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Abstract—We propose a dynamic spectrum access scheme Cognitive Channels

where secondary users cooperatively recommend “good” chan ! 2 8 4 ° 6
nels to each other and access accordingly. We formulate the \ [ \
problem as an average reward based Markov decision process. -
We show the existence of the optimal stationary spectrum aess congestio Choose
policy, and explore its structure properties in two asymptdic . —— Recommended
cases. Since the action space of the Markov decision procdss S
continuous, it is dl_fflcult to find the optimal pollqy by_ simply . Choose
discretizing the action space and use the policy iterationyalue =~ -~ o . » Unrecommended
iteration, or Q-learning methods. Instead, we propose a neval- Channel
gorithm based on the Model Reference Adaptive Search method
and prove its convergence to the optimal policy. Numerical
results show that the proposed algorithms achieve up td8% UserA User B UserC
and 100% performance improvement than the static channel
recommendation scheme in homogeneous and heterogeneous &%cmnnemmidle
channel environments, respectively, and is more robust tohannel
dynamics. User D
Fig. 1. lllustration of the channel recommendation schefdser D
|. INTRODUCTION recommends channel 4 to other users. As a result, both userdAuser

. . . C access the same channel 4, and thus lead to congestion eddcad rate
Cognitive radio technology enables unlicensed secondagypoth users.

wireless users to opportunistically share the spectruni wit
licensed primary users, and thus offers a promising saiutio

addregs_ the spectrum under-utilization probIEtn [1]. D@sg he channels they have successfully accessed to nearby sec-
an efficient spectrum access mechanism for cognitive radig

. : dary users. Since each secondary user originally only has
networks, however, is challenging for several reasons: 51 Y y ginatly only

. . " . limited view of spectrum availability, such information
time-variation spectrum opportunities available for secondar

. i . ) . xchange enables secondary users to take advantages of the
users are often time-varying due to primary users’ stoahas

activities [1]; and (2)limited observationseach secondary correlatl(_)ns In time and space, ”.‘a".e more informed dedsion
and achieve a high total transmission rate.

user often has a limited view of the spectrum opportunities_l_h dati h it (5], h is rather stai
due to the limited spectrum sensing capability [2]. Several € recommendation scheme [.]’ owever, IS rather stafic
d does not dynamically change with network conditions. In

characteristics of the wireless channels, on the other,haﬂa ticular the stati h ; WO i tant cheri
turn out to be useful for designing efficient spectrum acce gruicular, the static scneme 1gnores two important chiaree

mechanisms: (1femporal correlationsspectrum availabilities tics (t)'f co%nglvfe rad_:%s. The f'rjt one |s¢gleme \;gnab;nlrny:/\e
are correlated in time, and thus observations in the past ntioned belore. The second one IS thagestion elecihs

be useful in the near futurél[3]; and (8patial correlation epicted in Figurél1, too many users accessing the same good

secondary users close to one another may experience Simqg?nnel leads to congestlor-I and a reduceq rate for everyo-ne.
spectrum availabilitie< [4]. In this paper, we shall expléne To address the shortcomings of the static recommendation

time and space correlations and propose a recommendatig€Me. N this paper W€ propose an adaptive channel rec-
based collaborative spectrum access algorithm, whictesehi °Mmmendation scheme, which adaptively changes the spectrum

good communication performances for the secondary user@ccess probabilities based on users’ latest channel reeamm
Our algorithm design is directly inspired by the recomdat'ons' We formulate and analyze the system as a Markov

mendation system in the electronic commerce industry. F§FCision process (MDP), and propose a numerical algorithm
example, existing owners of various products can providddt always converges to the optimal spectrum access policy
recommendations (reviews) on Amazon.com, so that otherT € main results and contributions of this paper include:
potential customers can pick the products that best suiit the « Markov decision process formulatiowe formulate and
needs. Motivated by this, Li if_[5] proposed a static channel analyze the optimal recommendation-based spectrum ac-
recommendation scheme, where secondary users recommendcess as an average reward MDP.
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« Existence and structure of the optimal poliaye show 0}, Pr{Sn(t) = 1}), which follows a two-state Markov

that there always exists a stationary optimal spectrum chain asp,,(t) = p,,(t — 1)T'y,, ¥t > 1, with the
access policy, which requires only the channel recom- transition matrix

mendation information of the most recent time slot. We 1= pm  Pm

also explicitly characterize the structure of the optimal L = Im 1—qm |-

stationary policy in two asymptotic cases (either the
number of users or the number of users goes to infinity).
« Novel algorithm for finding the optimal policyve pro-
pose an algorithm based on the recently developed Model
Reference Adaptive Search methpH [6] to find the optimal
stationary spectrum access policy. The algorithm has a

Note that whenp,, = 0 or ¢,, = 0, the channel state
stays unchanged. In the rest of the paper, we will look
at the more interesting and challenging cases where
pm < 1 and0 < ¢, < 1. The stationary distribution of
the Markov chain is given as

low complexity even when dealing with a continuous lim Pr{S,(t) = 0}= qim’ (1)
action space of the MDP. We also show that it always freo pmp+ dm
converges to the optimal stationary policy. tlim Pr{S,(t) = 1}= ﬁ. 2

o Superior Performancewe show that the proposed al-
gorithm achieves up td8% performance improvement * Heterogeneous channel throughpithen a secondary
than the static channel recommendation schemel & user transmits successfully on an idle channel it
performance improvement than the Q-learning method, achieves a data rate oB,,. Different channels can
and is also robust to channel dynamics. support different data rates.

The rest of the paper is organized as follows. We introduce” Channel C_ontentionTo resolve the transmission collision
the system model and the static channel recommendation when multiple sgcon_dary USETS access the same cha_nnel,a
scheme in Sections] Il aid TIIIA, respectively. We then discu backoff mechanlsm Is used (_see F'ﬂ.e 2 fo_r |Ilus_trat|on).
the motivation for designing an adaptive channel recommen- The_ contention stage of a time slot is d'V'deq Into
dation scheme in Sectidn IIl}B. The Markov decision process m|n|-§lots, and each user executes the following two
formulation and the structure results of the optimal pokcg steps: ) .
presented in Sectiof 1V, followed by the Model Reference 1) Countdown according to a randomly and uniformly
Adaptive Search based algorithm in Sectioh V. We illustrate chosen integral backoff time (number of mini-slots)
the performance of the algorithm through numerical reduolts A, betweenl and A*.

Section VIl. We discuss the related work in Section VIl and 2) Once t_he timer expires, monitor the channel a”O_'
conclude in SectiofLTX. transmit RTS/CTS messages to grab the channel if

the channel is clear (i.e., no ongoing transmission).

Note that if multiple users choose the same backoff

mini-slot, a collision will occur with RTS/CTS
We consider a cognitive radio network with/ paral- transmissions and no users can grab the channel.

lel and stochastically heterogeneous primary channls. Once successfully grabing the channel, the user

homogeneous secondary users try to access these channels starts to transmit its data packet.

using a slotted transmission structure (see Figdre 2). The Suppose thatk,, users choose channek to access.

secondary users can exchange information by broadcasting Then the probability that uset (out of the k,, users)

messages over a common control Cheﬂane assume that successfu”y grabs the channelis

the secondary users are located close-by, thus they erperie

Il. SYSTEM MODEL

similar spectrum availabilities and can hear one anothers ' = Pr{min{Ai, ..., A, } = An}
broadcasting messages. To protect the primary transmsgsio a )
secondary users need to sense the channel states befare thei Z Prix, = )‘}Pr{@jﬁ{)‘i} > AlAn = A}
data transmission. A=t
The system model is described as follows: 1 i 1 <)\* - )\>k’”1 3)
« Channel stateFor each primary channet, the channel K £ A A* '

state at time slot is For the ease of exposition, we focus on the asymptotic

0, if channelm is occupied by case where\* goes tooo. This is a good approximation
Sy (t) = primary transmissions, when the number of mini-slot&* for back_o_ff is much
larger than the number of usei$ and collisions rarely

1, if channelm is idle. o .
occur. It simplifies the analysis as

« Channel state transitionThe states of different channels PO
change according to independent Markovian processes lim 1 Z()‘ — /\)kmfl =1, (4)
(see Figurd13). We denote the channel state probability Ao AT L= A
H A
vector of channetn at timet asp,, (t) = (Pr{Sm(t) = and thus the expected throughput of uses
1please refer td 7] for the details on how to set up and mairaaieliable u (t) _ BmSm(t) (5)

common control channel in cognitive radio networks.

K



Spectrum Channel Data Channel M different channel recommendations in the buffer,

. . o Recommendation
Sensing Contention Transmission

and Selection then the probability of accessing a channels
{P;;C, if channelm is recommended,
1|2 \ Pm - 1—-P .
S5, otherwise.
(6)
Fig. 2. Structure of each spectrum access time slot A larger value of P... means that putting more
weight on the recommended channels. Whigg- 0
P (no channel is recommended) &f (all channels are
recommended), the random access is used and the
probability of selecting channeh is P, = %

P Q 0 - To illustrate the channel selection process, let us take the
network in FiguréTl as an example. Suppose that the branching
probability P,... = 0.4. Since onlyR = 1 recommendation is

a available (i.e., channel 4), the probabilities of choosthg
Fig. 3. Two states Markovian channel model recommended channel 4 and any unrecommended channel are
84 = 0.4 and 122 = 0.12, respectively.

