choose the optimal price π to
maximize the revenue, i.e.,

max
π≥0

min

(
π
∑

i∈I

w∗
i (π), π (Bl +Bsα)

)
. (8)

The solution of problem (8) depends on the bandwidth
investment in Stages I and II. Let us define D(π) =
π
∑

i∈I w
∗
i (π) and S(π) = π(Bl + Bsα). Figure 3 shows

three possible relationships between these two terms,
where Sj(π) (for j = 1, 2, 3) represents each of the three
possible choices of S(π) depending on the bandwidth
Bl +Bsα:

• S1(π) (excessive supply): No intersection with D(π);

4. We assume that the operator knows the value of G through proper
feedback mechanism from the users.
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TABLE 2
Optimal Pricing Decision and Profit in Stage III

Total Bandwidth Obtained in
Stages I and II

Optimal Price π∗ (Bs, α, Bl) Optimal Profit RIII(Bs, α,Bl)

Excessive Supply Regime:
Bl + Bsα ≥ Ge−2

πES = 1 RES

III
(Bs, α,Bl) = Ge−2 − BsCs − BlCl

Conservative Supply Regime:
Bl + Bsα < Ge−2

πCS = ln
(

G

Bl+Bsα

)

− 1 RCS

III
(Bs, α,Bl) = (Bl + Bsα) ln

(

G

Bl+Bsα

)

−

Bs(α + Cs)−Bl(1 + Cl)

• S2(π) (excessive supply): intersect once with D(π)
where D(π) has a non-negative slope;

• S3(π) (conservative supply): intersect once with
D(π) where D(π) has a negative slope.

In the excessive supply regime,
maxπ≥0min (S(π), D(π)) = maxπ≥0 D(π), i.e., the
max-min solution occurs at the maximum value of D(π)
with π∗ = 1. In this regime, the total supply is larger
than the total demand at the best price choice. In the
conservative supply regime, the max-min solution occurs
at the unique intersection point of D(π) and S(π). The
above observations lead to the following result.

Theorem 1: The optimal pricing decision and the corre-
sponding optimal profit at Stage III can be characterized
by Table 2.

The proof of Theorem 1 is given in Appendix A. Note
that in the excessive supply regime, some bandwidth
is left unsold (i.e., S(π∗) > D(π∗)). This is because
the acquired bandwidth is too large, and selling all the
bandwidth will lead to a very low price that decreases
the revenue (the product of price and sold bandwidth).
The profit can be apparently improved if the operator
acquires less bandwidth in Stages I and II. Later analysis
in Stages II and I will show that the equilibrium of the
game must lie in the conservative supply regime if the
sensing cost is non-negligible.

3.3 Optimal Leasing Strategy in Stage II

In Stage II, the operator decides the optimal leasing
amount Bl given the sensing result Bsα:

RII(Bs, α) = max
Bl≥0

RIII(Bs, α,Bl). (9)

We decompose problem (9) into two subproblems based
on the two supply regimes in Table 2,

1) Choose Bl to reach the excessive supply regime in
Stage III:

RES
II (Bs, α) = max

Bl≥max{Ge−2−Bsα,0}
RES

III(Bs, α,Bl).

(10)
2) Choose Bl to reach the conservative supply regime

in Stage III:

RCS
II (Bs, α) = max

0≤Bl≤Ge−2−Bsα
RCS

III(Bs, α,Bl), (11)

To solve subproblems (10) and (11), we need to con-
sider the bandwidth obtained from sensing.

• Excessive Supply (Bsα > Ge−2): in this case, the
feasible sets of both subproblems (10) and (11) are

empty. In fact, the bandwidth supply is already in
the excessive supply regime as defined in Table II,
and it is optimal not to lease in Stage II.

• Conservative Supply (Bsα ≤ Ge−2): first, we can show
that the unique optimal solution of subproblem (10)
is B∗

l = Ge−2 − Bsα. This means that the optimal
objective value of subproblem (10) is no larger than
that of subproblem (11), and thus it is enough to
consider subproblem (11) in the conservative supply
regime only.

Base on the above observations and some further
analysis, we can show the following:

Theorem 2: In Stage II, the optimal leasing decision
and the corresponding optimal profit are summarized
in Table 3.

The proof of Theorem 2 is given in Appendix B. Table
3 contains three cases based on the value of Bsα: (CS1),
(CS2), and (ES3). The first two cases involve solving
the subproblem (11) in the conservative supply regime,
and the last one corresponds to the excessive supply
regime. Although the decisions in cases (CS2) and (ES3)
are the same (i.e., zero leasing amount), we still treat
them separately since the profit expressions are different.

It is clear that we have an optimal threshold leasing
policy here: the operator wants to achieve a total band-
width equal to Ge−(2+Cl) whenever possible. When the
bandwidth obtained through sensing is not enough, the
operator will lease additional bandwidth to reach the
threshold; otherwise the operator will not lease.

