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Abstract

In this paper, we consider resource allocation in the 3GPP Long Term Evolution (LTE) cellular uplink, which

will be the most widely deployed next generation cellular uplink. The key features of the 3GPP LTE uplink (UL)

are that it is based on a modified form of the orthogonal frequency division multiplexing based multiple acess

(OFDMA) which enables channel dependent frequency selective scheduling, and that it allows for multi-user

(MU) scheduling wherein multiple users can be assigned the same time-frequency resource. In addition to the

considerable spectral efficiency improvements that are possible by exploiting these two features, the LTE UL

allows for transmit antenna selection together with the possibility to employ advanced receivers at the base-

station, which promise further gains. However, several practical constraints that seek to maintain a low signaling

overhead, are also imposed. In this paper, we show that the resulting resource allocation problem is APX-hard

and then propose alocal ratio test (LRT)based constant-factor polynomial-time approximation algorithm. We

then propose two enhancements to this algorithm as well as a sequential LRT based MU scheduling algorithm

that offers a constant-factor approximation and is anotheruseful choice in the complexity versus performance

tradeoff. Further, user pre-selection, wherein a smaller pool of good users is pre-selected and a sophisticated

scheduling algorithm is then employed on the selected pool,is also examined. We suggest several such user

pre-selection algorithms, some of which are shown to offer constant-factor approximations to the pre-selection

problem. Detailed evaluations reveal that the proposed algorithms and their enhancements offer significant gains.

Keywords: Local ratio test, DFT-Spread-OFDMA uplink, Multi-user scheduling, NP-hard, Resource allocation,

Submodular maximization.
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I. INTRODUCTION

The next generation cellular systems, a.k.a. 4G cellular systems, will operate over wideband multi-path fading

channels and have chosen OFDMA as their air-interface [1]. The motivating factors behind the choice of OFDMA

are that it is an effective means to handle multi-path fadingand that it allows for enhancing multi-user diversity

gains via channel-dependent frequency-domain scheduling. The deployment of 4G cellular systems has begun

and will accelerate in the coming years. Predominantly the 4G cellular systems will be based on the 3GPP LTE

standard [1] since an overwhelming majority of cellular operators have committed to LTE and specifically all

deployments in the forseeable future will adhere to the firstversion of the LTE standard, referred to as Release

8. Our focus in this paper is on the uplink (UL) in these Release 8 LTE based cellular systems (henceforth

referred to simply as LTE UL) and in particular on multi-user(MU) scheduling for the LTE UL. The LTE UL

employs a modified form of OFDMA, referred to as the DFT-Spread-OFDMA [1]. In each scheduling interval, the

available system bandwidth is partitioned among multiple resource blocks (RBs), where each RB represents the

minimum allocation unit and is a pre-defined set of consecutive subcarriers and OFDM symbols. The scheduler

is a frequency domain packet scheduler, which in each scheduling interval assigns these RBs to the individual

users. Anticipating a rapid growth in data traffic, the LTE ULhas enabled MU scheduling along with transmit

antenna selection. Unlike single-user (SU) scheduling, a key feature of MU scheduling is that an RB can be

simultaneously assigned to more that one user in the same scheduling interval. MU scheduling is well supported

by fundamental capacity and degrees of freedom based analysis [2], [3] and indeed, its promised gains need to

be harvested in order to cater to the ever increasing traffic demands. However, several constraints have also been

placed by the LTE standard on such MU scheduling (and the resulting MU transmissions). These constraints

seek to balance the need to provide scheduling freedom with the need to ensure a low signaling overhead and

respect device limitations. The design of an efficient and implementable MU scheduler for the LTE UL is thus

an important problem.

In Fig. 1 we highlight the key constraints in LTE MU scheduling by depicting a feasible allocation. Notice first

that all RBs assigned to a user must form a chunk of contiguousRBs and each user can be assigned at-most one

such chunk. This restriction allows us to exploit frequencydomain channel variations via localized assignments

(there is complete freedom in choosing the location and sizeof each such chunk) while respecting strict limits

on the per-user transmit peak-to-average-power-ratio (PAPR). Note also that there should be a complete overlap

among any two users that share an RB. In other words, if any twousers are co-scheduled on an RB then those

two users must be co-scheduled on all their assigned RBs. This constraint is a consequence of Zadoff-Chu (ZC)
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Figure 1. A Feasible RB Allocation in the LTE UL

sequences (and their cyclic shifts) being used as pilot sequences in the LTE UL [1] and is needed to ensure

reliable channel estimation. The LTE UL further assumes that each user can have multiple transmit antennas but

is equipped with only one power amplifier due to cost constraints. Accordingly, it allows a basic precoding in

the form of transmit antenna selection where each scheduleduser can be informed about the transmit antenna

it should employ in a scheduling interval. In addition, to minimize the signaling overhead, each scheduled user

can transmit with only one power level (or power spectral density (PSD)) on all its assigned RBs. This PSD is

implicitly determined by the number of RBs assigned to that user, i.e., the user divides its total power equally

among all its assigned RBs subject possibly to a spectral mask constraint (a.k.a. power pooling). While this

constraint significantly decreases the signaling overheadinvolved in conveying the scheduling decisions to the

users, it does not result in any significant performance degradation. This is due to the fact that the multi-user

diversity effect ensures that each user is scheduled on the set of RBs on which it has relatively good channels.

A constant power allocation over suchgoodchannels results in a negligible loss [4]. Finally, scheduling in LTE

UL must respect control channel overhead constraints and interference limit constraints. The former constraints

arise because the scheduling decisions are conveyed to the users on the downlink control channel, whose limited

capacity in turn places a limit on the set of users that can be scheduled. The latter constraints are employed

to mitigate intercell interference. In the sequel it is shown that both these types of constraints can be posed as

column-sparse and generic knapsack (linear packing) constraints, respectively.

The goal of this work is to design practical MU resource allocation algorithms for the LTE cellular uplink,

where the term resource refers to RBs, modulation and codingschemes (MCS), power levels as well as choice of

transmit antennas. In particular, we consider the design ofresource allocation algorithms via weighted sum rate

utility maximization, which accounts for finite user queues(buffers) and practical MCS. In addition, the designed

algorithms comply with all the aforementioned practical constraints. Our main contributions are as follows:

3



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may
change prior to final publication. IEEE TRANSACTIONS ON MOBILE COMPUTING

1) We show that while thecompleteoverlap constraint along with the at-most one chunk per scheduled user

constraint make the resource allocation problem APX-hard,they greatly facilitate the use of local ratio test

(LRT) based methods [5], [6]. We then design an LRT based polynomial time deterministic constant-factor

approximation algorithm. A remarkable feature of this LRT based algorithm is that it is an end-to-end

solution which can accommodate all constraints.

2) We then propose an enhancement that can significantly reduce the complexity of the LRT based MU

scheduling algorithm while offering identical performance, as well as an enhancement that can yield good

performance improvements with a very small additional complexity.

3) We propose a sequential LRT based MU scheduling algorithmthat offers another useful choice in the

complexity versus performance tradeoff. This algorithm also offers constant-factor approximation (albeit

with a poorer constant) and a significantly reduced complexity.

4) In a practical system, it is useful to first pre-select a smaller pool of good users and then employ a

sophisticated scheduling algorithm on the selected pool. Pre-selection can substantially reduce complexity

and is also a simple way to enforce a constraint on the number of users that can be scheduled in a scheduling

interval. We note that another way to enforce the latter constraint is via a knapsack constraint in the LRT

based MU scheduling. We suggest several such user pre-selection algorithms, some of which are shown to

offer constant-factor approximations to the pre-selection problem.

5) The performance of the proposed LRT based MU scheduling algorithm together with its enhancements,

the sequential LRT based MU scheduling algorithm and the proposed user pre-selection algorithms are

evaluated for different BS receiver options via elaborate system level simulations that fully conform to the

3GPP evaluation methodology. It is seen that the proposed LRT based MU scheduling algorithm along

with an advanced BS receiver can yield over27% improvement in cell average throughout along with

over10% cell edge throughput improvement compared to SU scheduling. Its sequential counterpart is also

attractive in that it yields about20% improvement in cell average throughput while retaining thecell edge

performance of SU scheduling. Further, it is seen that user pre-selection is indeed an effective approach

and the suggested pre-selection approaches can offer significant gains.

A. Related Work

Resource allocation for the OFDM/OFDMA networks has been the subject of intense research [7]–[12]. A

majority of OFDMA resource allocation problems hitherto considered belong to the class of single-user (SU)

scheduling problems, which attempt to maximize a system utility by assigning non-overlapping subcarriers to
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users, along with transmit power levels for the assigned subcarriers. Even within this class most of the focus

has been on the downlink. These resource allocation problems have been formulated ascontinuous optimization

problems, which are in general non-linear and non-convex. As a resultseveral approaches based on the game

theory [13], [14], dual decomposition [7] or the analysis ofoptimality conditions [15] have been developed.

Recent works have focused on the downlink in emerging cellular standards and have proposed approximation

algorithms after modeling the resource allocation problems as constrained integer programs. Prominent examples

are [10], [16] which consider the design of downlink SU-MIMOschedulers for LTE cellular systems and derive

constant factor approximation algorithms.

Resource allocation for the DFT-Spread-OFDMA uplink has been relatively less studied with [6], [17]–[21]

being the recent examples. In particular, [20] first considers a relaxed SU scheduling problem (without the

integer valued RB allocation and the contiguity constraints) and poses the resource allocation problem as a

convex optimization problem. It then proposes a fast interior point based method to solve that problem followed

by a modification step to ensure contiguous allocation. A similar approach was adopted earlier in [22] where the

formulated convex optimization problem was solved via a sub-gradient method followed by a modification step

to ensure integer valued RB allocation. Furthermore, [21] explicitly enforced the integer valued RB allocation

constraint while formulating the resource allocation problem but also assumed that the chunk size for each user is

given as an input, and proposed message passing based algorithms. Message passing based algorithms were also

applied in [11] over an OFDMA uplink in order to minimize the total transmit power subject to rate guarantees.