Numerical studies in[]5] showed that the static channel
recommendation scheme achieves a higher performance over
the traditional random channel access scheme without-infor

In this section, we first give a review of the static channehation exchange. However, the fixed valuef$f. limits the
recommendation scheme in inl [5] and then discuss the mgaerformance of the static scheme, as explained next.
vation for adaptive channel recommendation.

IIl. INTRODUCTION TO CHANNEL RECOMMENDATION

B. Motivations For Adaptive Channel Recommendation

The static channel recommendation mechanism is simple to
implement due to a fixed value @t.... However, it may lead
The key idea of the static channel recommendation schepaesignificant congestions when the number of recommended
is that secondary users inform each other about the availaghannels is small. In the extreme case when oRly= 1
channels they have just accessed. More specifically, e@eh sgannel is recommended, calculatidh (6) suggests thay ever
ondary user executes the following four stages synchrdpougser will access that channel with a probabilfy... When
during each time slot (See Figure 2): the number of usersV is large, the expected number of
« Spectrum sensingsense one of the channels based amsers accessing this chaniéP,.. will be high. Thus heavy
channel selection result made at the end of the previotsngestion happens and each secondary user will get a low
time slot. expected throughput.
« Channel Contentionif the channel sensing result is idle, A better way is to adaptively change the value®f, based
compete for the channel with the backoff mechaniswn the number of recommended channels. This is the key

A. Review of Static Channel Recommendation

described in Sectionlll. idea of our proposed algorithm. To illustrate the advantage
« Data transmission:transmit data packets if the userof adaptive algorithms, let us first consider a simple héiaris

successfully grabs the channel. adaptive algorithm in a homogeneous channel environment,
o Channel recommendation and selection: i.e., for each channeh, its data rateB,, = B and channel

— Announce recommendatioii:the user has success-State changing probabilitigs, = p, ¢, = ¢. In this algorithm,
fully accessed an idle channel, broadcast this chan{é¢ choose the branching probability such that the expected
ID to all other secondary users. number of secondary users choosing a single recommended
— Collect recommendationcollect recommendations ¢hannel is one. To achieve this, we need to Bgf. as in
from other secondary users and store them in Lgmmal].

buffer. Typically, the correlation of channel avail- emma 1. If we choose the branching probabili#,.. = £,
abilities between two slots diminishes as the timghen the expected number of secondary users choosing any
difference increases. Therefore, each secondary Ug@e of theR recommended channels is one.

will only keep the recommendations received from o ) )

the most recentV slots and discard the out-of-date DU€ to space limitations, we give the detailed proof of
information. The user's own successful transmissidreMMaLl in P]. Without going through detailed analysis, it is
history within W recent time slots is also stored instraightfo_rward to shoyv the benefit for such adaptive apgroa
the buffer.WW is a system design parameter and wiithrough simple numerical examples. Let us consider a nétwor
be further discussed later. with M = 10 channels andV = 5 secondary users. For

_ Select channelchoose a channel to sense at thach channeir, the initial channel state probability vector is
next time slot by putting more weights on the recPn(0) = (0,1) and the transition matrix is
ommended channels according tstatic branching r — 1—0.01e 0.01e
probability P,... Suppose that the user hasc R < me 0.01e 1—-0.01e |’



where ¢ is called the dynamic factor. A larger value ofA. MDP Formulation For Adaptive Channel Recommendation
e implies that the channels are more dynamic over time.\ e model the system as a MDP as follows:
We are interested in time average system throughliput
M, whereu,, (t) is the throughput of usen at
time slott. In the simulation, we set the total number of time
slots 7" = 2000.

We implement the following three channel access schemes:

« System stateR € R £ {0,1,...,min{M, N}} denotes
the number of recommended channels at the end of time
slot ¢. Since we assume that all channels are statistically
identical, then there is no need to keep track of the
recommended channel IBs

« Random access scheme: each secondary user selectseaAction P,.. € P = (0,1) denotes the branching

channel randomly. probability of choosing the set of recommended channels.
« Static channel recommendation scheme aslin [5] with thee Transition probability The probability that actio®,.... in
optimal constant branching probabilit§,.. = 0.7. system stateR in time slot¢ will lead to system staté&’

« Heuristic adaptive channel recommendation scheme with in the next time slot is
the variable branching probabilit§,... = %.

Figure[4 shows that the heuristic adaptive channel recom-
mendation scheme outperforms the static channel recommen- We can compute this probability as i (7), with detailed
dation scheme, which in turn outperforms the random access derivations given in Appendix]C.
scheme. Moreover, the heuristic adaptive scheme is mora Reward U(R, P...) is the expected system throughput
robust to the dynamic channel environment, as it decreases in the next time slot when the actidp... is taken under

Pl = Pr{R(t+1) = R'|R(t) = R, Prec(t) = Prec}.

slower than the static scheme wheincreases. the current system statg, i.e.,

T T T T B Random Access U(R, Prec) = Z ngcRc/ Urr,

a5l **—Slali(.:ohannel Becommendation m RER'

235 '/.\.// o \t’Huerlsuc Adaptive Channel Recommendation
_ 2 RN ] whereUp: is the system throughput in stal®. If R’ idle
%2_257 y\*ﬂ\* \/.\ ] channels are utilized by the secondary users in a time slot,
é Al — | then thgseR’ channels will be recommended at the end
g \\\ of the time slot. Thus, we have
2151 q
g 54
< 21} xx 1 UR/ =B

a0l W ] Recall thatB is the data rate that a single user can obtain

on an idle channel.
2

2 s 4 %Dyn;%m“:cmé s 0 1 « Stationary Policy:r € Q £ PIRI maps each stat& to

an actionP,.., i.e., 7(R) is the actionP,.. taken when
the system is in stat®. The mapping is stationary and
does not depend on time

n Given a stationary policyr and the initial stateR, € R,
yv% define the network’s value function as the time average
ystem throughput, i.e.

Fig. 4. Comparison of three channel access schemes

We can imagine that an optimal adaptive scheme (by setti
the right P,...(¢t) over time) can further increase the net
work performance. However, computing the optimal branghir%

probability in closed-form is very difficult. In the rest dfi¢ T-1
paper, we will focus on characterizing the structures of the  ®x(Ro) = fJim o En Z U(R(t), m(R(t)))
optimal spectrum access strategy and designing an efficient t=0

algorithm to achieve the optimum. We want to find an optimal stationary policy* that maxi-
mizes the value functio®, (Ry) for any initial stateRy, i.e.

IV. ADAPTIVE CHANNEL RECOMMENDATION SCHEME 7* = argmax @, (Ry), VRy € R.
™

We first study the optimal channel recommendation in t

. . rﬁotice that this is a system wide optimization, although the
homogeneous channel environment, i.e., each channehs Y b g

the same data rat®. — B and identical channel Stateoptimal solution can be implemented in a distributed fashio
mo This is because every user knows the number of recommended

changing probabilitiep., = p, g g Th? genergllzatlon channelsR, and it can determine the same optimal access
to the heterogeneous channel setting will be discussed In I
. . . . robability locally. For example, each user can calculate t
Section[V]. To find the optimal adaptive spectrum access... . . .
.~ optimal spectrum access policy off-line, and determine the

strategy, we formulate the system as a Markov Decisig

o eal-time optimal channel access probabi locally b
Process (MDP). For the sake of simplicity, we assume that thB 1€ op P e y by
. : . . ~observing the number of recommended channilsafter
recommendation buffer sizd” = 1, i.e., users only consider

the recommendations received in the last time slot. Our m,[henterlng the network.

also applies tQ the case whéf > 1 bY using a h|gh-order 2Users need to know the IDs of the recommended channels i tode
MDP formulation, although the analysis is more involved. access them. However, the IDs are not important in terms oPNbalysis.
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B. Existence of Optimal Stationary Policy C. Structure of Optimal Stationary Policy

MDP formulation above is an average reward based MDP.NeXt we characterize the structure of the Op“”_‘a'_ policy
. . . . .without using the closed-form expressions of the policyi¢ith
We can prove that an optimal stationary policy that is in-

i L IS generally hard to achieve). The key idea is to treat the
dependent of initial system state always exists in our MDEverage reward based MDPs as the fimit of a sequence of

formulation. The proof relies on the following lemma fromdiscounted reward MDPs with discounted factors going to
8] one. Under the irreducibility condition, the average relvar

Lemma 2. If the state space is finite and every stationarpased MDP thus inherits the structure property from the
policy leads to an irreducible Markov chain, then there tis  corresponding discounted reward MDP [8]. We can write down
stationary policy that is optimal for the average reward bds the Bellman equations of the discounted version of our MDP

MDP. problem as:
The irreducibility of Markov chain means that it is possible Vi (/) = max_ > PRulUr+B8Viia(R),VRER, (8)
to get to any state from any state. For the adaptive channel R'ER
recommendation scheme, we have where V;(R) is the discounted maximum expected system

) . . . throughput starting from time sldgtwhen the system in state
Lemma 3. Given a stationary policyr for the adaptive

channel recommendation MDP, the resulting Markov chain is ;e to the combinatorial complexity of the transition prob-

irreducible. ability PLr, in (@), it is difficult to obtain the structure results
for the géneral case. We further limit our attention to the
following two asymptotic cases.