3.4 Optimal Sensing Strategy in Stage I

In Stage I, the operator will decide the optimal sensing
amount to maximize its expected profit by taking the un-
certainty of the sensing realization factor α into account.
The operator needs to solve the following problem

RI = max
Bs≥0

RII (Bs) ,

where RII (Bs) is obtained by taking the expectation of
α over the profit functions in Stage II (i.e., RCS1

II (Bs, α),
RCS2

II (Bs, α), and RES3
II (Bs, α) in Table 3).

To obtain closed-form solutions, we assume that the
sensing realization factor α follows a uniform distri-
bution in [0, 1]. In Section 4.1, we prove that the major
engineering insights also hold under any general distribution.

To avoid the trivial case where sensing is so cheap
that it is optimal to sense a huge amount of bandwidth,
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TABLE 3
Optimal Leasing Decision and Profit in Stage II

Given Sensing Result Bsα After Stage I Optimal Leasing Amount B∗
l

Optimal Profit RII (Bs, α)

(CS1) Bsα ≤ Ge−(2+Cl) BCS1
l

= Ge−(2+Cl) −Bsα RCS1
II

(Bs, α) = Ge−(2+Cl) +Bs(αCl − Cs)

(CS2) Bsα ∈
(

Ge−(2+Cl), Ge−2
]

BCS2
l

= 0 RCS2
II

(Bs, α) = Bsα ln
(

G

Bsα

)

− Bs(α + Cs)

(ES3) Bsα > Ge−2 BES3
l

= 0 RES3
II

(Bs, α) = Ge−2 − BsCs
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0
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l
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s
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Fig. 4. Expected profit in Stage II under different sensing
and leasing costs

we further assume that the sensing cost is non-negligible
and is lower bounded by Cs ≥ (1− e−2Cl)/4.

To derive function RII (Bs), we will consider the
following three intervals:

1) Case I: Bs ∈ [0, Ge−(2+Cl)]. In this case, we always
have Bsα ≤ Ge−(2+Cl) for any value α ∈ [0, 1],
which corresponds to case (CS1) in Table 3. The
expected profit is

R1
II(Bs) =Eα∈[0,1]

[
RCS1

II (Bs, α)
]

=Ge−(2+Cl) +Bs

(
Cl

2
− Cs

)
,

which is a linear function of Bs. If Cs > Cl/2,
R1

II(Bs) is linearly decreasing in Bs; if Cs < Cl/2,
R1

II(Bs) is linearly increasing in Bs.
2) Case II: Bs ∈

(
Ge−(2+Cl), Ge−2

]
. Depending on the

value of α, Bsα can be in either case (CS1) or case
(CS2) in Table 3. The expected profit is

R2
II(Bs) =E

α∈
[
0,Ge

−(2+Cl)

Bs

]
[
RCS1

II (Bs, α)
]

+ E
α∈

[
Ge

−(2+Cl)

Bs
,1
]
[
RCS2

II (Bs, α)
]

=
Bs

2
ln

(
G

Bs

)
−

Bs

4
+

Bs

4

(
Ge−(2+Cl)

Bs

)2

−BsCs.

R2
II(Bs) is a strictly concave function of Bs since

its second-order derivative

∂2R2
II(Bs)

∂B2
s

=
1

2Bs

[(
Ge−(2+Cl)

Bs

)2

− 1

]
< 0

as Bs > Ge−(2+Cl) in this case.
3) Case III: Bs ∈

(
Ge−2,∞

)
. Depending on the value

of α, Bsα can be any of the three cases in Table 3.

The expected profit is

R3
II(Bs) =E

α∈
[
0,Ge

−(2+Cl)

Bs

]
[
RCS1

II (Bs, α)
]

+ E
α∈

[
Ge

−(2+Cl)

Bs
,Ge−2

Bs

]
[
RCS2

II (Bs, α)
]

+ E
α∈

[
Ge−2

Bs
,1
] [RES3

II (Bs, α)
]

=

(
G

e2

)2
e−2Cl − 1

4Bs

− BsCs +
G

e2
.

Because its first-order derivative

∂R3
II(Bs)

∂Bs

=

(
Ge−2

Bs

)2
1− e−2Cl

4
− Cs < 0,

as Bs > Ge−2 in this case, R3
II(Bs) is decreasing in

Bs and achieves its maximum at Bs = Ge−2.

To summarize, the operator needs to maximize

RII(Bs) =





R1
II(Bs), if 0 ≤ Bs ≤ Ge−(2+Cl);

R2
II(Bs), if Ge−(2+Cl) < Bs ≤ Ge−2;

R3
II(Bs), if Bs > Ge−2.

