
1

Efficient Spread Spectrum Communication
without Pre-shared Secrets

Aldo Cassola, Tao Jin, Guevara Noubir, Bishal Thapa

Abstract—Spread spectrum (SS) communication relies on the assumption that some secret is shared beforehand among
communicating nodes in order to establish the spreading sequence for long-term wireless communication. Strasser et al.
identified this as the circular dependency problem (CDP). This problem is exacerbated in large networks where nodes join
and leave the network frequently, and pre-configuration of secrets through physical contact is infeasible. In this work, we
introduce an efficient and adversary-resilient secret sharing mechanism based on two novel paradigms (intractable forward-
decoding, efficient backward-decoding) called Time Reversed Message Extraction and Key Scheduling (TREKS) that
enables SS communication without pre-shared secrets. TREKS is four orders of magnitude faster than previous solutions to
the CDP. Furthermore, our approach can be used to operate long-term SS communication without establishing any keys.
The energy cost under TREKS is provably optimal with minimal storage overhead, and computation cost at most twice
that of traditional SS. We evaluate TREKS through simulation and empirically using an experimental testbed consisting of
USRP, GNU Radio, and GPU-equipped nodes. Using TREKS under a modest hardware setup we can sustain a 1Mbps
long-term SS communication spread by a factor of 100 (i.e., 100 Megachips per second) over a 200MHz bandwidth in
real-time.

Index Terms—Spread Spectrum, Zero Pre-Shared Secret, Anti-Jamming, GNURadio, USRP, Experimentation.
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1 INTRODUCTION
Radio-Frequency (RF) wireless communication is
exposed to adversaries that could eavesdrop try-
ing to get hold of important information, or jam
trying to prevent communication from happening.
Resiliency to malicious behavior is highly desirable
on wireless environments, as reliance on wireless
communication becomes increasingly common for
monitoring physical infrastructure or equipment.
Privacy issues in communication have been at

the forefront of networks research for decades,
focusing mostly on the protection of voice commu-
nication [2] and physical layer, and use of Spread
Spectrum (SS) techniques. Networks were small,
allowing for easy node pre-configuration. Today
however, communicating nodes from various man-
ufacturers enter and leave the networks dynami-
cally, making pre-configuration impractical. The al-
ternative of establishing Spread Spectrum keys over
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the air is subject to jamming, creating a Circular
Dependency Problem (CDP as coined by [3]), an
obstacle for wider Spread Spectrum deployments.
In this paper, we present an efficient and

adversary-resilient secret sharing mechanism that
that solves the CDP called Time Reversed Message
Extraction and Key Scheduling (TREKS), based on
two novel paradigms (intractable forward-decoding,
efficient backward-decoding). This work, in conjunc-
tion with its preliminary version appearing in [1],
provides the following key properties that, to the
best of our knowledge, are not provided by any
other system:

• No energy usage overhead compared to SS
with pre-shared keys.

• Undetectable communication until the end of
transmission forcing the jammer to become
energy-inefficient and channel-oblivious [4].

• A destination-oriented scheme that prevents
simultaneous attacks from a jammer targeting
multiple receivers at once.

• Computationally efficient end of the message
detection and message extraction.

• No receiver synchronization required.
• Computation cost at most twice of conven-



tional SS decoding.
• Real-time SS communication at 1Mbps spread
by a factor of 100, i.e., 100 Megachips per sec-
ond over a 200MHz bandwidth, a four orders of
magnitude speed improvement over the initial
UFH [3] solution with proposed parameters,
and one order of magnitude latency improve-
ment over our earlier estimate [1].

• No need for key establishment.
Our performance improvement comes through a

new design and a combination of encoding and de-
coding optimizations. First, the intractable forward-
and efficient backward-decoding lead to a powerful
and resilient method for secret sharing. Second,
the proposed implementation techniques, includ-
ing block processing, FFT-based message detection,
synchronization recovery, and key scheduling, play
a vital role in optimizing the communication and
decoding costs, making it fit for long-term and real-
time communication.

1.1 Related Work
Anti-jamming techniques have been studied for
decades, but reliable communication in the pres-
ence of adversaries has gained significant interest
in the last few years. Several specifically crafted at-
tacks and counter-attacks were proposed for packe-
tized wireless data networks [5], [6], multiple access
resolution in the presence of adversaries [7], [4], [8],
multi-hop networks [9], [10], [6], broadcast commu-
nication [11], [12], [13], cross-layer attacks [5], and
navigation information broadcast [14]. While many
recently proposed countermeasure techniques can
(and are assumed to) be layered on a SS physical
layer, it is usually taken for granted that the com-
municating nodes pre-share a secret key. Recently,
several countermeasures that do not consider the
possibility of using SS were proposed, consider-
ing narrow RF bands or no pre-shared key [15],
[8]. While some of these techniques are theoret-
ically optimal for the considered physical layer,
they are less energy efficient than SS. Strasser et
al. recognized this pre-sharing requirement as a
significant impediment to the use of SS, even when
the communicating nodes possess public keys and
certificates that potentially allow them to setup a
shared secret key [3]. They call this phenomenon
the anti-jamming/key establishment CDP.
To solve the CDP, Strasser et al. proposed UFH,

a technique for establishing a symmetric secret key
in the presence of adversaries. In UFH, the sending