1) Case One, the number of channdls goes to infinity
while the number of usersV stays finite: In this case,
the number of channels is much larger than the number of
secondary users, and thus heavy congestion rarely happens
on any channel. Thus it is safe to emphasizing on accessing
the recommended channels. Before proving the main result of
Case One in Theorel 2, let us first characterize the property
of discounted maximum expected system payofiR).

Proof: We consider the following two cases:

Case |, wherd < g < 1:since0 < P < 1,0 < p < 1,
and0 < ¢ < 1, we can verify that given any statg, the
transition probabiliWPﬁfjg, > 0 for all R" € R. Thus, any
two states communicate with each other.

Case Il, wheng = 1: for all R € R, the transition
probability P75, > 0 if R € {0,...,min{M — R,N}}. It
follows that the stateR’ = 0 is accessible from any other
state R € R. By settingR = 0, we see thaﬂ?gi‘jg, > 0, for
all R € {0,...,min{M, N}}. That is, any other stat®’ € R
is also accessible from the stale= 0. Thus, any two states Proposition 1. WhenM = oo and N < oo , the value
communicate with each other. function V;(R) for the discounted adaptive channel recom-

Since any two states communicate with each other in &iendation MDP is nondecreasing i .

cases and the _nu.mber Qf system st&tgis finite, the resulting  The proof of PropositioRAl1 is given in the Appendix. Based
Markov chain is irreducible. B on the monotone property of the value functidbp(R), we
Combining Lemmak]2 arld 3, we have prove the following main result.

Theorem 1. There exists an optimal stationary policy for theTheorem 2. WhenM = oo and N < oo, for the adaptive
adaptive channel recommendation MDP. channel recommendation MDP, the optimal stationary policy

. o ] 7* is monotone, that isg*(R) is nondecreasing ok € R.
Furthermore, the irreducibility of the adaptive channe&k-re

ommendation MDP also implies that the optimal stationary Proof: For the ease of discussion, we define

policy 7* is independent of the initial statg, [8], i.e. Qu(R, Prec) = Z PJI;T%, [Un + Vi1 (R)]
RER
®r-(Ro) = ®x-,VRo € R, with the partial cross derivative being
Prec /
where® .. is the maximum time average system throughpuf?QQt(Rv Prec) — 02 rrer PR{Sp [Ur + BVita ()]
In the rest of the paper, we will just use “optimal policy” OROPcc OPrecc
to refer “optimal stationary policy that is independent bé t 0 rier ngj.,f, [Ur + BVi1 (R)]

initial system state”. OP, e



By Lemma6 in the Appendix, we know the reverse cumulativevhich is independent of the branching probabilityR). It
distribution function) - ., ., P?jg, is supermodular o x P.  implies that any policyr € A leads to a Markov chain with the

It implies same transition probabilitieﬁg’gﬁ. Thus, any policyr € A
% pPrec 32 pPrec offers the same time average system throughput.
RER ~ RALR RER” RE - . We next show that any policy’ € A° leads to a payoff
OPrec OPrec B no better than the payoff of a policy € A. For a policyn’

Since V11(R') is nondecreasing in’ by Proposition[IL where there exists some stat@ssuch thatr’(R) = 0, the
and Upr = R'B, we know thatUpg + 8V:4+1(R’) is also transition probability from the system staieto R’ is

nondecreasing ii’. Then we have _
P. , M—-R (L)R’(L)M—R—R’
9% per PR r Uk + BVig1 (R)] B R pra’ \ptaq
N OPrec Prr’ = If " <M — R,
rec / —
> O2wer PripUn + BVen () 0 If R > M - R.
o a1:)7“6(: ' . A A
ie If there exists some states such thatr’(R) = 1, we have
o 02Q4(R, Prec) the transition probability as
k) rec > O’

OROPree (1 R-R' f R <R
which implies thatQ, (R, P,..) is supermodular orR x P. R,I(f) — 9% -
Since If R > R.

7" (R) = argmax Q+(R, Prec),
Prec Since
by the property of super-modularity, the optimal policy( R) M-R (-2 p )R/ q )M,R,R/
is nondecreasing oR for the discounted MDP above. Since R p+q¢ “p+gq
the average reward based MDP inherits its structure prppert R _
this result is also true for the adaptive channel recommtégda = Z ( R ) (1— q)JqR*J
MDP. [ | =\

2) Case Two, the number of use?_kfs_goes to !nflnlty while M—R P w4 R
the number of channeld/ stays finite: In this case, the : R (m) (m) 5
number of secondary users is much larger than the number
of channels, and thus congestion becomes a major conc .

However, since there are infinitely many secondary users, al < R > (1- q)R/qR—R/
the idle channels at each time slot can be utilized as long R
as users have positive probabilities to access all channels M-R . X
From the system’s point of view, the cognitive radio network = ( M N R ) (L J’(L)M—R—j
operates in the saturation state. Formally, we show that =0 J ptq pta
Theorem 3. WhenN = oo and M < oo, for the adaptive (R 1— )R B F
; . . ;=) g™,

channel channel recommendation MDP, any stationary policy R
© satisfying compared with[{9), we have

O < W(R) < 1,VR S R, M M

) ) o A . R'=i R'=i

Proof: We first define the sets of policiea = {m : Suppose that the time horizon consists of ghime slots,

0 <m(R) <1,VR € R}andA® = Q\A. Recall that the ,,qym(R) denotes the expected system throughput under the

value of 7(R) equals the probability of choosing the set Of)ohcyw by starting from time slot when the system in state
recommended channels, i.&,...

Then it is easy to check that the probability of accessmg Whent = T,
an arbitrary channet is positive under any policyr € A. ,
Since the number of secondary uséfs= o, it implies that Vi(R) = Vi (R)
all the channels will be accessed by the secondary users. In = Ugr
this case, the transition probability from a system statéo = RB,YReR,me A 7 €A

R’ of the resulting Markov chain is given by ,
@®) It follows thatUg + ﬁVJ’I(R) = Ugr + BV (R), and hence
Ppw

my
my+my=R' m,<Rm,<M—R

A M-R\N P m, 9 \M-R-m, > R™ (5) R) + BV, 7
( My, >(p_|_q) (p_|_q) ’ (9) Z R,R T( )]



ie., where I is an indicator function, which equals if

. o , . the eventw is true and zero otherwise. Parametgr
Vioi(B) 2 Vi (R),VRER,m € A, € A% is the initial parameter for the probabilistic model (used

Recursively, for any time slots< 7', we can show that during the first iteration, i.es = 1), andg_1(x) is the
) reference distribution in the previous iteration (used whe
V(R) > V7 (R),YRe R,me A, n" € A" k> 2).

« Probabilistic model updateupdate the parameterof the
probabilistic modelf (x, v) by minimizing the Kullback-
Leibler divergence betweeg),(z) and f(x,v), i.e.

k() ] _

f(@,v)
V. MODEL REFERENCEADAPTIVE SEARCH FOR OPTIMAL ) o )
SPECTRUMACCESSPOLICY By constructing the reference distribution accordind @) (1

) ) ) the expected performance of random elite solutions can be
Next we will design an algorithm that can converge to thg,nroved under the new reference distribution, i.e.,
optimal policy under general system parameters (not Ingiti

to the two asymptotic cases). Since the action space of the y fwe eQJ(w)I{J(z)>,Y}gk_1(x)dx
adaptive channel recommendation MDP is continuous (i.eEq[e (I)I{J(m)Z'y}] * >
choosing a probability?,... in (0, 1)), the traditional method

Thus, if there exists a policy’ € A° that is optimal, then all
the policiesr € A is also optimal. If there does not exist such
a policy 7/, then we conclude that only the poliey € A is
optimal. |

Vg1 = argmin B, [ln (12)

9o 1671 5 (2)>1]

of discretizing the action space followed by the policy,ueal _ By, [GZJ(I)I{J(I)EV}]
iteration, or Q-learning cannot guarantee to converge & th By, [e7® [ j(a)>}]
optimal policy. To overcome this difficulty, we propose a > Egk,l[eJ(m)I{J(m)>y}]- (12)

new algorithm developed from the Model Reference Adaptive

Search method, which was recently developed in the Opeff@- find a better solution to the optimization problem, it is
tions Research communityi[6]. We will show that the proposethtural to update the probabilistic model (from which ramdo
algorithm is easy to implement and is provably convergent $mlution are generated in the first stage) as close to the new
the optimal policy. reference probability as possible, as done in the thirdestag

A. Model Reference Adaptive Search Method B. Model Reference Adaptive Search For Optimal Spectrum
We first introduce the basic idea of the Model Referenggccess Policy

Adaptive Search (MRAS) method. Later on, we will show

how the method can be used to obtain optimal spectrum acces'é"hthci]lS se]?tign,hwe de_sigT an algorithm based (l).n th|e_| MRAS
policy for our problem. method to find the optimal spectrum access policy. Here we

The MRAS method is a new randomized method for gIobHIeat the adaptive channel recommendation MDP as a global

timizati The kev idea is t domize th . ?ptimization problem over the policy space. The key chajéen
optimization [6] © Key idea is o randomize e onging the choice of proper probabilistic mod¢l-), which is

optimization problem over the feasible region according g I ;
a specified probabilistic model. The method then generaféé'c'al for the con\{ergence of the _MRAS algorithm.
candidate solutions and updates the probabilistic modéhen 1) Random Policy Generation:To apply the MRAS

basis of elite solutions and a reference model, so that wegu/Method, we first need to set up a random policy generation
the future search toward better solutions. mechanism. Since the action space of the channel recommen-

Formally, letJ(z) be the objective function to maximize.dation MDP is continuous, we use the Gaussian distributions

The MRAS method is an iterative algorithm, and it includesPecifically, we generate sample actiarig) from a Gaussian
three phases in each iteratién distribution for each system stafe € R independently, i.e.

