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Abstract—This work addresses the fundamental problem of distinguishing between a driver and passenger using a mobile phone,

which is the critical input to enable numerous safety and interface enhancements. Our detection system leverages the existing car

stereo infrastructure, in particular, the speakers and Bluetooth network. Our acoustic approach has the phone send a series of

customized high frequency beeps via the car stereo. The beeps are spaced in time across the left, right, and if available, front and rear

speakers. After sampling the beeps, we use a sequential change-point detection scheme to time their arrival, and then use a

differential approach to estimate the phone’s distance from the car’s center. From these differences a passenger or driver classification

can be made. To validate our approach, we experimented with two kinds of phones and in two different cars. We found that our

customized beeps were imperceptible to most users, yet still playable and recordable in both cars. Our customized beeps were also

robust to background sounds such as music and wind, and we found the signal processing did not require excessive computational

resources. In spite of the cars’ heavy multipath environment, our approach had a classification accuracy of over 90 percent, and

around 95 percent with some calibrations. We also found, we have a low false positive rate, on the order of a few percent.

Index Terms—Driving safety, driver phone use, smartphone, car speakers, bluetooth, acoustic ranging, location classification.
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1 INTRODUCTION

DISTINGUISHING driver and passenger phone use is a
building block for a variety of applications but it’s

greatest promise arguably lies in helping reduce driver
distraction. Cell phone distractions have been a factor in
high-profile accidents [9] and are generally associated with
a large number of automobile accidents. For example, a
National Highway Traffic Safety Administration study
identified cell phone distraction as a factor in crashes that
led to 995 fatalities and 24,000 injuries in 2009 [42]. This has
led to increasing public attention [8], [32], and the banning
of hand-held phone use in several US states [4] as well as
many countries around the world [1].

Unfortunately, an increasing amount of research sug-
gests that the safety benefits of handsfree phone operation
are marginal at best [16], [41]. The cognitive load of
conducting a cell phone conversation seems to increase
accident risk, rather than the holding of a phone to the ear.
Of course, texting, email, navigation, games, and many
other apps on smartphones are also increasingly competing
with driver attention and pose additional dangers. This has
led to a renewed search for technical approaches to the
driver distraction problem. Such approaches run the gamut
from improved driving mode user interfaces, which allow
quicker access to navigation and other functions commonly
used while driving, to apps that actively prevent phone
calls. In between these extremes lie more subtle approaches:
routing incoming calls to voicemail or delaying incoming
text notifications, as also recently advocated by Lindqvist
and Hong [28].

The driver-passenger challenge. All of these applica-
tions would benefit from and some of them depend on
automated mechanisms for determining when a cell phone
is used by a driver. Prior research and development has led
to a number of techniques that can determine whether a cell
phone is in a moving vehicle—for example, based on cell
phone handoffs [23], cell phone signal strength analysis
[18], or speed as measured by a Global Positioning System
receiver. The latter approach appears to be the most
common among apps that block incoming or outgoing
calls and texts [3], [10], [11]. That is, the apps determine that
the cell phone is in a vehicle and activate blocking policies
once speed crosses a threshold. Some apps (e.g., [6]) require
the installation of a Bluetooth transmitter module into the
vehicle OBD2 port, which then allows blocking calls/text
to/from a given phone based on car’s speedometer read-
ings and some even rely on a radio jammer [5]. None of
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these solutions, however, can automatically distinguish a
driver’s cell phone from a passenger’s.

While we have not found any detailed statistics on driver
versus passenger cell phone use in vehicles, a federal
accident database (FARS) [7] reveals that about 38 percent
of automobile trips include passengers.1 Not every passen-
ger carries a phone—still this number suggests that the false
positive rate (FPR) when relying only on vehicle detection
would be quite high. It would probably be unacceptably
high even for simple interventions such as routing incom-
ing calls to voicemail. Distinguishing drivers and passen-
gers is challenging because car and phone usage patterns
can differ substantially. Some might carry a phone in a
pocket, while others place it on the vehicle console. Since
many vehicles are driven mostly by the same driver, the
approach of placing a Bluetooth device into the vehicles
appears promising. It allows the phone to recognize that the
user is in the car by scanning for the device’s Bluetooth
identifier. Still, this cannot cover cases where one person
uses the same vehicle as both driver and passenger, as is
frequently the case for family cars. Also, some vehicle
occupants might pass their phone to others, to allow them
to try out a game, for example.

An acoustic ranging approach. In this paper, we
introduce and evaluate an acoustic relative-ranging system
that classifies on which car seat a phone is being used. The
system relies on the assumptions 1) that seat location is one
of the most useful discriminators for distinguishing driver
and passenger cell phone use and 2) that most cars will
allow phone access to the car audio infrastructure. Indeed,
an industry report [39] discloses that more than 8 million
built-in Bluetooth systems were sold in 2010 and predicts
that 90 percent of new cars will be equipped in 2016. Our
system leverages this Bluetooth access to the audio
infrastructure to avoid the need to deploy additional
infrastructure in cars. Our classifier’s strategy first uses
high frequency beeps sent from a smartphone over a
Bluetooth connection through the car’s stereo system. The
beeps are recorded by the phone, and then analyzed to
deduce the timing differentials between the left and right
speakers (and if possible, front and rear ones). From the
timing differentials, the phone can self-determine which
side or quadrant of the car it is in. While acoustic
localization and ranging have been extensively studied for
human speaker localization through microphone arrays, we
focus on addressing several unique challenges presented in
this system. First, our system uses only a single microphone
and multiple speakers, requiring a solution that minimizes
interference between the speakers. Second, the small
confined space inside a car presents a particularly challen-
ging multipath environment. Third, any sounds emitted
should be unobtrusive to minimize distraction. Salient
features of our solution that address these challenges are

. by exploiting the relatively controlled, symmetric
positioning of speakers inside a car, the system can
perform seat classification even without the need
for calibration, fingerprinting or additional infra-
structure;

. to make our approach unobtrusive, we use very high
frequency beeps, close to the limits of human
perception, at about 18 kHz. Both the number and
length of the beeps are relatively short. This exploits
that today’s cell phone microphones and speakers
have a wider frequency response than most peoples’
auditory system;

. to address significant multipath and noise in the car
environment, we use several signal processing steps
including bandpass filtering to remove low-fre-
quency noise. Since the first arriving signal is least
likely to stem from multipath, we use a sequential
change-point detection technique that can quickly
identify the start of this first signal.