node hops at a relatively fast rate (e.g., 1600 hops
per second) over n channels, sending fragments
of the mutual authentication and key establish-
ment protocol. The receiver hops at a significantly
slower rate. Although the receiver does not know
the sender’s hopping sequence, statistically, it can
receive 1/n of the sent packets. The authors show
that an adversary has a very low probability of
jamming these packets, and they build upon this
basic mechanism to construct a jamming-resilient
mutual authentication and key establishment pro-
tocol. Their paper introduced the first reliable key
establishment protocol for SS without a pre-shared
secret. However, unlike SS systems with pre-shared
keys, the proposed mechanism incurs an energy
increase by a factor of n due to the required redun-
dancy in packet retransmissions. This is the closest
work related to our paper.
Also, Strasser et al. [16] and Slater et al. [17]

have proposed several coding-based mechanisms
for error-detection in fragments and erasures-
correction to improve UFH performance. Popper et
al. propose a generalization of UFH for broadcast
DSSS [18] but do not address the energy efficiency
problem.
This paper is organized as follows. In Section 2,

we present the system and the adversary model
of TREKS. In Section 3, we present the main
scheme. In Section 4, we present algorithms and
optimizations for efficient message decoding. Sec-
tion 5 evaluates TREKS using MATLAB simulations
and experimentally on our test-bed, demonstrat-
ing TREKS’s capability to perform real-time zero-
preshared SS communication in the presence of
various types of jammers. Finally, we conclude and
discuss future work in Section 6.

2 SYSTEM MODEL
Our model considers systems that are traditionally
capable of performing SS communication, such as
mobile ad hoc networks. Communicating nodes
share a medium with the adversary. In this section
we describe the goals, types of the participants, and
assumptions we make in this paper.

2.1 Communication and Adversary
We consider a wireless network where nodes com-
municate in pairs in the presence of adversaries
through the use of Spread Spectrum. Participants
lack any pre-shared secret, which is a prerequisite
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Fig. 1: Testbed for TREKS BER/PLR Experimental Evaluation: 1. USRP-equipped Sender node, 2. USRP-
equipped Receiver node, 3. USRP-equipped Jammer node, 4. Nodes connected through Splitters and
RF-Cable

for traditional SS communication systems. The goal
of the sender is to establish an adversary-resilient
and energy efficient communication. The only goal
of the adversary is to prevent the receiver from
decoding its messages.
Under our model, an adversary is within range

of the sender and the receiver, and can possi-
bly jam, replay previously collected messages or
insert/modify bits of messages. The goal of the
adversary is to prevent a successful reception of the
message. The adversary’s utility function is a trade-
off between the energy cost spent on adversarial
attacks versus the packet loss rate on the receiver
side. We also evaluate the adversary in terms of
the delay incurred by its attacks on the receiver’s
decoding process.
In this work we consider the following kinds of

attacks by the adversary:
1) Jamming: The adversary may jam ongoing
communication either reactively or oblivi-
ously sending a high power pulse. The jam-
ming could be periodic, continuous or mem-
oryless. The goal is to distort enough bits to
cause packet decoding failures at the receiver.

2) Replay Attack: The adversary may insert pre-
viously collected messages to either cause a
Denial of Service attack or simply a delay in
the message extraction process at the receiver.

3) Modification: The adversary may target few
bits in the message to modify its contents.
We will show why this kind of attack is not
feasible under TREKS because the jammer is
unable to detect transmission until the last bit
of the packet is emitted.

4) Insertion: The adversary may insert partial or
complete messages following TREKS to over-
whelm the decoding process at the receiver.

In Section 5, we implement protocol-specific ad-
versarial strategies that are feasible in real-time
within the limitations of the hardware available. We
demonstrate the optimal adversarial strategy and
establish its cost-efficiency against our scheme.

2.2 Assumptions
Under our communication model, the sender, re-
ceiver and adversary share the same channel,
as well as information such as MAC addresses,
key lengths, communication protocol, and encod-
ing/decoding schemes. The seed of a cryptographic
Pseudorandom Number (PN) generator that pro-
duces sequences to spread the signal is the only
piece of information exclusively known to the
sender. We also assume that the adversary cannot
relay the brute-forcing of the key to some remote
location with supercomputational power, and get
the cracked key back within 1ms.
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We ignore the gain obtained by configuring the
physical layer parameters such as coding, and an-
tenna gains, since they can be optimized indepen-
dently of our mechanism. In addition, we do not
consider the case where the adversary can com-
pletely block the propagation of the radio signal
from the sender to the receiver. If the adversary
has unlimited power and continuously jams the
channel with a strong signal, then it can obviously
reduce the throughput to zero, just like it would on
traditional SS.

3 TIME-REVERSED MESSAGE EXTRAC-
TION AND KEY SCHEDULING
We first present the core idea of zero pre-shared
key DSSS and its efficiency against jamming. Then
we present our key scheduling scheme, which en-
ables efficient backward-decoding, and thus mak-
ing TREKS optimal in terms of both communication
energy cost and computation and storage cost.

3.1 Zero pre-shared key DSSS
Sender S, receiver R, and jammer J share the same
physical channel. Let M denote the message from
S to R, and l the length of M in bits. Prior to
the start of transmission, S randomly chooses a
secret key K of length k bits. S then uses K to
generate a cryptographically strong PN-sequence to
spread M . Although PN-sequences generated from
cryptographic means (such as AES or DES) are not
orthogonally optimal, they have been used success-
fully in military spread spectrum communication
systems [2].
We make the following assumptions about the

nature of the data:
• Unlike conventional DSSS, the key K is not
known to anyone but S when transmission
starts.