(12)
We can verify that Case II always achieves a higher

optimal profit than Case III. This means that the optimal
sensing will only lead to either case (CS1) or case (CS2)
in Stage II, which corresponds to the conservative supply
regime in Stage III. This confirms our previous intuition
that equilibrium is always in the conservative supply
regime under a non-negligible sensing cost, since some
resource is wasted in the excessive supply regime (see
discussions in Section 3.2).

Table 4 shows that the sensing decision is made in the
following two cost regimes:

• High sensing cost regime (Cs > Cl/2): it is optimal
not to sense. Intuitively, the coefficient 1/2 is due
to the uniform distribution assumption of α, i.e., on
average obtaining one unit of available bandwidth
through sensing costs 2Cs.

• Low sensing cost regime (Cs ∈
[
1−e−2Cl

4 , Cl

2

]
): the

optimal sensing amount BL∗
s is the unique solution

to the following equation:

∂R2
II(Bs)

∂Bs

=
1

2
ln

(
1

Bs/G

)
−
3

4
−Cs−

(
e−(2+Cl)

2Bs/G

)2

= 0.

(13)
The uniqueness of the solution is due to the strict
concavity of R2

II(Bs) over Bs. We can further show
that BL∗

s lies in the interval of
[
Ge−(2+Cl), Ge−2

]
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TABLE 4
Choice of Optimal Sensing Amount in Stage I

Optimal Sensing Decision B∗
s Expected Profit RI

High Sensing Cost Regime: Cs ≥ Cl/2 B∗
s = 0 RH

I
= Ge−(2+Cl)

Low Sensing Cost Regime: Cs ∈
[

(1 − e−2Cl )/4, Cl/2
]

B∗
s = BL∗

s , solution to eq. (13) RL

I
in eq. (14)

and is linear in G. Finally, the operator’s optimal
expected profit is

RL
I =

BL∗
s

2
ln

(
G

BL∗
s

)
−
BL∗

s

4
+

1

4BL∗
s

(
G

e2+Cl

)2

−BL∗
s Cs.

(14)

Based on these observations, we can show the follow-
ing:

Theorem 3: In Stage I, the optimal sensing decision
and the corresponding optimal profit are summarized
in Table 4. The optimal sensing amount B∗

l is linear in
G.

Figure 4 shows two possible cases for the function
RII(Bs). The vertical dashed line represents Bs =
e−(2+Cl). For illustration purpose, we assume G = 1,
Cl = 2, and Cs = {0.8, 1.2}. When the sensing cost
is large (i.e., Cs = 1.2 > Cl/2), RII(Bs) achieves its
optimum at Bs = 0 and thus it is optimal not to sense.
When the sensing cost is small (i.e., Cs = 0.8 < Cl/2),
RII(Bs) achieves its optimum at Bs > e−(2+Cl) and it is
optimal to sense a positive amount of spectrum.

4 EQUILIBRIUM SUMMARY AND NUMERICAL
RESULTS

Based on the discussions in Section 3, we summarize
the operator’s equilibrium sensing/leasing/pricing de-
cisions and the equilibrium resource allocations to the
users in Table 5. Several interesting observations are as
follows.

Observation 1: Both the optimal sensing amount B∗
s

(either 0 or BL∗
s ) and leasing amount B∗

l are linear
in the users’ aggregate wireless characteristics G =∑

i∈I P
max
i hi/n0.

The linearity enables us to normalize optimal sensing
and leasing decisions by users’ aggregate wireless char-
acteristics, and study the relationships between the nor-
malized optimal decisions and other system parameters
as in Figs. 5 and 6.

Figure 5 shows how the normalized optimal sensing
decision B∗

s/G changes with the costs. For a given leas-
ing cost Cl, the optimal sensing decision B∗

s decreases as
the sensing cost Cs becomes more expensive, and drops
to zero when Cs ≥ Cl/2. For a given sensing cost Cs,
the optimal sensing decision B∗

s increases as the leasing
cost Cl becomes more expensive, in which case sensing
becomes more attractive.

Figure 6 shows how the normalized optimal leasing
decision B∗

l /G depends on the costs Cl and Cs as well
as the sensing realization factor α in the low sensing
cost regime (denoted by “L”). In all cases, a higher

value α means more bandwidth is obtained from sensing
and there is a less need to lease. Figure 6 confirms
the threshold structure of the optimal leasing decisions
in Section 3.3, i.e., no leasing is needed whenever the
bandwidth obtained from sensing reaches a threshold.
Comparing different curves, we can see that the operator
chooses to lease more as leasing becomes cheaper or
sensing becomes more expensive. For high sensing cost
regime, the optimal leasing amount only depends on Cl

and is independent of Cs and α, and thus is not shown
here.

Observation 2: The optimal pricing decision π∗ in
Stage III is independent of users’ aggregate wireless
characteristics G.

