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Estimating Performance of Mobile
Services from Comparative Output-Input

Analysis of End-to-End Throughput
Markus Fiedler, Member, IEEE, Katarzyna Wac, Member, IEEE,

Richard Bults, and Patrik Arlos, Member, IEEE

Abstract—Mobile devices with ever-increasing functionality and the ubiquitous availability of wireless communication networks are

driving forces behind innovative mobile applications enriching our daily life. One of the performance measures for a successful

application deployment is the ability to support application-data flows by heterogeneous networks within certain delay boundaries.

However, the quantitative impact of this measure is unknown and practically infeasible to determine at real time due to the mobile

device resource constraints. We research practical methods for measurement-based performance evaluation of heterogeneous data

communication networks that support mobile application-data flows. We apply the lightweight Comparative Output-Input Analysis

(COIA) method estimating an additional delay based on an observation interval of interest (e.g., 1 second) induced on the flow. An

additional delay is the amount of delay that exceeds nonavoidable, minimal end-to-end delay caused by the networks propagation,

serialization, and transmission. We propose five COIA methods to estimate additional delay, and we validate their accuracy with

measurements obtained from the existing healthcare and multimedia streaming applications. Despite their simplicity, our methods

prove to be accurate in relation to an observation interval of interest, and robust under a variety of network conditions. The methods

offer novel insights into application-data delays with regards to the performance of heterogeneous data communication networks.

Index Terms—Mobile application, additional delay, heterogeneous networks, application level, throughput

Ç

1 INTRODUCTION

EMERGING wireless network technologies and miniature

personalized networked devices enable provision of

new mobile applications that enrich daily activities of their

users. These applications aspire to deliver mobile services to

users “anywhere-anytime-anyhow” [1] while fulfilling their

Quality of Service (QoS) and Quality of Experience (QoE)

requirements [2], [3], e.g., low application response times.

The success of the mobile service delivery depends heavily

on the performance provided by underlying network

infrastructures [1], [2], [4]. While users are on the move,

these services operate in heterogeneous networking envir-

onments and knowledge of the overall performance at a

particular user location and time is required by the service

to optimize its user’s experience. In particular, for inter-

active mobile applications that exchange data between

spatially dispersed mobile and fixed nodes, the end-to-end

data delays and their unexpected increase are critical

performance measures [4]. However, these are difficult to

measure at application runtime due to limited mobile

device resources and clock synchronization issues [5].
To this end, we research practical methods for measure-

ment-based performance evaluation of heterogeneous data

communication networks that support mobile application-

data flows. Particularly, we propose methods for an

application’s runtime estimation of additional delay, i.e., a

stochastic delay exceeding the nonavoidable end-to-end

delay, which considers some allowable data communication

network’s propagation, serialization and transmission and

delays at network nodes [4], [5], [6]. Additional delay

consists of those delay elements that increase the end-to-

end delay of a message. For example, for a queued and

pending transmission message, it is a delay occurring due

to the fact that the scheduler has not rescheduled the thread

handling its actual transmission.
We propose five different methods for additional delay

estimation, that are based on Comparative Output-Input

Analysis (COIA), which builds upon the comparative

analysis of application level throughput at the sender and

receiver nodes (e.g., a mobile device and an application

server). We assume a “black box” view of the application on

the underlying heterogeneous network infrastructure,

where the application can just observe network behavior

without enforcing it, or exploiting network-level measure-

ments and/or performance feedback. We also assume an

absence of strong clock synchronization between the

sending and receiving nodes. We use the stochastic fluid

flow model [7], [8] to analyze application-data traffic at

small observation timescales, e.g., a second, where the
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choice of a timescale is determined by the mobile service
data delivery requirements.

We evaluate the accuracy of the proposed methods
under a variety of network operator conditions, based on
data traces from an existing mobile application, a health
telemonitoring application provided by the MobiHealth
system [9], [10] and a mobile multimedia streaming
application. Especially, mobile healthcare applications pose
strict application-level QoS requirements, because a patient
in an emergency situation may require an immediate
system response [11].

This paper is structured as follows: Section 2 provides
concepts for modeling of additional delay, while Section 3
introduces the additional delay model and its estimation
methods. Sections 4 and 5 provide accuracy evaluation
results for these methods with data traces from the existing
mobile applications. Section 6 provides implications for
methods implementation, while Section 7 concludes upon
our research and draws on future work areas.

2 MODELING OF THE ADDITIONAL DELAY

2.1 The Concept of Additional Delay

Additional delay T add is the amount of delay that exceeds the
minimal end-to-end delay Tmin, while Tmin is dominated by
inherent, allowable data communication network’s propa-
gation, serialization, and transmission delays at network
nodes [4], [5], [6], [12]. T add obeys a dynamic random
process dominated by transmission conditions as well as
competition from other traffic and processes [12]. Assuming
that data are sent by the sender application entity at time
T in and received by the receiver’s entity at time T out, T add is
obtained as follows:

T add ¼ T out � T in � Tmin: ð1Þ

Ideally, the additional delay vanishes. However, as it
grows, the more pronounced its negative effect on the
aggregated end-to-end delay becomes, in particular if it
varies significantly. Most interactive applications suffer
from T add exceeding certain thresholds; i.e., multimedia
data can be considered lost if they miss their delivery
deadlines, and user-perceived waiting times might grow
beyond patience [13]. Ideally, the additional delay of each
and every application-level message should be monitored
to get a clear view of the disturbances that its delivery
process is exposed to. This is not feasible. The mobile node
might not be able to trace and time stamp each packet in
real time due to scarce processing resources [4]. There are
also limitations regarding the exactness of the time stamps,
which might be too limited in resolution, incorrect due to
processing times [14], and difficult to compare due to clock
synchronization issues [15].

A certain amount of T add variation, also denoted as jitter,
is expected for packet-based data delivery. Each link and
node leaves its “footprint” on the inter-packet-timing
within a packet stream, which means that the timely
behavior of traffic at the receiver does not match the one
at the sender. For instance, round-trip delays over an empty
UMTS network (i.e., when no other traffic exists on the
network) usually exhibits jitter of �10 ms [16]. These

variations are not necessarily problematic from the view-
point of the application. However, values of T add in a range
of one to several hundred milliseconds are perceptible [13],
especially for interactive applications such as gaming [17].
These T add values stem, e.g., from congestion within access
or core networks, or from temporarily bad radio network
conditions, implying the need to resend data that were lost
or corrupted. From the end-user point of view, the latter
looks like a sudden loss of capacity, followed by a burst of
data arriving at the receiver with a much smaller spacing in
time than they were sent [18], [19]. It is, thus, important to
capture and handle additional delays exceeding the ex-
pected variation thresholds. In the next section, we present
a model that is able to provide this information.