We note that while the algorithms in [20]–[22] may yield effective solutions in different regimes, they do not

offer a worst-case performance guarantee and hence cannot be claimed to be approximation algorithms.

On the other hand, [6], [17]–[19] have explicitly modeled both integer valued RB allocation and the contiguity

constraints. Specifically, [17] shows that the SU LTE UL scheduling problem is APX-hard and both [6], [17]

provide deterministic constant-factor approximation algorithms, whereas [18] provides a randomized constant-

factor approximation algorithm. [19] extends the algorithms of [6], [17] to the SU-MIMO LTE-A scheduling.

The algorithm proposed in [6] is based on an innovative application of the LRT technique, which was developed

earlier in [5]. However, we emphasize that the algorithms in[6], [17]–[19] cannot incorporate MU scheduling, do

not consider user pre-selection and also cannot incorporate knapsack constraints. To the best of our knowledge

the design of approximation algorithms for MU scheduling inthe LTE uplink has not been considered before.

5



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may
change prior to final publication. IEEE TRANSACTIONS ON MOBILE COMPUTING

II. MU SCHEDULING IN THE LTE UL

Consider a single-cell withK users and one BS which is assumed to haveNr ≥ 1 receive antennas. Suppose

that userk hasNt ≥ 1 transmit antennas and its power budget isPk. We letN denote the total number of RBs.

We consider the problem of scheduling users in the frequencydomain in a given scheduling interval. Let

αk, 1 ≤ k ≤ K denote the non-negative weight of thekth user which is an input to the scheduling algorithm

and is updated using the output of the scheduling algorithm in every scheduling interval, say according to the

proportional fairness rule [23]. Lettingrk denote the rate assigned to thekth user (in bits per frame of N RBs),

we consider the following weighted sum rate utility maximization problem,

max
∑

1≤k≤K

αkrk, (1)

where the maximization is over the assignment of resources to the userssubject to:

• Decodability constraint: The rates assigned to the scheduled users should be decodable by the base-station

receiver. Notice that unlike SU scheduling, MU scheduling allows for multiple users to be assigned the

same RB. As a result the rate that can be achieved for userk need not be only a function of the resources

assigned to thekth user but can also depend on the those assigned to the other users as well.

• One transmit antenna and one power level per user:Each user can transmit using only one power

amplifier due to cost constraints. Thus, only a basic precoding in the form of transmit antenna selection is

possible. In addition, each scheduled user must perform power pooling, i.e., it is allowed to transmit with

only one power level (or power spectral density (PSD)) on allits assigned RBs, where the PSD is implicitly

determined by the number of RBs assigned to that user.

• At most one chunk per-user and at-mostT users per RB: The set of RBs assigned to each scheduled

user should form one chunk, where each chunk is a set of contiguous RBs. Further at-mostT users can be

co-scheduled on a given RB.T is expected to be small number typically two.

• Complete overlap constraint: If any two users are assigned a common RB then those two users must be

assigned the same set of RBs. Feasible RB allocation and co-scheduling of users in LTE MU UL is depicted

in Fig 1.

• Finite buffers and finite MCS: Users in a practical UL will have bursty traffic which necessitates considering

finite buffers. In addition, only a finite set of MCS (29 possibilities in the LTE network) can be employed.

• Control channel overhead constraints:Every user that is given an UL grant (i.e., is scheduled on at least

one RB) must be informed about its assigned MCS and the set of RBs on which it must transmit along
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with possibly the transmit antenna it should employ. This information is sent on the DL control channel of

limited capacity which imposes a limit on the set of users that can be scheduled. In particular, the scheduling

information of a user is encoded and formatted into one packet (henceforth referred to as a control packet),

where the size of the control packet must be selected from a predetermined set of sizes. A longer (shorter)

control packet is used for a cell edge (cell interior) user. In the LTE systems each user is assigned one search

region when it enters the cell. In each scheduling interval it then searches for the control packet (containing

the scheduling decisions made for it) only in that region of the downlink control channel, as well as a region

common to all users. A more elaborate description is given inthe Appendix.

• Per sub-band interference limit constraints: Inter-cell interference mitigation is performed by imposing

interference limit constraints. In particular, on one or more subbands, the cell of interest must ensure that the

total interference imposed by its scheduled users on a neighboring base-station is below a specified limit.

We define the setC as the set containingN length vectors such that anyc ∈ C is binary-valued with ({0, 1})

elements and contains a contiguous sequence of ones with theremaining elements being zero. Here we say an

RB i belongs toc (i ∈ c) if c contains a one in itsith position, i.e.,c(i) = 1. Note then that eachc ∈ C denotes

a valid assignment of RBs since it contains one contiguous chunk of RBs. Alsoc1 andc2 are said to intersect

if there is some RB that belongs to bothc1 andc2. For anyc ∈ C, we will useTail(c) (Head(c)) to return the

largest (smallest) index that contains a one inc. Thus, eachc ∈ C has ones in all positionsHead(c), · · · ,Tail(c)

and zeros elsewhere. Further, we define{G1, · · · ,GL} to be a partition of{1, · · · ,K} with the understanding

that all distinct users that belong to a common set (or group)Gs, for any1 ≤ s ≤ L, are mutually incompatible.

In other words at-most one user from each groupGs can be scheduled in a scheduling interval. Notice that by

choosingL = K andGs = {s}, 1 ≤ s ≤ K we obtain the case where all users are mutually compatible. Let us

define a family of subsets,U , as

U = {U ⊆ {1, · · · ,K} : |U| ≤ T & |U ∩ Gs| ≤ 1 ∀ 1 ≤ s ≤ L} (2)

and letM = U × C.

We can now pose the resource allocation problem as

max
∑

(U ,c)∈M

p(U , c)X (U , c), s.t.

For each group Gs,
∑

(U,c)∈M

U:U∩Gs 6=φ

X (U , c) ≤ 1;
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For each RB i,
∑

(U,c)∈M

c:i∈c

X (U , c) ≤ 1;

∑

(U ,c)∈M

βq(U , c)X (U , c) ≤ 1, 1 ≤ q ≤ J ;

∑

(U ,c)∈M

αq(U , c)X (U , c) ≤ 1, q ∈ I, (P1)

whereφ denotes the empty set andX (U , c) is an indicator function that returns one if users inU are co-scheduled

on the chunk indicated byc. Note that the first constraint ensures that at-most one useris scheduled from each

group and that each scheduled user is assigned at-most one chunk. In addition this constraint also enforces

the complete overlap constraint. The second constraint enforces non-overlap among the assigned chunks. Note

that p(U , c) denotes the weighted sum-rate obtained upon co-schedulingthe users inU on the chunk indicated

by c. We emphasize thatthere is complete freedom with respect to the computation ofp(U , c). Indeed, it can

accommodate finite buffer and practical MCS constraints, account for any particular receiver employed by the

BS and can also incorporate any rule to assign a transmit antenna and a power level to each user inU over

the chunkc. Clearly, computation of these metrics requires that all channel estimates are available to the BS. In

this paper we do not consider channel estimation related issues (cf. [24] which considers training in conjunction

with antenna selection) and simply assume that reliable estimates are available at the BS to compute all metrics.

The first set ofJ knapsack constraints in (P1), whereJ is arbitrary but fixed, are generic knapsack constraints.

Without loss of generality, we assume that the weight of the pair (U , c) in the qth knapsack,βq(U , c), lies in

the interval [0, 1]. Notice that we can simply drop each vacuous constraint, i.e., each constraintq for which
∑

(U ,c)∈M βq(U , c) ≤ 1. The second set of knapsack constraints arecolumn-sparse binary knapsack constraints.

In particular, for each pair(U , c) ∈ M and q ∈ I we have thatαq(U , c) ∈ {0, 1}. Further, we have that for

each(U , c) ∈M,
∑

q∈I α
q(U , c) ≤ ∆, where∆ is arbitrary but fixed and denotes the column-sparsity level.

Note that here the cardinality ofI can scale polynomially inKN keeping∆ fixed.

Together these two sets of knapsack constraints can enforcea variety of practical constraints, including the

control channel and the interference limit constraints. For instance, defining a generic knapsack constraint as

β1(U , c) = |U|

K̃
, ∀ (U , c) ∈ M, for any given inputK̃ can enforce that no more that̃K can be scheduled

in a given interval, which represents a coarse control channel constraint. In a similar vein, consider any given

choice of a victim adjacent base-station and a sub-band withthe constraint that the total interference caused to

the victim BS by users scheduled in the cell of interest, overall the RBs in the subband, should be no greater

than a specified upper bound. This constraint can readily modeled using a generic knapsack constraint where the

8
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weight of each pair(U , c) ∈M is simply the ratio of the total interference caused by usersin U to the victim

BS over RBs that are inc as well as the specified subband, and the specified upper bound. The interference

is computed using the transmission parameters (such as the power levels, transmit antennas etc) that yield the

metricp(U , c). A finer modeling of the LTE control channel constraints is more involved since it needs to employ

the column-sparse knapsack constraints together with the user incompatibility constraints and is deferred to the

Appendix.