By relaxing the problem from full localization to
classification of whether the phone is in a driver or
passenger seat area, we enable a first generation system
through a smartphone app that is practical today in all cars
with built-in Bluetooth (provided the phone can connect).
This is because left-right classification can be achieved with
only stereo audio, and this covers the majority of scenarios
(except when the phone is located in the driver-side rear
passenger seat, which is occupied in less than 9 percent of
vehicle trips according to FARS). We also show how
accuracy can be substantially improved when Bluetooth
control over surround sound audio becomes available, or
car audio systems provide the function to generate the
audio beeps themselves. Given that high-end vehicles are
already equipped with sophisticated surround sound
systems and more than 15 speakers [2], it is likely that
such control will eventually become available.

To validate our approach and demonstrate its generality,
we conducted experiments on two types of phones in two
different cars. The results show that audio files played
through the car’s existing Bluetooth personal area network
have sufficient fidelity to extract the timing differentials
needed. Our prototype implementation also shows that the
Android Developer Phone has adequate computational
capabilities to perform the signal processing needed in a
standard programming environment. This revised version
of our earlier paper [44] includes several presentation
updates as well as a new discussion of and initial results for
an accelerometer-based discrimination between front and
rear seats. This technique can be useful if control over rear
speakers is unavailable.

2 RELATED WORK

There are active efforts in developing driver distraction
detection systems and systems that help managing inter-
uptability caused by hand-held devices. Approaches invol-
ving wearing special equipment when driving to detect
driver distraction have been developed [14]. Further, Kutila
et al. [26] proposed a camera vision system. While the
system is more suitable for in-vehicle environments
comparing to its predecessors, it did not take the presence
of hand-held devices into account. The adverse effects of
using a phone on driver’s behavior have been identified
[38]. With the increasing number of automobile accidents
involved driver cell phone use, more recent contributions
are made in the area of reducing driver distraction by
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1. Based on two-door and four-door passenger vehicles in 2009. The
database only includes vehicle trips ending in a fatal accident, thus it may
not be fully representative of all trips.



allowing mobile users handling their devices with less
effort while driving. These systems include Quiet Calls [31],
Blind Sight [27], Negotiator [43], and Lindqvist’s systems
[28]. They assumed context information of the device and
prior knowledge of the phone use by the driver. Our work
is different in that we address the fundamental problem of
detecting the driver phone use, which can enable numerous
safety and interface applications.

Turning to acoustic positioning techniques, BeepBeep
[34] proposed an acoustic-based ranging system that can
achieve 1 or 2 cm accuracy within a range of 10 meters,
which is so far the best result of ranging using off-the-shelf
cell phones. It requires application-level communication
between two ranging devices. However, in our in-car
environment, the head unit is not programmable and only
mobile phones are programmable. Cricket [35] and Bat
system [24] employed specially designed hardware to
compute time difference of arrival or time-of-flight of
ultrasonic signal to achieve an accuracy up to several
centimeters. ENSBox [22] integrated an ARM processor
running Linux to provide high precision clock synchroniza-
tion for acoustic ranging and achieved an average accuracy
of 5 cm. WALRUS [15] used the WiFi network and
ultrasound to determine location of the mobile devices to
room-level accuracy. Sallai et al. [37] evaluated acoustic
ranging in resource constrained sensor networks by
estimating the time-of-flight as the difference of the arrival
times of the sound and radio signals.

Toward speaker localization for in-car environment, both
Swerdlow et al. [12] and Hu et al. [25] proposed to detect
the speaker’s location inside a car using the microphone
array. Rodriguez-Ascariz et al. [36] developed a system for
detecting driver use of mobile phones using specialized
rectenna. These approaches either require additional hard-
ware infrastructure or involve expensive computation,
making them less attractive when distinguishing driver
and passenger phone use. Our system leverages the existing
car stereo infrastructure to locate smartphones by exploiting
only a single microphone and multiple speakers. Our
approach is designed to be unobtrusive and computation-
ally feasible on off-the-shelf smartphones. A key contribu-
tion is its robustness under heavy multipath and noisy in-
car environments.

3 SYSTEM DESIGN

To address the driver-passenger challenge, we introduce an
acoustic ranging technique that leverages the existing car
audio infrastructure. In this section, we discuss in detail
design goals, the ranging approach, and the beep design.
And in the following section, we present beep signal
detection and location classification.

3.1 Challenges and Design Goals

The key goal that led to our acoustic approach was to be
able to determine seat location without the need to add
dedicated infrastructure to the car. In many cars, the
speaker system is already accessible over Bluetooth
connections and such systems can be expected to trickle
down to most new cars over the next few years. This allows

a pure phone software solution. The acoustic approach

leads, however, to several additional challenges.

. Unobtrusiveness. The sounds emitted by the system
should not be perceptible to the human ear, so that it
does not annoy or distract the vehicle occupants.

. Robustness to noise and multipath. Engine noise,
tire and road noise, wind noise, and music or
conversations all contribute to a relatively noisy in-
car environment. A car is also a relatively small
confined space creating a challenging heavy multi-
path scenario. The acoustic techniques must be
robust to these distortions.

. Computational feasibility on smartphones. Stan-
dard smartphone platforms should be able to
execute the signal processing and detection algo-
rithms with subsecond runtimes.

3.2 Acoustic Ranging Overview

The key idea underlying our driver phone use detection

system is to perform relative ranging with the car speakers.
As illustrated in Fig. 1, the system, when triggered, say, by
an incoming phone call, transmits an audio signal via
Bluetooth to the car head unit. This signal is then played
through the car speakers. The phone records the emitted

sound through its microphone and processes this recorded
signal to evaluate propagation delay. Rather than measur-
ing absolute delay, which is affected by unknown proces-
sing delays on the phone and in the head unit, the system

measures relative delay between the signal from the left and
right speaker(s). This is similar in spirit to time-difference-
of-arrival localization and does not require clock synchro-
nization. Note, however, that the system does not necessa-
rily perform full localization.

