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Abstract—The widespread usage of wireless local area net- heass Pt
works and mobile devices has fostered the interest in locaiation E%F\:
systems for wireless environments. The majority of reseatt in }
the context of wireless-based localization systems has f@med on E
device-based active localization, in which a device is atthed to
tracked entities. Recently, device-free passive localidan (DfP)
has been proposed where the tracked entity is neither requéd to
carry devices nor participate actively in the localization process.
DfP systems are based on the fact that RF signals are affected
by the presence of people and objects in the environment. The y - w5 N

DfP concept enables a wide range of applications including - A N
intrusion detection and tracking, border protection, and amart W @ ‘

buildings automation. Previous studies have focused on siha bosss|PEint -
areas with direct line of sight and/or controlled environments. In E [~ =~
this paper, we present the design, implementation and anadys —
of Nuzzer, a large-scale device-free passive localization system for i
reaj enViI’OI’lmentS. HADCESSPQW(AP) @& Monitoring Point (MP) — — Wireless Link

Nuzzer is designed to satisfy specific goals; high accuracy, ubig-
uitous coverage, scalability, and operation in real enviraments.
Without any additional hardware, it makes use of the already
installed wireless data networks to monitor and process chayes
in the received signal strength (RSS) transmitted from acces
points at one or more monitoring points. We present probabiistic
techniques for DfP localization and evaluate their performance in
a typical office building, rich in multipath, with an area of 1500
square meters. Our results show that theNuzzer system gives
device-free location estimates with less thar2 meters median
distance error using only two monitoring laptops and three &cess
points. This indicates the suitability of Nuzzer to a large number
of application domains.

Fig. 1. An example of the different components of a devieefpassive
localization system in a typical office environment. APsresgnt signal trans-
mitters. Standard laptops and wireless-enabled deskéegpesent monitoring
points. Any device can be used as an application server.

The DfP concept is based on the idea that the existence of
an entity, e.g. a human, in an RF environment affects the RF
signals, especially when dealing with 2.4 GHz band common
in wireless data networks, such as WiFi and WiMax.

A typical DfP system consists of (Figudg 1): (1) signal
transmitters, such as access points (APs) and stationsimused
_ _ _ ) . . typical WiFi deployments, (2) monitoring points (MPs), Buc
With mobile devices and wireless networking becomingg giandard laptops and wireless-enabled desktops, aitmg w

more and more pervasive in our daily lives, context awaggy an application server (AS) for processing and initigtin
applications have gained huge interest. As one of the majgiions as needed

context information, location determination has been divec A few systems have been introduced BfP localization in

area of research._ Ther(_afore, Many localization systems h%reless environments [5], [6] with a focus on small areathwi
been proposed, including the GPS system [1], ultrasoni§rect | OS andlor controlled environmeftan this paper, we
based systems [2], infrared-based systems (IR) [3], and Rftagent the design, implementation and analysiNogzey

based systems [4]. All these systems share the requiremeqt,qe seaie device-free passive localization system fesl
of attaching a device to the tracked entity. Recently, we, i-onments. rich in multipath (FiguFe 2).

proposed the device-free passive localizati@iP) concept  ajthough Nuzzercan operate in both indoor and outdoor
[5]. A DfP system provides the capability of tracking entitiegironments, we focus in this paper on the more challenging
not carrying any devices nor participating actively in th@,ge of indoor environments. In indoor environments, LOS

localization process. This is particularly useful in apations o from the transmitters to the receivers are usually ob-
such as intrusion detection, border protection, and snoanils

automation.

I. INTRODUCTION

1we discuss related work in more details in Secfioh IV.
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::MM%MM ™ " certain location by a scalar value, such as the mean valen Th

50 N 0| A non-probabilistic approaches are used to estimate thé¢idoca
£ s of the tracked entity. For example, in the RADAR system [4]
57 30 nearest neighborhood techniques are used to infer the user
70 oof 0L location. On the other hand, probabilistic techniques, [&@],
- s - store information about the signal strength distributifnosn
B 0 e 8 i 20 % the APs in the radio map. Then probabilistic techniques are

Time (s)

used to estimate the location of the tracked entity. Prdisébi

() Raw stream, controlled (b) Raw stream, real techniques for device-based active localization systemes a

° * known to give better accuracy [11].