Note that for a givenK,N , an instance of the problem in (P1) consists of a finite setI of indices, a partition

{G1, · · · ,GL}, metrics {p(U , c)} ∀ (U , c) ∈ M and weights{βq(U , c)}, ∀ (U , c) ∈ M, 1 ≤ q ≤ J and

{αq(U , c)}, ∀ (U , c) ∈ M, q ∈ I. Then, in order to handle the generic knapsack constraints,we leverage

the idea developed in [5] and first partition the setM into two parts asM = M
narrow ∪M

wide, where we

defineM
narrow = {(U , c) ∈ M : βq(U , c) ≤ 1/2, ∀ 1 ≤ q ≤ J} so thatMwide = M \Mnarrow. We

then defineJ sets,V(1), · · · ,V(J) that coverMwide (note that any two of these sets can mutually overlap)

as (U , c) ∈ V
(q) iff βq(U , c) > 1/2 for q = 1, · · · , J . Recall thatT, J are fixed and note that the cardinality

of M, |M|, is O(KTN2) and thatMnarrow and {V(q)} can be determined in polynomial time. Next, we

propose Algorithm I whose complexity is essentially determined by that of its module Algorithm IIa and scales

polynomially in KN (recall thatT is a constant). A detailed discussion on the complexity along with steps to

reduce it are deferred to the next section. We offer the following theorem.

Theorem 1. The problem in (P1) is APX-hard, i.e., there is anǫ > 0 such that it is NP hard to obtain a1 − ǫ

approximation algorithm for (P1). Let̂W opt denote the optimal weighted sum rate obtained upon solving (P1)

and letŴ denote the weighted sum rate obtained upon using Algorithm I. Then, we have that

Ŵ ≥







Ŵ opt

1+T+∆+2J , If M
wide = φ

Ŵ opt

1+T+∆+3J , Otherwise
(3)

Proof: Let us specialize (P1) to instances where all the knapsack constraints are vacuous, whereL = K

andGs = {s}, 1 ≤ s ≤ K and wherep(U , c) = 0 whenever|U| ≥ 2 for all (U , c) ∈M. Then (P1) reduces to

the SU scheduling problem considered in [6], [17] which was shown there to be APX-hard. Consequently, we

can assert that (P1) is APX-hard.

Next, consider first Algorithm IIa which outputs a feasible allocation overMnarrow yielding a weighted sum

rate Ŵ narrow. Let Ŵ opt,narrow denote the optimal weighted sum rate obtained by solving (P1) albeit where all

9
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pairs (U , c) are restricted to lie inMnarrow. In Proposition I given in the Appendix, we prove that

Ŵ narrow ≥
Ŵ opt,narrow

1 + T +∆+ 2J
. (4)

Our proof (given in the Appendix) invokes notation and results developed for LRT based SU scheduling in [6]

as much as possible, and highlights mainly the key differences. These differences are novel and crucial since

they allow us to co-schedule multiple users on a chunk while respecting incompatibility constraints and to satisfy

multiple knapsack constraints.

Next, let us consider the remaining part which arises whenM
wide 6= φ. Consider first Algorithm IIb which

outputs a feasible allocation overMwide yielding a weighted sum ratêWwide. Let Ŵ opt,wide denote the optimal

weighted sum rate obtained by solving (P1) albeit where all pairs (U , c) are restricted to lie inMwide. We will

prove that

Ŵwide ≥
Ŵ opt,wide

J
. (5)

Let Vopt,wide be an optimal allocation of pairs fromMwide that results in a weighted sum ratêW opt,wide. Clearly,

in order to meet the knapsack constraints,Vopt,wide can include at-most one pair from eachV(q), 1 ≤ q ≤ J so

that there can be at-mostJ pairs inVopt,wide. Thus, by selecting the pair yielding the maximum weighted sum-rate

we can achieve at-least̂W opt,wide/J . The greedy algorithm first selects the pair yielding the maximum weighted

sum rate among all pairs inMwide and then attempts to add pairs to monotonically improve the objective. Thus,

we can conclude that (5) must be true.

Notice that we select̂W = max{Ŵ narrow, Ŵwide} so that

Ŵ ≥ max

{

Ŵ opt,narrow

1 + T +∆+ 2J
,
Ŵ opt,wide

J

}

. (6)

It is readily seen that

Ŵ opt ≤ Ŵ opt,narrow + Ŵ opt,wide. (7)

(6) and (7) together prove the theorem.

For clarity, all the important symbol definitions are captured in Table IV.

An interesting observation that follows from the proof of Theorem 1 is that any optimal allocation overM
wide

can include at-most one pair from eachV
(q), 1 ≤ q ≤ J . Then since the number of pairs in eachV

(q), 1 ≤ q ≤ J

is O(KTN2), we can determine an optimal allocation yieldinĝW opt,wide via exhaustive enumeration with a high
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Table I
Algorithm I: Algorithm for LTE UL MU-MIMO

1: Input p(U , c), ∀ (U , c) ∈M andMnarrow,Mwide

2: Determine a feasible allocation overMnarrow using Algorithm IIa and letŴ narrow denote the corresponding
weighted sum rate.

3: Determine a feasible allocation overMwide using Algorithm IIb and letŴwide denote the corresponding
weighted sum rate.

4: Select and output the allocation resulting in̂W = max{Ŵ narrow, Ŵwide}.

albeit polynomial complexity (recall thatT andJ are assumed to be fixed). Thus, by using exhaustive enumeration

instead of Algorithm IIb, we can claim the following result.

Corollary 1. Let Ŵ opt denote the optimal weighted sum rate obtained upon solving (P1) and letŴ denote the

weighted sum rate obtained upon using Algorithm I albeit with exhaustive enumeration overMwide. Then, we

have that

Ŵ ≥







Ŵ opt

1+T+∆+2J , If M
wide = φ

Ŵ opt

2+T+∆+2J , Otherwise
(8)

Remark 1. Some intuition on the process in the heart of Algorithm I (which is Algorithm IIa) is on order. Note

that Algorithm IIa has two stages. The first one (comprising of steps 1 through 16) begins by initializing an

empty stackS and defining the current gain of each pair to be equal to its metric. Then, promising pairs are

successively added to the top of the stackS. Each time a pair is pushed into the stack, the current gain ofeach

pair that can potentially be added and which conflicts with the pair just added (in terms of sharing a common

RB or each having a user that belongs to an identical group or each having a unit weight in a common sparse

knapsack constraint inI), is decremented by the current gain of the added pair. The idea behind this operation

is that eventually only one pair among these conflicting pairs can be selected, so by decrementing the gains we

ensure that a conflicting pair can be added in a later step onlyif it has a larger gain. Similarly, the gain of a

non conflicting pair is also decremented by its maximal weight times twice the current gain of the added pair, in

order account for the non-sparse knapsack constraints. At the end of the first stage the stackS contains a set of

promising pairs but the entire set need not be feasible for (P1). In the second stage another stackS ′ is formed

by successively picking pairs from the top of stackS and adding them toS ′ if feasibility is satisfied. Note that

the top down approach of picking pairs fromS is intuitively better since pairs at the top will have largermetrics

11
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Table II
Algorithm IIa: LRT based module M

narrow

1: Initialize p′(U , c)← p(U , c), ∀ (U , c) ∈M
narrow, stackS = φ

2: For j = 1, · · · , N
3: Determine(U∗, c∗) = argmax (U,c)∈Mnarrow

Tail(c)=j

p′(U , c)

4: If p′(U∗, c∗) > 0 Then
5: Set p̂ = p′(U∗, c∗) andPush (U∗, c∗) into S.
6: For each(U , c) ∈M

narrow such thatp′(U , c) > 0
7: If ∃ Gs : U ∩ Gs 6= φ & U∗

j ∩ Gs 6= φ or c∗ ∩ c 6= φ Then
8: Updatep′(U , c)← p′(U , c) − p̂
9: Else If ∃ q ∈ I : αq(U , c) = αq(U∗

j , c
∗
j ) = 1 Then

10: Updatep′(U , c)← p′(U , c) − p̂
11: Else
12: Updatep′(U , c)← p′(U , c) − 2p̂max1≤q≤J β

q(U , c).
13: End If
14: End For
15: End If
16: End For
17: Set stackS ′ = φ
18: While S 6= φ
19: Obtain (U , c) = Pop S
20: If (U , c)∪S ′ is valid Then %% (U , c)∪S ′ is deemed valid if no user inU is incompatible with any user present

in S ′ and no chunk inS ′ has an overlap withc and all knapsack constraints are satisfied by(U , c) ∪ S ′.
21: UpdateS ′ ← (U , c) ∪ S ′

22: End While
23: OutputS ′ andŴ narrow =

∑

(U ,c)∈S′ p(U , c).

Table III
Algorithm IIb: Greedy module over M

wide

1: Input p(U , c), ∀ (U , c) ∈M
wide and{V(q)}Jq=1.

2: SetS = φ andM′ = M
wide.

3: Repeat
4: Determine(U∗, c∗) = argmax (U,c)∈M′

S∪(U,c) is valid

p(U , c).

5: UpdateS ← S ∪ (U∗, c∗) andM′ = M
′ \ {V (q) : (U∗, c∗) ∈ V

(q)}
6: Until (U∗, c∗) = φ or M′ = φ.
7: OutputS andŴwide =

∑

(U ,c)∈S p(U , c).

12
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Table IV
SYMBOL DEFINITIONS

K Number of users N Number of RBs
L Number of user groups Nr Number of receive antennas at BS
Nt Number of transmit antennas at

each user
T Maximum number of co-scheduled

users
αk Weight of userk rk rate (bits/frame) of userk
Pk Power budget of userk c N -length vector representing a

chunk of RBs
Head(c) First RB in chunkc Tail(c) Last RB in chunkc

C Set of all valid chunks Gk kth group of mutually incompati-
ble users

U user subset containing at mostT
compatible users

U Family of all valid user subsets

M = U × C Family of all feasible pairs
{(U , c)}

p(U , c) weighted sum rate obtained upon
scheduling pair(U , c)

βq(U , c) weight of (U , c) in qth generic
knapsack constraint

αq(U , c) weight of (U , c) in qth sparse
knapsack constraint

M
narrow All feasible pairs {(U , c) :

βq(U , c) ≤ 1/2 ∀ q}
M

wide = M \Mnarrow

J Number of generic knapsack con-
straints

I Set of indices of sparse knapsack
constraints

X (U , c) Indicator function for scheduling
pair (U , c)

Γ(j)(U , c) Offset for pair (U , c) in the jth

iteration
pmmse(U , j) weighted sum rate obtained upon

scheduling user setU on RBj with
MMSE receiver

psic(U , j) weighted sum rate obtained upon
scheduling user setU on RBj with
SIC receiver

than pairs below with whom they conflict.