In virtually all cars, the speakers are placed so that the
plane equidistant to the left and right (front) speaker
locations separates the driver-side and passenger-side area.
This has two benefits. First, for front seats (the most
frequently occupied seats), the system can distinguish

driver seat and passenger seat by measuring only the
relative time difference between the front speakers. Second,
the system does not require any fingerprinting or calibra-
tion since a time difference of zero always indicates that the

phone is located between driver and passenger (on the
center console). For these reasons, we refer to this approach
as relative ranging.
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Fig. 1. Illustration of the logical flow in our system.



This basic two-channel approach is practical with current
handsfree and A2DP Bluetooth profiles, which provide for
stereo audio. The concept can be easily extended to four
channel, which promises better accuracy but would require
updated surround sound head units and Bluetooth profiles.
We will consider both the two- and four-channel options
throughout the remainder of the paper.

Our system differs from typical acoustic human speaker
localization, in that we use a single microphone and
multiple sound sources rather than a microphone array to
detect a single sound source. This means that time
differences only need to be measured between signals
arriving at the same microphone. This time difference can
be estimated simply by counting the number of audio
samples between the two beeps. Most modern smartphones
offer an audio sampling frequency of 44.1 kHz, which given
the speed of sound theoretically provides an accuracy of
about 0.8 cm the resolution under ideal situation, since the
signal will be distorted.

Our multisource approach also raises two new issues,
however. First, we have to ensure that the signals from
different speakers do not interfere. Second, we need to be
able to distinguish the signals emitted from the different
speakers. We address both through a time-division multi-
plexing approach. We let speakers emit sounds at different
points in time, with a sufficiently large gap that no
interference occurs in the confined in-vehicle space. Since
the order of speakers is known to the phone, it can also
easily assign the received sounds to the respective speakers.

Fig. 2 illustrates relative ranging approach for any two
speakers i and j, for example, front left and front right.
Assume the fixed time interval between two emitted sounds
by a speaker pair i and j is �tij. Let �t0ij be the time
difference when the microphone records these sounds. The
time difference of signal from ith and jth speaks arriving at
phone is defined as

�ðTjiÞ ¼ �t0ij ��tij; i 6¼ j i; j ¼ 1; 2; 3; 4: ð1Þ

Had the microphone been equidistant from these two
speakers, we would have �ðTjiÞ ¼ 0. If �ðTjiÞ < 0, the
phone is closer to the ith speaker and if �ðTjiÞ > 0, it is
closer to the jth speaker.

In our system, the absolute time the sounds emitted by
speakers are unknown to the phone, but the phone does
know the time difference �tij. Similarly, the absolute times
the phone records the sounds might be affected by phone

processing delays, but the difference �t0ij can be easily
calculated using the sample counting. As can be seen, from
the equations above, these two differences are sufficient to
determine which speaker is closer.

3.3 Beep Signal Design

In designing the beep sound played through the car
speakers, we primarily consider two challenges: back-
ground noise and unobtrusiveness.

Frequency selection. We choose a high frequency beep
at the edge of the phone microphone frequency response
curve, since this makes it both easier to filter out noise and
renders the signal imperceptible for most, if not all, people.
The majority of the typical car noise sources are in lower
frequency bands as shown in Fig. 3. For example, the noise
from the engine, tire/road, and wind are mainly located in
the low frequency bands below 1 kHz [17], whereas
conversation ranges from approximately 300 to 3,400 Hz
[40]. Music has a wider range, the FM radio for example
spans a frequency range from 50 to 15,000 Hz, which covers
almost all naturally occurring sounds. Although separating
noise can be difficult in the time domain, we enable
straightforward separation in the frequency domain by
locating our signal above 15 kHz.

Such high-frequency sounds are also hard to perceive by
the human auditory system. Although the frequency range
of human hearing is generally considered to be 20 Hz to
20 kHz [21], high frequency sounds must be much louder
to be noticeable. This is characterized by the absolute
threshold of hearing (ATH), which refers to the minimum
sound pressure that can be perceived in a quiet environ-
ment. Fig. 4a shows how the ATH varies over frequency, as
given in [20]. Note, how the threshold of hearing increases
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Fig. 2. Relative ranging when applied to a speaker pair i and j, for
example front-left and front-right.

Fig. 3. Frequency distribution of noise and beep signal.

Fig. 4. Frequency sensitivity comparison between the human ear and
smartphone.



sharply for frequencies over 10 kHz and how human
hearing becomes extremely insensitive to frequencies
beyond 18 kHz. For example, human ears can detect
sounds as low as 0 dB sound pressure level (SPL) at 1 kHz,
but require about 80 dB SPL beyond 18 kHz—a 10,000-fold
amplitude increase.

Fortunately, the current cell phone microphones are
more sensitive to this high-frequency range. We experi-
mented with an iPhone 3G and an Android Developer
Phone 2 (ADP2), and plotted their corresponding frequency
response curves in Fig. 4b. Although the frequency
response also falls off in the high frequency band; it is still
able to pick up sounds in a wider range than most human
ears. We, therefore, choose frequencies in this high range.
Since our frequency response experiments in Fig. 4b show
noticeable difference among phones beyond 18 kHz, we
chose both the 16-18 kHz range on the ADP2 phone and the
18-20 kHz range on the iPhone 3G for our experiments.
Energy is uniformly distributed over the entire range.

Length. The length of the beep impacts the overall
detection time as well as the reliability of recording the
beep. Too short a beep is not picked up by the microphone.
Too long a beep, will add delay to the system and will be
more susceptible to multipath distortions. We found
empirically that a beep length of 400 samples (i.e., 10 ms)
represents a good tradeoff.

4 DETECTION ALGORITHM

Realizing our approach requires four subtasks: Filtering,
Signal Detection, Relative Ranging, and Location Classifica-
tion. These correspond to the same parts the algorithm
shown in Fig. 5.

To classify the phone’s location, the specially designed
beeps, stored in files, are transmitted to the head unit and
played via the car’s speakers. Just before the beeps are
transmitted, the microphone is turned on and starts
recording. The recorded sound is bandpass filtered around
the frequency band of the beep using a short-time Fourier

transform (STFT) to remove most background noise. Next,
as shown in Fig. 5, a signal detection algorithm is applied.
After each beep sound is detected, its start time is noted and
relative ranging is performed to obtain the time difference
between the two speakers. Given a constant sampling
frequency and known speed of sound, the corresponding
physical distance is easy to compute. Finally, location
classification determines the position of the phone in car.
Fig. 6 shows the walkthrough of the detection system. We
next describe the two most important tasks, beep signal
detection and ranging and location classification, in detail.