• Both the length of message l and key length k
are public information.

• The bits in M are 0 or 1 with equal probability.
If they are not, they can be compressed.

• The details about our scheme, including the
underlying algorithm for PN generation are
public information.

3.2 Jamming resiliency
We first demonstrate the fundamental strengths of
the proposed approach in terms of energy efficiency
against jammers and key recovery intractability
during transmission.

Fig. 2: Message delivered before key is found by
adversary

3.2.1 Communication energy efficiency
We present the way the packet data bits are spread
and how the total energy per packet is preserved.
We also show that the cost for the jammer to
counter the effect of spreading requires an energy
increase by a factor of n. Let us first introduce some
terminology:

• d ∈ {−1, +1}: data bit sent by S. Both +1 and
−1 are equally probable. Otherwise the data
may be compressed to prevent the adversary
from using this information.

• d̂ ∈ {−1, +1}: estimated data bit on receiver
side.

• n: Spreading factor.
• pni∈{1,...,n} ∈ {−1, +1}: ith chip of crypto-
graphically designed spreading sequence un-
known to the adversary.

• ri∈{1,...,n} ∈ {−1, +1}: ith chip transmitted by
adversary.

• Eb: energy per transmitted bit. One bit is sent
per unit time.

• ui = d
√

Eb
n pni: chip signals transmitted by

sender. Note that the energy (the signal mean
square) per bit remains equal to Eb. We con-
sider a Binary Phase Shift Keying modulation,
but the results generalize to other modulations.

• J : jammer energy per unit of time.
• Ii∈{1,...,n}: adversary’s transmitted signals in-
dexed at the chip level. The mean square of Ii

is J
n which corresponds to J amount of energy

per bit.
• vi: received signals indexed at chip level.
• BER (Eb, J, m): Bit Error Rate at receiver side
when sender is using Eb Joules per bit, adver-
sary J Joules per bit, and transmitter spreading
by factor m.

Fact 1: Spreading a signal by a factor n # 1
allows, the communicating nodes to counter an n-
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times stronger jammer at no extra energy cost to
the sender.

Proof: Since, we are only interested in the
impact of jamming, we normalize the path loss
and antenna gains to 1. For simplicity, we ignore
thermal (white) noise, but the result still holds in
the general case. Let vi denote the received signal
indexed at the chip level:

vi = ui + Ii = d

r
Eb

n
pni +

r
J
n

ri

Consider the following decoding technique1: d̂ =
1 iff

∑n
i=1 vipni > 0 The Bit Error Rate of the

despread signal BER (Eb, J, n)
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where pni is a random variable independent from
the adversary’s ri choices. Therefore,

∑n
i=1 ripni is

the sum of n random variables of equal probability
taking values {−1, +1}. The distribution of the sum
can be derived from the Binomial distribution. For
n # 1, this distribution can be approximated by a
Normal distribution of zero mean and variance n:
N(0, n). Thus,

BER (Eb, J, n) =
∫ ∞

n
q

Eb
J

1√
2πn

e−
x2
2n dx

=
∫ ∞

q
Ebn

J

1√
2π

e−
x2
2 dx (1)

Equation (1) shows that when the spreading factor
is increased by a factor n, the adversary needs to
scale its jamming energy J by the same factor main-
tain the same BER. On the transmitter side, since
the energy per bit is kept constant, the transmitter
still spends the same amount of energy while being
resilient to n times more jamming.

1. We assume the receiver knows the bit synchronization.
Section 4 shows how we achieve it.

3.2.2 Computational infeasibility for jammer
In order to efficiently jam, the adversary needs
knowledge of the key K . If it is chosen uniformly
at random, and its length k is chosen such that the
time required to find the key is significantly higher
than the packet transmission time, then the jammer
will miss the chance to jam the transmission even if
he eventually finds the key. We call this intractable
forward-decoding (Figure 2.)
While the intractable forward-decoding prevents

a jammer from detecting and acting on a transmis-
sion, it also makes the decoding for the receiver
equivalent to that of the jammer if done naively. In
the following section, we introduce the concept of
key scheduling for efficient backward-decoding, which
reduces computation complexity for the receiver
from O

(
2k

)
to O (2k) while keeping jamming re-

siliency.

3.3 Key scheduled reverse-time decoding
We introduce a key generation scheme for TREKS
to spread data with a series of successively weaker
keys. First we define the concept of a Key Schedule.
Later we show a particular Key Schedule that pro-
tects against brute force search of the key. Finally
we explore how key schedules may be constructed
to protect against faster key searches.