For notational simplicity, henceforth unless otherwise mentioned, we assume that all users are mutually

compatible, i.e.,L = K with Gs = {s}, 1 ≤ s ≤ K.

III. C OMPLEXITY REDUCTION

In this section we present key techniques to significantly reduce the complexity of our proposed local ratio

test based multi-user scheduling algorithm. As noted before the complexity of Algorithm I is dominated by

that of its component Algorithm IIa. Accordingly, we focus our attention on Algorithm IIa and without loss of

generality we assume thatM = M
narrow. We first note that for a given set of metrics{p(U , c) : (U , c) ∈M},

the complexity (in terms of number of operations) of Algorithm IIa scales asO(KTN3), with the underlying

operations being simple additions of real valued numbers. However, in practise theO(KTN2) many metrics have

13
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to be first computed. Notice that the metric of any pair(U , c) is in general not separable over the constituent RBs

in c. 1 Each such metric requires the computation of|U|(Tail(c) − Head(c) + 1) signal-to-noise-ratio (SINR)

terms (which involve multiplications of complex numbers and possibly matrix inversions) as well as evaluating

transcendental functions (such asln(.)). Moreover, the power pooling greatly limits re-using SINRterms even

across different metrics involving the same user groupU . Consequently, the total metric computation complexity

can itself scale asO(KTN3) but where the underlying operations are much more complex. As a result, the

metric computation can often be the main bottleneck and indeed must be accounted for.

Before proceeding, we make the following assumption that issatisfied by all physically meaningful metrics.

Assumption 1. Sub-additivity: We assume that for any(U , c) ∈M

p(U , c) ≤ p(U1, c) + p(U2, c), ∀ U1,U2 : U = U1 ∪ U2. (9)

The following features can then be exploited for a significant reduction in complexity.

• On demand metric computation:Notice in Algorithm IIa that the metric for any(U , c) ∈ M, where

Tail(c) = j for somej = 1, · · · , N , needs to be computed only at thejth iteration at which point we need

to determine

p′(U , c) = p(U , c) − Γ(j)(U , c), (10)

where the offset factorΓ(j)(U , c) is given by

Γ(j)(U , c) =
∑

(U∗
m,c∗

m)∈S

(

p̃(U∗
m, c∗m)E((U , c), (U∗

m , c∗m)) + 2p̃(U∗
m, c∗m) max

1≤q≤J
{βq(U , c)}Ec((U , c), (U∗

m, c∗m))

)

and wherẽp(U∗
m, c∗m) is equal to thep′(U∗

m, c∗m) computed for the pair selected at themth iteration withm ≤

j − 1 andE((U , c), (U∗
m , c∗m)) denotes an indicator (withEc((U , c), (U∗

m , c∗m)) = 1 − E((U , c), (U∗
m, c∗m)))

which is true whenU∗
m ∩ U 6= φ or c ∩ c

∗
m 6= φ or ∃ q ∈ I : αq(U∗

m, c∗m) = αq(U , c) = 1. Further note that

p′(U , c) in (10) is required only if it is strictly positive. Then, an important observation is that if at thejth

iteration, we have already computedp(U1, c) andp(U2, c) for someU1,U2 : U = U1∪U2, then invoking the

sub-additivity property we have that

p′(U , c) ≤ p(U1, c) + p(U2, c)− Γ(j)(U , c), (11)

1This is due to the fact that the metric must account for the DFTspreading which each user must employ over the LTE UL.
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so that if the RHS in (11) is not strictly positive or if it is less than the greatest value ofp′(U ′, c′) computed

in the current iteration for some other pair(U ′, c′) : Tail(c′) = j, thenwe do not need to computep′(U , c)

and hence the metricp(U , c).

• Selective updateNote that in thejth iteration, once the best pair(U∗
j , c

∗
j ) is selected and it is determined

thatp′(U∗
j , c

∗
j ) > 0, we need to update the metrics for pairs(U ′, c′) : Tail(c′) ≥ j+1, since only such pairs

will be considered in future iterations. Thus, the offset factors {Γ(j)(U ′, c′)} need to be updated only for

such pairs, via

Γ(j+1)(U ′, c′) = Γ(j)(U ′, c′) + p′(U∗
j , c

∗
j )E((U

′, c′), (U∗
j , c

∗
j )) + 2p′(U∗

j , c
∗
j ) max

1≤q≤J
{βq(U ′, c′)}Ec((U ′, c′), (U∗

j , c
∗
j )).

Further, if by exploiting sub-additivity we can deduce thatp′(U ′, c′) ≤ 0 for any such pair, then we can

drop such a pair along with its offset factor from future consideration.

IV. I MPROVING PERFORMANCE VIA A SECOND PHASE

A potential drawback of the LRT based algorithm is that some RBs may remain un-utilized, i.e., they may

not be assigned to any user. Notice that when the final stackS ′ is built in the while-loop of Algorithm IIa, an

allocation or pair from the top of stackS is added to stackS ′ only if it does not violate feasibility when considered

together with those already in stackS ′. Often multiple pairs fromS are dropped due to such feasibility violations,

resulting in spectral holes formed by unassigned RBs. To mitigate this problem, we perform a second phase. The

second phase consists of running Algorithm IIa again albeitwith modified metrics{p̆(U , c) : (U , c) ∈M
narrow}

which are obtained via the following steps.

1) Initialize p̆(U , c) = p(U , c), ∀ (U , c) ∈M
narrow. Let S ′ be obtained as the output of Algorithm IIa when

it is implemented first.

2) For each(U , c) ∈ S ′, we ensure that any user inU is not scheduled by phase two in any other user set

saveU , by setting

p̆(U ′, c′) = 0 if U ′ 6= U & U ′ ∩ U 6= φ, ∀ (U ′, c′) ∈M
narrow. (12)

3) For each(U , c) ∈ S ′, we ensure that no other user set saveU is assigned any RB inc, by setting

p̆(U ′, c′) = 0 if U ′ 6= U & c
′ ∩ c 6= φ, ∀ (U ′, c′) ∈M

narrow. (13)

4) For each(U , c) ∈ S ′, we ensure that the allocation(U , c) is either unchanged by phase two or is expanded,
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by setting

p̆(U , c′) =







p(U , c′), If Tail(c′) ≥ Tail(c) & Head(c′) ≤ Head(c)

0, Otherwise

A consequence of using the modified metrics is that the secondphase has a significantly less complexity since a

large fraction of the allocations are disallowed (since many of the modified metrics are zero). While the second

phase does not offer any improvement in the approximation factor, simulation results presented in the sequel

reveal that it offers a good performance improvement with very low complexity addition.

V. SIMULATION RESULTS: SINGLE CELL SETUP

In this section we evaluate key features of our proposed algorithm over an idealized single-cell setup. In

particular, we simulate an uplink wherein the BS is equippedwith four receive antennas. We model the fading

channel between each user and the BS as a six-path equal gain i.i.d. Rayleigh fading channel and assume an

infinitely backlogged traffic model. For simplicity, we assume that there are no knapsack constraints and that

at-most two users can be co-scheduled on an RB (i.e.,J = 0,∆ = 0 andT = 2). Further, each user can employ

ideal Gaussian codes and upon being scheduled, divides its maximum transmit power equally among its assigned

RBs. Notice that sinceM = M
narrow we can directly use Algorithm IIa.

In Figures 2 to 7 we assume thatN = 20 RBs are available for servingK = 10 active users, all of whom have

identical maximum transmit powers. In Fig. 2, we plot the average cell spectral efficiency (in bits-per-sec-per-Hz)

versus the average transmit SNR (dB) for an uplink where eachuser has one transmit antenna and the BS employs

the linear MMSE receiver. We plot the spectral efficiencies achieved when Algorithm IIa is employed with and

without the second phase (described in Section IV), respectively (denoted in the legend by MU-MMSE-LRT-

2Step and MU-MMSE-LRT-1Step). Also plotted is the upper bound obtained by the linear programming (LP)

relaxation of (P1) along with the spectral efficiency obtained upon rounding the LP solution to ensure feasibility

(denoted in the legend by MU-MMSE-LP-UB and MU-MMSE-LP-Rounding, respectively).

In Fig. 3, we plot the average cell spectral efficiency versusthe average transmit SNR for an uplink where each

user has one transmit antenna and the BS employs the successive interference cancelation (SIC) receiver. We plot

the spectral efficiencies achieved when Algorithm IIa is employed with and without the second phase, respectively

(denoted in the legend by MU-SIC-LRT-2Step and MU-SIC-LRT-1Step). Also plotted are the corresponding LP

upper bound along with the spectral efficiency obtained uponrounding the LP solution. The counterparts of
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Figures 2 and 3 in the scenario where each user has two transmit antennas and the BS can thus exploit transmit

antenna selection are given in Figures 4 and 5, respectively.