4.1 Detecting Beep Arrival Time

Detecting the beep signal arrival under heavy multipath in-
car environments is challenging because the beeps can be
distorted due to interference from the multipath compo-
nents. In particular, the commonly used correlation techni-
que, which detects the point of maximum correlation
between a received signal and a known transmitted signal,
is susceptible to such distortions [34]. Furthermore, the use
of a high-frequency beep signal can lead to distortions due
to the reduced microphone sensitivity in this range.

For these reasons, we adopt a different approach where
we simply detect the first strong signal in our frequency
band. This is possible since there is relatively little noise and
interference from outside sources in our chosen frequency
range. This is known as sequential change-point detection
in the signal processing. The basic idea is to identify the first
arriving signal that deviates from the noise after filtering out
background noise [13]. Let fX1; . . . ; Xng be a sequence of
recorded audio signal by the mobile phone over n time
point. Initially, without the beep, the observed signal comes
from noise, which follows a distribution with density
function p0. Later on, at an unknown time � , the distribution
changes to density function p1 due to the transmission of
beep signal. Our objective is to identify this time � , and to
declare the presence of a beep as quickly as possible to
maintain the shortest possible detection delay, which
corresponds to ranging accuracy.

To identify � , we can formulate the problem as
sequential change-point detection. In particular, at each
time point t, we want to know whether there is a beep
signal present and, if so, when the beep signal is present.
Since the algorithm runs online, the beep may not yet have
occurred. Thus, based on the observed sequence up to time
point t fX1; . . . ; Xtg, we distinguish the following two
hypotheses and identify � :

H0 : Xi follows p0; i ¼ 1; . . . ; t;

H1 :
Xi follows p0; i ¼ 1; . . . ; � � 1;

Xi follows p1; i ¼ �; . . . ; t:

�

If H0 is true, the algorithm repeats once more data samples
are available. If the observed signal sequence fX1; . . . ; Xtg
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Fig. 5. Flow of the detection algorithm.

Fig. 6. Walkthrough of the detection system.



includes one beep sound recorded by the microphone, the
procedure will reject H0 with the stopping time td, at which
the presence of the beep signal is declared. A false alarm is
raised whenever the detection is declared before the change
occurs, i.e., when td < � . If td � � , then ðtd � �Þ is the
detection delay, which represents the ranging accuracy.

Sequential change-point detection requires that the
signal distribution for both noise and the beep is known.
This is difficult because the distribution of the beep signal
frequently changes due to multipath distortions. Thus,
rather than trying to estimate this distribution, we use the
cumulative sum of difference to the averaged noise level.
This allows first arriving signal detection without knowing
the distribution of the first arriving signal. Suppose, the cell
phone estimates the mean value � of noise starting at time t0
until t1, which is the time that the phone starts transmitting
the beep. We want to detect the first arriving signal as the
signal that significantly deviates from the noise in the
absence of the distribution of the first arriving signal.
Therefore, the likelihood that the observed signal Xi is from
the beep can be approximated as

lðXiÞ ¼ ðXi � �Þ; ð2Þ

given that the recorded beep signal is stronger than the noise.
The likelihood lðXiÞ shows a negative drift, if the observed
signal Xi is smaller than the mean value of the noise, and a
positive drift after the presence of the beep, i.e., Xi stronger
than the noise. The stopping time for detecting the presence
of the beep is given by

td ¼ infðkjsk � hÞ; satisfy sm � h;m ¼ k; . . . ; kþW; ð3Þ

where h is the threshold, W is the robust window used to
reduce the false alarm, and sk is the metric for the observed
signal sequence fX1; . . . ; Xkg, which can be calculated
recursively

sk ¼ maxfsk�1 þ lðXkÞ; 0g; ð4Þ

with s0 ¼ 0.
Fig. 7 shows an illustration of the first arriving signal

detection by using our system prototype. The upper plot

shows the observed signal energy along time series and the
lower plot shows the cumulated sum of the observed signal.

Our approach of cumulative sum (CUSUM) of difference
to the averaged noise level is inspired by Page’s cumulative
sum procedure [33], which was shown to minimize average
detection delay when both p0 and p1 are known a priori.
Although the CUSUM algorithm can be generalized as
generalize likelihood ratio (GLR) [30] without knowing the
distribution of signal, the high computational complexity
and large detection delay of GLR make it infeasible in our
system design, which requires efficient computation on
mobile devices and high accuracy.

Prototype considerations. In our system implementa-
tion, we empirically set the threshold as the mean value of sk
plus three standard deviations of sk when k belongs to t0 to
t1 (i.e., 99.7 percent confidence level of noise). The window
W is used to filter out outliers in the cumulative sum
sequence due to any sudden change of the noise. We set
W ¼ 40 in our implementation. At the time point that the
phone starts to emit the beep sound, our algorithm starts to
process the recorded signal sequences. Once the first
arriving signal of the first beep is detected, we shifts the
precessing window to the approximated time point of the
next beep since we know the fixed interval between two
adjacent beeps.

4.2 Ranging and Location Classification

After the first arriving time of the beeps are detected, the
system first calculates the time difference �Tij ¼ Sij

f

between the speakers. Here Sij is the number of samples
that the beeps were apart and f is the sampling frequency
(typically 44.1 kHz). In a two-channel system, i and j are
simply the left speaker (speaker 1) and the right speaker
(speaker 2).

The distance difference from the phone to two speakers
can be calculated as

�dij ¼ c ��Tij; ð5Þ

where i and j represent the ith and jth speakers in Fig. 1
and c is the speed of the sound.

In a two-channel system, the driver side can then be
identified based on the following condition:

�d12 > THlr; ð6Þ

Here, THlr is a threshold that could be chosen as zero, but
since drivers are often more likely to place their phone in
the car’s center console, it often makes sense to assign a
negative value of about 5 cm.

In a four-channel system, we can first use two pairs of left
speakers and right speakers to classify whether the mobile
phone is located in the front or back seats. Given a threshold
THfb, the mobile phone is classified as in the front seat if

ð�d13 þ�d24Þ=2 > THfb; ð7Þ

where �d13 represents the distance difference from two left
side speakers and �d24 is the distance difference from two
right speakers. If the phone is in the front, it will then use
the same condition as before to discriminate driver side and
passenger side. If the system is in the back, it would use
�d34 instead, since the rear speakers are closer.
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Fig. 7. An illustration of detecting the first arriving signal using our
system prototype. The upper plot shows the observed signal energy
along time series and the lower plot shows the cumulative sum of the
observed signal and the detection results.