2.2 Application Flow Model

A model that has shown to be capable of discerning between
less critical delays on a packet level and more critical delays
on a burst level is the fluid flow model [7], [8]. So far, it has
been used for analysis of multiplexing in fast packet-
switched networks and the consequences of temporary
mismatches between capacity demand and availability,
leading to considerable queuing on timescales beyond the
packet scale. This model is based on the analysis of
instantaneous workload instead of modeling the packet
occurrence and length processes. In other words, the
packets’ intensity flow is quantified by the data rate RðtÞ,
also denoted as throughput and measured in bits per second
(bps), Bytes per second (Bps) or packets per second (pps). In
general, RðtÞ is a function of time and can be defined either
on a continuous timescale as a derivative of the cumulative
workload WðtÞ, passing a point of reference, by time:

RðtÞ ¼ d

dt
W ðtÞ; ð2Þ

or on a discrete timescale as the workload observed at a
point of reference during averaging interval i of duration
�T , divided by �T :

Ri ¼
W ði�T þ T0Þ �Wðði� 1Þ�T þ T0Þ

�T
: ð3Þ

The time counting is started upon the occurrence of the
first packet being observed at the inlet (sender) or the outlet
(receiver) of the network [19]. We denote the corresponding
start times as T in

0 and T out
0 , respectively. A packet occurring

at an arbitrary time tin at the inlet and at time tout at the
outlet contributes its workload to the overall workload in
the intervals with numbers

iin=out ¼
&
tin=out � T in=out

0

�T

’
: ð4Þ

Obviously, the same packet can appear in different
intervals at inlet and outlet, resulting in a nonvanishing
additional delay at the timescale �T as described in the next
section. The throughput time series at the network inlet and
outlet are denoted by fRin

i g
n
i¼1 and fRout

i g
n
i¼1, respectively.

They can be obtained from bit-, Byte- or packet counting at
each �T , followed by calculating (3). Compared to the effort
related to tracing each and every time stamp of a packet
observed at a point of reference, our approach is lightweight.

1762 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 9, SEPTEMBER 2013



2.3 COIA and Equivalent Bottleneck

As outlined in Section 2.2, the comparison of the packet
delivery processes at the outlet of the network with that at
the inlet, together with subsequent analysis, abbreviated as
COIA, allows for the quantification of the additional delay
T add. COIA builds upon the comparative analysis of the
application-level throughput as observed at the network
inlet and outlet, along a methodology presented in [16] and
in absence of perfect clock synchronization of the sender
and receiver. Initially, we assume lossless data delivery to
highlight the properties and in particular the precision of
COIA, and we will relax this assumption later.

We have already applied COIA to the analysis of
throughput time series and related summary statistics.
Among others, we have shown a classification of bottleneck
behavior based on the comparison of throughput averages,
standard deviations, and histograms between inlet and
outlet [18], [19]. We have illustrated that if the standard
deviation of a throughput time series increased between
inlet and outlet, the network in-between acts as a shared
bottleneck introducing additional delay. Thus, throughput
time series and related summary statistics are lightweight
descriptions of the data flow at the burst level. As they
capture essential properties of the data flow, they can be
used as Reduced Reference Metrics (RRM). In particular,
RRMs can be exchanged between inlet and outlet
(i.e., sender and receiver) to allow for runtime classification
of bottleneck characteristics. Here, we investigate to which
extent COIA based on throughput time series allows for an
estimation of the additional delay T add. To this end, we
consider the end-to-end path as one equivalent bottleneck,
whose content at the end of interval i is described by [18]

Xi ¼ Xi�1 þDi�T; X0 ¼ 0: ð5Þ

Xi describes the amount of data that is still in transit at
the end of interval i. As synchronization happens on the
first packet, there is no content at the beginning of a session,
i.e., X0 ¼ 0. Di is a throughput difference between inlet and
outlet, called drift and defined as follows:

Di ¼ Rin
i �Rout

i : ð6Þ

The drift is a central parameter in fluid flow modeling
[8], describing the rate at which the content increases or
decreases, e.g., Di > 0 means Xi > Xi�1 and Di < 0 means
Xi < Xi�1 if Xi�1 > 0, while vanishing drift Di ¼ 0 implies
a constant content Xi ¼ Xi�1. If the time series are equal,
i.e., fRin

i g
n
i¼1 ¼ fRout

i g
n
i¼1, there is neither drift (Di ¼ 0) nor

content (Xi ¼ 0), the equivalent bottleneck remains empty,
and the network is considered to be transparent at the
timescale �T . In the special case fRin

i g
n
i¼1 ¼ const, the

variations in fRout
i g

n
i¼1 reflect the variations in Di and, thus,

of the buffer content of the equivalent bottleneck as such.
The fluid flow model assumes a fluid particle flow of

constant intensity during the averaging interval. As long as a
packet that was sent in interval i is received inside the same
interval, its additional delay is invisible. However, as soon as
a packet belonging to interval i traverses an interval
boundary and is received in consecutive interval j > i, its
additional delay becomes visible. Thus, the proposed
methods rely on intervals bounds to quantify how much

data from interval i are delayed to consecutive interval(s).
Let us illustrate this by assuming Di > 0, Diþ1 ¼ �Di, and
Xi�1 ¼ 0: During interval i, less traffic leaves the outlet than
what was delivered at the inlet. This particular amount Xi ¼
Di�T is still in transit on the end of interval i and is, thus,
delayed. In the next interval iþ 1, the queue gets empty
again (Xiþ1 ¼ 0). Intuitively, we estimate an additional delay
in the order of �T across the equivalent bottleneck.

Consider now one packet sent at a uniformly distributed
time during interval i and received at a uniformly
distributed time during interval iþ 1. We arrive at a
triangular delay distribution over �ði� 1Þ�T; ðiþ 1Þ�T �
with its median and average at �T . The latter is consistent
with the estimation discussed in the preceding paragraph.
However, the uncertainty of our estimation amounts to
��T , which implies that the choice of the time interval
obviously has an impact on the error margins. This will be
illustrated in Sections 4 and 5.

So far, we have implicitly assumed that the contents in
the equivalent bottleneck have to be causal in the sense
that—starting from X0 ¼ 0—the accumulated amount of
traffic at the outlet cannot exceed the accumulated amount
of traffic at the inlet:X

i

Rin
i �T �

X
i

Rout
i �T 8i : ð7Þ

The causility principle (7) prevents the content of the
equivalent bottleneck from becoming negative (Xi � 0 8i).

Any violation of (7) is easily detectable through Xi < 0,
and it has to be corrected as it implies the risk for erroneous
estimations of T add. A potential reason for negative content
in the equivalent bottlenecks may be a desynchronization
between the measurements on inlet and outlet, entailing
X0 > 0. Indeed, a correction is easily performed by

X0 ¼ X0 þ jXij 8i : Xi < 0 ; ð8Þ

and estimations of T add for intervals ahead of i have to be
recalculated if necessary.

In case of loss, Xi in (5) includes even the loss Li
encountered in interval i. In fact, COIA considers lost traffic
to remain in transit forever. Reflecting further on the above
example, we now assume that the traffic stemming from
Di > 0 is lost. This would imply Diþ1 ¼ 0 and Xj �
Di�T 8j > i. Actually, there remains a residual content of
Li ¼ Di�T in the equivalent bottleneck, which appears the
same way as a permanent delay of �T . Equation (5) does
not allow to distinguish between these situations; the only
indication for loss might be the appearance of a positive
trend in the values Xi.

