
1

Chameleon: A Color-Adaptive Web Browser for Mobile
OLED Displays

Technical Report 2010-1212

Mian Dong and Lin Zhong

Department of Electrical and Computer Engineering, Rice University

Abstract

Displays based on organic light-emitting diode
(OLED) technology are appearing on many mobile devic-
es. Unlike liquid crystal displays (LCD), OLED displays
consume dramatically different power for showing differ-
ent colors. In particular, OLED displays are inefficient for
showing bright colors. This has made them undesirable for
mobile devices because much of the web content is of
bright colors.

To tackle this problem, we present the motivational
studies, design, and realization of Chameleon, a color
adaptive web browser that renders web pages with power-
optimized color schemes under user-supplied constraints.
Driven by the findings from our motivational studies,
Chameleon provides end users with important options,
offloads tasks that are not absolutely needed in real-time,
and accomplishes real-time tasks by carefully enhancing
the codebase of a browser engine. According to measure-
ments with OLED smartphones, Chameleon is able to re-
duce average system power consumption for web browsing
by 41% and reduce display power consumption by 64%
without introducing any noticeable delay.

1. Introduction
Displays are known to be among the largest power-

consuming components on a modern mobile device [1-3].
OLED displays are appearing on an increasing number of
mobile devices, e.g., Google Nexus One, Nokia N85, and
Samsung Galaxy S. Unlike LCDs where the backlight do-
minates the power consumption, an OLED display does
not require backlight because its pixels are emissive. Each
pixel consists of several OLEDs of different colors (com-
monly red, green and blue), which have very different lu-
minance efficiencies. As a result, the color of an OLED
pixel directly impacts its power consumption. While
OLED displays consume close to zero power when pre-
senting a black screen, they are much less efficient than
LCDs in presenting certain colors, in particular white. For
example, when displaying a white screen of the same lu-
minance, the OLED display on Nexus One consumes more
than twice of that by the LCD on iPhone 3GS [4]. Because
the display content usually has a white or bright back-
ground, OLED displays are considered less efficient than
LCDs overall. For example, Samsung reportedly dropped
OLED for its Galaxy Tablet due to the same concern [5].

Our goal is to make web browsing more energy-
efficient on mobile devices with OLED displays. Not only
is web browsing among the most used smartphone applica-
tions according to recent studies [6, 7], but also most of
today’s web content is white (80% according to [8]). For
example, about 60% of the average power consumption by
Nexus One of browsing CNN mobile is contributed by the
OLED display according to our measurement. Our algo-
rithmic foundation is prior work by us [9, 10] and others
[11] that has demonstrated the potential of great efficient
improvement in OLED displays by changing the color of
display content, or color transformation. In order to effec-
tively apply color transformation to web pages for energy
efficiency we must answer the following questions.

First, will web content providers solve the problem by
providing web pages in energy-efficient color schemes?
Some web sites allow the end users to customize the color
schemes; and many provide a mobile version. However,
our study of web usage by smartphone users revealed that
close to 50% of web pages visited by mobile users are not
optimized for mobile devices at all [12]. Therefore, while it
would be ideal if each web site provides a version of con-
tent optimized for OLED displays, it is unlikely to happen
at least in the near future. Moreover, our measurement of
OLED smartphones showed that different OLED displays
may have different color-power characteristics. There is no
single color scheme that is optimal for all OLED displays.

Second, will the problem be solved by configuring a
web browser with the most energy-efficient color scheme?
Some web browsers already allow users to customize their
color schemes. A user can simply choose the most energy-
efficient scheme. This solution is, however, highly limited
because the customized color scheme only affects the web
browser itself, not the content rendered by it. Some web
browsers allow a user-defined color style to set the color
for texts, backgrounds, and links in the web content. Un-
fortunately, our study shows that an average web page vi-
sited by smartphone users employs about four colors for
texts and three for backgrounds. If a single user-defined
color style is applied, many web pages will be rendered
unusable.

Finally, is it feasible to implement color transforma-
tion at the mobile client? Color transformation requires
collecting statistics of color usage by pixels in real-time,
transforming each color, and applying the new color to
web page rendering in real-time. Because both the number

2

of pixels (~105) and the number of colors (~107) are large,
a straightforward application of color transformation will
be extremely compute-intensive [9, 10] and, therefore, de-
feat the purpose of energy conservation.

By realizing Chameleon, we answer the last question
affirmatively. The key to Chameleon’s success lies in a
suite of system techniques that leverage the findings from
our motivational studies. Chameleon applies color trans-
formation to web contents with the following features. It
applies consistent color transformations to web pages from
the same web site and applies different perceptual con-
straints in color transformations for web content of differ-
ent fidelity requirements. Chameleon constructs the power
model of an OLED display without external assistance in
order to achieve device-specific optimal color transforma-
tion. It allows end users to set their color and fidelity prefe-
rences in color transformation. Finally, Chameleon only
performs the absolutely necessary tasks in real-time and
aggressively optimizes the real-time tasks for efficiency.
Our evaluation shows that Chameleon can reduce the aver-
age system power consumption during web browsing by
41% without introducing any user noticeable delay on
OLED smartphones.

In designing and realizing Chameleon, we make the
following contributions:

 Three motivational studies that lead to the design re-
quirements of Chameleon (Section 3).

 The design of Chameleon that extensively leverages
the findings from the motivational studies in order to
meet the design requirements (Section 4).

 Efficient realizations of Chameleon based open-source
web browsers, including Android Webkit and Fennec
(Section 5).

A very early prototype of Chameleon was demonstrat-
ed at HotMobile’10 [13].

2. Background and Related Work
We next provide background and discuss related work.

2.1 Color Spaces
A color sensation by human can be described with

three parameters because the human retina has three types
of cone cells that are most sensitive to light of short, mid-
dle, and long wavelengths, respectively. A color space is a
method for describing color with three parameters. Most
used color spaces include linear RGB, sRGB and CIELAB.

The linear RGB and sRGB spaces are designed to
represent physical measures of light. In the linear RGB
color space, a color is specified by , , , the intensity
levels of the primary colors: red, green and blue, which
will create the same color sensation when combined. In the
sRGB (standard RGB) color space, a color is also specified
by , , , but the intensity levels are transformed by a
power-law compression, or gamma correction, to compen-

sate the non-linearity introduced by conventional CRT
displays. Although CRT displays are no longer common
nowadays, the sRGB color space is still widely used in
electronic devices and computer displays. By default, the
RGB values used in almost all mainstream operating sys-
tems and applications are in the sRGB color space.

The CIELAB color space is designed to mimic the
human vision. In the CIELAB color space, a color is speci-
fied by ∗, ∗, ∗ , where ∗ represents the lightness, hu-
man subjective brightness perception of a color, while ∗
and ∗ determine the chromaticity, the quality of a color.
The lightness of a color can be calculated from its relative
luminance to a standard white point [15]. The CIELAB
color space is so designed that uniform changes of ∗ ∗ ∗
values aim to correspond to uniform changes in human
perception of color. As a result, the Euclidean distance in
the CIELAB color space is usually used to measure color
difference perceived by human [15].

2.2 OLED Display and Color Transformation
Organic light-emitting diode or OLED [16, 17] tech-

nology promises much better dynamic color, contrast and a
much thinner, lighter panel than conventional LCDs. Un-
like LCDs, an OLED display does not require external
lighting because its pixels are emissive. Each pixel of an
OLED display consists of several colorful OLEDs, usually
red, green and blue, respectively. Because the red, green,
and blue components of a pixel have different luminance
efficacies, the color of a pixel directly impacts its power
consumption. In contrast, illumination of backlight, not
color, determines the power consumption by an LCD.