Observation 2 is closely related to Observation 1. Since
the total bandwidth is linear in G, the “average” resource
allocation per user is “constant” at the equilibrium. This
implies that the price must be independent of the user
population change, otherwise the resource allocation to
each individual user will change with the price accord-
ingly.

Observation 3: The optimal pricing decision π∗ in
Stage III is non-increasing in α in the low sensing cost
regime.

First, in the low sensing cost regime where the sensing
result is poor (i.e., α is small as the third column in Table
5), the operator will lease additional resource such that
the total bandwidth reaches the threshold Ge−(2+Cl). In
this case, the price is a constant and is independent of
the value of α. Second, when the sensing result is good
(i.e., α is large as in the last column in Table 5), the total
bandwidth is large enough. In this case, as α increases,
the amount of total bandwidth increases, and the optimal
price decreases to maximize the profit.

Figure 7 shows how the optimal price changes with
various costs and α in the low sensing cost regime. It
is clear that price is first a constant and then starts to
decrease when α is larger than a threshold. The threshold
decreases in the optimal sensing decision of BL∗

s : a
smaller sensing cost or a higher leasing cost will lead
to a higher BL∗

s and thus a smaller threshold.
It is interesting to notice that the equilibrium price

only changes in a time slot where the sensing realization
factor α is large. This means that although operator has
the freedom to change the price in every time slot, the
actual variation of price is much less frequent. This leads
to less overhead and makes it easier to implement in
practice. Figure 8 illustrates this with different sensing
costs and α realizations. The left two subfigures corre-
spond to the realizations of α and the corresponding
prices with Cs = 0.48 and Cl = 1. As the sensing
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TABLE 5
The Operator’s and Users’ Equilibrium Behaviors

Sensing Cost Regimes High Sensing Cost: Cs ≥ Cl

2
Low Sensing Cost: 1−e

−2Cl

4
≤ Cs ≤ Cl

2

Optimal Sensing Amount B∗
s 0 BL∗

s ∈
[

Ge−(2+Cl), Ge−2
]

, solution to eq. (13)

Sensing Realization Factor α 0 ≤ α ≤ 1 0 ≤ α ≤ Ge−(2+Cl)/BL∗
s α > Ge−(2+Cl)/BL∗

s

Optimal Leasing Amount B∗
l

Ge−(2+Cl) Ge−(2+Cl) − BL∗
s α 0

Optimal Pricing π∗ 1 + Cl 1 + Cl ln
(

G

BL∗
s

α

)

− 1

Expected Profit RI RH

I
= Ge−(2+Cl) RL

I
in eq. (14) RL

I
in eq. (14)

User i’s SNR e(2+Cl) e(2+Cl) G

BL∗
s

α

User i’s Payoff gie−(2+Cl) gie−(2+Cl) gi(BL∗
s α/G)
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Fig. 5. Optimal sensing amount B∗
s

as a function of Cs and Cl.
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Fig. 8. Optimal price π∗ over time with different sensing
costs and α realizations

cost Cs is quite high in this case, the operator does not
rely heavily on sensing. As a result, the variability of
α (in the upper subfigure) has very small impact on
the equilibrium price (in the lower subfigure). In fact,
the price only changes in 11 out 50 time slots, and the
maximum amplitude variation is around 10%. The right
two figures correspond to the case where Cs = 0.35
and Cl = 1. As sensing cost is cheaper in this case, the
operator senses more and the impact of α on price is

larger. The price changes in 30 out of 50 time slots, and
the variation in amplitude can be as large as 30%.

Observation 4: The operator will sense the spectrum
only if the sensing cost is lower than a threshold. Fur-
thermore, it will lease additional spectrum only if the
spectrum obtained through sensing is below a threshold.

Observation 5: Each user i obtains the same SNR inde-
pendent of gi and a payoff linear in gi.

Observation 5 shows that users obtains fair and pre-
dictable resource allocation at the equilibrium. In fact,
a user does not need to know anything about the total
number and payoffs of other users in the system. It can
simply predict its QoS if it knows the cost structure of the
network (Cs and Cl)

5. Such property is highly desirable
in practice.

Finally, users achieve the same high SNR at the equi-
librium. The SNR value is either e(2+Cl) or G/(BL∗

s α),
both of which are larger than e2. This means that the
approximation ratio ln(SNRi)/ ln(1+SNRi) > ln(e2)/ ln(1+
e2) ≈ 94%. The ratio can even be close to one if the price
π is high.

In Sections 3.1 and 3.4, we made the high SNR regime
approximation and the uniform distribution assumption
of α to obtain closed-form expressions. Next we show
that relaxing both assumptions will not change any of
the major insights.

5. The analysis of the game, however, does not require the users to
know Cs or Cl.
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4.1 Robustness of the Observations

Theorem 4: Observations 1-5 still hold under the gen-
eral SNR regime (as in (1)) and any general distribution
of α.