In contrast to violations of the causality principle, loss Li
needs to be discovered on a higher layer (e.g., through
missing sequence numbers) and corrected through

Xi ¼ Xi�1 þDi�T � Li ð9Þ

to not to introduce a permanent positive bias of the
estimation of T add.

2.4 Related Work

Related work areas attempt to model and estimate addi-
tional delay for data exchanged in a distributed data
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communication systems. Namely, with regards to modeling
efforts, we recognize that the (5) can be seen as the fluid flow
version of Lindley’s recursion formula [20]; it expresses the
waiting time at the end of an interval as a function of the
waiting time at the beginning of the interval and the number
of arrivals or departures during that interval. Based on the
Lindley’s formula, [21] investigated delay in a constant link
capacity network, while our observations relate to the user-
perceived capacity of mobile links.

The probably most cited paper in the domain of fluid
flow modeling and analysis is [8], providing a closed-form
analytical description of the buffer content of a fluid buffer
of an unlimited size, fed by homogeneous on-off sources.
However, Anick et al. [8] do not model the output process
of the equivalent bottleneck; this is rudimentarily done in
[22]. In [23], we have presented a simple yet effective
analysis of the bit rate distribution arising from the Anick-
Mitra-Sondhi-type equivalent bottleneck [8] and, thus,
describe the effect of the bottleneck in terms of changes of
bit rate histograms. The main idea in [23]—deriving
information on the bottleneck behavior from a comparison
of bit rate histograms at inlet and outlet of a bottleneck—
was demonstrated in our previous work through a
measurement study of video conferencing traffic [18] and
subsequently a measurement study in mobile networks
[19]. Both references implicitly used the COIA method.

In principle, the COIA method builds upon Little’s Law
[24], which, however, is very general and estimates the total
end-to-end delay spent by a packet in the system (i.e.,
including transmission, propagation, queuing, and addi-
tional delays). The COIA methods use refined versions of
Little Law to estimate merely additional delay values for a
packet from a sender or receiver viewpoint. The authors of
[25], [26], [27] have used Little Law as a base for modeling
the total delay of packets in their systems. However, they
assume system characteristics that are unattainable in
reality, and they do not focus on different delay views, as
we propose. Namely, in [25], the authors use Little’s Law to
estimate the total time packets spend in the system,
assuming that the number of nodes in a network, a total
number of packets exchanged by nodes, and total band-
width available for each node are a priori known. They
estimate delays for video, audio, voice, and messaging data
packets and then use the estimated delay values in their
proposal on traffic priority schemata. Similarly, Sarr and
Guerin [26] used Little’s Law to model delay of MAC-level
frames exchanged between nodes connected via a WLAN
network. They assume exponential frame interarrivals and
service times. Borst [27] model a mean total delay spend by
a frame in a flow, assuming a fair scheduling at mobile
MAC-layer for different flows and fair capacity sharing at
base stations by a mobile network operator.

With regards to modeling or measurements of additional
delay, sometimes also denoted by authors as an overall
queuing delay, we consider related work on different
protocol stack layers for (mobile) nodes, from the MAC-
layer, via IP up to the TCP/UDP transport layer. For
example, Barry et al. [28] propose an enhanced MAC layer,
i.e., a “Virtual MAC,” that continuously and passively
monitors interference at the MAC layer, interprets frames,

and derives estimates for each frame’s queuing delay and,
based on these estimates, differentiates servicing of frames
depending on their application flows, e.g., real-time voice
or non real-time data. Graja et al. [29] focus on IP-level, per-
datagram delay estimation for 2.5G/3G mobile operator
networks, assuming a detailed knowledge on statistical
characteristics of the radio channel and parameters of the
MAC-layer quality control techniques used in the network,
and the size of a transported IP datagram. Based on the
network’s delay estimation, they propose an adaption of
size of the transported IP datagrams.

The authors of [30], [31] focus on TCP-level messages
delay estimations. Namely, [30] model the messages’
queuing delay distribution (using a finite state machine)
for Internet traffic, however, assuming a message being sent
only every RTT. Aniba and Aissa [31] propose an estimation
of TCP-level RTT for web-based browsing (voice and data
traffic) assuming the node in a 3G network knows its link
utilization level. Ngamwongwattana and Thompson [32]
propose measurements of queuing delays experienced by
VoIP UDP-level messages via observing their interpacket
time at the receiver. They assume that the first packet in the
VoIP application flow has been received without (or with a
minimum) queuing delay, and that a baseline interpacket
time can be derived from it. However, this interpacket
monitoring method is resource intense and error prone in
mobile devices, due to clock’s synchronization and resolu-
tion issues, especially for intense flows, where many
packets are being sent or received in a second. In contrary,
our methods quantify system behavior at the given time
interval, balancing these factors. Moreover, we propose
methods for receivers, as well as the sender’s view.

As a related work, we also distinguish the proposal of
Cola et al. [33], aiming to use a covert channel, where
unused bits of the IP datagram would transfer a coded time
stamp from sender to receiver, from which one-way delays
and, thus, additional delays can be estimated. While this
approach is passive in the sense that no extra traffic is
created, it requires the modification of each and every data
packet, which is infeasible given the limited API to the
protocol stack, and limited computational resources of a
mobile device. On the other hand, Kogel [34] proposes to
derive one-way delays from flow data available in routers.
Both papers address the issue of time stamp accuracy that
emerges from different kinds of quantification issues as a
key challenge for one-way delay estimations. The work of
[6] supports a motivation for our proposal, as it provides a
measurement study that compares the performance of 3G
and 3.5G networks in both stationary and mobile settings,
where it underlines the critical issue of delay spikes,
observed in one-way delay measurements in a testbed,
and presents their related statistics. Estimation of additional
delays is not addressed.

In summary, literature conveys the picture that the
challenges of delay spikes, the issue of correct time
stamping, and the necessity of estimating additional delays
are recognized; however, they are not treated in combina-
tion for mobile applications. Thus, this paper and its
predecessor [35] close this gap.
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3 ESTIMATION METHODS

This section provides methods for estimations of the
additional delay T add based on throughput information at
the inlet and outlet of the equivalent bottleneck representing
the end-to-end network path. Given the limited commu-
nication, processing and storage capabilities of mobile
devices, and a need of timely estimations, simplicity of the
estimators is a major point of our concern. In particular, the
parameters used for the estimation shall be considered in
close time proximity to the current interval to make the
approach as stateless as possible. For interval i, the latter
constraint limits the scope to Xi�1, Xi, R

in
i , Rout

i , and Di.
The proposed methods implement the COIA principle

and, thus, require the exchange information about through-
put (Rin

i , Rout
i or Di) or of buffer level Xi between inlet and

outlet (the implications for the implementation of the
methods are discussed in Section 6). Therefore, we assume
that either

1. Rin
i can be sent from the sender toward the receiver,

where (6) and (5) are calculated; or
2. Rout

i can be sent from the receiver toward the sender,
where (6) and (5) are calculated; or

3. the receiver can observe Xi, e.g., from the deviation
of a jitter buffer from its reference value, and then
calculate Di from (5) and Rin

i from (6); or
4. the receiver might estimate the sender’s average rate

E½Rin
i �, e.g., through the mean of Rout

i , which con-
verges to E½Rin

i � in case of negligible loss, or use a-
priori-known rates, e.g., from earlier measurements.