2.2.1 Color-Power Model
Knowing the color of all pixels of an OLED display

region, one can calculate the power consumption contri-
buted by the region readily. Assume the display region of
interest contains N colors, x1, x2, …, xN, each specified by a
three-element column vector, either in the linear RGB or
CIELAB space, i.e., , , ∗, ∗, ∗ . Us-
ing results reported in our prior work [18], one can count
the number of pixels for each color, i.e., ni for color , and
calculate the power consumption of the region as

∑ ∙ ,

where is the pixel power model.

2.2.2 Display Darkening
Current OLED smartphones, e.g., Nexus One and Ga-

laxy S, provide a display darkening mechanism by which
users can change the brightness of the whole screen un-
iformly. The visual effect is similar to that of backlight
dimming on an LCD. Such a mechanism is implemented in
driver circuit of the OLED panel and is uniformly applied
to the whole display without digitally changing the color of
a pixel. Display darkening is less effective in power reduc-
tion than color transformation is because display darkening

3

only changes lightness of colors while color transformation
changes both lightness and chromaticity. As will be shown
in Section 3.3, given the same perception constraints, color
transformation is able to reduce display power consump-
tion by three times more than display darkening is.

2.2.3 Color Transformation
The display darkening described above can be consi-

dered as a special case of color transformation [9]. Color
transformation considers both the lightness and chromatici-
ty of a color and transforms colors one by one, instead of
uniformly. Our early results presented in [9, 10] show that
color transformation can significantly reduce the display
power consumption without sacrificing user satisfaction.

The objective of color transformation is to find a color
map, or N transformed colors, , ,…, , to substitute
the original N colors, x1, x2, …, xN, such that the display
power consumption is minimized, while meeting a percep-
tion constraint. Generally speaking, there are two types of
perception constraints, constraint in fidelity and constraint
in usability.

When fidelity matters for the screen region, e.g., in the
case of photos, the distortion introduced by the color trans-
formation can be guaranteed to be below a user-specified
threshold . The distortion can be measured as the total
pixel by pixel color difference between the original and
transformed screens [19], i.e.,

 ∑ ‖ ‖ .

When usability instead of fidelity matters, e.g., in the
case of GUI objects, the color difference between any two
colors after transformation can be guaranteed to be close to
the color difference of the two original colors in order to
preserve contrast and features. For example,

∀ , ∈ 1,2, … ,

where is a user-supplied parameter. Please see our prior
work [9, 10] for a complete treatment.

Chameleon supports two forms of color transforma-
tions that are subject to user choices. In an arbitrary trans-
formation, each color can be transformed into any color.
Arbitrary transformation is better where colors are inde-
pendent from each other in the original screen, e.g., solid
color areas in a GUI. Moreover, an arbitrary transformation
can potentially achieve the maximum power reduction,
given the perceptual constraint. In a linear transformation,
the same linear function is identified and applied for all
colors in the same screen. A linear transformation maps all
colors with the same linear function. Linear transforma-
tions are better where colors are dependent on each other,
e.g., color gradients. The linearity will preserve the relative
positions of colors in the color space such that the gra-
dients will also be preserved.

2.3 Web Browser
Modern web browsers render a web page through a

complicated process teemed with concurrency and data
dependency. Figure 1 shows the workflow of a web brows-
er. To open a web page, the browser first loads the main
HTML document and parses it. When parsing the HTML
document, more resources such as other HTML documents,
Cascading Style Sheets (CSS), JavaScripts, and images,
may be discovered and then loaded. These two iterative
stages are Resource Loading and Parsing in Figure 1. In
Parsing, the browser manipulates objects specified by
HTML tags in the web page using a programming interface
called Document Object Model (DOM). These objects are
therefore known as DOM elements, which are stored in a
data structure called the DOM tree.

In Style Formatting, the browser processes CSS and
JavaScripts to obtain the style information, e.g., color and
size, of each DOM element and constructs a render tree,
the visual representation of the document. Each node in the
render tree is generated from a DOM element to represent
a rectangular area on the screen showing the element. The
style information of each DOM element is stored as prop-
erties of the corresponding node in the render tree.

Then, in Layout Calculation, the browser computes
the layout and updates the position property of each node
in the render tree based on the order of these nodes. Cha-
meleon utilizes position and size properties of image nodes
to identify which pixels in the current screen belong to
images. This is discussed in Section 4.4.

Finally, in Painting, the browser calls a series of paint
functions to draw the nodes of the render tree with layout
onto a bitmap in the framebuffer to represent the screen
and each paint function covers a group of adjacent nodes
on the screen. Chameleon catches these paint functions to
identify which regions of the current screen are updated.
Nodes of different types are painted using different libra-
ries. Images are painted using various image libraries de-
pending on the image format. GUI objects, e.g., links,
forms, and tables, etc, are painted using a graphics library

Figure 1: A simplified workflow of a web browser

4

that handles basic geometry elements such as points, lines
and rectangles. Chameleon realizes color transformation by
modifying the interfaces of images and graphics libraries.

2.4 Related Work
Chameleon is motivated by existing work in display

power management and leverages its algorithmic solutions.
HP Labs pioneered energy reduction for OLED-based mo-
bile displays [11] by darkening the display regions that is
outside the focal area. User studies [20] showed that this
technique has high user acceptance for displaying notifica-
tions and menus but low user acceptance for tasks like
reading messages and books because it is hard to determine
the user’s focal area in these tasks. Web browsing is, un-
fortunately, similar to the latter. In contrast, Chameleon
does not need to know the focal area and is more effective
in conserving power thanks to color transformation.

The IBM Linux Watch is one of the earliest users of
OLED-based displays. Its designers sought to use low-
power colors for more pixels and designed GUI objects,
such as fonts and icons to minimize the need for high-
power colors [21]. The work, however, only studied the
GUIs with two colors, i.e., background and foreground,
without addressing colorful designs. There is a large body
of work on energy optimization of conventional LCD sys-
tems. It reduces external lighting and compensates the
change by transforming the displayed content [19, 22, 23].
Most of these techniques can be applied to OLED-based
displays by scaling the luminance level of OLED pixels as
discussed in Section 2.2. Chuang et al. studied energy-
aware color transformation for LCDs [24], targeted for
data visualization applications. Our prior work, reported in
[9, 10], was the first work that applied color transformation
to GUIs on OLED displays under usability perceptual con-
straints. Both pieces of work provide algorithms that can
be used in Chameleon to transform colors in web pages.

There exists a lot of research effort that adapts web
pages for mobile displays either manually [25] or automat-
ically [26]. Its goal to better fit web content into the small
mobile display is very different from ours in conserving
energy. Moreover, its solutions usually involve the modifi-
cation of layout, instead of color.

3. Motivational Studies
We next report three studies that directly motivated the

design of Chameleon: the OLED displays, web usage by
smartphone users, and user preferences in web page color
transformation.

3.1 OLED Display Power
Using the procedures described in [18], we build pixel

level power models of three OLED smartphones, i.e., Nex-
us One, Galaxy S, and Nokia N85. The results are shown
in Figure 2. We make the following observations as related
to the design of Chameleon.

First, OLED display power model is a linear function
of linear RGB intensity levels. The linear regression fitting
statistics R2 of all the three devices are over 0.95. The rea-
son is that the power consumption of an OLED is a linear
function of the current passing through it. And the current
passing through an OLED is also a linear function of its
luminance represented by linear RGB intensity levels [27].
The linearity simplifies the construction of OLED power
model as is necessary in Chameleon.

Second, different displays have different power cha-
racteristics. Particularly, relative power consumption by
red and green colors varies significantly from device to
device. In N85, red is more power efficient than green; in
Nexus One, the opposite is true, as shown in Figure 2. This
means that the most energy-efficient color scheme on N85
may be not most energy-efficient on Nexus One. This ob-
servation motivates a device-specific color transformation
that employs a device-specific OLED power model.