3.3.1 Key scheduling
A sequence of keys {K1, K2, . . . , Kk} is called a
schedule if every Ki is derived from K by setting
its i − 1 most significant bits to the i − 1-most
significant bits of some arbitrary value C. That is:
K1 = K ; Ki [1, . . . , i − 1] = C [1, . . . , i − 1]; and
Ki [i, . . . , k] = K [i, . . . , k] where K [1] is the most
significant bit of K . In this instance we say that K
is masked by C.
To spread (Figure 4) we partition the message

into k segments Mi of size |Mi|. Each segment is
spread with a PN sequence derived cryptographi-
cally from Ki where i = 1, 2, . . . , k.
For instance, let KSBF be a schedule that par-

titions the message in segments of size
⌈
|M|
2i

⌉
for

i = 1, 2 . . . k. Here it is easy to see that the message
length |M | has to be greater than 2k so that the key
size k can be decreased to 1 bit as the schedule goes
on. For simplicity of presentation, we assume that l
= 2k. We will show how to loosen this constraint in
a later section. Figure 3 outlines the message seg-
mentation and key scheduling to spread a message
with KSBF .
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Symbol Definition
M message to be transferred
K secret key
l length of message in bits
k size of secret key in bits
K[m. . . n] substring of K from mth to nth bit
M [m . . . n] substring of M from mth to nth bit
Ki ith key in schedule
Mi message segment spread using Ki
Ni leftover message after using Ki
PN (·) Secure PN-generating function

TABLE 1: Summary of the notation

procedure SENDER(M,K)
N1 ←M
for i = 1, . . . , k do

Ki [i, . . . , k]← K [i, . . . , k]
Ki [1, . . . , i− 1]← C [1, . . . , i− 1]

Mi ← Ni

h
1, . . . ,

l
|Ni|
2

mi

PNi ← PN (Ki)
Spread Mi with PNi

Ni+1 ← Ni [|Mi| + 1, . . . , |Ni|]
end for

end procedure

Fig. 3: Spreading message with key schedule

3.3.2 Key size vs. Jamming resiliency
For KSBF we show that the effort required by the
adversary remains the same as if the key entropy
were kept constant. Theorem 1 describes what we
mean by same effort precisely.
Theorem 1: Let Ttrans(l) denote the transmission

time of l bits, and Ts(k) the brute force time to
find a k-bit key. Under our TREKS model, given
a message M and a key of size k, if it is secure
to spread M with a k-bit key, then it is secure to
spread the last |M|

2i bits with a k − i bit key, where
i ≤ log2 l.

Proof: We first show that it is secure to spread
the second half of M with a k − 1 bit key. Since it
is secure to spread M with a k bits key, we have

Ttrans(|M |) $ Ts(k)

Ttrans

“
|M|
2

”
=

1
2
Ttrans (|M |)

$ 1
2
Ts(k) = Ts(k − 1) (2)

Fig. 4: TREKS with KSBF key scheduling

The identity 1
2Ts(k) = Ts(k − 1) holds because

bruteforcing time is reduced by half when the key
entropy decreases by one bit. Equation (2) gives the
base case, implying that it is secure to encode |M|

2
bits with a k−1 bit key. By induction, it is then easy
to show that Ttrans

(
|M|
2i

)
& Ts (k − i). Hence, we

prove that it is secure to spread the last |M|
2i bits of

the message M with a k − i-bit key.
Intuitively, Theorem 1 states that as transmission

proceeds towards the end of the message, there is
less time for the jammer to find the key. Thus, it
is safe to use slightly weaker keys to encode the
bits towards the end as long as the spreading key
is large enough to make its recovery longer than
Ttrans. Therefore, even as key entropy decreases,
KSBF protects every segment against bruteforcing,
and thus the entire message.

3.4 Further improvements
3.4.1 MAC-masked key scheduling
Because the value of C is public information, the
jammer may use it to spread its signal and jam the
last bit of the packet (the best jamming strategy for
this scheme, as shown in Section 5.) To avoid this,
the sender can use the destination’s MAC address
as the value of C, as illustrated in Figure 5, forcing
the jammer to target one receiver at a time.

3.4.2 Key scheduling with linear tail
Section 3.3.1 assumed for simplicity that the length
of the message l = 2k so that key size can be
decreased down to 1 bit by the kth key in the
schedule. This restriction is impractical even for
small key sizes (e.g. for k = 20, packet size would
be 1M .) To relax the requirement, we observe that if
Ttrans (|M |) ≤ Tδ (the radio turn-around time of the
jammer), it is impossible for the jammer to jam M .
For instance, consider a spreading factor n = 100,
key size k = 20, chip rate of 100Mcps in 802.11,
where Tδ = 10µs. Then we have Ttrans(1) = 1µs.
So for the last 10 bits of the message, the sender
can weaken the key at a linear rate of 1 key bit per
packet bit. Using this fact, only the first 10 mes-
sage segments have exponentially decreasing size,
reducing the total size of the packet to 10+

∑9
i=0 2i

= 1033 bits. The revised key scheduling algorithm
is illustrated in Figure 5.

3.4.3 Protection against faster key searches
Building on the concepts of linear tailing and The-
orem 1, it is possible to devise key schedules to
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(a) MAC-masked key scheduling (b) Linear Tail key Scheduling

Fig. 5: TREKS Optimizations
Tω(b)

|M |0

K
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En
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y

Message Bit Index

Best
Best Available
KSBF

Key Schedules against:

θ

k

b

Fig. 6: Different key search profiles

protect against better-than-bruteforce jammers (see
Figure 6) by choosing a different message partition
and entropy reduction rate. By selecting an entropy
k for each bit b such that Tω (b) < Ts (k) where
Ts and Tω are the given key search time and
time until the end of message respectively, we can
ensure the transmission is protected. In Figure 6,
the area between schedules for Best and Brute Force
searches may contain other schedules based on the
jammer in play and its search time. The angle θ at
which the entropy decreases, determines the effort
for the receiver key recovery: O

(
2∆

∆ k
)
, where ∆ is

the entropy change in bits between schedules. For
instance, a change of entropy of three bits each step
forces the receiver to guess eight keys per key bit.
We believe KSBF to be sufficient for protecting

cryptographically secure PN generators such as
ones based on AES-128 [19] since their best known
cryptanalyses are close to brute force [20].