3.1 Sender View Ahead (SVA)

The sender is concerned about whether the data sent in the
current interval i have been received without experiencing
additional delay. This means that at an arbitrary time, there
should not be any (bottleneck) content left in the network. If
there would be any content left, it would be visible at the
end of the current averaging interval i as Xi > 0. Seen from
the sender point of view, which is actually expecting a
throughput of Rin

i , this amount Xi > 0 is considered to be
late by a time of

T add
i ¼ Xi

Rin
i

: ð10Þ

As in this method, the sender considers its “left over”
for the next interval iþ 1, we call this method SVA. If the
current throughput vanishes, i.e., Rin

i ¼ 0, the estimation
is undefined.

3.2 Sender View Backwards (SVB)

In another but similar view, the sender is concerned about
the impact of “left-over” data from the most recent interval
i� 1 onto the current interval i, while its current expected
throughput is Rin

i . The SVB method for the estimation of
additional delay is, thus, defined as follows:

T add
i ¼ Xi�1

Rin
i

: ð11Þ

For constant sender throughput, SVB produces same
estimation series as SVA, however moved by one interval,

i.e., fT̂ add
SVB;igi ¼ fT̂ add

SVA;i�1gi. Rin
i ¼ 0 leads to an undefined

estimation.

3.3 Receiver View Backwards (RVB)

The receiver is concerned about whether the data received
in the current interval i have experienced queuing. Such
queuing is seen from a nonempty bottleneck at the end of
the previous interval i� 1, i.e., Xi > 0. Observing a leftover
at the end of the interval i� 1, the receiver can estimate the
transport time needed for this outstanding data based on
the current receiver throughput Rout

i . The RVB method for
the estimation of T add is, thus, defined as follows:

T add
i ¼ Xi�1

Rout
i

: ð12Þ

Replacing Rout
i by the nominal link capacity, this method

becomes the one used in [20]. Vanishing output Rout
i ¼ 0

yields an undefined estimation.

3.4 Maximum of SVA, SVB, and RVB (MAX)

Due to the different points of view and depending on
throughput and buffering content values, the methods SVA,
SVB, and RVB are likely to provide different estimations of
the additional delay. A pragmatic approach consists of
using the most pessimistic estimation, which is the
maximum of the three estimations obtained with SVA,
SVB, and RVB, given as follows:

T̂ add
i ¼ max

�
T̂ add

SVA;i; T̂
add
SVB;i; T̂

add
RVB;i

�
: ð13Þ

Undefined values in the argument of the maximum
operator are ignored; in the worst case, (13) cannot provide
any estimation.

3.5 Mean Sender View Ahead (MSVA)

As a variant of SVA method, this method is designed for a
receiver that may estimate the sender’s average rate E½Rin

i �
instead of the actual value of Rin

i as described above, as a
basis for estimation of the bottleneck content Xi. The MSVA
method for the estimation of T add is defined as follows:

T add
i ¼ Xi

E½Rin
i �
: ð14Þ

4 VALIDATION: HEALTH TELEMONITORING

In this section, we investigate to which extent the proposed
methods are able to estimate T add based on time-synchro-
nized, lossless data traces collected along the execution of a
mobile health application. In addition, we evaluate the
methods’ accuracy under a variety of network conditions.

4.1 Setup

The MobiHealth system [9], [10] has been developed and
used in the EU-FP6 MobiHealth project, and it enables real-
time telemonitoring of vital signs (e.g., ECG) and context
(e.g., location) of the mobile patients. A patient wears a
Body Area Network (BAN) with an a Mobile Base Unit
(MBU) as a central unit, acquiring data from wireless
sensor system(s), processing it (e.g., deriving heart rate) and
sending to a back-end-system (BEsys) in, e.g., a hospital.
The end-to-end communication path is heterogeneous and
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includes, e.g., 2.5G or 3G access network provided to a
patient. Telemonitoring service is supported by the proprie-
tary TCP/IP-based MSP-Interconnect Protocol (MSP-IP) [36]
and conforms to the Jini Surrogate specification [37]. The
application-data delivery is both lossless and in order but
may suffer from additional delays. For performance evalua-
tion of the MobiHealth system please refer to [16], [38].

For our studies, we exploit data traces derived from
telemonitoring of a (hypothetical) cardiac patient living at
the campus of the University of Twente (the Netherlands),
using MBU1 with 3G-UMTS access network of Vodafone
[16] and BEsys being a high-performance server in the
university network. We encapsulated application-data in
fixed size (524 B) TCP message payload, and controlled the
send rate to 7, 8, 9, 11 or 12 packets/second; i.e., resulting in
an uplink rate of 32.6 to 55.9 kbps (given the overhead of
58 B per packet2). We have also controlled the application
and the TCP buffer sizes, along the combinations: 64=64,
32=64, and 32=32 KB. The MBU and BEsys clocks were
synchronized using Simple Network Time Protocol (SNTP)3

over an external, dedicated Ethernet connection. We time
stamp each sent and received application-data packet with
a potential inaccuracy of �20 ms [14]. At the sender side
(i.e., MBU), we collect throughput time series fRin

i g
n
i¼1 at the

ingress boundary of the TCP socket (i.e., the network inlet,
after the “send” function), and collect fRout

i g
n
i¼1 at the egress

boundary of the TCP socket (i.e., network outlet, after
the “receive” function) at the receiver side (i.e., BEsys). Five
different data rates, three combinations of buffer sizes, five
replications of each experiment, and one trace affected by a
hardware crash left us with 74 traces on which we
conduced a validation of the proposed additional delay
estimation methods.

4.2 Illustrative Example

We present an example of the causal relation between
network (i.e., the equivalent bottleneck) behavior and the
telemonitoring application-data traces for 8 pps (125-ms

interpacket time), and application and TCP buffer sizes of
32 KB, respectively. In this example, the equivalent bottle-
neck content increases over a period of 2 seconds and then
rapidly decreases (i.e., the queue releases). We investigated
how the proposed methods estimate the additional delay.
First, we present in Fig. 1 the behavior of sender and
receiver and its relation to the value of T add, captured by the
data series “Actual delay.” The x-axis displays the time
intervals under consideration., and the y-axis shows its
corresponding T add value as derived from the time stamps
in the sender (MBU) and the receiver (BEsys) application-
data traces. Each data point represents a packet as
registered on the receiver side.