In order to improve the reliability of the measured
distance difference, the median distance difference mea-
sured from multiple runs is applied. In our implementa-
tion, we used four runs, which is robust up to two outliers.
Therefore, there is four beeps in each channel and it takes
1 s to emit all beeps for two channel and about 2 s for four-
channel systems.

5 EVALUATION

We have experimented with this technique in two different
cars and on two different phones to evaluate driver-
passenger classification accuracy. We also studied how
our algorithm compares to correlation-based methods and
measured the runtime on the Android Developer Phone 2
platform. The following subsections detail the methodology
and results.

5.1 Experimental Methodology

Phones and cars. We conducted our experiments with the
Android Developer Phone 2 (Phone I) and the iPhone 3G
(Phone II). Both phones have a Bluetooth radio and
support 16-bit 44.1 kHz sampling from the microphone.
The iPhone 3G is equipped with a 256 MB RAM and a
600 MHz ARM Cortex A8 processor, while the ADP2
equipped with 192 MB RAM and the slower 528 MHz
MSM7200A processor.

We created four beep audio files in MATLAB for the two
phones, each with four beeps for each channel in car’s
stereo system. Two of these are for two-channel operation
(one for each phone) and the other two files are designed for
four-channel operation. To create these files, we first
generated a single beep by creating uniformly distributed
white noise and then bandpass filtered it to the 16-18 kHz
for Phone I and 18-20 kHz band for Phone II. We then
replicated this beep four times with a fixed interval of 5,000
samples between each beep so as to avoid interference from
two adjacent beeps. This four beep sequence is then stored
first in the left channel of the stereo file and after a 10,000
sample gap repeated on the right channel of the file.

The accuracy results presented here were obtained while
transmitting this audio file from a laptop to the car’s head
unit via Bluetooth Advanced Audio Distribution and
recording it back on one of the phones using an audio
recorder application for offline analysis. We subsequently
also created an Android prototype implementation that
simultaneously streams A2DP audio and records audio
from the microphone to confirm feasibility.

We experimented in a Honda Civic Si Coupe (Car I)
and an Acura sedan (Car II). Both cars have two front
speakers located at two front doors’ lower front sides, and
two rear speakers in the rear deck. The interior dimensions
of Car I are about 175 cm (width) by 183 cm (length) and
about 185 cm by 203 cm for Car II.

Since both cars are equipped with the two-channel stereo
system, the four-channel sound system is simulated by
using the headunit’s fader system. Specifically, we encode a
two-channel beep sound and play the two channel beep
sound first at two front speakers while muting the rear
speakers, we then play the two-channel beep sound at two
rear speakers while muting the front speakers.

Experimental scenarios. We conducted experiments,
where we placed a phone in various positions that we
believe are commonly used. We also varied the number of
passengers and the amount and type of background noise.
Due to safety reasons (experiments require manual inter-
vention and changing phone positions can be difficult), we
restricted the number of experiments while driving and
conducted more exhaustive testing in a stationary setting.

We organized our experiments in following three
representative scenarios.

Phone I, Car I. This set of experiments uses the Android
Developer Phone 2 in the Honda Civic while stationary.
Background noises stem from conversation and an idling
engine. As illustrated in Fig. 8, we placed the phone in nine
different locations: Driver’s left pant pocket (A), driver’s
right pant pocket (B), a cupholder on the center console
(C), front passenger’s left pant pocket (D), front passen-
ger’s right pant pocket (E), left rear passenger’s left pocket
(F), left rear passenger’s right pocket (G), right rear
passenger’s left pocket (H), and right rear passenger’s
right pocket (I). When the phone was in the five front
positions, there are two cases: 1) only driver and front
passenger were in the car; and 2) driver, front passenger,
and left rear passenger were in the car. When the phone
was located in the rear positions, the additional rear
passenger always occupied the car.

Phone II, Car II. These experiments deploy the iPhone 3G
in the Acura, again stationary but this time without
background noise. We use three occupancy variants: only
driver is in the car; driver and codriver are in the car;
driver, codriver, and one passenger are in the car. 1) There
are two positions tested in the first case: driver door’s
handle and cup holder; 2) four positions in the second case:
the same two positions as before, plus codriver’s left pant
pocket and codriver door’s handle; and 3) six positions in
the third case: all four positions from the second case, plus
passenger holding the phone at rear left seat and rear left
door’s handle.

Highway driving: ADP2 is deployed in Car I. The car is
driving on highway at the speed of 60 MPH with music
playing in the car. The four positions tested are: driver’s left
pant pocket, cup holder, codriver holding the phone, and
codriver’s right pant pocket. We also repeat this set of
experiments with both front windows open, as a worst case
background noise scenario.

Metrics. One of our key evaluation questions is how
accurately our technique distinguishes phones that likely
are used by the driver from phones likely used by
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Fig. 8. Illustration of testing positions in Phone I Car I scenario and
driver’s control area.



passengers. In this evaluation, we consider all phones in
positions that are within easy reach of the driver as phones
used by the driver. This includes the driver’s left and right
pockets, the driver door’s handle, and the cup holder. We
have marked this as the driver’s control area in Fig. 8. We
consider all other positions passenger phone positions. To
evaluate the performance of our system, we therefore define
the following metrics.

Classification accuracy (accuracy). Classification accuracy is
defined as the percentage of the trials that were correctly
classified as driver phone use or correctly classified as
passenger phone use.

Detection rate (DR), false positive rate. Detection rate is
defined as the percentage of trials within the driver control
area that are classified as driver phone use. False positive
rate is defined as the percentage of passenger phone use
that are classified as driver phone use.

Measurement error. Measurement error is defined as the
difference between the measured distance difference (i.e.,
�dij) and the true distance difference. This metric directly
evaluates the performance of relative ranging in our
algorithm.

5.2 Classification of Driver Phone Use

5.2.1 Driver versus Passenger Phone Use

Table 1 shows the detection rate, false positive rate, and
accuracy when determining driver phone use using the
two-channel stereo system. Note that since the two-channel
system cannot distinguish the driver-side passenger seat
from the driver seat, we have only tested front phone
positions for this experiment. To test the robustness of our
system to different types of cars, we distinguish between
the Uncalibrated system, which uses a default threshold, and
the Calibrated system, wherein the threshold is determined
by taking into the consideration of car’s dimensions and
speaker layout.