04 0af = In the Nuzzersystem, we propose probabilistic techniques
203 o to implementDfP localization in large-scale real environments
§0 %’02 ,,,,,,,,,,,,,,,,,,,,,,,, and show how they differ from device-based active localirat
B techniquesWe focus on the problem of localization of a

o B TTRNT T single intruder and leave the general problem of multiple-

w0 0o %0 4o o0 e T 20 entities localization to a future paper.
(c) RSS histogram, controlled (d) RSS histogram, real B. Contribution
Fig. 2. RSS behavior in a controlled versus a real environmen The contribution of this paper is four fold:

1) We present a probabilistic approach for handling the

- _ _ _ device-free passive localization problem for a single
structed by walls. In addition, indoor environments camtai intruder.

substantial amounts of metal and other reflective materialsz) We present post processing techniques to enhance the
that affect the propagation of RF signals in non-trivial way accuracy of the basic probabilistic technique.
causing severe multipath effects. Generally, reflectia®, r 3) \We evaluate the performance of the proposed techniques
fraction, diffraction, and absorption of RF signals result in a large-scale typical office environment, rich in mul-
multipath fading, which may either decrease or increase the tjpath.
RSS at the MPs. Moreover, RF signals are also affecteds) e study the effect of changing the systems parameters
by noise, interference from other sources, and interf@&enc  on the localization process.
between channels. Sources of interference include raaked
transmission devices, microwave ovens, cordless phones, &- Paper Organization
Bluetooth devices. This makes the problem of indoor local- Section[1 presents the different algorithms used in the
ization challenging, especially for tHefP case. Nuzzersystem and the difference between device-based and
The Nuzzersystem aims at achieving specific goals: higbevice-free localization. Sectidnllll presents the eviduaof
accuracy, ubiquitous coverage, scalability to large arand the Nuzzersystem in a large-scale typical office environment
operation in real environments. and the effect of the different parameters on performance.
Section[IV presents a comparison betwe¢nzzerand the
relevant related work. Finally, Sectiéd V concludes thequap
In order to perform localization, we need to capture thaend gives directions for future work.
relation between signal strength and distance. Since éfas r
tion is very complex in indoor environments [7], we do this
using a ‘passive radio map. A radio map is a structure that In this section, we present the different algorithms used in
stores information of the signal strength at different tamzs the Nuzzersystem. We start by an overview of the system
in the area of interest [8], [9]. This is usually constructetbllowed by a description of our probabilistic algorithms.
only one time during an offline phase. Note that passive radjo
maps differ from active radio maps used in device-basedect! ™
localization systems. We highlight these differences iatifa ~ The Nuzzersystem works in two phases:
[l « Offline phase: where we build the passive radio map.
During the online phase, thduzzersystem uses the signal A passive radio map is similar to the active radio map
strength samples received from the APs at the monitoring usually used in device-based active WLAN location de-
points and compares them to the passive radio map to estimate termination systems, such as [4], [10], [12]. However,
the location of the tracked entity. in an active radio map, a user stands with a device at
Radio map based techniques used in device-based active the radio map locations and collects samples from all
localization can be categorized into two broad categories: the APs in range. On the other hand, for the passive
deterministic techniques and probabilistic techniquesteb radio map construction, a user stands at the radio map
ministic techniques, represent the signal strength of amatd® locations, without carrying any device, and his effect on

A. Approach

II. THE NuzzerSYSTEM

Overview



estimator.

& We start by presenting our mathematical model followed by
details of the two modes of operation.

B. Mathematical Model

Without loss of generality, lefX be a two dimensional
~ Lc[ﬂhmmj physical space. Letrepresent the total number of data streams

in the system (number of APs multiplied by humber of MPs).