Proof: We represent a user i’s payoff function in the
general SNR regime,

ui(π,wi) = wi ln

(
1 +

gi
wi

)
− πwi. (15)

The optimal demand w∗
i (π) that maximizes (15) is

w∗
i (π) = gi/Q(π), where Q(π) is the unique positive

solution to F (π,Q) := ln(1 +Q)− Q
1+Q

− π = 0. We find

the inverse function of Q(π) to be π(Q) = ln(1+Q)− Q
1+Q

.
By applying the implicit function theorem, we can obtain
the first-order derivative of function Q(π) over π as

Q′(π) = −
∂F (π,Q)/∂π

∂F (π,Q)/∂Q
=

(1 +Q(π))2

Q(π)
, (16)

which is always positive. Hence, Q(π) is increasing in π.
User i’s optimal payoff is

ui(π,w
∗
i (π)) =

gi
Q(π)

[ln(1 +Q(π))− π]. (17)

As a result, a user’s optimal SNR equals gi/w
∗
i (π) = Q(π)

and is user-independent. The total demand from all users
equals G/Q(π), and the operator’s investment and pric-
ing problem is

R∗ =max
Bs≥0

Eα∈[0,1][max
Bl≥0

max
π≥0

(min

(
π

G

Q(π)
, π(Bl +Bsα)

)

−BsCs −BlCl)]. (18)

Define R̃∗ = R∗

G
, B̃l = Bl

G
, and B̃s = Bs

G
. Then solving

(18) is equivalent to solving

R̃∗ =max
B̃s≥0

Eα∈[0,1][max
B̃l≥0

max
π≥0

(min

(
π

Q(π)
, π(B̃l + B̃sα)

)

− B̃sCs − B̃lCl)]. (19)

In Problem (19), it is clear that the operator’s optimal
decisions on leasing, sensing and pricing do not depend
on users’ aggregate wireless characteristics. This is true
for any continuous distribution of α. And a user’s
optimal payoff in eq. (17) is linear in gi since Q(π)
is independent of users’ wireless characteristics. This
shows that Observations 1, 2, and 5 hold for the general
SNR regime and any general distribution of α. We can
also show that Observations 3 and 4 hold in the general
case, with a detailed proof in Appendix C.

5 THE IMPACT OF SPECTRUM SENSING UN-
CERTAINTY

The key difference between our model and most existing
literature (e.g., [19], [21], [22], [24], [26], [27]) is the
possibility of obtaining resource through the cheaper but
uncertain approach of spectrum sensing. Here we will
elaborate the impact of sensing on the performances of
operator and users by comparing with the baseline case

where sensing is not possible. Note that in the high
sensing cost regime it is optimal not to sense, as a result,
the performance of the operator and users will be the
same as the baseline case. Hence we will focus on the
low sensing cost regime in Table 5.

Observation 6: The operator’s optimal expected profit
always benefits from the availability of spectrum sensing
in the low sensing cost regime.

Figure 9 illustrates the normalized optimal expected
profit as a function of the sensing cost. We assume
leasing cost Cl = 2, and thus the low sensing cost regime
corresponds to the case where Cs ∈ [0.2, 1] in the figure.
It is clear that sensing achieves a better optimal expected
profit in this regime. In fact, sensing leads to 250%
increase in profit when Cs = 0.2. The benefit decreases as
the sensing cost becomes higher. When sensing becomes
too expensive, the operator will choose not to sense and
thus achieve the same profit as in the baseline case.

Theorem 5: The operator’s realized profit (i.e., the
profit for a given α) is a strictly increasing function in α
in the low sensing cost regime. Furthermore, there exists
a threshold αth ∈ (0, 1) such that the operator’s realized
profit is larger than the baseline approach if α > αth.

Proof: As in Table 5, we have two cases in the low
sensing cost regime:

• If α ≤ Ge−(2+Cl)/BL∗
s , then substituting BL∗

s into
RCS1

II (Bs, α) in Table 3 leads to the realized profit

RCS1
II (α) = Ge−(2+Cl) −BL∗

s Cs +BL∗
s αCl,

which is strictly and linearly increasing in α.
• If α ≥ Ge−(2+Cl)/BL∗

s , then substituting BL∗
s into

RCS2
II (Bs, α) in Table 3 leads to the realized profit

RCS2
II (α) = BL∗

s α

(
ln

(
G

BL∗
s α

)
− 1

)
−BL∗

s Cs.

Because the first-order derivative

∂RCS2
II (α)

∂α
= BL∗

s

(
ln

(
G

BL∗
s α

)
− 2

)
> 0,

as BL∗
s ≤ Ge−2, RCS2

II (α) is strictly increasing in α.

We can also verify that RCS1
II (α) = RCS2

II (α) when
α = Ge−(2+Cl)/BL∗

s . Therefore, the realized profit is a
continuous and strictly increasing function of α.