The packet sent in interval 119 experiences the maximal
additional delay of T add ¼ 712 ms, which amounts to almost
six nominal interpacket times (Fig. 1). We can see that this
packet is suddenly released at the receiver together with
five subsequent packets being queued. This behavior,
which is quite common for mobile links, can be explained
as follows: The first packet was corrupted or lost while
being in transit and is retransmitted, while the subsequent
packets are held until the retransmission of the first packet
was successful.

Fig. 2 presents the data rate at (a) inlet (MBU) and
(b) outlet (BEsys), and (c) the bottleneck content for
intervals as in Fig. 1. The sender has a regular pattern of
sending data in four out of five intervals, which matches
the ratio between �T and the interpacket time. The
reception is, however, quite bursty with no data being
received during intervals 119 to 125. During the interval
126, the receiver gets hold of all six outstanding packets.
Afterward, it continues receiving a data stream during
intervals 127 to 129. The content of the equivalent
bottleneck shows the increase and a release of the data.

Fig. 1 presents estimated additional delay values for the
five proposed methods. The methods SVA and SVB provide
increasing estimations of T add, reaching values of 600 ms as
they react upon the growing bottleneck content. SVB with
its backwards point of view is typically one interval “late”
with its estimations. A vanishing input in intervals 114, 119,
124, and 129 makes the results undefined, cf. (10) and (11).
When the bottleneck grows, the RVB method performs very
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1. Asus laptop (MPIII 1-GHz proc., 640-MB RAM, WinXP OS), using a
Nokia 6650 phone as a USB modem to 3G-UMTS network.

2. MSP-IP (10 B), TCP/IP (40 B) and PPP (8 B) overhead.
3. SNTP: http://www.ntp.org/ntpfaq/NTP-s-def.htm.

Fig. 1. Estimated additional delays for the sender and receiver view for
�T ¼ 100 ms. Fig. 2. Equivalent bottleneck: (a) inlet, (b) outlet and (c) content.



poorly if there is no observed data at the receiver, e.g., in
intervals 119 to 125; thus, the result of (12) is undefined.
Only in the interval 127, method RVB provides T add

estimations that relate to the measured values.
For interval 124, as there is data neither sent nor

received, none of the methods SVA, SVB or RVB are able
to estimate the additional delay. In the other intervals, the
MAX method provides estimations of an increasing value,
as it uses the maximum value of SVA, SVB, and RVB,
where especially the first two react upon the growing
bottleneck content.

The MSVA method delivers quite conservative estima-
tions. It takes the estimated sender behavior instead of the
real one into account. Hence, it assumes that 420 B are sent
in each interval of �T ¼ 100 ms. The method accounts this
data for bottleneck content, which results in an over-
estimation of additional delays. Similarly to SVA, this
method reacts upon the growing bottleneck content. Just
before releasing the queue, MSVA estimates T̂ add

MSVA;126 ¼
819 ms, which is to be compared to real value of T add ¼ 712
ms and the SVA-based estimation of T̂ add

SVA;126 ¼ 600 ms. For
the interval 124, MSVA is the sole method able to provide
an estimation of T̂ add

MSVA;124 ¼ 619 ms.

4.3 Accuracy of the Estimations

Having examined in details an illustrative example in the
previous section, we now present the cumulative results for
the accuracy of estimations of additional delays along all
74 application-level traces collected by the telemonitoring
application that serve as points of reference. From the
sender (MBU) and receiver (BEsys) time stamps, we derive
for each trace Tmin which is defined as the minimum delay
value ever occurred in that trace. Then, for each packet p of
this trace, we derive its (measured) additional delay T add

p .

The maximum additional delay ever occurred in the trace is
denoted as follows:

T add
max ¼ max

p

�
T add
p

�
¼ max

p

�
tout
p � tinp � Tmin

�
: ð15Þ

Then, for each method M, we calculate its maximal
estimated additional delay in the trace as follows:

T̂ add
M;max ¼ max

i

�
T̂ add
M;i

�
: ð16Þ

The relative estimation error is defined as follows:

eM ¼
T̂ add
M;max � T add

max

�T
: ð17Þ

We have observed in all traces that a typical value of T add
max

is found in the order of magnitude of 300 ms, with some
exceptions reaching up to 712 ms as shown before. Fig. 3
presents the cumulative distribution function (CDF) of the
relative estimation error eM of all five methods SVA, SVB,
RVB, MAX, and MSVA for �T ¼ 100 ms, 300 ms and 1 s,
respectively. The x-axis displays the estimation error in
percent of �T .

For �T ¼ 100 ms (Fig. 3a), the estimation error for SVA
ranges from �1:2�T to 1:1�T , for SVB from �1:5�T to
1:4�T and for MAX from �1:2�T to 1:4�T . In most cases,
the error is bounded by ��T . RVB underestimates the
additional delay by �5�T to �0:5�T . This is due to its
inability to trace growing content in the equivalent bottle-
neck, if there is no data being received (see Section 4.2). The
MSVA displays error values between �0:3�T to 2:2�T ; it
has a clear tendency to overestimate the additional delay
(see also Section 4.2).

For �T ¼ 300 ms (Fig. 3b), the estimation error for SVA
ranges from �0:8�T to 0:7�T , for SVB from �0:9�T to
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0:8�T and for MAX from �0:9�T to 0:8�T . The majority of
absolute errors is found in the range of � 1

2 �T � eM � 1
4 �T .

RVB exhibits errors in the range of �1:7�T to 0:2�T ; it
again shows a tendency to underestimate the additional
delay. The MSVA has an error range of �0:4�T to 0:7�T ,
with a less pronounced tendency to overestimate the value
because E½Rin� is closer to the actual Rin values on this
timescale. For any of the methods, the relative error has
decreased significantly at this timescale, whose choice
coincides with the typical value of T add

max in the order of
300 ms.

For �T ¼ 1 s (Fig. 3c), the most precise estimation
methods are SVA and MSVA, with relative estimation
errors ranging from �0:6�T to 0:04�T (SVA) and to
0:12�T (MSVA). Yet, 99 percent of the eM values for both
methods are found in range of �10 to 4 percent (SVA) and
to 12 percent (MSVA). The reason for such a high accuracy
of the latter method is as follows: In the telemonitoring
application, the sender is precisely timing the one-second
time intervals during which it sends an integer number of
packets. Hence, E½Rin� ¼ Rin and that results in a precise
estimation of the additional delays. This particular case
shows that the MSVA method can be beneficial if �T
corresponds to an integer multiple of the nominal inter-
packet time. From Fig. 3, we also conclude that SVB and
RVB and, hence, MAX have a tendency to overestimate the
additional delays. The estimation error ranges from �0:6�T
to 0:8�T .