4 EFFICIENT BACKWARD-DECODING
In Efficient Backward-Decoding the receiver can de-
duce the key, due to the decreasing key entropy, by
guessing two keys to find the end of transmission.
Then, he successively tries 2 keys per segment in

Symbol Definition
{Ki} Key Schedule, 1 ≤ i ≤ k
Ki Key in schedule, 1 ≤ i ≤ k
K̂i Key guesses, 1 ≤ |K̂i| ≤ 2 tried in

despreading Mi
Si Signal sampled at R at time i.
PEoM [i] Set of possible EoM indices
E[i] Set of extracted messages
GetBuffer (·) Gets the next nl chips from signal

stream
DotProd (·) Correlation of two vectors
F (·) Fast Fourier Transform
F−1 (·) Inverse Fast Fourier Transform
FastCorrelate· Function to convolute signals
KeyInfer· Function to infer the key
PeakDetection· Function to detect peaks atMi, 1 ≤

i ≤ k
Despread· Function to despread SS signal

TABLE 2: Notation for Efficient Backward Decoding

reverse time for a total of 2k guesses to retrieve the
key, compared to the O

(
2k

)
of a brute force.

Because the receiver does not have the same time
constraints as the jammer, he can store the received
signals, and then process them backwards in time.
TREKS is a two-phase procedure (see Figure 9).
Phase I consists of finding the End of the Message
(EoM) by computing the cross-correlation between
the received spread signal and the PN-sequence
generated with the receiver’s MAC address. In
Phase II the receiver infers the key in reverse time,
starting where the high correlation was detected
in Phase I. If correlation is maintained in time,
then the key has been found, and the message
is despread. The phases are summarized in Algo-
rithms 7 and 8, based on the notation introduced
in Table 2.

4.1 Finding the EoM (Phase-I)
Figure 9 depicts both steps of Phase I: sampling
and buffering, and FFT EoM detection. When new
signal samples arrive, the receiver enqueues them
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procedure RECEIVER(S, R, n, l)
OldBuffer ← GetBuffer (S)
a←MACAddress (R)
for all CurrentBuffer ← GetBuffer (S) do

Corr [1, . . . , nl]← FastCorrelate (CurrentBuffer, a)
for all j ∈ {1, . . . , nl} do

if Corr[j] > threshold then
push j into PEoM []

end if
end for
if PEoM [] is empty then

OldBuffer ← CurrentBuffer
else

Buffer ← concat (OldBuffer, CurrentBuffer)
KeyInfer (Buffer, PEoM)

end if
end for

end procedure

procedure FASTCORRELATE(Buffer, key)
TempKey [1, . . . , nl]← Zeros
TempKey [1, . . . , n]← key
FBuf ← F (Buffer)
Fkey ← F (TempKey) # Pre-computed
Corr [1, . . . , nl]← F−1 (FBuf · Fkey)
return Corr

end procedure

Fig. 7: End of Message Detection

procedure KEYINFER(Buffer, PEoM [])
for all j ∈ PEoM [] do

PeakPos ← n + j # EoM = Buffer[n + j]
endIndx← PeakPos − n # End of Mj−1
for all p ∈ {1, . . . , k} do

startIndx← endIndx− |Mi| + 1
CntOfSucces← 0
for all candidate key c ∈ K̂k−p do

success←
PeakDetection (c, Buffer, startIndx, endIndx)

CntOfSuccess← CntOfSuccess + success
end for
if CntOfSuccess = 1 then

Kp ← c
else
abort

end if
endIndx← startIndx

end for
m← Despread (Buffer [j − (nl) + 1, . . . , j] , {Ki})
Enqueue m into E[]

end for
end procedure

procedure PEAKDETECTION(key, Buffer, startIndx, endIndx)
ExpNumOfPeaks ← (endIndx− startIndx) /n
CntOfPeaks ← 0
for all d ∈ {1, . . . , ExpNumOfPeaks} do

x←
DotProd (key, Buffer[startIndx, . . . , startIndx + n])
if x > threshold then

CntOfPeaks← CntOfPeaks + 1
end if
startIndx← startIndx + (nd)− 1

end for
if CntOfPeaks > 0.5× ExpNumOfPeaks then

success← 1
else

success← 0
end if
return success

end procedure

Fig. 8: Message Extraction

Fig. 9: Overview of TREKS Decoding

into a FIFO. At any instance, the receiver only has
to keep 2nl chips in his buffer because after finding
the EoM, he will have to traverse at most nl chips
before he recovers the message.
To find the EoM and achieve bit synchronization

the receiver computes the correlation between the
signal and the expected PN sequence, a common
practice in SS systems [2]. However, since calcu-
lating the cross-correlation is computationally ex-
pensive, we optimize this calculation by using a
Fast Fourier Transform (FFT), reducing cost from
O

(
2n2l

)
to O (nl log nl) for every sample block of

size nl (see Figure 7). The process iterates over the
resulting buffer, checking for values exceeding a
given correlation threshold. All vectors exceeding
the threshold (even false positives) enter Phase II
for further processing.