Finally, in Fig. 6 we plot the normalized spectral efficiencies obtained by dividing each spectral efficiency

by the one yielded by Algorithm IIa when only single user (SU)scheduling is allowed, which in turn can be

emulated by setting all metricsp(U , c) : (U , c) ∈M in (P1) to be zero whenever|U| ≥ 2.2 In all considered

schemes we assume that Algorithm IIa with the second phase isemployed. From Figures 2 to 6, we have the

following observations:

• For both SIC and MMSE receivers, the performance of Algorithm IIa is more than80% of the respective LP

upper bounds, which is much superior to the worst case guarantee1/3 (obtained by specializing the result

in (3) by settingMwide = φ, T = 2 and∆ = J = 0). Further, for both the receivers the performance of

Algorithm IIa with the second phase is more than90% the respective LP upper bounds. The same conclusions

can be drawn when antenna selection is also exploited by the BS. In all cases, the performance of LP plus

rounding scheme is exceptional and within2% of the respective upper bound. However the complexity of

this LP seems unaffordable as yet for practical implementation.3

• The SIC receiver results in a small gain (1.5% to 2.5%) over the MMSE receiver. This gain will increase

if we consider more correlated fading over which the limitation of linear receivers is exposed and as the

maximum number of users that can be co-scheduled on an RB (T ) is increased since the SIC allows for

improved system rates via co-scheduling a larger number of users on an RB, whereas the MMSE will

become interference limited. Note that antenna selection seems to provide a much larger gain (6% to 8%)

that the one offered by the advanced SIC receiver. This observation must be tempered by the facts that

the simulated scenario of independent (uncorrelated) fading is favorable for antenna selection and that the

antenna switching loss (about0.5 dB in practical devices) as well as the additional pilot overhead have been

neglected.

• MU scheduling offers substantial gains over SU scheduling (ranging from50% to 75% for the considered

SNRs). This follows since the degrees of freedom available here for MU scheduling is twice that of SU-

scheduling.

Next, in Fig. 7 we plot the normalized total metric computation complexities for the scheduling schemes

considered in Figures 2 to 6. In all cases the second phase is performed for Algorithm IIa and more importantly

2Note that for SU scheduling MMSE and SIC receivers are equivalent.
3For instance, this LP involves about11, 500 variables and must be solved within each scheduling interval whose duration in LTE

systems is one millisecond.
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the sub-additivity property together with the on-demand metric computation feature are exploited, as described

in Section III, to avoid redundant metric computations. Allschemes compute the SU metrics{p(U , c) : (U , c) ∈

M & |U| = 1}. The cost assumed for computing each metric is given in TableV. Note that the cost of an MU

metric for the SIC receiver is smaller because with this receiver one of the users sees an interference free channel.

Thus, its contribution to the metric is equal to the already computed SU metric determined for the allocation

when that user is scheduled alone on the corresponding chunk, and hence need not be counted in the cost.

We use MMSE-Total and SIC-Total to denote the total metric computation complexities obtained with the

MMSE receiver and the SIC receiver, respectively, by counting the corresponding complexities for all pairs

(U , c) ∈M, whereas MMSE-AS-Total, SIC-AS-Total denote their counterparts when antenna selection is also

exploited by the BS. Note that all complexities in Fig. 7 are normalized by MMSE-AS-Total. The key takeaway

from Fig. 7 is that exploiting sub-additivity together withthe on-demand metric computation can result in very

significant metric computation complexity reduction. In particular, in this example more than80% reduction is

obtained for the MMSE receiver and more than75% reduction is obtained for the SIC receiver, with the respective

gains being larger when antenna selection is also exploited. Further, we note that considering Algorithm IIa, the

second phase itself adds a very small metric computation complexity overhead but results in a large performance

improvement. To illustrate this, for the MMSE receiver the complexity overhead ranges from2 to 4%, whereas

the performance improvement ranges from9 to 13%, respectively. Then, in Fig. 8 we consider the same setup as

in Fig. 7 but now the computational complexity of eachp(U , c) also scales with the length of the chunk indicated

by c. From Fig. 8 we see that the metric computation complexity reductions are even larger.

Finally, in Figures 9 and 10 we consider an UL withN = 10 RBs and where each user has one transmit

antenna while the BS employs the linear MMSE receiver. We plot the average cell spectral efficiency versus the

number of users for a given transmit SNR. From the plots we seethat MU scheduling maintains a significant

gain over SU scheduling. Interestingly, the gain of the second phase on Algorithm IIa in MU scheduling reduces

as the number of users exceeds the number of RBs, whereas the solution yielded by Algorithm IIa (without the

second phase) approaches the optimal one since the gap to theLP upper bound vanishes.

VI. SEQUENTIAL LRT BASED MU SCHEDULING

We next propose a sequential LRT based MU scheduling method that yields a scheduling decision overM
narrow

. As before, our focus is on avoiding as many metric computations as possible. The idea is to implement the LRT

based MU scheduling algorithm inT iterations, where we recallT denotes the maximum number of users that

can be co-scheduled on an RB. In particular, in the first iteration we define metrics̆p(U , c) = p(U , c), ∀ (U , c) ∈

18



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may
change prior to final publication. IEEE TRANSACTIONS ON MOBILE COMPUTING

5 6 7 8 9 10 11 12 13 14
7

8

9

10

11

12

13

14

15

SNR (dB)

S
pe

ct
ra

l E
ffi

ci
en

cy
 (

bp
s/

H
z)

MU−MMSE−LRT−1Step
MU−MMSE−LRT−2Step
MU−MMSE−LP−Rounding
MU−MME−LP−UB

Figure 2. Average spectral efficiency versus SNR (dB): MU
Scheduling with MMSE receiver.
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Figure 3. Average spectral efficiency versus SNR (dB): MU
Scheduling with SIC receiver.
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Figure 4. Average spectral efficiency versus SNR (dB): MU
Scheduling with MMSE and Antenna Selection.
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Figure 5. Average spectral efficiency versus SNR (dB): MU
Scheduling with SIC and Antenna Selection.

M
narrow : |U| = 1 with p̆(U , c) = 0 otherwise, and use these metrics in Algorithm IIa to obtain atentative

scheduling decision. Further, in thesth iteration where2 ≤ s ≤ T − 1, we first perform the following steps to

obtain metricsp̆(U , c), ∀ (U , c) ∈M
narrow, where only a few of these metrics are positive, and then use them

in Algorithm IIa to obtain a tentative decision.

• Initialize p̆(U , c) = 0, ∀ (U , c) ∈M
narrow. Let S ′ denote the output obtained from the previous iteration.

• For each(U , c) ∈ S ′ we ensure that any user in setU can be scheduled in thesth iteration only as part of
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Figure 6. Normalized spectral efficiency versus SNR (dB)

Table V
METRIC COMPUTATION COMPLEXITY

Metric MMSE SIC
p(U , c) : |U| = 1 & Nt = 1 1 1
p(U , c) : |U| = 1, Nt =
2 & Ant.Sel.

2 2

p(U , c) : |U| = 2 & Nt = 1 2 1
p(U , c) : |U| = 2, Nt =
2 & Ant.Sel.

8 4

a set that contains all users inU along with at-most one additional user, by setting

p̆(U ′, c′) = 0 if (U 6⊆ U ′ & U ′ ∩ U 6= φ) or(|U ′| > |U|+ 1 & U ′ ∩ U 6= φ), ∀ (U ′, c′) ∈M
narrow.

• For each(U , c) ∈ S ′, we also ensure that any user in setU must be assigned all RBs inc, by considering

each(U ′, c′) ∈M
narrow : U ⊆ U ′ & |U ′| ≤ |U|+ 1, and setting

p̆(U ′, c′) =







p(U ′, c′), If Tail(c′) ≥ Tail(c) & Head(c′) ≤ Head(c)

0, Otherwise.

In the last iteration, i.e. whens = T , we initialize p̆(U , c) = p(U , c), ∀ (U , c) ∈M
narrow. Then, using the set

S ′ obtained as the output of the(T − 1)th iteration, we perform the two aforementioned steps. Additionally, to
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Figure 7. Normalized total metric computation complexity
versus SNR (dB)
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Figure 8. Normalized total metric computation complexity
versus SNR (dB): Computation complexity of a metric scales
with chunk length.
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Figure 9. Average spectral efficiency versus number of users:
5dB SNR
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Figure 10. Average spectral efficiency versus number of users:
14dB SNR

ensure non-overlapping chunk allocation, for each(U , c) ∈ S ′ we set

p̆(U ′, c′) = 0 if c′ ∩ c 6= φ & U ′ ∩ U = φ, ∀ (U ′, c′) ∈M
narrow.

Note that the different initialization chosen for the last iteration seeks to select a larger pool of positive metrics

and can improve performance albeit at an increased complexity. In addition, after each iteration we also enforce

an improvement conditionwhich checks if the weighted sum rate yielded by the obtaineddecision is strictly

greater than that computed at the end of the previous iteration. If this condition is satisfied, we proceed to the
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next iteration, else the process is terminated and the solution obtained at the end of the previous iteration is

returned. Notice that in each iteration only a small subset out of the set of all metrics is selected, which in

particular is that whose corresponding pairs are compatible (as defined in the aforementioned conditions) with

the output tentative scheduling decision of the previous iteration. Next, we offer an approximation result for the

sequential LRT based MU scheduling that holds under mild assumptions.

Assumption 2. SupposeF is any allocation{(U , c)} that is feasible for (P1). ThenF is downward closed in

the following sense. Any allocationF ′ constructed asF ′ = {(U ′, c) : U ′ ⊆ U & (U , c) ∈ F} is also feasible.