In general, the best estimations are delivered by the SVA
method, with a tendency to underestimate the additional
delay, and by the MSVA method if the averaging interval
matches the periodicity interval of the traffic. On the
timescale �T ¼ 100 ms, which is considerably smaller than
the majority of additional delays in our traces, the
estimation error is more or less limited by this timescale,
with exception of the method RVB. Indeed, in most cases,
we perceive errors that are smaller than the timescale itself.
Obviously, the methods even allow for observation of
additional delays that are smaller than the time scale on
which the measurements are carried out. This is observed
because packets are occasionally “pushed” from one
interval to the subsequent one, thus the methods can detect
it. If �T is small, changes in T add are significant, and the
shift of a single packet by a few milliseconds can easily
yield a much larger predicted additional delay and, thus, a
significant relative error. When the interval size increase, it
is still possible to detect a number of packets being delayed
from the one interval to the other and estimate an additional
delay, which is a fraction of the timescale �T itself. At the
same time, the longer averaging time also helps to reduce
the relative contribution of a potentially shifted packet to
the estimation error.

4.4 Discovery of Additional Delay Spikes

In this section, we investigate the accuracy of the proposed
estimation methods for T add to indicate additional delay
spikes, in a trace. A spike occurs when T add is higher than a
certain threshold defined based on application’s require-
ments for delays. For example, as illustrated in Fig. 1, the
value of 712 ms is a T add spike, for the threshold of 300 ms,

derived from the health telemonitoring application-level

delay requirements.
In that particular example, the spike extended over

several consecutive observation intervals �T and was, thus,

easily located. However, a spike might also occur inside an

arbitrary interval. Consequently, Xi is not affected, and

because of this, the spike goes unnoticed. Such an uncaught

spike is henceforth called false negative. On the other hand,

due to the approximation nature of the proposed methods,

their additional delay value might overstep the predefined

threshold for a spike, while the actual additional value

delay might not. We denote this case as false positive.
Let us define a set of approximation performance

parameters for an observation timescale �T as follows:

. �real as the total number of spikes (so-called true
positives) existing in a set of traces;

. �ind
M as the number of spikes indicated by method M;

. �FP
M as the number of false positives indicated by

method M;
. �FN

M as the number of false negatives indicated by
method M;

. �TP
M ¼ �real � �FN

M ¼ �ind
M � �FP

M as the number of true
positives indicated by method M;

. �M ¼ �TP
M =�real as the spike hit ratio for method M.

We consider a threshold for spikes of 300 ms as derived

from health-telemonitoring application requirements and

we find �real ¼ 45 spikes in the investigated set of 74 traces.

For �T ¼ 100 ms, �T ¼ 300 ms, and �T ¼ 1 s, Table 1

presents the total number of spikes indicated by the

methods; the numbers of false positives; the numbers of

false negatives; and the hit rate for each combination of

method and timescale, respectively.
The SVA, SVB, MAX, and MSVA methods indicate many

spikes and false positives for �T ¼ 100 ms, while those

numbers decrease for �T ¼ 300 ms and 1 s. On the other

hand, the number of false negatives rises for these four

methods as �T grows. Despite those general trends, the

numbers for the different methods and timescales differ. As

compared to SVA, the three methods SVB, MAX, and

MSVA indicate more spikes and false positives. For the

short time interval �T ¼ 100 ms, SVB misses most spikes,

while MSVA does not miss any.
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TCP: Performance of Additional Delay Spikes

Indication by Different Estimation Methods (�real ¼ 45)



The method RVB behaves differently, having a few
indications, but no false positives on the short timescale,
and rising numbers of those on the longer timescales. This
behavior stems from the difficulty that RVB has with
estimating additional delays when the bottleneck is increas-
ing and nothing is received, cf. Fig. 1. The T add for data
inside the bottleneck content cannot be estimated by this
method. The method gets more accurate as �T grows,
because there are fewer intervals with vanishing receiver
throughput. Still, the number of false negatives is high
almost independently of �T .

From the methods’ hit ratios on the different timescales,
we observe the same trends as already indicated. The sender-
based methods show large hit rates between 78 percent
(SVA) to 100 percent (MSVA) for �T ¼ 100 ms. For the time
interval matching the delay threshold �T ¼ 300 ms, between
62 percent (SVA) and 87 percent (MAX) of the real peaks are
discovered. For this �T , also RVB shows its largest hit ratio
of 27 percent. On the timescale of �T ¼ 1s, all the hit ratios
are found between 9 percent (SVA) and 27 percent (MAX).

Summarizing the findings, we can see that the sender-
based methods SVA, SVB, and MSVA are superior to the
receiver-based method RVB unless the time interval �T
clearly exceeds the duration of the spike. SVB and MAX are
more indicative than SVA. While for small �T , the sender-
based methods have a tendency to overestimate the delay
values (resulting in false positives), all methods tend to not
notice spikes in case of the large �T , which is somehow
expected given the fact that the threshold for spikes is
merely 30 percent of the observation interval. This behavior
stems from the fact that, to accurately detect a spike of a
given value, �T must be of a smaller size than this spike.
The larger �T , the more spikes smaller than �T go
unnoticed. The choice of �T shall be related to the
designated levels of delay spikes to be discovered, when
using the methods.

5 VALIDATION II: MULTIMEDIA STREAMING

In this section, we provide evaluation results along the
same goals and approach as already presented in Section 4,
but for UDP-based application traces. Therefore, in this
section, we investigate to which extent the proposed
methods are able to correctly estimate T add and delay
spikes. We evaluate the accuracy of each method against
time-synchronized data traces collected at sender and
receiver along the execution of a multimedia streaming
application provided to a mobile user.

5.1 Setup

The system used for the evaluation of methods provides a
multimedia streaming to and from a mobile user with use of
a UDP-based application protocol; the user downloads or
uploads some multimedia content. For our studies, we
exploit the traces obtained from an application used on a
mobile laptop, by a user located in Karlskrona (Sweden)
and using his application in one specific location (Blekinge
Institute of Technology). The laptop is connected to 3G-
UMTS networks of three different mobile operators, two of
which share the radio part of their radio access networks.

The application was configured to send data streams
using different multimedia coding; resulting in 1 up to

25 packets per second, with packet sizes of 64, 256, 512 or
750 B, being sent separately to the network at interpacket
times from 4 to 256 ms. The protocol stack overhead4 is 36 B
and the overall data rate uploaded by the mobile laptop to
the application server ranges from 8 to 360 kbps, while data
rate downloaded to the mobile laptop ranges from 8 kbps to
2 Mbps. Instead of collecting the data in the laptop and
server, we opted to collect the from the data link layer using
Endace DAG cards. The setup is similar to the one shown in
[39]. This perfectly synchronised system, with an accuracy
of less than 60 ns, provides an ideal basis for our validation
endeavour. At the ingress boundary of the UDP socket
(i.e., at heterogeneous network infrastructure inlet) at the
laptop side, we collect throughput time series fRin

i g
n
i¼1,

while fRout
i g

n
i¼1 is collected at the egress boundary of the

UDP socket (i.e.,at the network outlet) at the application
server side. All the packets included a sequence number
that enables us to trace losses and packet reordering. We
consider 33 traces as a base for the accuracy validation for
the proposed methods. Traces exhibited occasional, random
packet losses (0.2 percent), and no packet reordering.
Similarly to the TCP case, we observed the typical value
of T add

max around 300 ms.
As for the TCP-based traces evaluation, we present the

methods’ accuracies of the estimated maximal delay at
different timescales (Section 5.2) as well as the evaluation of
spikes of additional delays (Section 5.3).