Finally, chromaticity makes a big difference even the
lightness is identical. Figure 3 presents the power model of
the OLED display of Nexus One in CIELAB color space,
in which power consumption of each color is normalized
by that of white. Each curved surface in the figure
represents of the colors of the same lightness (∗). Unsur-
prisingly, the figure shows that the power consumption of a
color will increase when lightness increases given the same
chromaticity (∗and ∗). This indicates that one should use
darker colors to reduce power consumption of an OLED
display, which has been widely known and practiced al-
ready. More importantly, however, Figure 3 also shows
that the power consumption difference can be as high as

Figure 2: Power models of three OLED displays. OLED display
power model is a linear function of linear RGB values. Different
OLED displays have different power models

 Figure 3: Power vs. CIELAB. Given the lightness, or
L*, power consumption can differ as much as 5X
between two colors with different chromaticity

0

1

2

0 0.5 1

P
o
w
e
r
(μ
W
)

Linear RGB Values

R
G
B

Nexus One
0

1

2

0 0.5 1
P
o
w
e
r
(μ
W
)

Linear RGB Values

R
G
B

Galaxy S
0

3

6

0 0.5 1

P
o
w
e
r
(µ
W
)

Linear RGB Values

R
G
B

N85

5

5X between two colors of the same lightness, or on the
same curved surface. This finding indicates that changing
chromaticity is another effective way to reduce OLED dis-
play power and color transformation will be more effective
than display darkening.

3.2 Web Usage by Smartphone Users
By studying web browser traces from 25 iPhone 3GS

users over three months [6] (called LiveLab traces below),
we make the following observations as related to the de-
sign of Chameleon.

3.2.1 Browsing Behavior
First, mobile users still visit web pages that are not

optimized for mobile devices. While a web site can poten-
tially provide an OLED-friendly version, e.g., with dark
background, our data show that approximately 50% of web
pages visited by mobile users are not optimized for mobile
devices at all [12]. Therefore, one cannot count on every
web site to provide an OLED-friendly version to reduce
display power. This directly motivates the necessity of
client-based color transformation.

Second, a small number of web sites account for most
web usage.. We find that the 20 most often visited web
sites of each user contribute to 80%-100% (90% on aver-
age) of the web usage by the same user, as shown in Figure
4. Therefore, it is reasonable to maintain a color transfor-
mation scheme for each of the 20 web sites and to use a
universal transformation scheme for, or simply not trans-
form, the other web sites. This is the key rationale behind
our design decision to maintain color consistency per web
site in Chameleon (Section 4.1).

3.2.2 Web Content
We further analyzed the web pages visited by the 25

iPhone 3GS users with the following findings.

First, 65% of the pixels in the web pages visited by the
25 users over three months are white. This is different
from but close to the claim made by [8] that white color
takes as high as 80% of web content. As OLED displays
are power-hungry for white, they can be less energy-
efficient overall than LCDs. Color transformation is there-
fore very important to improve the energy efficiency of
mobile devices with an OLED display.

Second, an average web page from the LiveLab traces
includes very rich styles, about four colors for texts and
three for backgrounds. On the contrary, a user defined
Cascading Style Sheet (CSS), or browser color profile only
defines one color for all texts and one color for all back-
grounds. As a result, using a user defined CSS to format an
entire web page will significantly reduce color numbers of
the web page and compromise aesthetics or even impact
the web usability, as exemplified by Figure 6 (b).

Third, the number of colors used by a web site is very
small (~103) compared to the number of all colors (~107)
supported by a modern mobile device. The number of col-
ors has a significant implication on the computational cost
of color transformation not only because each color has to
be transformed but also because the occurrences of each
color must be counted for an optimal transformation. The
number of colors is as many as 224 or 16,777,216, in a
modern web browser in which each of RGB components is
represented using eight bits. While this number is prohibi-
tively high, we find that web sites accessed by LiveLab
users only have about 1500 colors on average, with the
maximum being 6500, as shown in Figure 5. This observa-
tion is key to Chameleon’s feasibility and design of color
contribution collection.

Finally, a modern web page contains visual objects of
different fidelity requirements in color transformation.
Videos and many images require color fidelity. That is,
their color cannot be modified arbitrarily. An analysis of
the LiveLab traces shows that such fidelity-bound objects
are abundant in web pages accessed by mobile devices. For
example, images account for about 15% of the pixels for
an average web page in the trace. As a result, blindly
changing the color of a pixel without considering the fi-
delity requirement of a visual object, e.g., inverting all pix-
els in the page (Figure 6 (c)), can be unacceptable. In con-
trast, GUI objects only require usability. Here, GUI objects
are all possible objects in a web page except images and
videos, including backgrounds, texts, and forms etc, which
cover approximately 85% of the pixel of a web page based
on our LiveLab traces analysis. Their colors can usually be
modified arbitrarily as long as the transformed colors are
still distinguishable and aesthetically acceptable.

Similarly, images on a web page may have different
fidelity requirements too. Foreground images are images
specified by HTML IMG tags. For most foreground im-

Figure 4: The most visited web sites accounts for a high
percentage of web usage

 Figure 5: Color number distribution. A web site uses about
1500 colors on average and 6500 at most

0% 20% 40% 60% 80% 100%

Top 1

Top 5

Top 10

Top 20

Average % of usage (with Max and Min) of all users

M
o
st
 O
ft
e
n

V
is
it
e
d
 W

e
b
 s
it
e
s

0

10

20

30

500 1500 2500 3500 4500 5500 6500

W
e
b
si
te
 N
u
m
b
e
r

Color Number per Web site

6

ages, such as photos, fidelity matters. Significant color
changes will render them useless as shown in Figure 6 (c).
However, logo images, a common, special kind of fore-
ground images, usually have the same background color as
the adjacent GUI objects by design. As a result, if a logo
image is not transformed along with the GUI objects, the
background color of the logo image will clash with the
inverted background color, as shown in Figure 6 (e).
Therefore, Chameleon allows the user to choose if it is
important to keep the fidelity of logo images. If not, Cha-
meleon will treat logos along with the GUI objects in color
transformation. Background images are images specified
by CSS BACKGROUND-IMG property to serve as the
background of a CSS box. In the LiveLab traces, 23% of
web pages contain background images. Because back-
ground images are usually designed with the same color
pattern as the adjacent GUI objects, color transformation
without background images may make the background
images undistinguishable from adjacent GUI objects with
transformed colors. As shown in Figure 6 (e), the back-
ground images of the two buttons are undistinguishable
from inverted texts. Therefore, Chameleon treats back-
ground images along with the GUI objects in color trans-
formation.

3.3 User Preference of Color Transformation
While color transformation can potentially reduce the

power consumption by an OLED display, it must be per-
formed with user acceptance considered. We employ a
series of user studies to investigate how users accept color
transformation of web pages. We recruited 20 unpaid vo-
lunteers to use Nexus One to review a series of web pages
with typical office lighting. The participants were asked to
score each web page by 1 to 5 with 1 being the least ac-
ceptable.

The web pages used in the experiment include four
pages from the five top mobile web sites, i.e., CNN, Face-
book, Google, Weather, and ESPN. For each web page, we
present the original and four color-transformed versions, as
shown in Figure 7. Thus, there are 100 pages in total. The
color transformations include:

 Dark: Lightness of all the colors is uniformly reduced,
i.e., ; ′ ; ′ , in which ∈ 0, 1 .
This is similar to what a user would experience with
modern smartphones with LCDs and OLED displays.

 Green: Lightness of each of the RGB channel is re-
duced separately, i.e., ; ′ ; ′ ,
in which , , ∈ 0, 1 . Green channel is reduced
least because green is the most efficient color.