Theorem 2. Suppose that Assumptions 1 and 2 are satisfied. Let the weighted sum rate yielded by the sequential

LRT based MU scheduling overMnarrow be denoted bŷW seq−narrow. Then,

Ŵ seq−narrow ≥
Ŵ opt,narrow

T (2 + ∆+ 2J)
. (14)

Proof: Let Fopt,narrow be an optimal allocation of pairs fromMnarrow that yields a weighted sum

rate Ŵ opt,narrow and initialize F ′ = φ. Then for each(U , c) ∈ Fopt,narrow determine the best user

û = argmaxu∈U{p(u, c)} and insert the pair(û, c) into F ′. Note that due the sub-additivity property in

Assumption 1, we must have thatp(û, c) ≥ p(U ,c)
T

. Consequently, we have that the weighted sum rate yielded by

F ′ is at-leastŴ
opt,narrow

T
. Furthermore, on account of Assumption 2,F ′ is a feasible allocation for (P1). Then,

supposeF (1) is the allocation obtained after the first iteration of the sequential algorithm. Since this allocation

is a result of applying Algorithm IIa with single user metrics, upon invoking Theorem 1 we can claim that the

weighted sum rate yielded byF (1) is at-least a fraction 1
2+∆+2J of the best single-user allocation, where a single-

user allocation is one where each pair includes only one user. Then, sinceF ′ is one such single-user allocation

we can claim that the weighted sum rate yielded byF (1) is at-leastŴ
opt,narrow

T
. Finally, since the improvement

condition ensures that the weighted sum rates yielded by tentative allocations across iterations are monotonically

increasing , we can deduce that the theorem is true.

VII. U SER PRE-SELECTION

In a practical cellular system the number of active users canbe large. Indeed the control channel constraints

may limit the BS to serve a much smaller subset of users. It thus makes sense from a complexity stand-point to

pre-select a pool ofgood users and then use the MU scheduling algorithm on the selected pool of users. Here

we propose a few user pre-selection algorithms. For convenience, wherever needed, we assume that at-most two

users can be co-scheduled on an RB (i.e.,T = 2) which happens to be the most typical value.
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Before proceeding we need to define some terms that will be required later. Suppose that each user has one

transmit antenna and lethu,j denote the effective channel vector seen at the BS from useru on RB j, where

1 ≤ u ≤ K and1 ≤ j ≤ N . Note that the effective channel vector includes the fadingas well as the path loss

factor and a transmit power value. Then, lettingαu denote the PF weight of useru, we define the following

metrics:

• Consider first the weighted rate that the system can obtain when it schedules useru alone on RBj,

psu(u, j) =αu log(1 + h
†
u,jhu,j), ∀ 1 ≤ u ≤ K & 1 ≤ j ≤ N. (15)

• Let U = {u, v} : u 6= v be any pair of users and suppose that the BS employs the MMSE receiver. Then,

the weighted sum rate obtained by scheduling the user pairU on RB j is given by

pmmse(U , j) =αu log(1 + h
†
u,j(I+ hv,jh

†
v,j)

−1
hu,j) + αv log(1 + h

†
v,j(I + hu,jh

†
u,j)

−1
hv,j). (16)

• Finally, assume that the BS employs the SIC receiver and letû = argmaxs∈U{αs} and letv̂ = U \ û. Then,

the weighted sum rate obtained by scheduling the user pairU on RB j is given by

psic(U , j) = psu(û, j) + αv̂ log(1 + h
†
v̂,j

(I+ hû,jh
†
û,j

)−1
hv̂,j). (17)

We are now ready to offer our user pre-selection rules where apool of K̃ users must be selected from theK

active users. Notice that to reduce complexity, all rules neglect the contiguity and the complete overlap constraints.

1) The first rule simply selects theK̃ users that offer theK̃ largest single-user rates among

{
∑N

j=1 p
su(u, j)}Ku=1.

2) The second rule assumes that each RB can be assigned to at-most one user. Then, if a user subsetA ⊆

{1, · · · ,K} is selected, the system weighted sum-rate is given by

f(A)
△
=

N∑

j=1

max
u∈A
{psu(u, j)}. (18)

It can be shown thatf : 2{1,··· ,K} → IR+ is a monotonic sub-modular set function[16]. As a result, the

user pre-selection problem

arg max
A⊆{1,··· ,K}:|A|≤K̃

{f(A)} (19)

can be sub-optimally solved by adapting a simple greedy algorithm [25], which offers a half approximation
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[16].

3) The third rule assumes that each RB can be assigned to at-most two users and that the BS employs the

MMSE receiver. Then, if a user subsetA ⊆ {1, · · · ,K} is selected, the system weighted sum-rate is given

by

g(A)
△
=

N∑

j=1

max

{

max
u∈A
{psu(u, j)}, max

U=(u,v):u<v

u,v∈A

{pmmse(U , j)}

}

. (20)

It can be shown thatg : 2{1,··· ,K} → IR+ is a monotonic set function but unfortunately it need not be

sub-modular. Nevertheless, we proceed to employ the greedyalgorithm to sub-optimally solve

arg max
A⊆{1,··· ,K}:|A|≤K̃

{g(A)} (21)

4) The fourth rule also assumes that each RB can be assigned toat-most two users but that the BS employs the

SIC receiver. However, even upon replacingpmmse(U , j) in (20) with psic(U , j), the resulting set function

need not be sub-modular. As a result we use a different metric. In particular, for a user subsetA ⊆

{1, · · · ,K} we employ a metric that is given by

h(A)
△
=

N∑

j=1

∑

U=(u,v):u≤v

u,v∈{1,··· ,K}

(
psu(U ∩ A, j)X (|U ∩ A| = 1) + psic(U , j)X (|U ∩ A| = 2)

)

=

N∑

j=1




(K − |A|+ 1)

∑

u∈A

psu(u, j) +
∑

U=(u,v):u<v

u,v∈A

psic(U , j)




 . (22)

Notice that for anyA, h(A) represents the system weighted sum-rate when time-sharingis employed by the

system wherein in each slot only a particular user or two distinct users from a particular pair in{1, · · · ,K}

are allowed to be scheduled. Then, a key result is the following.

Theorem 3. The set functionh(.) defined in (22) is a monotonic sub-modular set function. Thusthe problem

arg max
A⊆{1,··· ,K}:|A|≤K̃

{h(A)} (23)

can be solved sub-optimally (with a1/2 approximation) by a simple greedy algorithm.

Proof: On any RBj, consider any fixed pairU = {u, v} ⊆ {1, · · · ,K} and define the set function

g(A) = psu(U ∩ A, j)X (|U ∩ A| = 1) + psic(U , j)X (|U ∩ A| = 2), ∀ A ⊆ {1, · · · ,K}. (24)

Our first aim is to prove thatg(.) defined above is a monotonic sub-modular set function. First, note that
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the weighted sum rate in (17) can also be written as,

psic(U , j) = (αû − αv̂)p
su(û, j) + αv̂ log

∣
∣
∣I+ hv̂,jh

†
v̂,j + hû,jh

†
û,j

∣
∣
∣

≥ psu(v̂, j) + αû log(1 + h
†
û,j(I+ hv̂,jh

†
v̂,j)

−1
hû,j) (25)

so thatpsic(U , j) ≥ max{psu(û, j), psu(v̂, j)}, which suffices to prove the monotonicity ofg(.). Then, to

prove sub-modularity we must show that,

g(A ∪ {q}) − g(A) ≥ g(B ∪ {q})− g(B), ∀ A ⊆ B ⊆ {1, · · · ,K} & q ∈ {1, · · · ,K} \ B. (26)

To prove (26) we consider anyA ⊆ B ⊆ {1, · · · ,K} so thatA∩U ⊆ B ∩ U and consider the following

cases. First consider the case,|A ∩ U| = |B ∩ U| which implies that bothA,B contain the same user(s)

from U so that (26) must hold with equality. Then, suppose|A∩U| < |B∩U|. In this case, upon exploiting

the inequality

psic(U , j) ≤ psu(u, j) + psu(v, j), (27)

together with the fact thatg(B ∪{q})− g(B) = 0 when |B ∩U| = 2, we can conclude that (26) must hold.

Then, since the set functionh(.) in (22) is a linear combination ofNK(K +1)/2 monotonic sub-modular

set functions in which the combining coefficients are all positive, we can assert that it must be a monotonic

sub-modular set function as well.

As a benchmark to compare the performance of the proposed user pre-selection algorithms we can consider

the case where LRT MU scheduling is employed without user pre-selection but where an additional knapsack

constraint is used to enforce the limit on the number of usersthat can be scheduled in an interval. It can be

verified that this can be achieved by defining a knapsack constraint in (P1) asβ1(U , c) = |U|

K̃
, ∀ (U , c) ∈M.

VIII. S YSTEM LEVEL SIMULATION RESULTS

We now present the performance of our MU scheduling algorithms (including the sequential algorithm of

Section VI and the user pre-selection schemes of Section VII) via detailed system level simulations which were

conducted on a fully calibrated system simulator that we developed. The simulation parameters conform to those

used in 3GPP LTE evaluations and are given in Table VI. In all cases inter-cell interference suppression (IRC)

is employed by each base-station (BS).

We first consider the case when each cell (or sector) has an average of 10 users and where there are no
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knapsack constraints. In Table VII we report the cell average and cell edge spectral efficiencies. The percentage

gains shown for the MU scheduling schemes are over the baseline LRT based single-user scheduling scheme.

Note that for the first three scheduling schemes we employed the second phase described in Section IV. Also, we

observed that the LRT based SU scheduling together with the second phase yields at-least as good a performance

(for both cell-edge and cell average throughputs) as those of the deterministic SU scheduling algorithms in [17],

[18], so we have omitted results for the latter algorithms. As seen from Table VII, MU scheduling in conjunction

with an advanced SIC receiver at the BS can result in very significant gains in terms of cell average throughout

(about27%) along with good cell edge gains. For the simpler MMSE receiver, we see significant cell average

throughout gains (about18%) but a degraded cell edge performance. Finally, the last tworeported schemes are

based on the sequential-LRT method described in Section VI.We notice that sequential-LRT based scheduling

provides significant cell average gains while retaining thecell edge performance of SU scheduling. Thus, the

sequential LRT based scheduling method is an attractive wayto tradeoff some cell average throughput gains for

a reduction in complexity.