. . ~ 2)H In this case, a candidate poliey can
o Random solution generatiomgenerate a set of randomg(R) N(“g’faR)Eh oint distribut _ 3 Wd
solutions {z} in the feasible sety according to a e generated from the joint distribution @R| independent

parameterized probabilistic modglx, v;), which is a Gaussian distributions, i.e.,
probability density function (pdf) with parameter,. (7(0), ..., 7(min{ M, N}))

The number of solutions to generate is a fixed system 9
parameter. XN (Hmin{M,N}> Tmnin{ar,v} )

« Reference distribution constructipselect elite solutions a¢ shown later. Gaussian distribution has nice analytioal a
among the randomly generateo_i set in the previous phaé&nvergent properties for the MRAS method.
Squh that the ;h[??tendqnte% St‘?‘“gfw Z - Construct @ e 4he sake of brevity, we denofégn(R), ur,or) as the
reference probability distribution as pdf of the Gaussian distributioN (g, 0%), and f(m, p, o)

~ N(MO,US) N

I{J@zw} E=1
x )
gk(x) _ Ef (20l {},((I,LZOY}] (10) 3Note that the Gaussian distribution has a support ¢veso, +o0), which
e’ I (> y gr—1(2) >9 is larger than the feasible regionof R). This issue will be handled in Section

) V-BZ]

Egy_1[e7 () >3]



as random policy generation mechanism with parameie#s 4) Policy Generation Updatefor the MRAS algorithm,

(10 s Hmin{m,N}) @Nd o £ (oo, vy Tmin{ M,N})» 1-€., the critical issue is the updating of random policy generati
min{M, N} mechanismf (w, u, o), or solving the problem in[{11). The

flr o) = H F(r(R), s o) optimal update rule is described as follow.
R=0 Theorem 4. The optimal parametefu, o) that minimizes the

min{M,N}  (R)—np)? Kullback-Leibler divergence between the reference distion
2% gr(m) in (@3) and the new policy generation mechanism

1
= H e s
Ao V297 (o) is

wherep is the circumference—to—d.iam.eter ratio. . [ . o(k=1)0x I, >yym(R)dr

2) System Throughput Evaluatio®@iven a candidate pol- ur = =& = = p VR € R, (24)
icy = randomly generated based of(r,u,o), we need Jreae {27} 07
to evaluate the expected system throughpyt From [7), Jrca e V" [ie_ >y [m(R) — pr)dr

. . ) op = — ,VR € R.

we obtain the transition probabilitieB}, 1, for any system fTrEQ eh=D%x [ . ydm
state R, R’ € R. Since a policyr leads to a finitely irre-
ducible Markov chain, we can obtain its stationary disttiinol. (15)

Let us denote the transition matrix of the Markov chain

. o Proof: First, f , h
asQ = [PTJ;(.?]\RIXIR\ and the stationary distribution as roof: First, from [I3), we have

p = (Pr(0),..., Pr(min{M, N})). Obviously, the stationary a(r) = lo, >
distribution can be obtained by solving the following edoiat Ef(ﬂﬁuoyao)[ﬁfﬁi%]
PQ=p. I LG 2% S
Jrea Lo, >pydr’
We then calculate the expected system througkpuby q e =
and,
O = %PT(R)UR' sa(n) = e I1g,>4191(7)
5 =
. : . E [e®~]
Note that in the discussion above, we assume that 2 ale (D{@,,zy}]
implicitly, where Q is the feasible policy space. Since Gaus- _ e e, > 1l{a, >
sian distribution has a support ovéroo, +o0o), we thus Eg [ Lo, >3] [ cq o, >y dm
extend the definition of expected system throughputover e o, >y (0,5

(—o0, +00) Rl as - LCPPLY:

Jrea @ loon T 5w AT frcq Tie 2y dm
e o, >}

Jreq € [{w,>qydn

' Repeat the above computation iteratively, we have

_ e(k71)¢”1{¢w2v}

- Jrca eV Lg, 5pdn’

Then, the problem in(11) is equivalent to solving

P, — ZRGRPT(R)UR m e,
) -0 Otherwise. =

In this case, whenever any generated poficis not feasible
we haved, = —oco. As a result, such policyr will not be
selected as an elite sample (discussed next) and will nat use
for probability updating. Hence the search of MRAS algamth
will not bias towards any unfeasible policy space.

3) Reference Distribution Constructionfo construct the
reference distribution, we first need to select the elitécjes. max Jrca gk(m)In f(m, p, o)dn, (7)
Supposel. candidate policiesyy, 7o, ..., 7, are generated at '
each iteration. We order them based on an increasing order of
the expected system throughpdts, i.e., &7, < &4, <..< Substituting[(I6) into[(17), we have

gr(m) E>1. (16)

subject to w,o =0,

®,,, and set the elite threshold as max Jrco e(kfl)%]{@ﬂzﬂ In f(m, w, o)dr, (18)
Y =P i subject to .o =0,
where0 < p < 1is the elite ratio. For example, whén= 100 Function f(w(R),ur,or) is log-concave, since it is

andp = 0.4, theny = @z, and the lasti0 samples in the the pdf of the Gaussian distribution. Since the log-
sequence will be selected as elite samples. Note that as le@@icavity is closed under multiplication, thef{r, u, o) =
as L is sufficiently large, we shall have < oo and hence H;’:’éM’N} f(m(R), ur,or) is also log-concave. It implies
only feasible policiesr are selected. According t@ {[10), Wethe problem in[{1l7) is a concave optimization problem. Swvi

then construct the reference distribution as by the first order condition, we have
a (k—l)@,\.l 1 d
— k=1, Jrca® {22y 0 f(m, g o)dm 0,YR € R,
gk(ﬂ') —_ E(If(fr,uo,a'o)[f({::i(ﬁz))] (13) af (k 1)@ I 3#3 1 f d
L ICFS 23T ISNG) e\rT T nj(m,u,o)am
Egk,{lq[e;:}{:”;}] k> 2. TEQ {@->7} (m,p,0) — OVRER.

aO'R



which leads to[{14) and_(15). Due to the concavity of thAlgorithm 1 MRAS-based Algorithm For Adaptive Recom-

optimization problem in[{17), the solution is also the globdnendation Based Optimal Spectrum Access

optimum for the random policy generation updating. ® 1. Initialize parameters for Gaussian distributiofs,, o),
5) MARS Algorithm For Optimal Spectrum Access Policy: the elite ratiop, and the stopping criteriog. Set initial

Based on the MARS algorithm, we generale candidate elite thresholdy, = 0 and iteration index = 0.

polices at each iteration. Then the updates[in (14) (15) repeat

are replaced by the sample average versiofi_ih (24) [add (25), Increaseiteration indexk by 1.

respectively. As a summary, we describe the MARS-based: Generate L candidate policiesry, ..., 7 from the

algorithm for finding the optimal spectrum access policy of random policy generation mechanisfr, 1), _,,0,—1).

adaptive channel recommendation MDP in Algorithin 1. 5: Selectelite policies by setting the elite threshojgd =

max{®s, 1, Yh-1}-

C. Convergence of Model Reference Adaptive Search & Update the random policy generation mechanism by
In this part, we discuss the convergence property of the _ ZiL:I €(k71)®”1{®wi27k}7i(3) VR eR

MRAS-based optimal spectrum access policy. For ease of ex- fok = Z_{l eb=D®x [y S ' '

position, we assume that the adaptive channel recommendati - e (21)

MDP has a unique global optimal policy. Numerical studies ZL (h=1)®y (R — 2

in [6] show that the MRAS method also converges where 2 _ 2vi=1° {2, 20} [T (R) — pR] VR eR.

there are multiple global optimal solutions. We shall show ’ Sy e g S ’

that the random policy generation mechanigitr, u;,, o) (22)

will eventually generate the optimal policy.