4.2 Message Extraction (Phase-II)
Phase II consists steps 3 and 4 of Figure 9. In Step 3
we infer the key, and find the actual EoM. For each
candidate EoM, we begin the time-reversed bitwise
key inferring. At each step in the process, we try
two possibilities for the current key bit (Figure 8
specifies the process.) For each bit guess, we count
the number of peaks seen in the segment. If the
number of peaks is greater than half the number
expected bits of the segment, we assume the value
at the corresponding key bit position to be correct
and move onto the next. Otherwise, we abort the
key inferring, implying a packet loss. Once the key
has been inferred, we despread the message. From
this procedure we derive Theorem 2.
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Theorem 2: Let a TREKS key have length k. Then
the key inference cost is O (2k), making the com-
putational cost of TREKS message despreading at
most twice of conventional SS.

Proof: To prove the first part, we note that for
each key bit, the receiver guesses two values and
chooses the one yielding the highest number of
peaks (see Figure 8.) This gives an inference cost
of O (2k). Because each key bit guess results in a
despreading operation, every bit of the message
is despread twice. The EoM cost is common for
TREKS and conventional SS, proving the former
to be at most twice as slow. Note that this cost
can be reduced by discarding one of the two keys
after attempting to despread a few bits of a packet
segment.
Given its small computational overhead, TREKS

can be used in two ways. First, it may be used to
share the secret required by conventional SS, com-
municating the challenge of any mutual authenti-
cation and key establishment protocol as discussed
in [1]. Once the secret is transmitted, all data is
spread with conventional SS. On the other hand,
TREKS may also be used for long-term commu-
nication, without communicating secrets. This is
accomplished by spreading the message directly
while letting the receiver infer the spreading key.
To use TREKS in this mode only requires a few
implementation optimizations which we discuss in
the following section.

5 PERFORMANCE EVALUATION
In this section, we evaluate the performance of
TREKS using MATLAB simulations and on our
test-bed. First, we discuss the performance metrics
of our evaluation, the simulation setup and the
hardware/software specification of experimental
runs. Then, we will present the types of jammers
we consider for TREKS evaluation, and finally the
performance results with and without jammers.

5.1 Implementation
To implement TREKS we use the Universal Soft-
ware Radio Peripheral (USRP) [21], and 3 different
NVIDIA graphic cards [22] to implement a sender
and three receivers with different computational
powers. On the software side, we employ GNU
Radio as SDR [23] and the NVIDIA Compute Uni-
fied Device Architecture (CUDA) for GPU pro-
gramming [24]. Our PN-generation is implemented

using AES with 128-bit keys [19]. See Figure 10 for
an overview of the main system components.
We carried out our experiments in a cabled setup

for two reasons: to achieve BER/PLR graph as
a function of varying JSR while being isolated
from surrounding interference, and reproducibility.
Three separate host computers with USRPs rep-
resent sender, receiver, jammer. The USRPs’ are
cabled using 50Ω RF-SMA cables with 30dB attenu-
ation on the receiver side [21]. All USRP boards are
placed inside shielded enclosures to avoid external
noise. For each experimental run, the sender sends
1 million 1024-bit packets.
Due to space limitations, we omit the implemen-

tation details of our testbed, which can be found in
our Technical Report [25].

5.2 Performance Metrics
We evaluate the performance of TREKS in terms
of decoding computation and storage costs, and
Jamming resiliency. The jamming resiliency can be
measured in terms of Bit Error Rate (BER), Packet
Loss Rate (PLR), and computation delay sustained
in the presence of jamming.
As we showed in Section 3, the computation cost

in TREKS is at most twice that of conventional SS
due to the key inferring process. Our evaluation
will measure the average time it takes to complete a
packet transmission from the sender to the receiver
under different system specifications, and the con-
tribution of each module to the total time.
In terms of storage cost, the receiver maintains

a FIFO of size 2nl to buffer incoming signals and
an additional buffer of size nl in GPU memory for
the precomputed MAC address’ FFT. This is a total
of 3nl chips, which is clearly within the capacity of
today’s hardware.
We measure resiliency by BER and PLR. Some-

times, depending on the ability and availability
of jamming resources, a jammer might want to
simply increase the delay of message decoding
instead of preventing the whole communication. To
accomplish this, the jammer may insert partial or
complete messages as described in Section 2. Such
a strategy increases the number of False Positives
(FPs) during EoM detection causing the decoding
process to take longer than in conventional SS with
pre-shared keys.
Note that the choice of the EoM Threshold di-

rectly affects the PLR/BER and FPs observed dur-
ing the receiver’s message decoding. We empir-
ically choose an optimal value for the detection