We set the Uncalibrated default threshold THlr ¼ �5 cm
for both Cars I and II. We shift the THlr from 0 to �5 cm,
because we define the cup holder position within the
driver’s control area. Recall, that the cup holder is
equidistant from both speakers and results in distance
difference near zero. For Calibrated threshold, it is THlr ¼
�7 cm and THlr ¼ �2 cm in Car I and II settings,
respectively.

Two-channel stereo system. From Table 1, the important
observation in the Highway scenario is that our system can
achieve close to 100 percent detection rate (with a 4 percent
false positive rate), which results in about 98 percent
accuracy, suggesting our system is highly effective in
detecting driver phone use while driving. The detection rate
for both Uncalibrated and Calibrated is more than 90 percent
while the false positive rate is around 5 percent except for Car
II setting. This indicates the effectiveness of our detection
algorithm. The high false positive rate of Car II setting can be
reduced through calibration of the threshold. Although the
detection rate is reduced when reducing the false positive
rate for Car II, the overall detection accuracy is improved.
Further, we observed that the results of Phone I are slightly
better than those of Phone II. The difference between the
results mainly comes from the different beep files that we
used. Specifically, 16-18 kHz range has been chosen for
Phone I, whereas the 18-20 kHz range was chosen for Phone
II during our experiments. And the frequency response at
around 16 kHz for Phone I is comparable or better than that
of at 18 kHz for Phone II. The energy at higher frequency
degrades more easily than that of lower frequency range due
to reflection, refraction, and path loss, especially in a
confined in-car environment where there is no line of sight
(LoS). We found that using the beep sound at lower
frequency band can improve the accuracy of relative
ranging; however, beep signals located at lower frequency
band will be picked up by human ears easier. Overall, the
experimental results show that our system is robust to
different types of cars and can provide reasonable accuracy
without calibration (although calibration still helps).

Recall that in this experiment, we only considered front
phone positions since the two-channel stereo system can
only distinguish between driver-side and passenger-side
positions. With phone positions on the back seats, particu-
larly the driver-side rear passenger seat, the detection
accuracy will be degraded, although the detection rate
remains the same. Real life accuracy will depend on where
drivers place their phones in the car and how often
passengers use their phone from other seats. Unfortunately,
we were unable to gather this information. We did however
find information on passenger seat occupancy in the FARS
2009 database [7]. Encouragingly, it shows that the two front
seats are the most frequently occupied seats. In particular,
according to FARS 2009 database, 83.5 percent of vehicles are
only occupied by driver and possibly one front passenger,
whereas only about 16.5 percent of trips occur with back seat
passengers. More specifically, only 8.7 percent of the trips
include a passenger sitting behind driver seat—the situation
that would increase our false positive rate.

If we weigh the phone locations by these probabilities,
the false positive rate only increases by about 8.7 percent
even with the two-channel system. The overall accuracy of
detecting driver phone use remains at about 90 percent for
all three experimental scenarios in our system. This is very
encouraging as it indicates our system can successfully
produce high detection accuracy even with the systems
limited to two-channel stereo in today’s cars.

Four-channel stereo system. We now consider the four-
channel system to study how accuracy could be improved
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TABLE 1
Detection Rate, False Positive Rate, and Accuracy When

Determining the Driver Phone Use Under Various Scenarios



when surround sound is available. The results of using
four-channel system under both Uncalibrated and Calibrated
thresholds is shown in Table 1. The uncalibrated thresholds
are THfb ¼ 0 cm and THlr ¼ �5 cm for both Cars I and II.
The calibrated thresholds are THfb ¼ 15 cm and THlr ¼
�5 cm for Car I, whereas they are THfb ¼ �24 cm and
THlr ¼ �2 cm for Car II. We found that with the calibrated
thresholds, the detection rate is above 90 percent and the
accuracy is around 95 percent for both settings. This
shows that the four-channel system can improve the
detection performance, compared to that of the two-
channel stereo system. In addition, the performance under
uncalibrated thresholds is similar to that under calibrated
thresholds for Car I setting, however, it is much worse
than that of calibrated thresholds for Car II settings. This
suggests that calibration is more important for distinguish-
ing the rear area, because the seat locations vary more in
the front-back dimension across cars (and due to manual
seat adjustment).

5.2.2 Position Accuracy and Seat Classification

We next evaluate our algorithm accuracy at different
positions and seats within the car. Fig. 9 shows the accuracy
of detecting driver phone use for different positions in Car I
setting under calibrated thresholds. We observed that we
can correctly classify all the trials at the positions A, B, E, G,
H, and I as denoted in Fig. 8, whereas the detection
accuracy decreases to 93 percent for position D (i.e.,
codriver’s left pocket) and 82 percent for position C (i.e.,
cup holder). Additionally, we tested doors’ handle posi-
tions in Car II setting and found the accuracy for driver’s
door handle is 99 percent, and 97 percent for codriver’s
door handle. These results provide a better understanding
of our algorithm’s performance at different positions in car.

We further derive seat classification results. Table 2
shows the accuracy when determining the phone at each
seat under Uncalibrated and Calibrated thresholds using the
four-channel stereo system. We found that the accuracy of
the back seats is much higher than that of front seats.
Because there is a cup holder position tested in the front. It
is hard to classify the cup holder and codriver’s left position
since they are physically close to each other.

5.2.3 Left versus Right Classification

Fig. 10 illustrates the boxplot of the measured �d12 at
different tested positions. On each box, the central mark is
the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data
points. We note that the scale of y-axis in Fig. 10a is different
from that in Fig. 10b. We found that these boxes are clearly
separated from each other showing that we obtained
different relative ranging values at different positions.
And these positions can be perfectly identified by examin-
ing the measured values from relative ranging except Cup
holder and Codriver’s left positions for both Car I and Car II
settings. By comparing Fig. 10a and Fig. 10b, we found that
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Fig. 9. Accuracy of detecting driver phone use at each position in Car I
(i.e., positions plotted in Fig. 8) under calibrated thresholds with four-
channel stereo system.