/ ~ We denote th@-dimensional signal strength space(@sEach
P ~ element in this space is @dimensional vector whose entries
, ~ represent the signal strength readings from differentstse
a7 N where each stream represents an (access point, monitoring
"K \ﬁ’ point) pair. We refer to this vector as We also assume that

the samples from different APs are independent and heree, th

(a) Active samples of different streams are independent. A user stgndi

at any locatione € X affects the signal received at the different

MPs, and hence the equivalentdimensional vector.
Therefore, the problem becomes, given a signal strength
vectors = (sq,..., 5¢), we want to find the location: € X
| that maximizes the probabiliti?(x|s).
In the next section, we assume a discrete spficaVe
discuss the continuous space case in Se€fiod II-D.

C. Discrete Space Estimator

} During the offline phaseNuzzer estimates the signal
g N Il strength histogram for each stream corresponding to the use

| standing at each radio map location. Therefore, at eaclo radi

‘ map location, we have a set of histograms representing the
E’/ \‘E’ signal strength received from each stream when the usatsstan
at this location (Figurg 3(b)).

Now, consider the online phase. Given a signal strength

b) Passi -
(b) Passive vectors = (s1, ..., s4), ONe entry per stream, we want to find

Fig. 3. Difference between active and passive radio mapstasmtion. In a the locationz € X that maximizes the probabilit#(z|s), i.e.,
passive radio map, we have a histogram per raw data streacopgsared 0 \ya want

a histogram per AP. Also, a user does not carry any device wbestructing

the passive radio map.

argmax,|P(z|s)) Q)

the different data streams received at the MPs is recorded.USIng Bayes’ theorem, this can be written as:

Figure[3 demonstrates the difference between active and

passive radio map construct_|on. _ argmaz,|[P(z]s)] = argmazs[P(s|z). (ff)]
« Online Phase: where we estimate the user location based P(s)
on the RSS from each data stream and the passive radio = argmax,[P(s|z).P(z)] 2

map_prepared in the offline phase. . Assuming that all locations are equally probdﬂ)lehe term
‘We define two modes of operation for the online phase: The ;) can pe factored out from the maximization process in
Discrete Space Estimator and the Continuous Space Esnmaé(ﬁuatior@. This yields:
« The Discrete Space Estimator module returns the radio
map location that has the maximum probability given
the received signal strength vector from different streams argmazy[P(x]s)] = argmaz,[P(s|z)] 3)
Therefore, the output of the discrete space estimator musip4|,) can be calculated using the histograms constructed
be one of the calibrated locations. during the offline phase as:
o The Continuous Space Estimator works as a post pro-

cessing step after the discrete space estimator and tries to d
return a more accurate estimate of the user location in the P(slx) = H P(silz) (4)
continuous space. Therefore, if a user is standing between =1

two radio m_ap locations, th? continuous spgce esumatOEIf the user profile,P(x), is known, i.e. the probability of the user being
should provide a better estimate than the discrete spateach of the radio map locations, it can be used in Equéiion 2



i 2 estimator. The center of mass technique estimates thenturre

oN O locationx as:

[g)\\ ;: > P(>i).X
| X 1=
\\:,L,,J»f"’Estimétgd T = if (6)
i ; P(3)
Note that the estimated locationneed not be one of the

o k% radio map locations.
2) Time averaging:This technique uses a time averag-
ing window to smooth the resulting location estimates. The
. Radio map Estimated location — technique obtains the location estimate by averaging tbe la
\_/ location _ Spatial averaging w location estimates obtained by either the discrete space
Eisst'cr:‘;fgggﬁzt:)s“ﬁr‘nator estimator or the spatial averaging estimator.
More formally, given a stream of location estimates

Fig. 4. An example of using the spatial averaging techniquerthance 1, Z2, ..., Z;, the technique estimates the current locatign
accuracy. The discrete space estimator will return thetimea as it is the gt timet as:
nearest to the actual user location. Using the spatial girggaechnique, a

better location estimate can be obtained by calculatingcémter of mass of t
the top 4 locationsi = 4). Z X
_ i=t—min(w,t)+1
min(w,t)