9



(a) TREKS System (b) TREKS receiver processing blocks

Fig. 10: TREKS Architecture

threshold used in Figure 7. The details of this
process are described in [25].
We consider three jamming strategies for evalu-

ation: Gaussian, MAC, and random. The Gaussian
jammer adds continuous AWGN into the channel.
The MAC jammer inserts a random message spread
with the PN sequence from the receiver’s MAC
address, targeting the last transmission bit. The ran-
dom jammer behaves similar to the MAC jammer,
except the seed is a random PN sequence.
In terms of energy efficiency we consider Con-

tinuous and Non-continuous jammers. Continuous
jammers are non-budgeted and have resources to
jam continuously. We implement Gaussian, MAC,
and Random jammers for the continuous case.
Non-continuous jammers, on the other hand, are
budgeted and are forced to jam selectively. Since the
adversary does not know the start of transmissions,
non-continuous jammers have to memorylessly jam
at some rate λ (a function of the jammer budget).
We implement MAC and Random jammers for
the non-continuous case. Further details about the
choice of jammers can be found in [25].
To evaluate the non-continuous jammer, we con-

sider a notion of discretized communication time
with time slots of duration nl chips. The message
transmission need not be synchronized with the
beginning of a time slot. The jammer takes two
parameters: λ and JSR. λ represents the probability
of sending a jamming signal at a given time slot
(this corresponds to discretization of a Poisson
memoryless jammer to a Bernoulli jammer), and
JSR is the jammer-to-signal power ratio. The cost
to the jammer is λ × JSR, and its goal is to

Parameter Value
Spreading Factor, n 100
Packet Size, k 1024 bits
Key Size, n 10
Jammer to Signal Ratio, JSR [-30dB . . . 20dB]
Frequency 2.4GHz
Modulation Differential BPSK
Rate 1 Megachips per second
Normalized Signal Power 0 dBW
Noise Power -20 dBW

TABLE 3: Simulation and Experiment parameters

Component Type Model/Version
Host OS Ubuntu v. 9.10
Host CPUs Intel Core2 Q9300
Receiver GPU nVidia GTX280,

9800GT, 8600GT
GPGPU Platform CUDA v. 2.2
SDR GNU Radio v. 3.2
Radio Board USRP v. 1

TABLE 4: Experimental Test-bed Specifications

maximize the PLR and BER for a given budget.
Note that because the adversary does not know
when transmissions happen, the cost of the jammer
should be further scaled by a factor µ, representing
the packet arrival rate. We consider the best case
scenario for the jammer where µ = 1 as well as the
case where the jammer sends complete messages.
A jammer may send partial messages but this can
be independently addressed with appropriate inter-
leaving and coding [5].
We ran across two major problems while carrying

out experiments on GNU Radio/USRP platform:
• Saturation Effect: Compared to the expected
range for varying the amplitude of a sender
signal according to the GNU Radio API docu-
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Processing time Recvr 1 Recvr 2 Recvr 3
GPU Model GTX280 9800GT 8600GT
CPU (Core2) Q9300 E8400 Q9300
EoM Detect 0.891 0.943 1.37
Key Infer 3.2 3.9 3.11
Despreading 1.6 1.95 1.55
GPU Specs
Global Memory 1GB 512MB 512MB
Shared Memory 16KB 16KB 16KB
Registers/SM 16384 8192 8192
SMs 30 14 4
SPs 240 112 32
Retail Price $250 $110 $40

TABLE 5: Average processing time (ms) of 1Kib
packet, 20dB gain

mentation, we found out that the range with-
out the sender reaching its saturation point is
much smaller. The ADC ran at almost a full
scale (saturated) by the time the range was
half-way to the API provided range.

• Granularity: The mapping between the actual
signal power (in dBm) and amplitude setting
in the GNU Radio application is not pre-
cise. The power variation is deterministic only
when the step-size is 1/10th of the allowed
range.

We resolved these issues by attenuating the level
of Jammer to Signal power (JSR) to stay within a
range where USRPs behave correctly. However, at
high JSR (BER under 10−6) other factors dominate
the performance and accuracy of the USRP boards.

5.3 Performance Results
We first look at the TREKS computation cost under
our TREKS implementation. All plots are based on
10, 000 runs for each possible set of parameters
(Table 3.) Due to limited space, we present graphs
that correspond to packet size, data rate, spreading
factor and encoding typical in wireless DSSS and
feasible under the limitations of our hardware (see
Table 4 for hardware and software specifications.)

5.3.1 Computation Cost
Table 5 shows the time of each task, and the hard-
ware specifications of each GPU Model [24].
In order to sustain a 100M chip per second rate,

the time for each element in the pipeline must take
less than 1ms. The EoM Detection module falls
below this mark due to its GPU implementation.
The inferring and despreading modules account for
most of the computation time, yet they can match

Fig. 11: Speed of CPU FFTW and GPU FFT.

the rate of the EoM Detector if the task is spread
among CPU cores.
False positives may affect the performance of

our receiver, but if key inferring for FPs fails in
early rounds, resources are freed faster for new
data blocks. Section 5.3.2 analyzes the FP rate in
our system. In turn, the despreader will also benefit
from having extra cores for instruction execution.
In terms of economic cost-benefit, the mid-range

9800GT performs better than the GTX280. Both of
these GPUs can be used to obtain the 100Mchip
rate, but the GTX offers only 5.5% improvement
for twice the cost. Even if the 8600GT falls short
of such mark, it is still suitable for rates of over
70Mcps.
To analyze the performance of our EoM Detector

module, we compare it against an EoM module
built using FFTW3, a CPU-based FFT library [26].
We perform 100 runs of each with transform sizes
ranging from 16 to 180000 points in 16-point steps.
The FFT speed depends on transform size (See

Figure 11). Inputs that are powers of small prime
numbers give the best performance on both cases,
but the CUDA FFT implementation is clearly faster.
The product of transforms on running on the

GPU gets 2 orders of magnitude improvement
over a CPU implementation (Figure 12) because
the product of individual points is performed in
parallel. The plot shows that for every vector size,
the GPU implementation is always faster even if it
is slightly more scattered.
Transfer of data points to the GPU is a step

required by the GPU-accelerated EoM Detector
(see [25] for a detailed explanation) and does not
exist in a CPU-based FFT implementation. Fig-
ure 12 shows the average time needed to complete
copying in each direction. The GPU to CPU copy
is less common in graphics operations, and thus is
less optimized in hardware [24].
Full Key inferring and despreading times on

one CPU core as shown by Figure 12 show that
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(a) GPU copy time (b) Key Infer & Despread (c) GPU product time (d) CPU product time

Fig. 12: Receiver tasks speed. Diamond marks testbed parameter.