TABLE 2
Accuracy of Determining the Phone at

Each Seat with Four-Channel Stereo System

Fig. 10. Boxplot of the measured �d12 for all front positions in two-
channel stereo system.



the relative ranging results of driver’s and codriver’s doors
are much smaller than that of driver’s left and codriver’s
right pockets, which is conflict with the groundtruth. This is
mainly because the shortest path that the signal travels to
reach the phone is significantly longer than the actual
distance between the phone and the nearby speaker when
putting the phone at door’s handle, since there is no direct
path between the phone and speaker, i.e., the nearby
speaker is facing the opposite side of the phone.

To compare the stability of our ranging results under the
Highway driving scenario to the stationary one, we plotted
the standard deviation of relative ranging results at
different positions in Fig. 11. We observed the encouraging
results that our algorithm produces the similar stability of
detection when car is driving on highway to that when car
is parked. We note that at the codriver’s right position (i.e.,
codriver-R), the relative ranging results of Highway driving
scenario still achieves 7 cm of standard deviation, although
it is not as stable as that of Phone I Car I setting due to the
movement of the codriver’s body caused by moving car.

5.2.4 Front versus Back Classification

In front and back classification, the detection rate is defined
as the percentage of the trials on front seats that are
classified as front seats. False positive rate is defined as the
percentage of back seat trials that are classified as front
seats. Fig. 12 plotted receiver operating curve (ROC) of
detecting the phone at front seats in Car I setting. We found
that our system achieved over 98 percent detection rate with
less than 2 percent false positive rate. These results
demonstrate that it is relatively easier to classify front and
back seats than that of left and right seats since the distance
between the front and back seats is relatively larger. Our
algorithm can perfectly classify front seats and back seats
with only a few exceptions.

5.3 Results of Relative Ranging

We next present the measurement error of our relative
ranging mechanism and compare it to the previous work
using chirp signal and correlation signal detection method
with multipath mitigation mechanism, which achieved high
accuracy for acoustic ranging using off-the-shelf mobile
devices [34].

Correlation-based method. To be resistant to ambient
noise, the correlation method uses the chirp signal as beep
sound. To perform signal detection, this method correlates
the chirp sound with the recorded signal usingL2-norm cross
correlation, and picks the time point when the correlation
value is the maximum as the time signal detected. To mitigate
the multipath, instead of using the maximum correlation
value, the earliest sharp peak in the correlation values is
suggested as the signal detected time [34]. We refer this
approach as correlation method with mitigation mechanism.

Strategy for comparison. To investigate the effect of
multipath in an enclosed in-car environment and the
resistance of beep signals to background noise, we
designed experiments by putting ADP2 in Car I at three
different positions with line-of-sight to two front speakers.
At each position, we calculated 32 measurement errors to
obtain a statistical result. To evaluate multipath effects, we
simply measured the TDOA values of our method and
correlation method with mitigation mechanism. To test the
robustness under background noise, we played music in
car at different sound pressure levels, which are 60 and 80
dB, representing moderate noise (e.g., people talking in
car) and heavy noise (e.g., traffic on a busy road),
respectively. The chirp sound used for correlation method
is taken from previous work [34], which is a 50 ms length
of 2-6 kHz linear chirp signal at 80 dB SPL and is proven
to be a good compromise between multipath effects
suppressing and noise resistance. We also found that chirp
signals under high frequency band (e.g., beyond 15 kHz)
does not perform as well as those under low frequency
band. The main reason is that the frequency response of
the phone’s microphone for the chirp sound at the
frequency range 2-6 kHz is the best. Once the chirp
frequency went very high, the recorded chirp signal
suffered large distortion, making the correlation between
the original chirp signal and the recorded one very weak.

5.3.1 Impact of Multipath

Fig. 13 shows the histogram of measurement error in car for
both our method and correlation method with multipath
mitigation mechanism. We observed that all the measure-
ment errors of our method are within 2 cm, whereas more
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Fig. 11. Stability study of relative ranging between highway driving and
stationary scenarios. Fig. 12. ROC curve of detecting the phone at front seats for Phone I, Car

I scenario.



than 30 percent of the measurement errors of correlation-
based method are larger than 2 cm. Specifically, by
examining the zoomed in histogram in Fig. 13a, we found
that our method has most of the cases with measurement
errors within 1 cm (i.e., 1 sample), whereas about 30 percent
cases at around 8 cm (i.e., 10 samples) for correlation-based
method. The results show that our algorithm outperforms
the correlation-based method in mitigating multipath effect
in an in-car environment, since our signal detection method
detects the first arriving signal, not affected by the
subsequent arriving signal through different paths.

5.3.2 Impact of Background Noise

Fig. 14 analyzes the impact of background noise. Fig. 14a
illustrates the comparison of successful ratio defined as the
percentage of measurement errors within 10 cm for two
methods. Our method successfully achieves within 10 cm
measurement error for all the trials under both moderate
and heavy noises, whereas the correlation-based method
with multipath mitigation scheme achieves 85 percent for
moderate noise and 60 percent for heavy noise over all the
trials, respectively. Fig. 14b shows the measurement error
CDF of our method. The median error of our method is only

0.66 cm under moderate noise and it is 1.05 cm under heavy
noise. We also tested both methods in a room environment
(with people chatting at the background) using computer
speakers, and found both methods exhibit comparable
performance.

5.4 Computational Complexity

Our algorithm complexity is bounded by the length of the
audio signal needed for analysis. In order to keep the
resolution at one sample and perform noise filtering, we
extract the energy within each m samples moving window
at the targeted frequency band (i.e., 16-18 kHz for ADP2 and
18-20 kHz for iPhone) using a short-time Fourier transform.
Given n recorded samples and a moving window sizem, the
computational cost for energy extraction at the targeted
frequency band is Oðnm logmÞ. In our implementation, we
set the window size as 32 samples. After filtering, the
computational cost of signal detection is OðnÞ.

Run time. Since the STFT is the most expensive
processing step, our implementation limits processing to a
1,000 sample window that the beep signal is estimated to
fall into (it is chosen wide enough for worst case
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Fig. 13. Measurement error of relative ranging. Our method has all the
measurement errors within 2 cm, whereas more than 30 percent of the
measurement errors of correlation-based method are larger than 2 cm.