 Inversion: All the colors are inverted by replacing each
of the RGB components with its complement multip-
lying a scalar , i.e., 1 ; ′ 1

; ′ 1 , in which ∈ 0, 1 . The rationale
of this transformation is that most pixels from web
pages are white, according to Section 3.3.

 Arbitrary: Lightness and chrome of each color are
changed to minimize display power consumption [9].

The transformations are only applied to GUI objects,
background images and non-photo foreground images.
Each of these algorithms includes one or more controllable
parameters, e.g., lightness reduction ratio in Dark. Such
parameters affect both perception constraints and power
consumption of transformed web pages. For a fair compar-
ison, we adjust the parameters in each transformation so
that the same usability constraint discussed in Section 2.2.3
is used in all four algorithms.

Dark, Green, and Inversion are linear transformations
as discussed in Section 2.2.3. As a result, Arbitrary prom-
ises the biggest power reduction. Not, surprisingly, the
power reduction by Dark, Green, Inversion, and Arbitrary
is 25%, 34%, 66%, and 72%, respectively, under the same
perceptual constraint.

We have the following two findings by analyzing the
scores by the participant. First, different users prefer dif-
ferent transformations for a web site. For each color trans-
formation of a web page, we count the number of users
who gave the highest score out of the four transformations.
Thus, we have four numbers of user “votes” for each web
page. Figure 8 (left) shows the four numbers for the home-
page of each web site used in our study. As shown in the
figure, given a web site, each transformation gets some
votes. The numbers of votes for all four transformations

(a) Original
ESPN

(b) User defined
CSS

(c) Inversion
with images

 (d) Original Google (e) Inversion w/o images

Figure 6: The original ESPN home page (a) and its three color transformations (b-c). The use of a user defined CSS (b) loses color
information of different CSS boxes. Inversion (c) makes images unusable. In Inversion w/o images (e), background images are
undistinguishable from inverted texts in two buttons and foreground logo image clashes with the inverted background color

7

are actually not dramatically different for most web sites.
Therefore, it is important to give end users options in se-
lecting the color transformation algorithm, instead of pro-
viding one for all users.

Second, even the same user may favor different color
transformations for different web sites. Figure 8 shows the
average scores of each web site by User1 as an example.
As shown in the figure, User1 prefers Arbitrary for CNN
and Google, Green algorithm for Facebook, and Dark for
Weather and ESPN. Similar results are found for other
users. This, again, motivates Chameleon’s design to give
end user options in selecting the color transformation algo-
rithm and selecting it per web site.

Finally, our prior work [9, 10] show that users may
want different tradeoffs between energy saving and percep-
tual constraints, depending on the available battery level.
They are willing to sacrifice more aesthetics when the need
for energy saving is urgent. This again motivates that
choices should be given to the end user.

4. Design of Chameleon
We next describe the design of Chameleon as moti-

vated by the results from the motivational studies.

4.1 Key Design Decisions
The results from the motivation studies lead us to

make the following major design decisions for Chameleon.

Treat GUI Objects and Images Differently: Chamele-
on only applies display darkening to foreground images in
order to preserve fidelity. It applies color transformation
only to GUI objects, background images, and possibly logo
images depending on the user choice, according to findings
reported in 3.2.2. A side benefit of only applying darkening
to foreground images is that it works very well with incre-
mentally rendered large photos.

Keep Color Consistency per Web site: Web pages
from many web sites often employ the same color scheme
to maintain a consistent user experience. Chameleon keeps

this consistency by applying the same color transformation
to all pages from a web site and does so for the top 20 web
sites of the user. We opt against color consistency for mul-
tiple web sites because a user may prefer different color
transformations for different web sites, as found in Section
3.3. Moreover, the top 20 web sites of a user accounts for
most of her /his web usage according to 3.2.1.

Generate Device Specific OLED Power Model: As
shown in Section 3.1, power models of different OLED
displays are different. To make sure the transformed color
scheme is optimized for each device, Chameleon builds an
OLED power model for the device it runs using power
readings from the battery interface.

Calculate Color Maps Offline: Chameleon finishes the
compute-intensive mapping optimization offline, in the
cloud in our implementation, and only perform the abso-
lutely necessary tasks such as color contribution collection
and painting in real-time.

Give User Options: For each web site, Chameleon al-
lows a user to choose from linear and arbitrary transforma-
tions described in Section 2, to specify the color preference
and perceptual constraint for the color transformation and
to choose to transform logo images either by darkening or
color transformation. Chameleon will have all color maps
using all possible user options ready. As a result, the user
will immediately see the effect of her selections without
waiting. Our user study showed this is extremely useful for
users to find out their favorite transformations.

4.2 Architecture
Now we provide an overview of the architecture of

Chameleon. Without knowing the future, Chameleon uses
the web usage by the user in the past to approximate that of
the future. Therefore, Chameleon collects color informa-
tion of web browsing and seeks to identify the color trans-
formation for each color so that the average display power
consumption of past web usage could be minimized. Cha-

Original

Dark Green

Arbitrary Inversion

Figure 7: Color schemes used in user study are trans-
formed using different algorithms

 Figure 8: User study results. User favorite algorithm (left);
average score of each web site by user1 (right)

0 2 4 6 8

CNN

Facebook

Google

Weather

ESPN

User Number

Dark Green
Arbitrary Inversion

0 1 2 3 4 5

CNN

Facebook

Google

Weather

ESPN

Score (1 to 5)

Dark Green

Arbitrary Inversion

8

meleon then applies the color transformation to future web
browsing to reduce the display power consumption.

Suppose a user has been browsing a web site for time
T. Then the energy consumption in time T is

∑ ∑ ,

where , , , 1, … , , are the N colors sup-
ported by the browser and is the pixel number of
color in the display at time t. Notably, the integral factor

 considers both the spatial and temporal contribu-
tions by a color. It naturally gives a larger weight to a web
page that is viewed for a longer time. The integral factor
can also “forget” past record by including a weight that
diminishes for contributions from the distant past.

As shown in 3.1, the power consumption of an OLED
pixel is a linear function of its linear RGB values, i.e.,

. Note that
the constant factor in the original linear function is not in-
cluded because it is independent from the color. Thus, the
color-dependent energy consumption can be rewritten as

∙ ∙ ∙

…

…

…

∙ ⋮ .

M is the OLED power model; is a matrix called the
color map with the ith column being the transformed color
for xi; D is the color contribution vector for the web site
with each entry corresponding to the contribution from
color xi, .

To minimize the energy consumption, E, Chameleon
must construct the power model, M, gather data to derive
D, calculate with user-supplied options, and apply it to
change the colors of future web pages. Therefore, Cha-
meleon consists of four modules that interact with a
browser engine, as illustrated in Figure 9.

 A model construction module generates a power mod-
el, , of the OLED display of the mobile system, us-
ing the smart battery interface.

 A contribution collection module gathers a color con-
tribution vector, , for each web site from the Layout
Calculation and Painting stages of the browser engine
in an event-driven manner.

 An offline mapping optimization module computes the
color map based on and . Note that Chameleon
computes the color maps for all possible user options
so that the user can immediately see the impact of a
change in user options.

 An execution module applies the color map to
transform colors in a web page.

Out of the four modules, only contribution collection
and execution have to be executed in real-time. We next
discuss each module in detail.

4.3 Color Power Model Construction
Chameleon constructs the model M automatically

without any external assistance, allowing for immediate
deployment. The key idea is to employ the limited power
measurement capability provided by the smart battery in-
terface in modern mobile systems.