Next we prove the existence of threshold αth. First
consider the extreme case α = 0. Since the operator ob-
tains no bandwidth through sensing but still incurs some
cost, the profit in this case is lower than the baseline
case. Furthermore, we can verify that RCS2

II (1) > RH
I in

Table 5, thus the realized profit at α = 1 is always larger
than the baseline case. Together with the continuity and
strictly increasing nature of the realized profit function,
we have proven the existence of threshold of αth.

Figure 10 shows the realized profit as a function of α
for different costs. The realized profit is increasing in α in
both cases. The “crossing” feature of the two increasing
curves is because the optimal sensing B∗

s is larger under
a cheaper sensing cost (Cs = 0.5), which leads to larger
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realized profit loss (gain, respectively) when α → 0
(α → 1, respectively). This shows the tradeoff between
improvement of expected profit and the large variability
of the realized profit.

Theorem 6: Users always benefit from the availability
of spectrum sensing in the low sensing cost regime.

Proof: In the baseline approach without sensing, the
operator always charges the price 1 + Cl. As shown in
Table 5, the equilibrium price π∗ with sensing is always
no larger than 1 + Cl for any value of α. Since a user’s
payoff is strictly decreasing in price, the users always
benefit from sensing.

Figure 11 shows how a user i’s normalized realized
payoff u∗

i /gi changes with α. The payoff linearly in-
creases in α when α becomes larger than a threshold,
in which case the equilibrium price becomes lower than
1+Cl. A smaller sensing cost Cs leads to more aggressive
sensing and thus more benefits to the users.

6 CONCLUSIONS AND FUTURE WORK

This paper represents some initial results towards under-
standing the new business models, opportunities, and
challenges of the emerging cognitive virtual mobile net-
work operators (C-MVNOs) under supply uncertainty.
Here we focus on studying the trade-off between the
cost and uncertainty of spectrum investment through
sensing and leasing. We model the interactions between
the operator and the users by a Stackelberg game, which
captures the wireless heterogeneity of users in terms of
maximum transmission power levels and channel gains.

We have discovered several interesting features of the
game equilibrium. We show that the operator’s opti-
mal sensing, leasing, and pricing decisions follow nice
threshold structures. The availability of sensing always
increases the operator’s expected profit, despite that the
realized profit in each time slot will have some variations
depending on the sensing result. Moreover, users always
benefit in terms of payoffs when sensing is performed
by the operator.

To keep the problem tractable, we have made several
assumptions throughout this paper. Some assumptions

can be (easily) generalized without affecting the main
insights.

• Imperfect sensing: we can incorporate imperfect spec-
trum sensing (i.e., miss-detection and false-positive)
into the model, which will change the uncertainty of
the spectrum sensing. Given that our results work
for any distribution of the sensing realization α, it is
likely that such generalization does not change the
major insights.

• Learning: we can also consider the interactions of
multiple time slots, where the sensing realizations
of previous time slots can be used to update the
distributions of α in future time slots. Again, the
per slot decision model introduced in this paper is
still applicable with a time-dependent α distribution
input.

Generalizations of some other assumptions, however,
lead to more challenging new problems.

• Incomplete information: when the operator does not
know the information of the users, the system needs
to be modeled as a dynamic game with incomplete
information. More elaborate economic models such
as screening and signaling [42] become relevant.

• Time scale separation: it is possible that dynamic
leasing is performed at a different (much larger)
time scale compared with spectrum sensing. In that
case, the operator has to make the leasing decision
first, and then make several sequential sensing deci-
sions. This leads to a dynamic decision model with
more stages and tight couplings across sequential
decisions.

• Operator competition: There may be multiple C-
MVNOs providing services in the same geographic
area. In that case, the operators need to attract
the users through price competition. Also, if they
sense and lease from the same spectrum owner,
the operators may have overlapping or conflicting
resource requests. Although we have obtained some
preliminary results along this line in [43], more
studies are definitely desirable.

Through the analytical and simulation study of an
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idealized model in this paper, we have obtained vari-
ous interesting engineering and economical insights into
the operations of C-MVNOs. We hope that this paper
can contribute to the further understanding of proper
network architecture decisions and business models of
future cognitive radio systems.

APPENDIX A
PROOF OF THEOREM 1
Given the total bandwidth Bl + Bsα, the objective of
Stage III is to solve the optimization problem (8), i.e.,
maxπ≥0min(D(π), S(π)). First, by examining the deriva-
tive of D(π), i.e., ∂D(π)/∂π = (1 − π)Ge−(1+π), we can
see that the continuous function D(π) is increasing in
π ∈ [0, 1] and decreasing in π ∈ [1,+∞], and D(π) is
maximized when π = 1. Since S(π) always increases in
π and D(π) is concave over π ∈ [0, 1], S(π) intersects

with D(π) if and only if ∂D(π)
∂π

> ∂S(π)
∂π

at π = 0, i.e.,
Bl +Bsα < Ge−1.