5.2 Accuracy of the Estimations

Fig. 4 presents the CDF of the relative estimation error eM of
all five methods SVA, SVB, RVB, MAX, and MSVA for
�T ¼ 100 ms, 300 ms, and 1 s, respectively. The x-axis
displays the estimation error in percent of �T .

For �T ¼ 100 ms (Fig. 4a), the relative estimation error
for SVA is bounded by �1:5�T to 0:65�T and for SVB by
�2:4�T to 1:5�T . For RVB, the error stretches from �5�T
to 10�T . This is due to its inability to trace growing
content in the equivalent bottleneck, if there is no data
being received, and due to overestimating delays if very
little traffic is received compared to what has been sent.
The MSVA has a tendency to overestimate the additional
delay. It is caused by two factors, both resulting in an
effective sender throughput being smaller than the
estimated sender’s average throughput. First, the sender
does not follow a very regular sending pattern (even at the
timescale of 1 s); hence, the estimated sender’s throughput
may be significantly lower or higher than the instant one.
Second, the traces exhibit occasional losses; for such events,
the estimated sender’s throughput is higher than the
instant one.

For �T ¼ 300 ms (Fig. 4b), the relative estimation error
for SVA is bounded by ��T and for SVB by �1:1�T to
0:2�T . The RVB and MSVA methods show a tendency to
overestimate the additional delay for the reasons mentioned
in previous paragraphs. In general, for all of the methods,
the relative estimation error has decreased significantly at
this timescale.

For �T ¼ 1s (Fig. 4c), all the estimation methods but
MSVA sufficiently accurate the eM values for the SVA, SVB,
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RVB, and MAX methods are in range of �1:0�T to 0:5�T .
At this timescale, the phenomenon of a growing content in
the equivalent bottleneck is not as pronounced as at smaller
timescales; hence, the RVB method exhibits a high accuracy.
Moreover, at this timescale, the phenomenon of the sender’s
imprecise behavior influences less the accuracy of the
MSVA method.

From all the three figures, we conclude that the relative
accuracy of SVA, SVB, and RVB and, hence, even MAX
methods increases with the increasing timescale. Yet,
especially at small timescales, all these methods have a
slight tendency to overestimate the additional delays. This
overestimation is in many cases related to the high
variability of the throughput being received. Namely, there
exist intervals in which very small amount of traffic is
received with comparison to what has been sent, but the
traffic being in transit does not necessarily experience
delays peaks, as the methods attempt to indicate. The latter
behavior relates to the fact that methods relay their
estimation of T add on counting packets that are pushed
from one interval to the subsequent one. The smaller the
intervals, the greater the potential errors become, while
larger intervals help to average out some issues, however at
the price of an increased risk of missing delay spikes.

5.3 Discovery of Additional Delay Spikes

Considering a threshold for spikes of 300 ms, we find
10 spikes in the investigated set of 33 application-level
traces. For �T ¼ 100 ms, �T ¼ 300 ms and �T ¼ 1 s,
Table 2 presents the total number of spikes indicated by the
methods; the numbers of false positives; the numbers of
false negatives, and the hit rates for each combination of
method and timescale, as introduced in Section 4.4.

All methods indicate many spikes for �T ¼ 100 ms,
while the numbers decrease for �T ¼ 300 ms and 1 s. The

number of false negatives rises as �T grows for these
methods. The methods do not indicate spikes as the
timescale grows, as these peaks happen inside the observa-
tion interval. Despite those general trends, the numbers for
the different methods and timescales differ. The methods
SVA and SVB exhibit the highest accuracy.

The method MSVA behaves in a different way. We
observe a lot of spikes, many of which are false positives,
especially on the short timescale. In general, the accuracies
decrease on the longer timescales. This behavior stems from
the inaccuracy of MSVA throughput estimations when the
sender is not adhering to regular sending patterns and
when data are occasionally lost.

Looking at the methods’ hit ratios on the different
timescales, we observe the same trends as indicated in the
previous sections. The SVA, SVB, RVB, and MAX methods
show high hit rates, especially on a scale �T ¼ 100 ms.
The MAX method exhibits an accuracy of 100 percent.
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TABLE 2
UDP: Performance of Additional Delay Spikes

Indication by Different Estimation Methods (�real ¼ 10)

Fig. 4. UDP: Empirical CDF of the relative estimation error eM for �T 2 f(a) 100 ms, (b) 300 ms, (c) 1 sg.



For the time interval matching the predefined threshold
�T ¼ 300 ms, between 50 percent (RVB) and 70 percent
(SVA, MAX) of the real peaks are discovered. Finally, on the
timescale of �T ¼ 1 s, all hit ratios of the methods are
30 percent.

As already indicated in Section 4.4, this behavior stems
from the fact that, to detect a delay spike of a given value,
the interval �T must be shorter that this spike, hence
making it possible to discover packets that are pushed from
one interval to the subsequent. This indicates that the choice
of �T shall be related to the designated levels of delay
spikes to be discovered using the proposed methods.

Summarizing the findings, we can see that the MAX
method is the most indicative as it combines strengths of all
the underlying methods: SVA, SVB, and RVB. While for
small �T , the sender-based methods have a tendency to
under- or overestimate the delay values (and produce false
negatives and positives), all methods tend to overlook
spikes in case of large �T , which is somehow natural given
the fact that the threshold for spikes is merely 30 percent of
the observation interval. As already indicated in the
Section 4.4, this behavior stems from the fact, that to detect
a delay spike of a given value, the interval �T must be of a
smaller length that this spike, hence enabling to discover
packets that are “pushed” from one interval to the
subsequent one, forming a spike. This indicates that the
choice of �T shall be related to the designated levels of
delay spikes, to be discovered when using the methods.

6 IMPLICATIONS FOR IMPLEMENTATION

In this section, we draw conclusions and recommendations
for a practical application of the proposed and evaluated
additional delay estimation methods for real mobile
application scenarios.

6.1 Impact of the Observation Interval

One important practical implication relates to the choice of
an appropriate observation interval �T at which addi-
tional delays are estimated. The choice is limited by a
tradeoff between feasibility and effort required to instru-
ment the application for throughput measurements at the
sender and receiver side, and the requirements of
discovering application-data additional delay at the given
timescale. In many cases, this additional delay will be
related to interpacket times. We propose that an optimal
�T shall be defined as a percentage of the required
minimal end-to-end delay and, if possible, related to a
integer multiple of the designated interpacket time, to
improve the accuracy of the proposed methods. If �T is
too long, the methods loose possibilities to discover
additional delays, shown by many false negatives. If �T
is too short, the system becomes too sensitive, discovering
many nonexisting additional delay spikes, i.e., many false
positives. Such a situation can destabilize a system whose
application control loops depend upon these estimations.
The most important question one needs to answer when
choosing the observation interval �T is how much
additional delay is tolerated by the application before a
control action, such as application adaptation, or a warning
toward the user would be required.