Chameleon’s model construction module shows a se-
ries of benchmark images on the OLED display and meas-
ures the corresponding power consumption of the whole
system from the battery interface. A benchmark image has
all pixels showing the same color. Because all pixels have
the same color, the system power consumption would be

,

where is the total number of pixels and is the sys-
tem power consumption when the display is showing a
black screen. When all the benchmark images have been
shown and the corresponding power consumption numbers
have been collected, the module applies linear regression
to obtain the values of , , and .

The model can be constructed once and calibrated over
the lifetime of the device. The calibration is necessary be-
cause OLED displays are known to age and therefore exhi-
bit different color-power properties over years. However,
since the aging process is slow, the model only needs to be
recalibrated using the same process a few times per year,
without engaging the user.

4.4 Color Contribution Collection
Chameleon generates the color contribution vector, D,

of GUI objects, background images, and possibly logo
images (depending on the user choice). Recall that an ele-
ment of D is determined by how many pixels have the ith
color and for how long. Therefore, whenever the display
changes, contribution collection must determine how long
the previous screen has remain unchanged, or time count-
ing, and how many pixels in that screen are of the ith color,
or pixel counting. To process a large number of colors
(>103) and pixels (>105) in real-time, Chameleon employs

Figure 9: Architecture of Chameleon and how it interacts
with the browser engine

9

a suite of techniques to improve the efficiency of contribu-
tion collection.

Why must contribution collection be done in real-
time? It would be much easier to use the browser history to
record the URLs of visited web pages with a timestamp
and examine the pages offline. The key problem with this
off-line method is that it does not capture what actually
appears on the display. Because often a small portion of a
web page can be shown on the display and the user must
scroll the page, zoom in, and zoom out during browsing,
the problem will lead to significant inaccuracy in the color
contribution vector, D.

4.4.1 Event-driven Time Counting
Chameleon leverages the paint functions of the brows-

er engine to efficiently count time in an event-driven man-
ner. The browser engine updates the screen by calling a
paint functions in the Painting stage. The time when a
paint function returns indicates the screen is updated and
would be a perfect time to start contribution collection.
However, it is very common that the browser engine calls a
series of paint functions to paint multiple nodes in the
render tree with layout, even for one screen update as per-
ceived by the user. If contribution collection runs for every
paint function, the overhead can be prohibitively high.
Therefore, Chameleon seeks to identify a series of paint
functions that are called in a burst and only runs contribu-
tion collection when the last of the series of paint function
returns.

Chameleon employs a simple yet effective timeout
heuristics to tell if a paint function is the last in a series.
That is, if there is no paint function called after a timeout
period, Chameleon considers the last paint function the last
of a series. The choice of the timeout value is important. If
the timeout value is too small, contribution collection will
be called frequently. If it is too large, many display updates
will go unaccounted for.

To determine a reasonable timeout value, we per-
formed a user study with ten mobile users to collect timing
information of paint function calls. In the user study, each
of the users freely browsed web for 30 minutes using an
instrumented web browser on Nexus One. The instru-
mented browser records the time a paint function starts and
completes, producing a 300-minute trace. Given a timeout
value, the paint function calls in the trace can be grouped
into series. We then calculated the timing statistics for the
identified series. Inter-series interval is the time between
the finish of the last paint function in a series and the finish
of the last paint function in the next series. It is the time
between two executions of contribution collection. Series
duration is the time between the start of the first paint
function in a series and the finish of the last paint function
in the same series. It measures the time during which the
screen updates will not be counted by Chameleon.

Figure 10 shows the box plots of inter-series interval
and series duration generated using different timeout val-
ues. As shown in the figure, both inter-series interval and
series duration have wide distributions. As a result, we
should not only examine their averages but also their
ranges. For inter-series interval, we are more interested in
its lower percentile because short inter-series intervals
mean frequent execution of contribution collection. When
the timeout is 0.25 second, the 25th percentile of inter-
series interval is approximately 0.5s. In other words, it will
be one out of four chances that the time overhead of con-
tribution collection is over 10%. The overhead can be re-
duced to 2.5% with a one-second timeout. For series dura-
tion, we are more interested in its higher percentile because
long series durations imply inaccuracy in the color contri-
bution vector, D. When the timeout is 4s, the 75th percen-
tile of series duration is more than 18s. In other words, it
will be one out of four chances that the screen updating for
at least 18s will not be counted, which can introduce a con-
siderable error in color contribution vector . The 75th per-
centile of series duration can be reduced to about 5s with a
timeout of two seconds.

Therefore, we consider a reasonable timeout should be
between one and two seconds and we set the timeout as
one second in the reported implementations.

4.4.2 Pixel Counting
Once contribution collection is called, it will count the

number of pixels for each color. Because the numbers of
both pixels and colors can be large, we design the module
as follows to improve its efficiency in both computing and
storage.

Chameleon obtains pixel information, or RGB values,
from the framebuffer. We note that an obvious alternative
is to traverse the render tree without layout to calculate the
pixel number of each color [18]. However, the render tree
contains no pixel information of images, which makes it
impossible to count pixels in background image. Second,
the overlapping of GUI objects makes it compute-intensive
to count pixels from the render tree, thanks to a possibly
large number of GUI objects in a web page. For example,

Figure 10: Box plots for inter-series interval (left) and series
duration (right) calculated using different timeout values.
The bottom and top edges of a box are the 25th and 75th per-
centile; the white band in a box is the median, and the ends
of the whiskers are maximum and minimum, respectively

0

5

10

15

20

25

0.25 0.5 1 2 4

In
te
r‐
Se
ri
e
s
In
te
rv
al
 (s
)

Timeout Value (s)

0

5

10

15

20

25

0.25 0.5 1 2 4

Se
ri
e
s
D
u
ra
ti
o
n
 (
s)

Timeout Value (s)

10

counting the pixel number of all the colors in the web page
shown in Figure 6 (a) from the render tree with layout
takes more than 200ms, compared to less than 60ms it
takes to from the framebuffer.

Figure 11 shows the whole process of pixel counting.
As in Step (1) of the figure, Chameleon copies the screen
content from the framebuffer to the main memory in a
stream and examines pixels in the main memory copy to
minimize expensive framebuffer accesses. Moreover,
Chameleon only reads from the framebuffer for the screen
region that has been updated by the last series of paint
functions. Because each paint function includes parameters
that specify a rectangle region in the screen on which it
draws, Chameleon calculates the superset rectangle of
these rectangles and only updates the super set to the main
memory copy.

Chameleon excludes foreground images from the rec-
tangular superset. Chameleon leverages two parameters of
a paint function to identify the area of the superset rectan-
gle that belongs to foreground images. One parameter indi-
cates what low-level library to use and this parameter tells
whether the pixels to be drawn are from images or GUI
objects. The other parameter is the pointer of the image
node in the render tree with layout. Using this pointer,
Chameleon tells if the image is foreground or background
by its position in the render tree with layout: a foreground
image is an element node of the render tree while a back-
ground image is a property of an element node. In case of a
foreground image, Chameleon reads its size and position
and skips its pixels in pixel accounting.

Chameleon employs a Hash table to store the color
contribution vector, D, to reduce its storage requirement
because the number of colors used by a web site is orders
of magnitudes smaller than that of all possible colors. To
reduce the index collision and make an efficient Hash table,
we choose to use a special key for the Hash table, i.e., each
of the RGB components is reversed in bit and then inter-
leaved together. The rationale of such a choice is that,
compared to lower bits, the higher bits of the RGB compo-
nents are more effective to differentiate colors and should
be used earlier by the Hash table. The Hash table imple-
mentation only requires about 10KB for a web site because
the number of colors used by a web site is no more than a
few thousands. When updating the Hash table, Chameleon
can discount the existing record, instead of simply aggre-
gating the new pixel counts into it, in order to “forget” web
pages browsed in the distant history.