Next, in Tables VIII and IX we consider LRT based MU scheduling, with the second phase described in

Section IV, for the case when the BS employs the MMSE receiverand the case when it employs the SIC

receiver, respectively. In each case we assume that an average of 15 users are present in each cell and at-most 7

first-transmission users can be scheduled in each interval.Thus, a limit on the number of scheduled users might

have to be enforced in each scheduling interval. As a benchmark, we enforce this constraint (if it is required)

using one knapsack constraint as described in Section VII. Note that upon specializing the result in Theorem 1

(with M
wide = φ, T = 2 and∆ = 0, J = 1)) we see that the LRT based MU scheduling algorithm guarantees

an approximation factor of1/5. Then, we examine the scenario where a pool ofK̃ = 7 users is pre-selected

whenever the number of first-transmission users is larger than7. The LRT based MU scheduling algorithm is then

employed on this pool without any constraints. In Table VIIIwe have used the first second and third pre-selection

rules from Section VII whereas in Table IX we have used the first second and fourth pre-selection rules. It is seen

that the simple rule one provides a superior performance compared to the benchmark. Indeed, it is attractive since

it involves computation of only single user metrics. The other rule (rule 2) which possess this feature, however

provides much less improvement mainly because it is much more aligned to single user scheduling. Rules 3 and

4 involve computation of metrics that involve user-pairingand hence incur higher complexity. For the MMSE

receiver, the gain of rule 3 over rule 1 is marginal mainly because the metric in rule 3 is not sub-modular and

hence cannot be well optimized by the simple greedy rule. On the other hand, considering the MMSE receiver,
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Parameter Assumption
Deployment scenario IMT Urban Micro (UMi)
Duplex method and bandwidth FDD: 10MHz for uplink
Cell layout Hex grid 19 sites, 3 cells/site
Transmission power at user 23 dBm
Average number of users per sector10 or 15
Network synchronization Synchronized
Antenna configuration (eNB) 4 RX co-polarized ant., 0.5-λ spacing
Antenna configuration (user) 1 TX ant.
Uplink transmission scheme Dynamic MU scheduling,

MU pairing: Max 2/RB users aligned pairing;
Fairness metric Proportional Fairness
Fractional power control Po=-85 dB,α = 0.8

Uplink scheduler PF in time and frequency
Scheduling granularity: 1 RB
Uplink HARQ scheme Synchronous, non-adaptive Chase Combining
Uplink receiver type MMSE-IRC and SIC-IRC
Channel estimation error NA

Table VI
PARAMETERS FOR SYSTEM LEVEL SIMULATIONS

Scheduling method cell average 5% cell-edge
LRT SU 1.6214 0.0655
LRT MU with MMSE 1.9246 (18.70%) 0.0524
LRT MU with SIC 2.0651 (27.37%) 0.0745
LRT-Sequential MU with MMSE 1.8196 (12.22%) 0.0627
LRT-Sequential MU with SIC 1.9537 (20.5%) 0.0665

Table VII
SPECTRAL EFFICIENCY OFLRT BASED SU AND MU UL SCHEDULING SCHEMES. AN AVERAGE OF 10 USERS ARE

PRESENT IN EACH CELL AND ALL ASSOCIATED ACTIVE USERS CAN BE SCHEDULED IN EACH INTERVAL .

the gain of rule 4 over rule 1 is larger because the metric usedin rule 4 is indeed sub-modular and hence can

be well optimized by the simple greedy rule.

IX. CONCLUSIONS AND FUTURE RESEARCH

We considered resource allocation in the 3GPP LTE cellular uplink wherein multiple users can be assigned

the same time-frequency resource. We showed that the resulting resource allocation problem, which must comply

with several practical constraints, is APX-hard. We then proposed constant-factor polynomial-time approximation
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LRT-MU scheduling with: cell average 5% cell-edge
Knapsack constraint 1.7833 0.0266
pre-selection 1 1.7940 (0.6%) 0.0419 (57.52%)
pre-selection 2 1.7908 (0.4%) 0.0414 (55.64%)
pre-selection 3 1.8265 (2.42%) 0.0444 (66.92%)

Table VIII
SPECTRAL EFFICIENCY OFMU UL SCHEDULING SCHEMES WITHMMSE RECEIVER. AN AVERAGE OF 15 USERS ARE

PRESENT IN EACH CELL AND AT-MOST 7 FIRST-TRANSMISSION USERS CAN BE SCHEDULED IN EACH INTERVAL.

LRT-MU scheduling with: cell average 5% cell-edge
Knapsack constraint 1.8865 0.0411
pre-selection 1 2.0082 (6.45%) 0.0527 (28.22%)
pre-selection 2 1.8980 (0.61%) 0.0451 (9.73%)
pre-selection 4 2.1069 (11.68%) 0.0531 (29.2%)

Table IX
SPECTRAL EFFICIENCY OFMU UL SCHEDULING SCHEMES WITHSIC RECEIVER. AN AVERAGE OF 15 USERS ARE

PRESENT IN EACH CELL AND AT-MOST 7 FIRST-TRANSMISSION USERS CAN BE SCHEDULED IN EACH INTERVAL.

algorithms and demonstrated their performance via simulations. An interesting avenue for future work is to

obtain good bounds on the average case performance of our proposed algorithms. In addition, the design of a

joint scheduling algorithm that also determines assignment of control channel resources to the active users is an

important open problem.

X. A PPENDIX: MODELING 3GPP LTE CONTROL CHANNEL CONSTRAINTS

Note that by placing restrictions on the location where a particular user’s control packet can be sent and the

size of that packet, the system can reduce the number of blinddecoding attempts that have to be made by

that user in order to receive its control packet. We note thata user is unaware of whether there is a control

packet intended for it and consequently must check all possible locations where its control packet could be

present assuming each possible packet size. Each control packet carries a CRC bit sequence scrambled using the

unique user identifier which helps the user deduce whether the examined packet is meant for it. In the 3GPP

LTE system, the minimum allocation unit in the downlink control channel is referred to as the control channel

element (CCE). Let{1, · · · , R} be a set of CCEs available for conveying UL grants. A contiguous chunk of

CCEs from{1, · · · , R} that can be be assigned to a user is referred to as a PDCCH. The size of each PDCCH
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is referred to as an aggregation level and must belong to the set {1, 2, 4, 8}. Let D denote the set of all possible

such PDCCHs. For each user the BS first decides an aggregationlevel, based on its average (long-term) SINR.

Then, using that users’ unique identifier (ID) together withits aggregation level, the BS obtains a small subset of

non-overlapping PDCCHs fromD (of cardinality no greater than6) that are eligible to be assigned to that user.

Let Du denote this subset of eligible PDCCHs for a useru. Then, if useru is scheduled only one PDCCH from

Du must be assigned to it, i.e., must be used to convey its UL grant. Note that while the PDCCHs that belong to

the eligible set of any one user are non-overlapping, those that belong to eligible sets of any two different users

can overlap. As a result, the BS scheduler must also enforce the constraint that two PDCCHs that are assigned

to two different scheduled users, respectively, must not overlap.

Next, the constraint that each scheduled user can be assigned only one PDCCH from its set of eligible PDCCHs

can be enforced as follows. First, define a setVu containing|Du| virtual usersfor each useru, 1 ≤ u ≤ K,

where each virtual user inVu is associated with a unique PDCCH inDu and all the parameters (such as uplink

channels, queue size etc.) corresponding to each virtual user in Vu are identical to those of useru. Let Ũ be

the set of all possible subsets of such virtual users, such that each subset has a cardinality no greater thanT

and contains no more than one virtual user corresponding to the same user. Defining̃M = Ũ × C, we can then

pose (P1) overM̃ after settingL = K with Gs = Vs, 1 ≤ s ≤ K. Consequently, by defining the virtual users

corresponding to each user as being mutually incompatible,we have enforced the constraint that at-most one

virtual user for each user can be selected, which in turn is equivalent to enforcing that each scheduled user can

be assigned only one PDCCH from its set of eligible PDCCHs.

Finally, consider the set of all eligible PDCCHs,{Du}
K
u=1. Note that this set is decided by the set of active

users and their long-term SINRs. Recall that each PDCCH in{Du}
K
u=1 maps to a unique virtual user. To ensure

that PDCCHs that are assigned to two virtual users corresponding to two different users do not overlap, we

can define multiple binary knapsack constraints. ClearlyR such knapsack constraints suffice (indeed can be

much more than needed), where each constraint corresponds to one CCE and has a weight of one for every pair

(Ũ , c) ∈ M̃ wherein Ũ contains a virtual user corresponding to a PDCCH which includes that CCE. Then, a

useful consequence of the fact that in LTE the setDu for each useru is extracted fromD via a well designed

hash function (which accepts each user’s unique ID as input), is that these resulting knapsack constraints are

column-sparse.
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XI. A PPENDIX: PROPOSITIONI AND ITS PROOF

Proposition 1. Let Ŵ opt,narrow denote the optimal weighted sum rate obtained by solving (P1) albeit where all

pairs (U , c) are restricted to lie inMnarrow. Then, we have that

Ŵ narrow ≥
Ŵ opt,narrow

1 + T +∆+ 2J
. (28)

Proof: Note that Algorithm IIa builds up the stackS in N steps. In particular letSj , j = 1, · · · , N be the

element that is added in thejth step and note that eitherSj = φ or it is equal to some pair(U∗
j , c

∗
j ). We use

two functionsp(j)1 : Mnarrow → IR+ andp
(j)
2 : Mnarrow → IR+ for j = 0, · · · , N to track the functionp′(, )

as the stackS is being built up overN steps and in particular we setp(0)1 (U , c) = 0, ∀ (U , c) ∈ Mnarrow and

p
(0)
2 (U , c) = p(U , c), ∀ (U , c) ∈ Mnarrow. For our problem at hand, we define{p(j)1 (U , c), p