7: until ma <&.
Theorem 5. For the MRAS algorithm, the limiting point of the MaxXReR IRk < &

policy sequencdr} generated by the sequence of random

policy generation mechanisfyf (r, u;,, o)} converges point- . L - )
wisely to the optimal spectrum access policy for the StateRt where P, (R) is the probability of selecting channel

adaptive channel recommendation MDP, i.e., m.
Similarly with the homogeneous channel case, we can apply
I Errpy on[m(R)] = 7°(R),VRER, (19) the MRAS method to obtain the optimal solutions with the
. new formulation. However, the number of decision variables
klingo Varyem.onlr(B)] = 0.VEER. (20) {P,.(R)}M_, in the heterogeneous channel model equals to
The proof is given in the Appendix. M2M, which causes exponential blow up in the computational
From Theorenil5, we see that parametef. ., o) for co_m_plexny. V_\/e_ next chus on developing a low complexity
updating in [2%) and(25) also converges, i.e., efficient heuristic algorithm to solve the MDP.
Recall that in the heuristic algorithm in Lemiida 1 for the ho-
kli_g)lo prr = m(R),VRER, mogeneous channel recommendation, the weight of selecting
lim op, = OVRER. each recommended channe%tsand total weights of choosing
k—oo ’ recommended channels afé%. Similarly, we can design
Thus, we can useiaxger or.i; < € as the stopping criterion @ low complexity heuristic algorithm for the heterogeneous
in Algorithm [Z. channel recommendation. More specifically, we set the vieigh

of selecting channet: is P" (P}", respectively) when the
channel is recommended (the channel is not recommended,
respectively). Given the system is in stdte the probability

of choosing channeh is proportional to its weight of its state
We now generalize the adaptive channel recommendatign, i.e.,
P

to the heterogeneous channel setting. Recall that thersyste -, "

state R in the homogeneous channel case only keeps track Pn(R) = W (23)

of how many channels are recommended. In a heterogeneous m=L L

channel environment, each channel has different a data rétethis case, the total number of decision variableg
B,, and channel state changing probabilitigs and ¢,,. is reduced to2M, which grows linearly in the number of
Keeping track of the number of recommend channels is nchannelsM. Let 7 = {(P/", P7*)}M_, € (0,1)* denote the
enough for optimal decision. Intuitively, if a channel withset of corresponding decision variables. Our objective f&nd
higher data rateB,, is recommended, users should choodbe optimal that maximizes the time average throughgput
this channel with a higher weight. The new system state five can again apply the MRAS method to find the optimal
the heterogeneous channel case should be defined as a vestimtion, which is given in Algorithni]2. The procedures of
R4 (I, ..., Ipr), wherel,,, = 1 if channelm is recommended derivation is very similar with the MRAS method for the
and I, = 0 otherwise. The objective of the heterogeneodsmogeneous channel recommendation; we omit the details
channel recommendation MDP is then to find the optimaue to space limit.

channel access probabiliti€s?,,(R)}M_, for each system Note that the optimal policy?* for the heuristic hetero-

V1. ADAPTIVE CHANNEL RECOMMENDATION WITH
CHANNEL HETEROGENEITY
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Algorithm 2 MRAS-based Algorithm For Optimizing Heuris-wheree is the dynamic factor. Recall that a largemeans that

tic Heterogeneous Channel Recommendation the channels are more dynamic over time. Usidg (2), we know
1: initialize parameters for the elite ratip, Gaussian that channel model§' andI'? have the stationary channel idle
distributions p(0) = {(u7*(0), u*(0))}¥_,,0(0) = probabilities of1/6 and1/2, respectively. In other words, the

{(o7(0),05(0))}}_,, and the stopping criteriof. Set primary activity level is much higher with the Type 1 channel
initial elite thresholdy, = 0 and iteration index: = 0. than with the Type 2 channel.
2: repeat We initialize the parameters of MRAS algorithm as follows.
3: increaseiteration indexk by 1. We setur = 0.5 andogr = 0.5 for the Gaussian distribution,
4:  generate L candidate policiesry,...,7, from the which has 68.2% support over the feasible regionl).
random policy generation mechanigiti, u(k—1),0(k— We found that the performance of the MRAS algorithm is

1)). insensitive to the elite ratip whenp < 0.3. We thus choose
5: selectelite policies by setting the elite threshojd = p = 0.1.
max{q)%m—pm’%‘l}' When using the MRAS-based algorithm, we need to de-
6: update the random policy generation mechanism byermine how many (feasible) candidate policies to generate
(for any I,,, € {0,1},m € M) in each iteration. Figurgl5 shows the convergence of MRAS
ZL o(E-1)®s ] pm a}lgorithm Wi'Fh 100, 300, and500 candidat_e polic.ies per itera-
(k) = i=1 (P, 2%} I ’ (24) tion, respectively. We have two observations. First, thelper

of iterations to achieve convergence reduces as the nurfiber o

L _ -
Y eI g 50y ! ) achl .
1 candidate policies increases. Second, the convergened gpe

L — = m m . . .ge
oM (k) = >ic1 el 1)@"1{%12%}(131,” — M1, (k)*\* insignificant when the number changes fr@60 to 500. We
m AT L o(k—1)®x ‘thus choosd. = or the experiments in the sequel.
I Z{le Lo, >0) h hoosd. = 500 for th h I
‘ (25)
7. until maxy, cro.1),mem o7 (k) <& sal

22

geneous channel recommendation is also a feasible policy
for the heterogeneous channel recommendation MDP. The

. . 2 “ —#— Number of candidate policy L=500

performance of the optimal policy for the heterogeneous I —— Number of candidate policy L=300

. . . A —=— Number of candi licy L=1

channel recommendation MDP thus dominates the heuristic L AT PRI L0

heterogeneous channel recommendation. However, nurherica

241

System Throughput

results show that the heuristic heterogeneous channel rec- 181

ommendation has a small performance loss comparing to % = o Ilera(iigS(ep 5 w2

the optimal policy while gaining a significant computation

complexity reduction. Fig. 5. The convergence of MRAS-based algorithm with défférnumber

of candidate policies per iteration

VII. SIMULATION RESULTS

In this section, we investigate the proposed adaptive &ang - gimulation Results
recommendation scheme by simulations. The results show . . .
that the adaptive channel recommendation scheme not oog‘lnge |mplement the adaptive channel recommendation
achieves a higher performance over the static channel rec eme withM/ = 10 channels andv = 5 secondary users.

mendation scheme and random access scheme, but also is r}%qealso l_)enchmark_ the adaptive channel _recommend_atmn
scheme with the static channel recommendation schemé in [5]

robust to the dynamic change of the channel environments:
y 9 and the random access scheme as the benchmark. We choose
the dynamic factor within a wide range to investigate the
A. Simulation Setup robustness of the schemes to the channel dynamics. Thésresul

We first consider a cognitive radio network consisting of'e shown in FigureS| 68 9. From these figures, we see that

multiple independent and stochastically homogeneousagoyim * Superior performance of adaptive channel recommen-
channels. The data rate of each channel is normalized fo be ~ dation scheme (Figurels| 6 arid:?he adaptive channel

Mbps. In order to take the impact of primary user's long run ~ "€commendation scheme performs better than the ran-
behavior into account, we consider the following two typés o dom access scheme and static channel recommendation

channel state transition matrices: scheme. Typically, it offers 5%18% performance gain
over the static channel recommendation scheme.
Type LT — { 1-0.005¢  0.005¢ } (26)  * Impact of channel dynamics (Figurés 6 ald: The
0.025¢  1-0.025¢ |’ performances of both adaptive and static channel rec-

Type 2:T2 — { 1—-0.01¢ 0.01e¢ ommendation schemes degrade as the dynamic factor

0.01e 1—0.01e ] ’ (27) increases. The reason is that both two schemes rely on the
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70—

recommendation information from previous time slots to
make decisions. When channel states change rapidly, the
value of recommendation information diminishes. How-

./Q —®— Performance Gain In Type 1 Transition Matri
—&— Performance Gain In Type 2 Transition Matri

@
S

ever, the adaptive channel recommendation is much more “l ha
robust to the dynamic channel environment changing (See 40 % .
Figure[9®). This is because the optimal adaptive policy ol V .,

takes the channel dynamics into account while the static
one does not.

Impact of channel idleness level (Figureés 8 and 9)
Figure[8 shows the performance gain of the adaptive
channel recommendation scheme over the random access L. - - - - ?
scheme under two different types of transition matrix Dynamic Facor e

S(?enano.s' We see .that the performance _gam decreq—sgs& Performance gain over random access scheme. ThelTgpé Type
with the idle probability of the channel. This shows thag channels have the stationary channel idle probabilitied /6 and 1,2,
the information of channel recommendations can enhaneepectively.

the spectrum access more efficiently when the primary
activity level increases (i.e., when the channel idle prob-
ability is low). Interestingly, FigurE]9 shows that the per-
formance gain of the adaptive channel recommendation
scheme over the static channel recommendation scheme
trends to increase with the channel idleness probability.
This illustrates that the adaptive channel recommendation
scheme can better utilize the channel opportunities given
the information of channel recommendations.