The above equation considers only one sample from eaChI'he length of the time averaging window affects the latency

stream for a location estimate. In generalp@mber of suc- h .
X . and accuracy of the system as discussed in Seciibn IlI.
cessive samples, from each stream can be used to improve

performance. I1l. PERFORMANCEEVALUATION
In this caseP(s|z) can then be expressed as follows: In this section, we study the performance of the proposed
a m discrete space estimator and continuous space estimagor. W
P(slz) = [T T[] P(sile) (5) start by describing the experimental setup and data ciigct
i=1j=1 followed by studying the effect of different parameters ba t

Wheres; ; represents thg!" sample from the'" stream. performance of the proposed techniques. We also compare the

Thus, given the signal strength vectgrthe discrete space performance of our §ystem to _tWC_) other estimators: )
estimator applies Equatioil 5 to calculai{s|z) for each 1) A random estlmator_. this is used as a baseline for
location = and returns the location that has the maximum  Performance comparison. A random estimator selects a

probability. random location in the area of interest as its estimate.
2) A deterministic technique: Based on the RADAR sys-
D. Continuous Space Estimator tem, this estimator stores in the radio map the average

_ ) ) _ signal strength from each stream at each location. During
The discrete space estimator returns a single location from  the online phase, the deterministic estimator returns the
the set of locations in the passive radio map. In general, an  radio map location whose stored signal strength vector is

Therefore, to increase the system accurbitzeruses spatial More details about this technique can be found in the
and time averaging techniques to obtain a location estiinate accompanying technical report [13].

the continuous space.

1) Spatial averaging:This technique is based on treating®- Experimental Testbed
each location in the radio map as an object in the physicalOur experimental testbed is located in the first floor of a
space whose weight is equal to the probability assigned two-storey typical office building (Figuild 5). The floor has a
the discrete space estimator, normalized so that the sumagéa of 1500 sq. m. (about 16000 sq. ft.). The experiment was
probabilities equals one. We then obtain the center of massried out in the main entrance and the corridors, whem@the
of the k& objects with the largest mass, whetds a system were furniture, plants, and substantial amount of metal.
parameter,1 < k <|| X |. Figure[4 shows an example of Our experiment was conducted in an 802.11b environment,
using the spatial averaging technique. which operates at 2.4 GHz frequency band. The building had

More formally, let P(x) be the probability of a location ten Cisco APs (model 1130). For our experiment, we selected
r € X, i.e., the radio map, and I&f be the list of locations only three APs which cover the first floor. We also used
in the radio maporderedin a descending order according tawo different laptops; one Dell Latitude D830, and one HP
the normalized probability assigned from the discrete spakavilion ze5600 laptop. The two laptops had Orinoco Silver



_ TABLE |
il TUNABLE PARAMETERS USED IN OUR EXPERIMENTS
T

Default
value
6 Number of processed raw data streais
m 26 Number of consecutive samples to use
from one stream per location estimate
Number of locations to average in the
spatial averaging technique

Size of the time averaging window

Parameter

-

Meaning

3

k 2

w 5

Technique

55.7m

25" perc.

50" perc.

75" perc.

Probabilistic

1.2m

2.9m

8.98m

Deterministig

3.86m
(3.2)

8.4m
(2.9x)

13.2m
(1.5x)

Random

8.8m

14m

18.8m

(7.3x%) (4.8x)

TABLE I
COMPARISON BETWEEN THE25", 50", 75'h PERCENTILE VALUES OF
DISTANCE ERROR FOR DIFFERENTiScrete spac&STIMATOR TECHNIQUES
] THE TABLE SUMMARIZES INFORMATION IN FIGURE[B. NUMBERS
S - PO BETWEEN BRACKETS INDICATE THE DEGRADATION OF DETERMINISTC
AND RANDOM TECHNIQUES COMPARED TO PROBABILISTIC TECHNIQUE

(2x)

I 38.8m |

a fixed orientation for the person being tracked throughloeit t
experiment.

Fig. 5. Floor plan of the area where tiH#P experiment was performed.

The environment is rich in multipath, where furniture, gigrand substantial C. System Parameters

amount of metal exist.The figure also shows the locations P$ And MPs. . .