Next we divide our discussion into the intersection
case and the non-intersection case:

1) Given Bl+Bsα ≤ Ge−1, S(π) intersects with D(π).
By solving equation S(π) = D(π) the intersection

point is π = ln
(

G
Bl+Bsα

)
− 1. There are two sub-

cases:

• when Bl + Bsα ≤ Ge−2, S(π) intersects with
D(π), and min(D(π), S(π)) is maximized at the

intersection point, i.e., π∗ = ln
(

G
Bl+Bsα

)
− 1.

(See S3(π) in Fig. 3.)
• when Bl + Bsα ≥ Ge−2, S(π) intersects with

D(π), and min(D(π), S(π)) is maximized at the
maximum value of D(π), i.e., π∗ = 1. (See S2(π)
in Fig. 3.)

2) Given Bl+Bsα ≥ Ge−1, S(π) doesn’t intersect with
D(π). Then min(D(π), S(π)) is maximized at the
maximum value of D(π), i.e., π∗ = 1. (See S1(π) in
Fig. 3.)

APPENDIX B
PROOF OF THEOREM 2
Given the sensing result Bsα, the objective of Stage
II is to solve the decomposed two subproblems (10)
and (11), and select the best one with better optimal
performance. Since RES

III(Bs, α,Bl) in subproblem (10)
is linearly decreasing in Bl, its optimal solution always
lies at the lower boundary of the feasible set (i.e., B∗

l =
max{Ge−2−Bsα, 0}). We compare the optimal profits of
two subproblems (i.e., RES

II (Bs, α) and RCS
II (Bs, α)) for

different sensing results:

1) Given Bsα > Ge−2, the obtained bandwidth after
Stage I is already in excessive supply regime. Thus
it is optimal not to lease for subproblem (10) (i.e.,
BES3

l = 0 of case (ES3) in Table 3).
2) Given 0 ≤ Bsα ≤ Ge−2, the optimal leasing deci-

sion for subproblem (11) is B∗
l = Ge−2 − Bsα and

we have RES
III(Bs, α,Bl) = RCS

III(Bs, α,Bl) when
Bl = Ge−2 −Bsα, thus the optimal objective value
of (10) is always no larger than that of (11) and it is
enough to consider the conservative supply regime
only. Since

∂2RCS
III(Bs, α,Bl)

∂B2
l

= −
1

Bl +Bsα
< 0,

RCS
III(Bs, α,Bl) is concave in 0 ≤ Bl ≤ Ge−2 −Bsα.

Thus it is enough to examine the first-order condi-
tion

∂RCS
III(Bs, α,Bl)

∂Bl

= ln

(
G

Bl +Bsα

)
− 2− Cl = 0,

and the boundary condition 0 ≤ Bl ≤ Ge−2 −Bsα.
This results in optimal leasing decision B∗

l =
max(Ge−(2+Cl) − Bsα, 0) and leads to BCS1

l =
Ge−(2+Cl) −Bsα and BCS2

l = 0 of cases (CS1) and
(CS2) in Table 3.

By substituting BCS1
l and BCS2

l into RCS
III(Bs, α,Bl)

in Table 2, we derive the corresponding optimal profits
RCS1

II (Bs, α) and RCS2
II (Bs, α) in Table 3. RES3

II (Bs, α)
can also be obtained by substituting BES3

l into
RES

III(Bs, α,Bl).

APPENDIX C
SUPPLEMENTARY PROOF OF THEOREM 4
In this section, we prove that Observations 3 and 4
hold for the genera case (i.e., the general SNR regime
and a general distributions of α). We first show that
Observation 4 holds for the general case.

C.1 Threshold structure of sensing

It is not difficult to show that if the sensing cost is
much larger than the leasing cost, the operator has
no incentive to sense but will directly lease. Thus the
threshold structure on the sensing decision in Stage I still
holds for the general case. We ignore the details due to
space limitations.

C.2 Threshold structure of leasing

Next we show the threshold structure on leasing in Stage
II also holds. Similar as in the proof of Theorem 1, we
define D(π) = π G

Q(π) and S(π) = π(Bsα+Bl).

• We first show that D(π) is increasing when π ∈
[0, 0.468] and decreasing when π ∈ [0.468,+∞). To
see this, we take the first-order derivative of D(π)
over π,

D′(π) =
2Q(π)2 +Q(π)− (1 +Q(π))2 ln(1 +Q(π))

Q(π)3
,

which is positive when Q(π) ∈ [0, 2.163) and nega-
tive when Q(π) ∈ [2.163,+∞). Since eq. (16) shows
that Q(π) is increasing in π and π(Q) |Q=2.163=
0.468, as a result D(π) is increasing in π ∈ [0, 0.468]
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Fig. 12. Different intersection cases of S(π) and D(π) in
the general SNR regime.
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Fig. 13. The relation between the normalized total band-
width B/G and the derivative of the revenue D′(B/G).

and decreasing in π ∈ [0.468,+∞). In other words,
D(π) is maximized at π = 0.468.