Model In Copy FFT Prod. iFFT Out Copy
GTX280 325 40.3 43.1 39.0 443
9800GT 287 49.1 67.2 45.4 494
8600GT 478 42.9 239 40.8 567

TABLE 6: Times in µs for a 102400-size transform.

the TREKS receiver bottleneck resides on these
two operations when using the accelerated EoM
block. Since our design distributes each key search
to every CPU core available, the time in average
reduces to less than a millisecond with 4 cores (See
Figure 10.)
An obvious optimization would have the Key

Inferring and Despreading modules run on the
GPU to benefit from the clear time savings, or
even push every operation to the GPU. Not every
algorithm translates well to a massively parallel
device, however. For instance, the final addition
operation when computing correlation acts as a
barrier for parallelization, and the variable that con-
tains it must be updated atomically, one thread per
multiprocessor, defeating the purpose of the GPU.
Thus, it is not clear a GPU implementation would
always yield the savings seen on an FFT operation.
As seen in Figure 11, even GPU implementations
have border cases that run slower than in a CPU
implementation.

5.3.2 Jamming Resiliency
Now, we look at TREKS performance in terms of
jamming resiliency against various types of jam-
mers described above:
Figure 14 shows the PLR and the BER under

TREKS in the presence of Gaussian jammers as a
function of JSR. Note the imperfect gain of only
about 15dB (instead of 20dB due to the spreading
factor of n = 100) in TREKS BER and PLR graphs.
This is mainly due to the imperfect synchroniza-
tion, the empirical choice of threshold, and the

(a) Distribution of the FP detection stage

(b) MAC jammer vs. Gaussian jammer

Fig. 13: MAC and Gaussian Jammer Performance

USRP/GNU Radio hardware limitations.
In terms of FPs, Figure 13 shows that most of

the FPs are detected by the first two stages of key
inferring, for both simulation and experimentation.
Hence, FPs do not impact TREKS’s computation by
much when compared to the decoding.
Figure 13 shows the performance of TREKS

against the MAC jammer. There is little difference
in performance because a MAC jammer in general
only increases the FP rate. To destroy the EoM,
the jammer must be synchronized at the chip level
which is highly unlikely, showing that TREKS is re-
silient against even the most effective of the jammer
types.
For the evaluation of a non-continuous, memory-

less jammer with fixed rate λ, we consider a time-
slotted communication model (See Figure 15). Con-
sider a sender message spanning two consecutive
time slots. Then, there are four possible scenarios:
(1) Only the first TS is jammed, (2) Only the second
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Fig. 14: Performance of TREKS against gaussian jammer (Simulation and Experimentation)

Fig. 15: Timeslotted Communication Time

TS is jammed, (3) Both TS are jammed, and (4) None
of the TSs are jammed. Scenario (1) only impacts
key inferring (BER/PLR), Scenario (2) impacts EoM
detection (FP rate). Scenario (3) impacts both pro-
cesses as shown by Figure 16. Obviously Scenario-4
does not have any impact in TREKS performance.
Similar to the continuous jamming case, we find

that there is hardly any difference between the
impact (PLR, BER, FP) of the MAC jammer and
the Random jammer against TREKS. Now, given
all possible scenarios and a fixed λ (jamming rate),
we can calculate the expected PLR for a non-
continuous jammer as follows:
E[PLR] = E1λ(1−λ) + E2λ(1− λ) + E3λ

2 + E4(1− λ)2

where E1, E2, E3,and E4 are the expected PLR for
the above Scenarios, respectively. Figure 16 shows
the E[PLR] as a function of a given budget. We
observe that the MAC and the random jammers
attain their optimum approximately when 10 ≤
JSR ≤ 15. This implies, even in the best case
scenario for the jammer when µ = 1, the jammer
needs to spend 10 times more energy to reduce the
throughput to 30%. For µ = 0.1, the jammer would
have to spend 100 times more energy to have the
same effect.
Lastly, any jammer strategy that does not use

the destination MAC address as the seed for its
spreading sequence, its signal is reduced to noise
under TREKS with a factor or n (see Theorem 2.)

6 CONCLUSION
In this paper we propose new mechanisms, de-
sign and a full implementation of a real-time di-

(a) Function of Varying JSR

(b) Under fixed budget

Fig. 16: Comparison of Jammer Performance

rect sequence spread spectrum system that does
not require pre-shared secrets between the parties.
We use readily available components to build our
demonstrator, displaying four orders of magnitude
improvement of computation cost in comparison to
existing schemes. We are able to sustain (in terms of
computation) a 1Mbps bit-rate spread by a factor of
a 100 (i.e., 100 mega-chips per second) spread over
200Mhz bandwidth. Finally, we evaluate both the
computation cost and the achieved resiliency.
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