As in Step (2) of Figure 11, Chameleon counts pixels
in the main memory copy by 10 pixels by 10 pixels
(10×10) blocks and employs a small Hash table with spe-
cial collision resolution to store the results for a block. The
key of the small Hash table is the higher two bits of RGB
components of each color; the table resolves a collision by
merging the existing entry into the per-website Hash table,
as in Step (3) of Figure 11. After all the blocks have been

examined, Chameleon then merges the small Hash table
into the per-web site Hash table, as in Step (4) of Figure
11. This design is motivated by the spatial locality of col-
ors in web pages: the average color numbers in a 10×10
block is only 5 according to the LiveLab traces. By count-
ing pixels block by block and using the small Hash table of
a fixed size to store the block results, Chameleon reduces
the number of writings into the per–website Hash table.

Finally, Chameleon can further leverage the spatial lo-
cality of color to reduce the number of pixels to examine
by sampling. That is, instead of counting every pixel,
Chameleon can only count one pixel out of a block (e.g.,
10×10). This pixel can be sampled from a fixed position or
simply by random. This sampling technique makes a prof-
itable tradeoff between the accuracy of D and the efficien-
cy. Our early work, reported in [18], suggests that a sam-
pling rate as high as one out of 10×10 pixels can still yield
very high accuracy (95%) in display power estimation,
thanks to the spatial locality of color in web pages.

As will show in Section 6, the time overhead of the
execution of contribution collection is at most 66ms and
17ms without and with sampling.

4.5 Color Mapping Optimization
Chameleon treats foreground images and GUI objects

separately. It only darkens foreground images but trans-
forms the color schemes of GUI objects, background im-
ages, and possibly logo images (depending on the user
choice), all under a perceptual constraint.

Given M, the power model, D, the color contribution
vector, Chameleon calculates the optimal color map, ,
offline. Chameleon will compute the color maps for all
possible combinations of user options, including all possi-
ble perceptual constraints. With all color maps at hand,
Chameleon allows the user to change the options and see
the resulting color scheme immediately. There are 20 color
maps for each web site in our implementation.

4.6 Color Transformation Execution
Given a color map , Chameleon replace each origi-

nal color with its corresponding transformed color for GUI
objects, background images, and possibly logo images (de-
pending on the user choice). Instead of transforming pixel
by pixel, Chameleon modifies the parameters of paint
functions to transform the entire region updated by the

Figure 11: How Chameleon counts pixels

11

function at once. In the Painting stage, when a geometry
primitive is painted with a color , , , Chameleon uses

 to find the transformed color ’, ’, ’ and passes
’, ’, ’ to the low-level graphics library to continue the

painting process.

For foreground photo images, the transformation only
involves darkening, or reducing brightness, i.e., each pixel

, , in the image becomes , , , ∈ 0,1 , in
the transformed image. This darkening operation is inte-
grated into image decompression process such that the
RGB components of each pixel are multiplied by right
after they are calculated by the image library.

5. Implementation of Chameleon
We next report our implementations of the Chameleon

design described above. The first choice we faced was
whether to implement it an add-on to existing web brows-
ers or to directly modify the source code of a browser.

Many web browsers support add-ons to enhance func-
tionality as either a plug-in or an extension. Plug-ins are
provided as libraries by third party software companies to
handle new types of contents, such as Flash and Quicktime
movies, and unable to impact on how a web browser rend-
ers a web page. Therefore, Chameleon cannot be imple-
mented as a plug-in. Extensions are designed by users us-
ing XML and JavaScripts to add or change browser fea-
tures they prefer. An extension can use a JavaScript to
change the color of any GUI object. We opt not to imple-
ment Chameleon as an extension for three reasons. First,
such an extension is unable to generate a color contribution
vector as described in Section 4.4 because JavaScripts have
no access to the render tree with layout to obtain layout
information of GUI objects and images. Second, an exten-
sion cannot transform color of background images because
JavaScripts do not affect how images are decompressed.
Third, an extension-based implementation will be prohibi-
tively expensive because the extension needs to traverse
the whole render tree to execute color transformation. For
example, to perform a color inversion on CNN mobile
home page using such a script costs more than 500ms
while Chameleon only costs only 2ms.

We choose to implement Chameleon by modifying the
source code of a web browser. We have implemented
Chameleon on Fennec, the mobile version of Mozilla Fire-
fox, and the Android WebKit. WebKit is an open-source
web engine which serves many modern web browsers such
as Safari and Chrome. One can change the painting stage
of WebKit to realize Chameleon. Because an Android sys-
tem includes WebKit as part of the kernel, a modification
of the WebKit codebase requires rebuilding the whole An-
droid system. Fennec is an open source web browser
project that is ported on both Android and Maemo operat-
ing systems. Unlike the Android Web browser, Fennec is a
stand-alone application and can be installed on almost any
mobile platforms with Android/Maemo systems without

rebuilding the system. The downside of Fennec is that it
requires storage of over 45MB.

Due to page limits, we only report the details of Fen-
nec implementation because it does not require rebuilding
Android from source. The Android WebKit implementa-
tion, however, is similar. Our modification to the Fennec
includes changing 15 files and adding/changing 387 lines
of code. Chameleon/Fennec runs on any Android/Maemo
based mobile platform. We next use Nexus One as an ex-
ample target device to present the implementation details.

5.1 Automatic Power Model Construction
Battery interface of Nexus One updates a power read-

ing in every 56 seconds, which is computed by averaging
the last 14 samples (1 sample per 4 seconds). Therefore, it
is important to make sure Nexus One is operating with a
with stable power behavior during the model building
process. We enforce several methods to achieve a stable
power behavior, including turning off all the wireless links
by using airplane mode and shutting down all the running
3rd party applications except Chameleon. More important-
ly, the calibration process itself, updating framebuffer us-
ing different colors, should have a stable power behavior.
Chameleon employs OpenGL to update the framebuffer in
order to minimize energy consumption in non-display
components, e.g. storage access when a gallery application
is used to present images. Because the linearity of color
power model, it is unnecessary to go through all the colors.
We only calibrate sixteen levels for each of the red, green,
and blue. Each level costs 56s and the whole model build-
ing process takes approximately one hour. A user should
start such model building process from the menu before
using Chameleon.

5.2 Color Contribution Collection
Contribution collection is implemented as a function

and is called by Chameleon after a timeout since a paint
function returns as described in Section 4.4. When contri-
bution collection is called, Chameleon reads the updated
screen region from the framebuffer to the main memory in
a stream using OpenGL function GLReadPixels. The time
taken by this copying process depends on the region size
and is at most 16ms in Nexus One. As described in Section
4.4, the color contribution vector for a web site, D, is im-
plemented as a Hash table. The Hash table for each web
site is saved as a binary data file. When Chameleon opens
a web site, it loads the corresponding binary data file and
updates it accordingly. A typical size of such a binary file
is ~6KB such that loading/saving the Hash table will not
introduce much overhead.

We note that color contribution collection does not
need to be always on. As we will see in Section 6.3, two
weeks of color contribution collections will lead to close to
optimal power reduction for at least the next three months
for an average user.

12

5.3 Color Mapping Optimization
Since mapping optimization runs offline and is inde-

pendent from Chameleon, we choose to implement it as a
service running in an Internet server. This service takes
two inputs, i.e., a triplet of three float numbers representing
the OLED display power model of a Chameleon user’s
mobile device and a binary data file consisting of 20 color
contribution vectors of the user’s top 20 most visited web
sites. The user can initiate the mapping optimization ser-
vice from Chameleon’s menu. Chameleon will upload the
two inputs to the Chameleon server and the service will
calculate optimized color maps using all possible algo-
rithms and options. For each web site, the service generates
color maps using the four algorithms described in Section
3.3, five parameters settings for each algorithm. As a re-
sult, there are 20 color maps for each web site. Then Cha-
meleon automatically downloads this output data file to the
mobile device. Finally, a color map will be selected for
each website based on the user’s choice. When the user
changes his choice, a new color map will be selected and
applied immediately without needing the server.