For the discrete space estimator, we can tune the number of

consecutive samples to use from each strearj Gimilarly,

cards attached to them. APs represent the transmitting,unWe can tune the number of raw data streams to uye (

while laptops represent the MPs. Figlite 5 shows the locgtion For the continuous space estimator, in addition to these two
of APs and MPs ' parameters, we can tune the number of locations to use in the

spatial averagingk) and the length of the window to use for
time averaging). Table] summarizes the parameters used
in our systemUnless otherwise specified, we use the default

The wireless cards measure different physical signalsiduriparameters valueg: = 6, m = 26, k = 2, w = 5), which give
the experiment, such as signal strength and noise. We uge QAk best combined performance.

the received signal strength indicator (RSSI) values, ntego

in units of dBm, which is known to be a better function oP. Discrete Space Estimator

distance than noise [4]. We used the active scanning teebniq Figure[® shows the cumulative distribution function (CDF)

which is part of the 802.11 standard [14], to collect sampleg the distance error using the Discrete Space Estimator. We

from the access points at the rate of five samples per secoiigve a total of six data streams, corresponding to the three
Each one of the two MPs records samples from the thré®s and two MPs we used. Talllé Il summarizes the results

APs, giving a total of six data streams (one stream for eaohthe figure. It lists the5, 50", 75t percentile values of

(MP, AP) pair). During the offline phase, a person stands #ie distance error. We can see from the figure that the median

each of these 53 different locations and we record the sampliistance error of the discrete space estimator is 2.9m meter

for 60 seconds for each of the six data streams, giving a togaP times better than deterministic techniques and 4.8stime

of 300 samples per stream. better than the random estimator. This ratio is even more for
For testing purposes (online phase), we collected anottiee lower percentile values.

independent test set at 32 locations. The test set was collectedThe value of the CDF at zero distance error indicates the

at a different time from the training set. We use this test sptobability of determining the exact location.

to obtain all figures in this section. During the offline and 1) Impact of the number of samples per streaigure[T

online phases there was no body in the building except theows the effect of increasing the number of samples used

person being tracked. Without loss of generality, we carsidirom each stream per location estimate on the accuracy of

B. Data Collection
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the system (parametet). The figure shows that, as expectednedian distance error of the discrete space estimatt8
the median distance error decreasesnaigicreases. However, meters, 3.7 times better than deterministic techniques7and
as m increases, the latency, i.e. time required per locatigimes better than the random estimator.
estimate, of the system increases as we have to wait till1) Spatial averagingWe now discuss how the system per-
we collect them samples. Therefore, a balance is requirddrmance is affected by the number of neighboring locations
between the accuracy and latency of the system. This depe(fdsincluded in spatial averaging technique. Figuré 10 shows
on the specific deployment environment. Another approachtfse effect of increasing the number of neighbors used in the
to use a moving window af: samples, where at each estimatespatial averaging procesg)(on the median distance error.
one new sample is added #@— 1 old samples. This removesThe figure shows an improvement ti% betweenk = 1 and
the requirement of waiting fom samples. k = 3. The proposed technique is not sensitive to the increase
2) Impact of the number of stream&igure[8 shows the in k, for large k, because as we increagethe estimated
median distance error versus the number of streanused conditional probability of the locations decreases sigaifily
in the estimation process. For a specificwe plot the best and hence their effect on the location estimate decreases.
result over all possibléﬁ) combinations of streams. The figure 2) Time averagingFigure[11 shows the effect of increasing
shows that as the number of streams increases, we have mieesize of the time averaging window) on the median
information about the environment, and thus we can obtaiiistance error. The figure shows that an improvemer6t
better accuracy. for w = 5 as compared taw = 1. Again, we have a tradeoff
between accuracy and latency. The higher the value,dhe

E. Continuous Space Estimator higher the accuracy and the higher the latency.

Figure[9 shows the cumulative distribution function (CDF
of the distance error using the Continuous Space EstimaforSummary
for the best values of the parameters. Tdble Il summarizesn this section, we showed that using only six data streams,
the results of the figure. We can see from the figure that ttleeNuzzersystem provides aon-LOS DfHocalization system



Technique | 25" perc. | 50" perc. | 75" perc.