(j)
2 (U , c)} recursively

as

p
(j)
1 (U , c) =







(p
(j−1)
2 (U∗

j , c
∗
j ))

+X
(

p
(j−1)
2 (U , c) > 0

)

, If c∗j ∩ c 6= φ

(p
(j−1)
2 (U∗

j , c
∗
j ))

+X
(

p
(j−1)
2 (U , c) > 0

)

,ElseIf ∃ Gs : U ∩ Gs 6= φ & U∗
j ∩ Gs 6= φ

(p
(j−1)
2 (U∗

j , c
∗
j ))

+X
(

p
(j−1)
2 (U , c) > 0

)

, ElseIf ∃ q ∈ I : αq(U , c) = αq(U∗
j , c

∗
j ) = 1

2(p
(j−1)
2 (U∗

j , c
∗
j ))

+X
(

p
(j−1)
2 (U , c) > 0

)

max1≤q≤J β
q(U , c), Otherwise

p
(j)
2 (U , c) = p

(j−1)
2 (U , c)− p

(j)
1 (U , c), (29)

where (x)+ = max{x, 0}, x ∈ IR, X (.) denotes the indicator function and(U∗
j , c

∗
j ) =

argmax (U,c)∈Mnarrow

Tail(c)=j

p
(j−1)
2 (U , c). Hence, we have that

p
(j−1)
2 (U , c) = p

(j)
2 (U , c) + p

(j)
1 (U , c), ∀ (U , c) ∈M

narrow, j = 1, · · · , N. (30)

It can be noted that

p
(j)
2 (U , c) ≤ 0, ∀ (U , c) ∈M

narrow : Tail(c) ≤ j

p
(k)
2 (U , c) ≤ p

(j)
2 (U , c), ∀ (U , c) ∈M

narrow & k ≥ j. (31)

Further, to track the stackS ′ which is built in the while loop of the algorithm, we define stacks {S∗j }
N
j=0

whereS∗N = φ andS∗j is the value ofS ′ after the Algorithm has tried to add∪Nm=j+1Sm to S ′ (starting from

S ′ = φ) so thatS∗0 is the stackS ′ that is the output of the Algorithm. Note thatS∗j+1 ⊆ S
∗
j ⊆ S

∗
j+1 ∪ Sj+1.

Next, for j = 0, · · · , N , we let W (j) opt denote the optimal solution to (P1) but whereM is replaced by
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M
narrow and the functionp(, ) is replaced byp(j)2 (, ). Further, letW (j) =

∑

(U ,c)∈S∗
j
p
(j)
2 (U , c) and note that

Ŵ opt,narrow = W (0) opt andŴ narrow = W (0). We will show via induction that

W (j) opt ≤ (T + 1 +∆+ 2J)W (j), ∀ j = N, · · · , 0, (32)

which includes the claim in (28) atj = 0. First note that the base caseW (N) opt ≤ (T + 1 +∆ + 2J)W (N) is

readily true sinceS∗N = φ and p
(N)
2 (U , c) ≤ 0, ∀ (U , c) ∈M

narrow. Then, assume that (32) holds for some

j. We focus only on the main case in whichSj = (U∗
j , c

∗
j ) 6= φ (the remaining case holds trivially true). Note

that since(U∗
j , c

∗
j ) is added to the stackS in the algorithm,p(j−1)

2 (U∗
j , c

∗
j ) > 0. Then from the update formulas

(29), we must have thatp(j)2 (U∗
j , c

∗
j ) = 0. Using the fact thatS∗j−1 ⊆ S

∗
j ∪ (U∗

j , c
∗
j ) together with the induction

hypothesis, we can conclude that

W (j) =
∑

(U ,c)∈S∗
j

p
(j)
2 (U , c) =

∑

(U ,c)∈S∗
j−1

p
(j)
2 (U , c) ≥

W (j) opt

T + 1 +∆+ 2J
. (33)

Upon invoking Lemma 1, which is stated and proved below, we obtain that

∑

(U ,c)∈S∗
j−1

p
(j)
1 (U , c) ≥ p

(j−1)
2 (U∗

j , c
∗
j ). (34)

Then, letV (j) opt denote the optimal solution to (P1) but whereM is replaced byMnarrow and the function

p(, ) is replaced byp(j)1 (, ). Upon invoking Lemma 2, also stated and proved below, we can conclude that

p
(j−1)
2 (U∗

j , c
∗
j ) ≥

V (j) opt

T + 1 +∆+ 2J
. (35)

Thus, using (33), (34) and (35) we can conclude that

(1 + T +∆+ 2J)
∑

(U ,c)∈S∗
j−1

(p
(j)
1 (U , c) + p

(j)
2 (U , c)

︸ ︷︷ ︸

p
(j−1)
2 (U ,c)

≥ V (j) opt +W (j) opt ≥W (j−1) opt. (36)

which proves the induction step and proves the claim in (28).

Lemma 1. For all j we have that

∑

(U ,c)∈S∗
j−1

p
(j)
1 (U , c) ≥ p

(j−1)
2 (U∗

j , c
∗
j ). (37)

Proof: Suppose thatS∗j−1 = S∗j ∪ (U∗
j , c

∗
j ). Then, recalling (29) we can deduce that (37) is true since

p
(j)
1 (U∗

j , c
∗
j ) = p

(j−1)
2 (U∗

j , c
∗
j ). Suppose now thatS∗j−1 = S∗j . In this case we can have two possibilities. In
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the first one(U∗
j , c

∗
j ) cannot not be added toS∗j due to the presence of a pair(U ′, c′) ∈ S∗j for which at-

least one of these three conditions are satisfied:∃ Gs : U ′ ∩ Gs 6= φ & U∗
j ∩ Gs 6= φ; c

′ ∩ c
∗
j 6= φ and

∃ q ∈ I : αq(U ′, c′) = αq(U∗
j , c

∗
j )=1 . Since any pair(U ′, c′) ∈ S∗j was added toS in the algorithm after thejth

step, from the second inequality in (31) we must have thatp
(j−1)
2 (U ′, c′) > 0. Recalling (29) we can then deduce

that p(j)1 (U ′, c′) = p
(j−1)
2 (U∗

j , c
∗
j ) which proves (37). In the second possibility,(U∗

j , c
∗
j ) cannot not be added to

S∗j due to a generic knapsack constraint being violated. In other words, for someq ∈ {1, · · · , J}, we have that

∑

(U ,c)∈S∗
j

βq(U , c) > 1− βq(U∗
j , c

∗
j ). (38)

Since(U∗
j , c

∗
j ) ∈M

narrow, βq(U∗
j , c

∗
j ) ≤ 1/2 so that

2
∑

(U ,c)∈S∗
j

max
1≤q≤J

βq(U , c) ≥ 2
∑

(U ,c)∈S∗
j

βq(U , c) > 1, (39)

which along with (29) also proves (37). Thus, we have established the claim in (37).

Lemma 2. Let V (j) opt denote the optimal solution to (P1) but whereM is replaced byMnarrow and the

functionp(, ) is replaced byp(j)1 (, ). Then, we have that

p
(j−1)
2 (U∗

j , c
∗
j ) ≥

V (j) opt

T + 1 +∆+ 2J
. (40)

Proof: First, from (29) we note that for any pair(U , c) ∈M
narrow, p(j)1 (U , c) ≤ p

(j−1)
2 (U∗

j , c
∗
j ). Let V(j) opt1

be an optimal allocation of pairs that results inV (j) opt. For any two pairs(U1, c1), (U2, c2) ∈ V
(j) opt
1 we must

have that for eachGs 1 ≤ s ≤ L, at-least one ofU1 ∩ Gs andU2 ∩ Gs is φ, as well asc1 ∩ c2 = φ. In addition,

|U1| and |U2| are no greater thanT . Thus we can have at-mostT such pairs{(U , c)} in V(j) opt1 for which

∃ Gs : U ∩ Gs 6= φ & U∗
j ∩ Gs 6= φ. Further, using the first inequality in (31) we see that any pair (U , c) for

which c ∩ c
∗
j 6= φ and p

(j)
1 (U , c) = p

(j−1)
2 (U∗

j , c
∗
j ) must haveTail(c) ≥ j so thatj ∈ c. Thus,V(j) opt1 can

include at-most one pair(U , c) for which c ∩ c
∗
j 6= φ. Next, there can be at-most∆ constraints inI for which

αq(U∗
j , c

∗
j ) = 1, q ∈ I is satisfied. For each such constraintq ∈ I we can pick at-most one pair(U , c) for

which αq(U , c) = 1 and p
(j)
1 (U , c) = p

(j−1)
2 (U∗

j , c
∗
j ). Thus,V(j) opt1 can include at-most∆ such pairs, one for

each constraint. Now the remaining pairs inV(j) opt1 (whose users do not intersect any groupGs 1 ≤ s ≤ L that

U∗
j does and whose chunks do not intersectc

∗
j and which do not violate any binary knapsack constraint in the
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presence of(U∗
j , c

∗
j )) must satisfy the generic knapsack constraints. Let these pairs form the set̃V(j) opt1 so that,

∑

(U ,c)∈Ṽ
(j) opt
1

p
(j)
1 (U , c) =

∑

(U ,c)∈Ṽ
(j) opt
1

2p
(j−1)
2 (U∗

j , c
∗
j ) max

1≤q≤J
βq(U , c) ≤ 2p

(j−1)
2 (U∗

j , c
∗
j )

J∑

q=1

∑

(U ,c)∈Ṽ
(j) opt
1

βq(U , c)

≤ 2Jp
(j−1)
2 (U∗

j , c
∗
j ).

Combining these observations we have that

V (j) opt =
∑

(U ,c)∈V
(j) opt
1

p
(j)
1 (U , c) ≤ (1 + T +∆+ 2J)p

(j−1)
2 (U∗

j , c
∗
j ), (41)

which is the desired result in (40).
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