• Next we derive the operator’s optimal pricing de-
cision in Stage III. Figure 12 shows two possible
intersection cases of S(π) and D(π). Bth1 is defined
as the total bandwidth obtained in Stages I and II
(i.e., Bsα + Bl) such that S(π) intersects with D(π)
at π = 0.468. Here is how the optimal pricing is
determined:

– If Bsα+Bl ≥ Bth1 (e.g., S1(π) in Fig. 12), the op-
timal price is π∗ = 0.468. The total supply is no
smaller (and often exceeds) the total demand.

– If Bsα + Bl < Bth1 (e.g., S2(π) in Fig. 12), the
optimal price occurs at the unique intersection
point of S(π) and D(π) (where D(π) has a
negative first-order derivative). The total supply
equals total demand.

• Now we are ready to show the threshold structure
of the leasing decision.

– If the sensing result from Stage I satisfies Bsα ≥
Bth1, then the operator will not lease. This
is because leasing will only increase the total
cost without increasing the revenue, since the
optimal price is fixed at π∗ = 0.468 and thus
revenue is also fixed at D(π∗).

– Let us focus on the case where the sensing result
from Stage I satisfies Bsα < Bth1. Let us define
B = Bsα + Bl, then we have B = G/Q(π) and
π = ln(1 +G/B) − G/(G + B). This enables us

to rewrite D(π) as a function of total resource
B only,

D(B) = B

[
ln

(
1 +

G

B

)
−

G

G+B

]
.

The first-order derivative of D(B) is

D′(B) = ln

(
1 +

1

B/G

)
−

1

1 +B/G
−

1

(1 +B/G)2
,

(20)
which denotes the increase of revenue D(B) due
to unit increase in bandwidth B. Since obtaining
each unit bandwidth has a cost of Cl in Stage II,
the operator will only lease positive amount of
bandwidth if and only if D′(Bsα) > Cl. To facil-
itate the discussions, we will plot the function
of D′(B/G) in Fig. 13, with the understanding
that D′(B/G) = D′(B)G. The intersection point
of B/G = 0.462 in Fig. 13 corresponds to the
point of π = 0.468 in Fig. 12. The positive part
of D′(B) on the left side of B/G = 0.462 in
Fig. 13 corresponds to the part of D(π) with a
negative first-order derivative in Fig. 12. For any
value Cl, Fig. 13 shows that there exists a unique
threshold Bth2(Cl) such that D′(Bth2(Cl)/G) =
ClG, i.e., D′(Bth2(Cl)) = Cl. Then the optimal
leasing amount will be Bth2(Cl) − Bsα if the
bandwidth obtained from sensing Bsα is less
than Bth2(Cl), otherwise it will be zero.

C.3 Threshold structure of pricing and Observation
3

Based on the proofs above, we show that Observation 3
also holds for the general case as follows. Let us denote
the optimal sensing decision as B∗

s , and consider two
sensing realizations α1 and α2 in time slots 1 and 2,
respectively. Without loss of generality, we assume that
α1 < α2.

• If B∗
sα2 ≥ Bth1, then the optimal price in time slot 2

is π∗ = 0.468 (see Fig. 12). The optimal price in time
slot 1 is always no smaller than 0.468.

• If B∗
sα1 < B∗

sα2 < Bth1, then we need to consider
three subcases:

– If B∗
sα1 < B∗

sα2 ≤ Bth2(Cl), then the operator
will lease up to the threshold in both time slots,
i.e., B∗

l = Bth2(Cl) − B∗
sα1 in time slot 1 and

B∗
l = Bth2(Cl) − B∗

sα2 in time slot 2. Then
optimal prices in both time slots are the same.

– If B∗
sα1 ≤ Bth2(Cl) < B∗

sα2, then the operator
will lease B∗

l = Bth2(Cl) − B∗
sα1 in time slot 1

and will not lease in time slot 2. Thus the total
bandwidth in time slot 1 is smaller than that of
time slot 2, and the optimal price in time slot 1
is larger.

– If Bth2(Cl) ≤ B∗
sα1 < B∗

sα2, then the operator
in both time slots will not lease and total band-
width in time slot 1 is smaller, and the optimal
price in time slot 1 is larger.
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To summarize, the optimal price π∗ in Stage III is
non-increasing in α. And the operator will charge a
constant price (π∗ = 0.468) to the users as long as
the total bandwidth obtained through sensing and
leasing does not exceed the threshold Bth2(Cl).
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