6.2 Particularities of Specific Methods

The RVB method exhibited a low performance, i.e., frequent
underestimations of the additional delay, especially for a
growing bottleneck content, where the receiver does not
receive any data. To improve this method’s accuracy in
practice, one can combine it with other methods and
assume that if the receiver does not receive any data, the
bottleneck content and, thus, the additional delay grows.
Then, one can use the MSVA method at the receiver to
estimate the delay values.

The MSVA method exhibited a low performance, i.e.,
overestimation of the additional delay, especially for cases
when the sender’s current behavior deviated significantly
from its average behavior, or in case of traces with data loss.
The estimations provided by this method can be treated as a
worst case scenario; the other methods can be used for more
precise estimations of additional delay.

6.3 Missing Measurement Data

COIA is relying upon comparison of performance data. In
this section, we consider cases in which exchange of the
data does not work as expected. We follow the classification
presented in Section 3.

In cases 1 and 2, lacking throughput data should not be
interpreted as zero values in the first hand due to the
recursive nature of (5). Rin

i values set to zero would drive
the system toward incausality and underestimations of
T add, while Rout

i values set to zero would suggest persistent
bottleneck content, loss and overestimations of T add. A
rather simple but straightforward mitigation strategy in
case 1, which is also supported by the examples shown in
Figs. 3 and 4, is to increase the estimation of T add by the time
that Rin

i is overdue, as the latter might be strongly correlated
with the fact that the data path is blocked. In case 2, such a
practice might yield overestimations when the delay occurs
on the return path. Indeed, complete loss of monitoring
data puts COIA as such at stake. Eventually, data loss
discovery on some higher level and the causality condition
(7) can help to reconstruct the buffer content estimation. It is
important to note that (5) and (6) require data from the
same interval to be compared. For this reason, it is advisable
to include sequence numbers i in the messages containing
the Ri values.

In case 3, the content Xi can be estimated locally, e.g.,
from drain from a jitter buffer, which should be unproble-
matic in terms of availability of data. In case 4, the sender’s
average rate may be estimated in an incorrect way.
However, given fact that the MSVA method works best
for streaming-type services in view of vanishing loss, the
risk for crude receiver-side estimations appears limited.

6.4 Desynchronization

Incorrect synchronization of sender and receiver can imply
residual buffer contents or (noncausal) buffer under runs
and thus biased (over- and under-) estimations of T add.
Eventual time synchronization problems are typically seen
through a bias of the content of the equivalent bottleneck
Xi, and thus of T add, that is constant over time and that
might be corrected by modifying X0 as described in
Section 2.3. Frequency synchronization problems manifest
themselves in �T in 6¼ �T out, and eventually in values of
�T that vary over time. Assume a relative deviation
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between �T values of "ð� 1Þ, then a drift of approxi-
mately "T add � T add would be observed per time interval.
A mitigation strategy consists in estimating the �T value
used by the sender of the measurements, and to adapt the
�T of the receiver of the measurements. To help with the
latter, the messages containing the Ri values might contain
time stamps that allow for estimating the duration of
interval i on the sender side.

A detailed investigation of the issues described in
Sections 6.3 and 6.4 would motivate a quantitative study
of its own.

6.5 Mobility

The mobility of a mobile user may result in horizontal or
vertical network handovers. Such handovers may cause
significant impacts on the performance for data commu-
nication by increasing the additional delay. Naturally, the
latter is revealed by all five methods, which means that
COIA allows to quantify the performance impact of
mobility, both regarding coverage and control. Further-
more, during handovers, both data and measurement traffic
might get lost; the latter situation needs to be dealt with as
described in Section 6.3. Finally, a failed handover might
imply a connection loss and, thus, naturally a detectable
termination of the COIA measurements.

7 CONCLUSIONS AND OUTLOOK

In this paper, we propose five simple, yet powerful
methods for the estimation of additional delay for an
application-level data induced by heterogeneous data
communication network behavior; e.g., radio link problems,
protocol stack processing or queuing phenomena. The
methods are based on both sender and receiver observed
application-level data rates and rather simple calculations
of additional delay. Both sender and receiver implement the
COIA methods. The methods are based on lightweight
exchange and comparison of throughput time series
between sender and receiver. Using traces of four different
network providers under a variety of traffic conditions for
two different mobile applications, in particular transfer of
health-care and multimedia data, each using different
transport protocol for uploading or downloading of the
data, we show that the most precise methods for additional
delay estimation are based on the sender view on the
content of the equivalent bottleneck and the current
throughput of the sender. Furthermore, the pragmatic
method that is assuming the maximum value of three
sender- or receiver-view-based methods helps to yield
conservative estimations of additional delays, especially
for the TCP-based application. For the UDP-based applica-
tions that exhibit occasional packet loss, the receiver-view-
based estimation relying on the expected throughput of the
sender yields conservative estimation of additional delay.
The conservative estimations for additional delay may be of
particular interest for selected safety- or mission-critical
mobile systems.

The estimation error of all methods depends on the size
of the observation interval for the sender and receiver
throughput time series. This is determined by the granu-
larity (i.e., time resolution) of the events that need to be
discovered, application instrumentation possibilities and

capabilities of the mobile device to support both the
application and its COIA instrumentation. Our results
show that “oversampling,” in terms of using an observation
time interval smaller than the major additional delays to be
observed, does not necessarily improve the quality of the
estimation. Indeed, significant additional delay values can
be observed and approximately quantified on timescales
that are significantly larger than those of the additional
delay phenomena themselves. This speaks in favor of the
methods to be implemented in a constrained mobile
environment, where the time interval choice and, hence,
the frequency of such observations are limited by the
resources of the mobile device. Here, the methods can help
to quickly discover extraordinary additional delays and
inform the application how late the data is. Thus, the
methods can facilitate an implementation of lightweight
monitoring and control loops for adapting an application’s
data stream to volatile network conditions, e.g., by
compressing or even suppressing low-priority data.

Furthermore, as we have shown in this paper, all
methods have different but complementary profiles with
regards to their sensitivity and failure or success regarding
the estimation of additional delays at different timescales.
To maximize the accuracy of additional delay estimation, all
methods could be run in parallel and be combined in a
hybrid method. This hybrid method could continuously
track the estimations provided by all methods and imple-
ment a type of voting mechanism to decide upon the value
of additional delay and decide whether there is a peak or
not, based on knowledge of the strengths and weaknesses of
the methods with respect to their tendency to indicate peaks
(i.e., their false positive or negative ratios).

Future work will address detailed investigations of the
capability of the methods to detect arbitrary peaks of
additional delay in other application domains. In this
context, we will further analyze the impact of the observa-
tion interval size in relation to timescales used by the
application. We will also address issues of systematic
under- or overestimations of additional delays, undefined
estimations, sender jitter, data loss time synchronization,
and clock drifts between sender and receiver.
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