N
=]

Performance Gain Over Random Access (%)

o

N
=3

—@— Performance Gain In Type 1 Transition Matri
—&— Performance Gain In Type 2 Transition Matri;

=)

)

=

)

=)

)

=)

12k —®&— Random Access
—#— Static Channel Recommendation
—@— Adaptive Channel Recommendation

Performance Gain Over Static Channel Recommendation (%)

IS

1 s 10 s 20 2 %
Dynamic Factor &
Fig. 9. Performance gain over static channel recommendatbeme. The

Type 1 and Type 2 channels have the stationary channel idleapiiities of
1/6 and1/2, respectively.

0.9r

0.8

Average System Throughput
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06

C. Comparison of MRAS algorithm and Q-Learning

05—

' s 10 Dynam‘;ipacm 2 = » To benchmark the performance of the spectrum access
policy based on the MRAS algorithm, we compare it with

Fig. 6. System throughput with/ = 10 channels andV = 5 users under the policy obtained by Q-learning algorithin [9].
the Type 1 channel state transition matrix

Fig. 7. System throughput with/ = 10 channels andV = 5 users under

Since the Q-learning can only be used over the discrete
action space, we first discretize the action spgadato a finite
discrete action spaC§ ={0.1,...,,1.0}. The Q-learning then
defines a Q-value representing the estimated quality ofte-sta

2.6

257& ;z;?s:ocmh:r?z:f:ecommendalion | aCtIon Comblnatlon aQ : RX 757‘50 — R leen anew reWard
2e SR ~—® Adapiive Channel Recommendaion | U(R(t), Prec(t)) is received, we can update the Q-value to be
£oa ]
22%&;\“&'% , QURI), Pree(t)) = (1 - 0)Q(RI). Prec),
A SN 4 a[U(R(t), Prec(t)) + max Q(R(t + 1), Prec)],
A Prec€P

*x | where0 < « < 1 is the smoothing factor. Given a system state
mm%w R, the probability of choosing an actiaf... is P (Prec(t) =

eTQ(RvPTeC)

P.ec|R(t) = R) = S wherer > 0 is the
P, P

rec

L L L L L L
1 5 10 15 20 25 30

Dynamic Factor e tem pe ra.tu re .
After the Q-learning converges, we obtain the correspandin

the Type 2 channel state transition matrix spectrum access poliay, over the discretized action spae

Note thatr is a sub-optimal policy for the adaptive channel
recommendation MDP over the continuous action space
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We compare the Q-learning based policy with our MRASenvironments are at most2% and 5%, respectively. This
based optimal policy when there afd = 10 channels and shows the efficiency of the heuristic heterogeneous channel
N = 5 users, and show the simulation results in Figlirés 10 aretommendation in homogeneous channel environments.

[I7. From these figures, we see that the MRAS-based algorithm

outperforms Q-learning up t@0%, which demonstrates the ”K —
effectiveness of our proposed algorithm 120 | — 9 Optmall s Channel Rec "
. —#— Heuristic Heter Channel Re dation
14— . . . . . . 1.1
13k —w¥— Q Learning For Adaptive Channel Recommendation 1k

—®— MRAS Algorithm For Adaptive Channel Recommendation
—#— Static Channel Recommendation

0.6~ . . . . . .
4 1 5 10 15 20 25 30
Dynamic Factor &
"\’

Average System Throughput

o
©
T

=)
=)
T

Average System Throughput

071 0o
M Fig. 12. Comparison of heuristic heterogenous channelnmegendation
0.6F - . . .
otk and optimal homogeneous channel recommendation in Typerbdgeneous
05 s s s w w w channel environment.
1 5 10 15 20 25 30

Dynamic Factor &

Fig. 10. Comparison of MRAS-based algorithm and Q-learnirilh Type

22

i ; 25F .‘
1 channel state transition matrix P —p—
—@— Optimal Homogeneous Channel Recommendanon
ol —k— Heuristic | Channel
E
26 T T T T T T ko)
3
—w¥— Q Learning For Adaptive Channel Recommendation ".g 23
25r — e MRAS Algarithm For Adaptive Channel F i £
—#— Static Channel Recommendation i
(2]
®
>
e
g
g
<

1 5 10 15 20 25 30
Dynamic Factor e

Average System Throughput

W Fig. 13.  Comparison of heuristic heterogenous channelnmegendation
8¢ 7 and optimal homogeneous channel recommendation in Typergeneous
17 ‘ ‘ A ‘ ‘ ‘ channel environment.

1 5 10 15 20 25 30

Dynamic Factor &

Fig. 11. Comparison of MRAS-based algorithm and Q-learnirilh Type

iti i "r —@— Optimal k Channel on
2 Channel state transition matrix —#— Heuristic Heter Channel R 1dation

10| —W¥— Optimal Heterogeneous Channel Recommendation
—#&— Static Channel Recommendation

D. Heuristic Heterogenous Channel Recommendation

We now evaluate the proposed heuristic heterogeneous
channel recommendation mechanism in Secfioh VI with a
network consisting ofd/ = 10 channels andV = 5 users.

We implement the heuristic heterogeneous channel recom-

Average System Throughput
~

mendation mechanism in both homogeneous and heterogenous i
homogeneous environments. S . . - - -
1) Homogeneous Channel EnvironmeWe first study how Dynarmic Factor ¢

the heuristic heterogeneous channel recommendation me . - .
Comparison of heuristic heterogenous channelmeatendation,

anism performs in the homogeneous channel enV”'O”m%&mal homogeneous channel recommendation and optimaogeneous

(which is a special case of the heterogeneous environment}hannel recommendation in the first kind of heterogenousirgiaenviron-

both types of'* andI'2 homogeneous channel environment$?et

and simulate the optimal homogeneous channel recommenda-

tion (Algorithm[1) as a benchmark. . The data rate of each2) Heterogeneous Channel Environmeimle next imple-

channel is normalized to beMbps. The results are shown inment the heuristic heterogeneous channel recommendation

Figured’IP an@13. Comparing to the optimal channel accesschanism in heterogenous channel environments. The data

policy, the performance loss of the heuristic heterogeseaates of M = 10 channels ard B; = 0.2, Bs = 0.6, B3 =

channel recommendation in the Typeand Type2 channel 0.8,B, = 1,B; = 2,Bs = 4,B; = 6,Bs = 8,By =
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~® Optimal Homogeneous Channel Recommendation || channel recommendation, respectively. The performance

261 —k— Heuristic Heter Channel R

wl Ty Qptmal Heterageneous Ghanne! R aton || loss is at most20% comparing with the the optimal
ZZ’M’ heterogeneous channel recommendation. Comparing with
wl | Figure[14, we see that the heuristic heterogeneous chan-

nel recommendation performs better if more channel
8 %WW**MHH—*H* ] P

opportunities are available for the secondary users.

127&‘»&»\,‘.,,,,%7 VIIl. RELATED WORK
o Clveesteas The spectrum access by multiple secondary users can be ei-

: - - = — - = theruncoordinatedr coordinated For the uncoordinated case,
Dynamic Factor e multiple secondary users compete with other for the resourc
Fig. 15. Comparison of heuristic heterogenous channelmewendation, Huang et alj in [10] designed two auctlor_l mechanisms to
optimal homogeneous channel recommendation and optimaiogeneous allocate the interference budget among selfish users. ®elith
channel recommendation in the second kind of heterogenbasnel envi- and Huang in[[11] studied the largest and smallest convesgen
ronment. time to an equilibrium when secondary users access multiple
channels in a distributed fashion. Lat al. in [12] modeled
) . _the interactions among spatially separated users as dioges
10, Byp = 20} Mbps. We consider two kinds of stochastiGames with resource reuse. Li and Han [inl [13] applied the
channel state changing environments: graphic game theory to address the spectrum access problem
Ty =T2,Ty=T2 T =T%T, =T2T;5 =I?, yvith limited range of mutl_JaI interference. Anandkunedral. N
1 1 1 1 1 in [14] proposed a learning-based approach for competitive
FGZF7F7:F7F8:F7F9:F7F10:1—‘}’ (28) 7 1 1 1
spectrum access with incomplete spectrum information. Law
and et al.in [15] showed that uncoordinated spectrum access may
lead to poor system performance.
_1m1 _ 711 _ 711 _ 711 _ 711
{Ih = F2 T2 = F2 s = 1“2 T = FQ’F"’ - 1“2, For the coordinated spectrum access, Zeaal. in [16]
Lo =T%T7=T"Ts=01%T9g=0"T19=T}. (29) proposed a dynamic group formation algorithm to distribute

Here subscript denotes channel index, and superscriplteierﬁ?condary users’ transmissions across multiple changbts.