The mapping optimization service is implemented in
two parts: a front-end interface implemented by PHP to
handle requests from Chameleon and a back-end computa-
tion engine. The back-end engine is implemented in C++
and employs the GNU Scientific Library for optimization.

5.4 Color Transformation Execution
Chameleon implements color transformation of GUI

objects by modifying the color interface of Fennec. When a
paint function draws a geometry primitive, i.e., a point, a
line or a rectangle, it uses a HEX string or a color name as
a parameter to specify the color of the primitive. The color
interface translates such a HEX string or a color name to
RGB values that will be further used by the low level
graphics library. We add code right after where the RGB
values are calculated. The added code uses the RGB triplet
as address to find a transformed color from the color map.
Since we have modified the color interface to return the
transformed RGB values instead of original ones, the paint
function will draw the geometry primitive using the trans-
formed color. Therefore, the overhead induced by color
transformation execution only involves the time to load a
RGB triplet from the color map. As will show in Section
6.4, the total time overhead of execution in opening a web
page is less than 5ms on average, which is negligible than
the total time to open a web page (2-8s according to [12]).

Chameleon implements color transformation for im-
ages by modifying the image library of each individual
image format because each image library employs a unique
decompression procedure. In particular, code is added to
modify the RGB values of image pixels after the decom-
pression finishes. The new RGB values are determined
based on if the image should be darkened or color-
transformed.

6. EVALUATION
We evaluate through measurement, trace-based emula-

tion, and multiple field trials. The evaluation shows that
Chameleon is able to reduce OLED smartphone power
consumption by 41% during web browsing.

6.1 Experimental Setup
Google Nexus One is used in the measurement and

trace-based emulation. We run a script that automatically
feeds Chameleon with web pages specified by a URL list
extracted from the LiveLab traces. We measure time over-
head of Chameleon by inserting time-stamps in the Cha-
meleon source code and counting the latencies contributed
by the contribution collection and execution modules. We
obtain the power consumption of Nexus One by measuring
the battery current through a sensing resistor with a 100Hz
DAQ from Measurement Computing.

6.2 Power Model Accuracy
To examine the accuracy of OLED power model gen-

erated by Chameleon, we randomly select 100 web pages
from the LiveLab traces and compare the power number
estimated by the power model against DAQ measurement.
The results show that 95% of the error is within ±10% and
the average absolute error is 3%.

6.3 Power Reduction
As mentioned in the beginning of Section 4, Chamele-

on transforms future web pages based on color transforma-
tions optimized with past web usage. This raises two ques-
tions: (i) how long does a user need to train Chameleon;
and (ii) how well does the past predicts the future? By
“train,” we mean to run the contribution collection module
of Chameleon to gather the color contribution vector, D.

We leverage the LiveLab traces, the display power
model of Nexus One, the Arbitrary color transformation
used in the study reported in Section 3.3, to answer these
two questions. We first train and test Chameleon week by
week, using the same week’s trace to train and test. The
resulting power reduction is not realistic but serves as a
theoretical upper bound. The weekly average for all 25
users is shown in Figure 12 as Optimal. Then we train
Chameleon using first one to four weeks of traces and test
it using the rest of the traces, respectively. Again the week-
ly averages for all users are shown in Figure 12. Because
the color transformation in Chameleon is per-web site, the
weekly average is calculated over the top 20 web sites for
all users. We note this emulation is an approximation only
because the LiveLab traces did not actually capture what
appeared on the display, as discussed in Section 4.4.

As shown in Figure 12, power reduction with two to
four weeks training is close to each other but that with one
week training is the obviously lowest. This indicates that
two weeks of training should be enough for Chameleon on
average. The average display power reduction is 64% and

13

such reduction remains close to the optimal (~70%) for the
rest of traces (or at least 10 weeks), as shown in Figure 12.
So the past doest predict the future well. We also note that
there is a not-so-obvious trend of declination in the power
reduction with two to four weeks training only over the
long term. This suggests that Chameleon only needs to
train (or run the contribution collection module) for two
weeks a few times a year to maintain its effectiveness in
power reduction.

We also measured the system power consumption by
Nexus One when browsing web pages in the LiveLab trac-
es. The average system power consumption is 1.3W and
2.2W with Fennec and Chameleon, respectively. This indi-
cates over 41% total system power reduction through
Chameleon.

6.4 Overhead
We next examine the overhead in time and power in-

troduced by Chameleon. For time overhead, we are only
interested in contribution collection and execution because
only they run in real-time during web browsing. Our mea-
surement shows that execution takes less than 5ms on av-
erage in opening a web page, which is negligible compared
to the total time to open a web page in a mobile browser
(2-8s according to [12]). The time overhead from contribu-
tion collection consists of two parts: reading the framebuf-
fer and updating the color contribution vector, D. Figure 13
shows the worst case overhead of both parts using different
sampling sizes. As shown in the figure, framebuffer read-
ing costs less than 16ms in the worst case, i.e., reading the
whole screen. The average reading time is ~12ms because
only part of the framebuffer is read each time. The figure
also shows that cost for updating the color contribution
vector is ~50ms without sampling and <1ms using a sam-
pling window of 10×10. Therefore, the total time overhead
of color contribution vector updating is at most 66ms with-
out sampling and <17ms using a sampling window of
10×10.

Such overhead will be barely noticeable given the fact
that it takes 2-8s to open a web page on a mobile browser
[12], as confirmed by our own experience and the field
trial to be reported in Section 6.5. Moreover, the overhead
of Chameleon is likely to be reduced as smartphone hard-
ware becomes better while the web page opening time will
remain large because it is determined by network condition

other than smartphone hardware [12]. Finally, as shown in
Section 6.3, Chameleon only needs to run contribution
collection and incur this overhead for two weeks a few
times a year to be effective.

We also measured the power overhead of Chameleon
by going through the LiveLab URL list twice, one with
Fennec and the other with Chameleon. To eliminate the
power difference introduced by the display, a color map
that does not change the color at all is used in Chameleon.
The results show that the system power difference between
the two trials is <5%, negligible compared to the 41% re-
duction from Chameleon.

6.5 Field Trials
Two field trials have been performed with Chamele-

on/Fennec during two points of the development. The first
trial was with two Nexus One users and an early version of
Chameleon. The two users used Chameleon for one week
and provided valuable feedbacks. For example, the issues
with background images and logo images discussed in Sec-
tion 3.2 were reported by the two participants whose dif-
ferent preferences also motivated us to give the end user an
option in how to treat logo images.

The second trial was with five users of Nexus One and
Samsung Galaxy S and the reported implementation of
Chameleon. The trial lasts seven days for each user. After
the trial, we asked each user to use two Nexus One smart-
phones, one with the original Fennec and the other with
Chameleon. They used the smartphones in the lab at a ran-
dom order to access the same web site of their favorite in
order to assess if there are noticeable latency introduced by
Chameleon. No user noticed any slowdown in web brows-
ing in Chameleon compared with using the original Fennec.
From our post-trial interview of the users, we found that
the ability to see the effect of changing a user option is
very important, as Chameleon currently supports. Finally,
all the users are satisfied with the aesthetics of the trans-
formed color scheme of her/his choice. These early results
suggest Chameleon is effective in reducing power reduc-
tion while keeping the user happy.