Nuzzer 1.2m 1.82m 9.5m -
Deterministig 2.37m 6.74m 10.6m £ 7]
(1.96x) (3.7x) (1.1x) = |

Random 8.8m 14m 18.8m L%
(7.3x) (7.7x) (2x) 7 |
TABLE Il = =

COMPARISON BETWEEN THE25!", 50t", 75th PERCENTILE VALUES OF g
DISTANCE ERROR USING DIFFERENTONLINUOUS SPacESTIMATION 2 7

TECHNIQUES THE TABLE SUMMARIZES INFORMATION IN FIGURE[

NUMBERS BETWEEN BRACKETS INDICATE THE DEGRADATION OF
DETERMINISTIC AND RANDOM ESTIMATORS COMPARED TO Size of time averaging window "w"
PROBABILISTIC ESTIMATOR.

Fig. 11. Median distance error of the continuous space ag#nversus the
time averaging window sizeuw().
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,,,,,,,,, L IV. RELATED WORK

This section discusses relevant related work. We start by
the device-based active localization systems followedthgro
device-free passive localization systems.

A. Device-based Active Localization

A number of systems has been introduced over the years to
S N address the localization problem. These systems incluele th
GPS system [1], ultrasonic-based systems [2],infraresktba
3 systems [3], and RF-based systems [4]. All these systemse sha

Number of averaged neighbors "k” the requirement that the tracked entity needs to carry adevi
In addition many of these technologies require the deviasge
tracked to actively participate in the localization procdsy
running part of the localization algorithm. Moreover, some
of these systems are limited in range due to the physical
characteristics of the signal they use in localization.

Nuzzerallows entities tracking without them carrying any
capable of covering large areas, rich in multipath, withyveigevice nor participating actively in the localization pess.
high accuracy; 1.82 meters median distance error. Although addition, Nuzzerworks with the standard wireless data
this accuracy is lower than the accuracy reported by deviggstworks, and thus enhances the value of the data network.
based active localization systems (0.5 meters in [10])tilit s Since RF signals penetrates wall$uzzerdoes not require
suitable for a wide class of applications. LOS and has good coverage range.

Comparing the performance of the continuous space e%i—
mator to the discrete space estimator, we find that the median ) )
distance error in the discrete space2ié meters, whereas in A humber of systems over the years have considered device-

the continuous space, the mediari i§2 meters,37% better. free passive localization, including computer vision epss,

The spatial averaging and temporal averaging techniquér]sys!cal contact systems, radar based systems, and medical
iIMmaging based systems.

are independent and can be used together to further enhance”. . . . .
sing video cameras is a traditional way for passive local-

Fne;::iror?;gc:éci?;smmg all techniques, leads to the abo&%\tion of human beings. For example, [15] describes algo-

. rithms for detecting and tracking multiple people in cluge
The system parameters: and w, which represent the scenes using multiple synchronized cameras located fay awa
number of samples from each stream and the time averagifigm each other. However, video cameras fail to work in the
window size respectively, can be tuned to balance accuragyk and in presence of smoke. In addition, they suffer from
and latency, depending on the deployment environment.  gcclusion problems and cannot track entities that are out of
The results also showed that tNeizzersystem can provide sight, limiting their range and scalability.
very good accuracy, even when the number of available datéPhysical contact systems, for example the Smart Floor
streams is as low as two streams. This shows the usabilitysystem [16], track the person based on his contact with the
the system in environments with limited hardware instaiitne environment. For example, in [16], the system uses pressure
such as in homes. sensors to detect the presence of a person over floor tiles.
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Fig. 10. Median distance error of the continuous space aftinversus the
number of neighbors used in the spatial averagig (

Device-free Passive Localization



MIMO Radar-based Radio Tomographic Nuzzer System

Systems Imaging (RTI)
Measured Physical Quantity Reflection and scattering RSS attenuation Changes in RSS
Range (based on frequency) Short Long Long
Wall penetration Very high High High
non-LOS localization Yes No Yes
Number of deployed nodes (or devices) Few Many Few
Complexity of single node (or device) High Low Moderate
Number of streams N/A (echo based) Large (756) Low (6)
Covering large areas Limited by its short Limited by number of Yes

range (high frequency) | deployed nodes (LOS)
Accuracy Very High High High
Accuracy degrades significantly with multipath | No Yes No
Handles a number of entities Yes Yes Ongoing work
Licence-free frequency band No Yes Yes
Special hardware required Yes Yes No