channel type index. For the first kind of channel environmerﬂnd Krunz proposed a multi-level spectrum opportunity feam

a channel with low data rate tends to have a low primatyork in [L7]. The above papers assumed that each secondary

transmission occupancy. While for the second kind, a cHani$€r knows the entire channel occupancy information. We
with high data rate tends to have a high idleness probabili§P"Sider the case where each secondary user only has allimite
We also implement static channel recommendation, the opt" of the system, and improve each other's information by
mal homogeneous channel recommendation (Algorithm 1) a[ﬁjzommend_atlon. . ) .

optimal heterogeneous channel recommendation (obtaiyped bQur algorlthm_de5|gn IS part!ally inspired k_Jy the recommen-
adapting the MRAS algorithm to optimize the heterogeneofl@tion systems in the electronic commerce industry, where a
channel MDP, not shown in this paper) as benchmarks. Tﬁ[é(ncal methods such as collaborative filterihgl[18] andtimu

results are depicted in Figurgs] 14 15. From these figur%gped bandit process modelirig [19] are useful. However, we
we see that: cannot directly apply the existing methods to analyze dogni

o For the first kind of channel environment, the heuristi{:agljoelnetworks due fo the unique congestion effect in our

heterogeneous channel recommendation achieves upn-lto
40% and100% performance improvement over the opti-
mal homogeneous channel recommendation and the static
channel recommendation, respectively. Comparing with In this paper, we propose an adaptive channel recommenda-
the optimal heterogeneous channel recommendation, tl@ scheme for efficient spectrum sharing. We formulate the
performance loss of the heuristic heterogeneous chanpsebblem as an average reward based Markov decision process.
recommendation is at mo35%. Note that the number of We first prove the existence of the optimal stationary spectr
decision variables in the optimal heterogeneous chanmelcess policy, and then characterize the structure of tti@alp
recommendation i8/2" = 10240, while the number of policy in two asymptotic cases. Furthermore, we propose a
decision variables in the heuristic heterogeneous channelvel MRAS-based algorithm that is provably convergent to
recommendation is onl2M = 20. The convergence the optimal policy. Numerical results show that our progbse
of the heuristic heterogeneous channel recommendatalgorithm outperforms the static approach in the litertoy
hence is much faster than the optimal heterogeneawys to 18% and the Q-learning method by up 10% in terms
channel recommendation. of system throughput. Our algorithm is also more robust to

« For the second kind of channel environment, the heurigie channel dynamics compared to the static counterpart.
tic heterogeneous channel recommendation achieves up terms of future work, we are currently extending the
to 70% and 100% performance improvement over theanalysis by taking the heterogeneity of channels into con-
optimal homogeneous channel recommendation and statideration. We also plan to consider the case where the

=)
T

Average System Throughput

IX. CONCLUSION
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secondary users are selfish. Designing an incentive-cdnipatC. Derivation of Transition Probability
channel recommendation mechanism for that case will be veryyhan the system state transits frdtrto R’

. . . , we assume that
interesting and challenging.

m, and m, recommendations, out a®’ recommendations,
are channels that have been recommended and have not

APPENDIX been recommended at time slotrespectively. Obviously,
A. Proof of Lemm&? m, +m, = R'. We assume thaf,, recommended channels
WhenS,,, (t) = 0, this trivially holds. We focus on the case@Ndmy unrecommer_wded channels have been accessed by the
that S, (t) = 1. secondary users at time skt 1. We thus haveR > m,. > m,

Let K, = {1,....km(t)} be the set of secondary user@nd M — R > m, = m,. We also assume that there are
accessing the channel, 7 be the backoff time be generated? Secondary users have accessed theserecommended
by secondary use)randn(nl — min{ri [i £ n,i € K} The channels andn, secondary users have accessed thase

m Y :

probability that the usen captures the channet is given as Unrecommended channels at time sfot 1. Obviously, we
haven, +n, = N , n, > m, andn, > m,,.

Propm = P{r0 >} For the first term, the probability that the user distribu-
— ™ o (-1 tion (n,,n,) happens follows the Binomial distribution as
Tmaz . ( iv ) P;LeTc(l - Prec)nu'
Thus, the expected throughput of usefs For the second term, whem, > 1, it is easy to check
un(t) = / o BPrn,deT,?L that there are( ;;LLT __ 1 ways forn, secondary users to
0 Tmax _ r |
Tmaz ™ ey 1 choosem, recommended channels and there afe=—;
= / Bl - —=) m(8)= ———dr, possibilities for thesen, recommended channels out of
OB e e recommended channels, each of which has probalfifity" .
= T Among thesem,. recommended channels that have been ac-
Bn;'( )(t) cessed by the secondary users, the probabilityrthathannels
o m . . H mT My T —1MN
EENOE turn out to be idle is given a . 2 (1 — g)mrgmr—mr,
0 Whenm, = 0, it requires thatu,, = 0. Thus, we define
n, — 1 )1 If n,.=0,
B. Proof of Lemm&ll -1 “ )0 Otherwise.

Let A¢ denote the event th&t secondary users choose the | ) .
recommended channels, afft(c,, ..., cz) denote probability Similarly, we can obtain the third term for the unrecom-
mass function that the number of secondary users on tRes&"ended channels case.
recommended channels equaldq..., cg respectively. Given

the eventA, we have D. Lemma 5
. . Pree .
Pr(cy, .., crlAc) = n R, Since the operatiod_ .. Pz 5[] plays a key role in the
C1,--,CR Bellman equation, to facilitate the study, we first define the

which is a Multinomial mass function. By the property ofe!lowing function

Multinomial distribution, we have min{M,N}

C fr(R,Pree) = PLree Vr € R.
Elem|Ac] = 5. 2. PR

It follows that the expected number of users choosing Since
recommended channet is

N fr(R, Prec)
Elen] = > Elem|Ac]Pr(Ac) = Pr(R(t + 1) > r[R(t) = R, Prec(t) = Prec)
Cc=0 =1—Pr(R(t+1) <r|R(t) = R, Prec(t) = Prec),
N
= Z g ( N )Prcec(l _pm)NfC We call the functionf, (R, P,..) asthe reverse cumulative
o R ¢ distribution functionin the sequel.
= PmN' Lemma 4. When M = oo and N < oo, the reverse
R cumulative distribution functiorf,.(R, P,..) is nondecreasing
Then E[c,,] = 1 requires that in Rforall ,ReR, Pr. €P.
Proe = % proof: We prove the result by induction argument. In abuse

of notation, we denote the transition probabiliﬂéﬁg and
O the reverse cumulative distribution functigh(R, P,...) when



the number of usersv
respectively.
When N = 2, from (@), we have

= k as P} (k) and fF(R, Prc.)

P rec _ P2 1= Pree 2 q 2
0,0 ( ) rec ( ) (p_|_q)
+2Prec(1 - Prec)La
p+q
2pq P
PPTCC 2) = 1_Prec 27+2Prec 1_Prec —
0,1 () ( ) (p_|_q)2 ( )p+q
PPrec 2 — 1_ P’r‘ec 2 p 27
Vo) = (- P (1)
Ple(2) = P2og+ (1= Pro)’(——)?
1,0 ( ) recq ( ) (p_|_q)
q2
+2Prec(1 - Prec)—7
p+q
PRe(2) = PL(1—q)+(1- P —2L
(p+q)
1—
FOP(1 — Py L= Wa P
p+gq
P1P§CC (2) = (1 - PreC)z(L)z + 2Pr60(1 - PreC) (1 q)pa
’ p+q p+q
‘ +¢ q
Phre2) = PRI 4 (1 P (—1)?
2,0 ( ) rec 2 ( ) (p+q)
q2
+2Prec(1 - Prec)—7
p+gq
1—qg+(1-— 2
P21,DIEC (2) = P’I‘2€C 1 ( Q)q + (1 - PreC)QAQ
2 (p+9q)
1—
2P Pm)( 9)q +pg
p+q
1—gq)* P
PPTeC 2 — P2 ( _|_ 1 P'r‘ec 2 2
2,2 ( ) rec 2 ( ) (p+q)
1—
+2P7"ec(1 - Prec) ( Q)p
p+gq
It is easy to check the following holds
Pyye(2) = Plye(2) > Py (2),
Pye(2) = Plye(2) = Piye(2).
Since
2 2 2
YR =) Pl =) P2 =1,
1=0 1=0 1=0

we thus obtain
AR+ 1,Pree) > f2(R, Prec), VR, € R, Prec € P,

i.e. f-(R, P,...) is nondecreasing i for the caseV = 2.
We then assume thdt (R, P...) is nondecreasing i for
all R e R, P,.. € P for the case thatv =k > 2 i.e.

fF(R+1,Prec) > fH(R, Prec), YR, 7 € R, Prec € P.
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We next prove thaf, (R, P...) is nondecreasing for the case
the N = k + 1 under this hypothesis.