7. Discussions
Chameleon does not consider video right now because

videos are not yet widely supported by mobile browsers.
For example, Safari on iPhone has no support of flash, a

Figure 12: Display power reduction by training Chamele-
on with different weeks of data from the LiveLab traces

 Figure 13: Worst case time overhead of Chameleon

50%

60%

70%

80%

90%

1 2 3 4 5 6 7 8 9 10 11 12

D
is
p
la
y
P
o
w
e
r

R
e
d
u
ct
io
n

Week

Optimal Trained by 1w
Trained by 2w Trained by 3w
Trained by 4w

0 25 50 75

1x1

5x5

10x10

20x20

Time (ms)

Sa
m
p
lin

g
W
in
d
o
w framebuffer reading

color contribution vector updating

14

typical video container in web pages. However, supporting
video is also easy for Chameleon as videos can be consi-
dered in a way similar to foreground images. Chameleon
can easily apply darkening to videos by leveraging the
opacity level defined in CSS standard. Opacity level is an
property of each object and in the range of [0,1]; it is used
to handle the overlapping of two objects. To darken a vid-
eo by a scale factor ∈ 0,1 , Chameleon can overlay a
black image with the opacity level of (1) of the same
size on the top of the video.

8. Conclusions
In this work, we report the design and realization of

Chameleon, a color-adaptive mobile web browser to re-
duce the energy consumption by OLED mobile systems.
Chameleon is able to reduce the system power consump-
tion of OLED smartphones by over 41% for web browsing,
without introducing any user noticeable delay.

We found studying the users and the web usage by us-
ers in the field instrumental to the design and success of
Chameleon. Much of Chameleon’s optimization techniques
were directly motivated by findings from these studies.

Emulation using the LiveLab traces showed that two
weeks of web usage is enough for Chameleon to derive a
color transformation that performs close to the optimal for
at least ten weeks. This suggests that only the execution
module of Chameleon needs to be performed all the time
and the color contribution collection module only need to
be performed for two weeks once or twice a year.

Chameleon also represents a good example of how the
“cloud” can be leveraged for the usability and efficiency of
mobile devices. By cleverly offloading compute-intensive
mapping optimization to the cloud and obtaining all possi-
ble color maps, Chameleon allows the user to see the visu-
al impact of different user options without delay.

9. References
[1] L. Zhong and N. K. Jha, "Energy efficiency of handheld computer

interfaces: limits, characterization and practice," in Proc.
ACM/USENIX Int. Conf. Mobile Systems, Applications, and Services
(MobiSys) Seattle, Washington, 2005, pp. 247-260.

[2] A. Carroll and G. Heiser, "An analysis of power consumption in a
smartphone," in Proc. USENIX Annual Technical Conference, 2010.

[3] A. Shye, B. Scholbrock, and G. Memik, "Into the wild: studying real
user activity patterns to guide power optimizations for mobile archi-
tectures," in Proc. IEEE/ACM Int. Symposium on Microarchitecture
(MICRO) New York, New York, 2009.

[4] DisplayMate, Mobile LCD and OLED Display Shoot-Out: Compar-
ing Smart Phone, MP3, Portable Video Player, and Gaming Dis-
plays http://www.displaymate.com/mobile.html, 2009.

[5] M. Ricknäs, "Samsung Launches Galaxy Tab:
<http://www.pcworld.com/article/204729/samsung_launches_galax
y_tab.html>," 2010.

[6] C. Shepard, A. Rahmati, C. Tossel, L. Zhong, and P. Kortum, "Li-
veLab: measuring wireless networks and smartphone users in the
field," in Proc. Workshop on Hot Topics in Measurement & Model-
ing of Computer Systems (HotMetrics), 2010.

[7] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govin-
dan, and D. Estrin, "Diversity in Smartphone Usage," in Proc. ACM
Int. Conf. Mobile Systems, Applications, and Services (MobiSys) San
Francisco, CA, 2010.

[8] A. Laaperi, "Disruptive factors in the OLED business ecosystem,"
Information Display Magazine, vol. 25, pp. 8-13, September 2009.

[9] M. Dong, K. Choi, and L. Zhong, "Power-saving color transforma-
tion of mobile graphical user interfaces on OLED-based displays,"
in Proc. ACM/IEEE Int. Symp. Low Power Electronics and Design
(ISLPED) San Francisco, CA, 2009.

[10] M. Dong and L. Zhong, "Power Modeling and Optimization for
OLED Displays," IEEE Transactions of Mobile Computing, vol.
Under review, 2009.

[11] S. Iyer, L. Luo, R. Mayo, and P. Ranganathan, "Energy-Adaptive
Display System Designs for Future Mobile Environments," in the
1st international conference on Mobile systems, applications and
services (Mobisys'03), San Fransisco, CA, USA, 2003.

[12] Z. Wang, X. Lin, L. Zhong, and M. Chishtie, "Why Mobile Brows-
ers are Slow," to appear in HotMobile2011.

[13] M. Dong and L. Zhong, "Chameleon: Color Transformation on
OLED Displays," Demonstration in The Eleventh Workshop on Mo-
bile Computing Systems and Applications (HotMobile) Annapolis,
MD, USA, 2010.

[14] Chameleon, "http://www.ruf.rice.edu/~dongmian/Chameleon,"
2010.

[15] B. Fraser, C. Murphy, and F. Bunting, Real world color manage-
ment: Pearson Education, 2002.

[16] S. R. Forrest, "The road to high efficiency organic light emitting
devices," Organic Electronics, vol. 4, pp. 45-48, 2003.

[17] J. Shinar, Organic Light-Emitting Devices: A Survey: Springer,
2004.

[18] M. Dong, K. Choi, and L. Zhong, "Power modeling of graphical
user interfaces on OLED displays," in Proc. ACM/IEEE Design Au-
tomation Conf. (DAC) San Francisco, CA, 2009.

[19] W.-C. Cheng and C.-F. Chao, "Minimization for LED-backlit TFT-
LCDs," in in Proc. ACM/IEEE Design Automation Conference
(DAC), 2006, pp. 608-611.

[20] T. Harter, S. Vroegindeweij, E. Geelhoed, M. Manahan, and P.
Ranganathan, "Energy-aware user interfaces: an evaluation of user
acceptance," in SIGCHI conference on Human factors in computing
systems, Vienna, Austria, 2004.

[21] N. Kamijoh, T. Inoue, C. M. Olsen, M. T. Raghunath, and C. Na-
rayanaswami, "Energy trade-offs in the IBM wristwatch computer,"
in Proc. IEEE Int. Sym. Wearable Computers, 2001, pp. 133-140.

[22] H. Shim, N. Chang, and M. Pedram, "A Backlight Power Manage-
ment Framework for Battery-Operated Multimedia Systems," IEEE
Design & Test, vol. 21, pp. 388-396, 2004.

[23] A. K. Bhowmik and R. J. Brennan, "System-Level Display Power
Reduction Technologies for Portable Computing and Communica-
tions Devices," in Proc. IEEE Int. Conf. Portable Information De-
vices, 2007, pp. 1-5.

[24] J. Chuang, D. Weiskopf, and T. Möller, "Energy Aware Color Sets,"
Computer Graphics Forum, vol. 28, pp. 203-211, 2009.

[25] M. Jones, G. Marsden, N. Mohd-Nasir, K. Boone, and G. Buchanan,
"Improving Web interaction on small displays," Computer Net-
works, vol. 31, pp. 1129-1137, 1999.

[26] N. Bila, T. Ronda, I. Mohomed, K. Truong, and E. de Lara, "Page-
tailor: reusable end-user customization for the mobile web," in the
5th international conference on Mobile systems, applications and
services, San Juan, Puerto Rico, 2007.

[27] G. Wyszecki and W. S. Stiles, Color Science: Concepts and Me-
thods, Quantitative Data and Formulae, 2nd ed.: Wiley-
Interscience, 2000.