TABLE IV

COMPARISON OF DIFFERENTRF-BASED PASSIVE LOCALIZATION SYSTEMS

These systems require special set up and hardware, &gberiments were set up in a highbontrolled and small

therefore, their scalability is limited. environment. In addition, the user was allowed to move in
Ultrawideband (UWB) radar systems provide “Throughenly one dimension. Results show that the system can track

wall” detection and tracking. UWB radar systems can utilizé1e intruder's position with more thas6% accuracy in this

impulse [17], frequency-modulated continuous-wave (FMCWimited controlled environment. These results have eistabd

[18], stepped frequency [19], or noise [20] waveforms. Eheghe proof of feasibility of theDfP concept.

systems are very accurate, yet very complex. An alternateThe Nuzzersystem has unique characteristics that differ-

development is to use a Doppler radar with a two-eleme@tiate it from the previous systems: It gives high accuracy

receiver array to provide less complexity [21]. This Dopplefor large-scale typical environments; it does not requing a

radar assumed that no two targets have the same Dopgleecial hardware; it does not require LOS to operate; and it

return, which is not valid in case of human tracking since&orks with a very low number of raw data streams.

micro Doppler returns from the human arm and leg motions Table[IM summarizes the differences betweduzzerand

have a broad Doppler spread [22]. A four-element array radfe recenDfP RF-based localization systems.

can also be used [23]. This latter combines Doppler proegssi V. CONCLUSIONS

with software beamforming to resolve targets along both the

Doppler and direction of arrival (DOA) space. We presented the design, implementation, and evaluation

. : of the Nuzzerdevice-free passive localization systeNuzzer
MIMO radar employs multiple transmit waveforms and hav P y

. . Vises the standard wireless data networks installed in the
the ability to jointly process the echoes observed at melt'penvironment to monitor and process the RSS at one or more

receive antennas ( [24] and references therein). Elemdntsrﬁ)onitoring points leading to estimating the location ofitées
the MIMO radar transmit independent waveforms resulti '

. idirectional b it It | o di ithout requiring them to carry any devices. It works by
In an omnidirectional beampattern. It can aiso create e'erconstructing a passive radio map during an offline phase, the

beampatterns by contrqlling correlations among _tranemitt ses a Bayesian-based inference algorithm to estimatedbe m
waveforms. In MIMO, different waveform_s are utilized an%robable user location given the received signal strenettor
can be chosen to enhance performance in a number. of w Sd the constructed radio map.

In summary, radar-based systems are able to provide acCupe also presented two post processing techniques: the
rate location estimates. However, they require speciakare g atia| and temporal averaging to further enhance the acgur
and their high complexity limits their applications. of the basic Bayesian-based algorithm. Using these teaksiq

Another emerging technology is Radio Tomographic Imaghe performance of thBluzzersystem was enhanced B$%.
ing (RTI) [6]. It presents a linear model for using RSS We evaluated the performance of tiNuzzer system in
measurements to obtain images of moving objects. The peptypical office building, rich in multipath, with an area of
posed system usesundredsof raw data streams obtainedmore than 1500 square meters. We used two laptops and three
from sensor nodes. The system measures the attenuatioadBess points. Our results show that Nigzzersystem gives
the transmitted signal rather than scattering and refiectiax median distance error af82 meters, 3.7 times better than
Since this system is based on LOS, its accuracy degradeserministic techniques and 7.7 times better than a random
as multipath components increase. To overcome multipathe&imator.
higher density of nodes is used. The presented techniques alléWuzzerto achieve its goals

The concept oDfP localization was first introduced in [5]. of high accuracy and operation in real environments. By



working with the standard wireless equipmeNizzer also

inherits the scalability and ubiquitous coverage of therent
wireless technologies.
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