Let ¢) denote the event that one arbitrary user out of these
k + 1 users, does not generate a recommendation at time slot
t 4+ 1. Obviously,
q
P’I’(1/)) Precq+(1 p—i—q’
which depends ot,.. and the channel environment only. By
conditioning on the evenp, we have

Prec)

P (k+1) = P (k)1 — Pr(y)]
+Pes (k) Pr(v), (30)
Pre(k+1) = P?fcl(k)[l — Pr(y)].
+Pe (k) Pr(y) (31)
Thus,
SR+ 1, Pree) = fFTH(R, Prec)
k+1 k+1
- ZP?;; (k+1) = > Pree(k+1)
k+1 kaT
= PR ) = 2 PRI (I - Pr(v)
k
+[Z Prres (k) — Z Prrse (k)| Pr(v)
k
= D_Pryi K Z PR (k)1 — Pr(s)
j=r
k
HZ PR ik Z P (k) Pr(y)
= [f (R +1, Prec) — r_l(R, Preo)l[l — Pr()]
= [fk (R +1 PTEC) ff(Ra PTEC)]PT(Q/’)
> 0. (32)

i.e. f-(R, P...) is also nondecreasing for the case thie=
k+ 1. By the induction argument, the result holds for the case
that N > 2. O

E. Lemma 6

Lemma 5. WhenM = +oco and N < +oo, the reverse
cumulative distribution functiorf,.(R, P,..) is supermodular
onR x P.

proof: To show f,.(R, P,...) is supermodular orR x P is
equivalent to proving the following is true:

82fr (R Prec)
— 7 > . 33
OP,.cOR — 0 (33)
Since R is an integral variable[ (33) is equivalent to

8fT(R+ 17PTBC) _ 8fT(R7 Prec) > O
aPrec aPrec -

That is, it is equivalent to showin@% is nondecreas-
ing in R. By the similar procedure in proof of Lemma 4, we
show this holds. O




F. Proof of Propositiori 1L
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point-wisely to the optimal spectrum access poli¢yfor the

We prove the proposition by induction. Suppose that trélaptive channel recommendation MDP, i.e.

time horizon consists of any' time slots.

Whent = T, Vp(R) = Ur = RB, and the proposition is
trivially true.

Now, we assume it also holds fd%;(R) whent = k +
1,k+2,..,T. Let R be a system state such that> R. By
the hypotheS|s we havig, 1 (R) > Vi4+1(R). Let 7* be the
optimal policy. From the Bellman equation il (8), we have

min{M,N}
> PR "),VR € R.
R'=0
(34)

By defining a new system state-l such thatU_; +
BVi+1(—1) = 0, we can rewrite the equation ih(34) as

Vi(R)

Ur + fVit1 (R

min{M,N}

Z PRR/ Z{ Ui + BVit1(4)]

[ i1+ BVkﬂ(z -]}
min{M,N}

> AlUr + BVisar (R))]

R'=0

Vi(R)

min{M,N}

S PR,

i=R’

~[Ur—1 + BVt (R = 1))}

By lemmab in the Appendix, we have

min{M,N}

S opT s

R,i
i=R’'

min{M,N}
S PRIY VR eR.
i=R’'
Then
min{M,N}

> A{lUs + BVis1(R)]

R'=0

Vi(R)

IN

min{M,N}

>

i=R'

—[Urr—1 + BVt (R = 1))}

min{M,N}
X Phw

P,
P rec
R,R’

)]
)]

Ur + BViy1 (R

Ur + BVig1 (R

max
Prec€P
ReR

min{M,N}
X P

Vi (R)7

Ur + BVit1(R)]

i.e., fort =k, Vi(R) > Vi(R) also holds. This completes the

proof. O

G. Proof of Theorerl5

We first show that under the reference distribution, the

optimal policy is attainable.

Lemma 6. For the MRAS algorithm, the policy generated
by the sequence of reference distributiofig,} converges

klim E, [m(R)] = w(R)",VR€eR, (35)
—00

klim Varg, [r(R)] = 0,YReR. (36)
—00

proof: The proof is developed on the basis of the results in

First, from the MRAS algorithm, we have

Ve < Vit

i.e. the sequencéy,} is monotone. Sinc® < v, < ¥,
is bounded, there must exist a finif€ such thaty,,; =
T, Yk > K.
When~g = &+, we have
. i R
Jm Ey, (7 g, >q,y] = €7
holds.
When~g < @, from (12), we know that

E!]k [e'ib,, I{<I>7r Z’Yk}] > Egk—l [6

That is, the sequencgF,, [¢®*~ {4, >-,1]} is monotone and
hence converges. We then show that the limit of this sequence
must bee®~* by contradiction.

Suppose that

P L, smpy), Ve > K.

lim E,, [e® P < P

k—o0

Define the set

e, >yl =e

®. 4 o

5 b

Sinceyix < P+, the set® is not empty by the continuous
property over the policy space of MDPI [8]. Note that

O ={r: ®; > max{yk,In

Ito, >y 9k-1(7)
H E{ vi} gl(ﬂ'),

i€ Lo, >
and

IR TP

e®x

. ‘5@"]{%2%}
lim
"I{%ka }]

k— o0 Egk [8<I>

> 1,Vm € O,

we thus have
lim gg(m) = oo, Vr € ©.
k— oo

By Fatou’s lemma, we have

lim inf/ gk (m)dm
k=00 TEQ

= 1

> lim inf gr(m)dm
k—o00 €O

> / lim inf gi(7)dm
€O k—o00

= 007

which forms a contradiction. Hence, we have

lim E,, [e® O

ks o0 I{‘I’WZVk}] =€



Sincee

to-one map over the fieldr :

implies that

To complete the proof of the theorem, we next show that
Eyg, [m(R)]

Eg, [7*(R)]

lim Eg [n] = 77,
k—o00

lim Varg, [r] = O.
k—o0

= Ef(rpo)[T(R)], VR € R,

= Ef(r.p,0) [7?(R)],VR € R.

For the sake of simplicity, we first define a function

H(p, o) = / . B [ oy In f (0, p, o),
TE

Since

f(m, p,0)

we then obtain

H(p, o, )
min{M,N}

min{M,N}
[ 7(@®).pnm.0n)
=0

minﬁ,N} 1 @ opp)?

L 2UR

Tt

min{M.N} a2 _n@®?
H e "R R————0e R
ik V2pio%,

min{M,N} ppm(R) 1%
H e °R 7x f(m(R),0,0R)
R=0

min{M,N} npw(R)
I 5 fn(). 0.0
R=0

/ Mf(ﬁ(}z), 0,0r)dn(R)],
w(R)EP

OR

_ Z / (k- 1)<I>,rI 0. %}HRW(R)dF
TE OR

mln{IM N}

X / I g 0y In f(m(R).0,05)dn

mln{]W,N}

-

R=0

{ e(k71)<1>
TeQ

"o, >

-ln[/ HRT(R) o (R). 0, on)dr(R)|dr}.
(R)eP

OR

Since the optimization problem if{118) is to solve

the updated parameters,(, o) thus maximizedd (p,

It means that

maxH(,u, Ua’yk)v

.o

VH(IJ’ka o-ka’yk) = 0.

(37)
(38)

o, V)
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‘I’WI{%ZV} is a monotone function ob, and one- That is
®,. > v}, the result above

VH(p,o,7)

rrm(R) (R)

i f(m(R),0,05) "5  dr(R)

nRm(R)
e R

fw(R)EP €

Jemer f(m(R),0,0r)dr(R)

/ eV g 2y
LIS Y
_ m(R)
_/ NI g sy,
TEN OR
= 0.

It follows that
Jrca € VP L 5y m(R)dr
frreﬂ ek=D®x [rg >, ydm

pRm(R)

7= f(n(R),0,0r)m(R)dr(R)

(&
Jrmer VR ER.

rrm(R)

fW(R)EP e °r  f(m(R),0,0r)dn(R)

By multiplying the same constant on the numerator and
denominator of the terms on both sides, we have

fﬂ'EQ

f e(k—l)@rr]{q)ﬂz,yk}gk,l(ﬂ')dﬂ_
TeR Egk,l[eq)“I{CPﬂ-Z'y}]

eF TV L >y 91 ()
Egy 1 [e®m I{a,>4}]

m(R)dm

«[;T(R)GP f(m(R), ur,or)m(R)dn(R)
fw(R)eP f(m(R), pr,or)dr(R)

,VRER,

Since
/ F((R), s or)de(R)
w(R)EP

_ / e(k_l)q)ﬂl{@ﬂch}gk*l(Tr) drr
TEQ E €¢"I{¢ﬂ2v}]

9k—1 [
= 1

3

we obtain

/ e(kil)q)"l{@,,zyk}gkfl(ﬂ')
TeQ

Egk—l [eq)ﬂ I{<I>7r Z’Y}]
B /w(R)eP

Eg, [7(R)]

m(R)dn

f(m(R), pr,or)m(R)dr(R),VR € R,

= Ef(ﬂ._#yo.) [TF(R)], VR € R.
Similarly, we can show that
Eq, [WQ(R)] =

Ef(r o7 (R)],VR € R.

From [37), it follows that

kllrI;oEf(w’“k’a")[ﬂ = kli_)m E,, 7]
= 7.



and,

(1]

(2]

(3]

(4

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

klggo Var o) (m(R)]
= M (o) (7 (R)] = Ef(r o [T (R)]}
— i (B, [5*(R)] - By [r(R)P)
= klggo Varg, [m(R)]
= 0.
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