Fig. 14. Impact of background noise. Successful ratio is defined as
the percentage of measurement errors within 10 cm. Our method has
100 percent successful ratio for both 60 and 80 dB noises.
Correlation-based method has 85 percent for 60 dB and 60 percent
for 80 dB, respectively.



propagation delays in the car environment). We then detect
the exact time point of the first arriving signal within these
1,000 samples. Once the time point of the first arriving
signal is determined, our algorithm shifts the precessing
window to the next beep sound, since we know the fixed
interval between two adjacent beeps. Thus, the computa-
tional time for one beep is approximately equivalent to
process 1,000 samples. We implemented this step on the
ADP2 with JTransforms library for STFT and measured the
average processing time of our detection algorithm as about
0.5 s for the two-channel system and about 1 s for the four-
channel system. The windowing implementation has sig-
nificantly reduced the processing time of our algorithm and
further optimizations are likely possible.

6 DISCUSSION

Bluetooth issues. We have assumed that a Bluetooth
connection is already established. We believe that this is a
reasonable assumption for people who (usually) drive a
given car. People are likely to pair their phone with the in-
car Bluetooth system and after the first pairing, connections
are usually automatically established when the phone
comes in range of the car. It is not common practice,
however, for occasional passengers who are never drivers.
There seem to be several possible approaches to address
this issue: 1) having phones listen for beeps transmitted by
other phones at regular known times, 2) standardizing a
Bluetooth profile for such beep transmission which allows
autopairing, 3) building the beep transmissions into car
audio systems, so that phones only need to listen. The
Bluetooth connection could also be in use for playing music
using the A2DP profile. In this case, the phone should be
able to insert the beeps into the music stream.

Driver’s seat versus driver-side rear seat. Our acoustic
ranging-based detection system is practical with current
handsfree and A2DP Bluetooth profiles which provide for
stereo audio. This is because the left-right classification can
be achieved with stereo audio, and this covers the majority

of scenarios. For the case that the phone is located in the
driver-side rear passenger seat (less than 9 percent of
vehicle trips according to FARS), one solution is to explore
using smartphone’s built-in sensor to further determine the
phone’s location after left-right classification. For example,
the smartphone’s built-in accelerometer has been used in
Trafficsense [29] and the pothole patrol [19] to identify
speed bumps, potholes, and other severe road surface
anomalies. Indeed, the accelerometer readings on smart-
phones can also be utilized to distinguish the position of the
phone is at driver’s seat from driver-side rear passenger
seat, when the car passing over the speed bumps or
potholes. When passing over a speed bump, the front
wheels will hit the bump first and then the rear wheels.
Since the driver’s seat is closer to the front wheels whereas
the driver-side rear seat is closer to the back wheels, passing
over the bump will produce different sensor reading
patterns on the phone located at driver’s seat from those
in the driver-side rear seat.

Fig. 15 shows the accelerometer readings at vertical axis
by passing over the speed bump (i.e., highlighted by dashed
rectangle) when the phones located at driver’s seat and at
driver-side rear passenger seat, respectively. We observed
two peaks for both phones (the first peak is produced when
the front wheel passing over the bump and the second one
is produced by the rear wheels). Furthermore, the first peak
is slightly stronger than the second peak when the phone is
located at driver’s seat, whereas the strength order of the
peaks is reversed when the phone is placed at the driver-
side rear seat. Although this pattern cannot be observed
throughout all the trials when passing over the bumps, we
found that the ratio between the first peak and the second
peak when the phone locating at driver’s seat is larger than
that of the phone at driver-side rear seat for majority of the
cases. Therefore, by examining the ratio of these two peaks,
we should be able to determine the phone is more likely, if
not absolutely, located at the driver’s seat or the rear seat.
Additonally, by accumulating the sensor readings when
passing over a sequence of bumps, we can improve the
probability of correctly identifying whether the phone is
located at driver’s or rear seats.

Fig. 16 depicts the mean and standard deviation of the
ratio between the first and second peaks when combining the
sensor readings from several bumps. Totally, we collected
the accelerometer readings for passing over 40 speed bumps
at various speeds ranging from 5 to 20 mph. Given the
number of combined bumps, the ratio is computed as the
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Fig. 15. Accelerometer readings when passing over the speed bump.

Fig. 16. Mean and standard deviation of the ratio when combining
several bumps.



ratio of the summation of all the first peaks to the summation
of all the second peaks. From Fig. 16, we observed that the
mean value of the ratio is very stable when the number of the
combined bumps varies from 1 to 5. Specifically, the ratio
mean when the phone is placed at the driver’s seat is about
1.1, which is much larger than that of at the rear seat (i.e., 0.6).
Moveover, the standard deviation of the ratio decreases
when increasing the number of combined bumps. This
indicates that it is easier to distinguish the phone’s position
in driver’s seat from rear seat when the number of combined
bumps increases, given there are about 0.5 difference in the
mean value of the ratio. Fig. 17 presents the receiver
operating characteristic curves of detecting the phone at
driver’s seat under different number of combined bumps
ranging from 1 to 5. We found that the curves shift to the left
indicating higher detection rate, when the number of
combined bumps increases. Specifically, when setting the
threshold at around 0.75, we can achieve 83 percent accuracy
using the accelerometer readings from one bump, 90 percent
accuracy when combining two bumps, 94 percent accuracy
for combining three bumps, and 98 percent accuracy when
combining the readings from five bumps.

Limitations. Even with access to four audio channels, the
system might not accurately distinguish driver and passen-
ger for several reasons. First, if the phone is placed under a
heavy winter coat or inside a full bag, the beep sounds
might be too muffled to be accurately detected. Second, if
the driver places the phone on an empty passenger seat, the
system might correctly detect the seat, but an incoming call
could still distract the driver. Still, we believe the accuracy
of this system will be a significant improvement over
current systems that only seek to determine whether the
phone is used inside a vehicle. We have also left buses,
trains, and other vehicles outside the scope of this work—
phones could identify such vehicles by comparing GPS
traces with known routes. In these vehicles it is also more
cost efficient to add a device to the driver cabin. A more
fundamental limitation is the probabilistic nature of our
approach. We cannot place hard boundaries on accuracy
because of many environmental unknowns, some of which
are described above. This means that our approach is less
suitable for applications depending on perfect accuracy.
Rather, they will serve to enhance the user experience and

nudge drivers toward safer behavior. Finally, this system is
not intended for continuously tracking phone position,
since its energy consumption would be quite substantial.
Rather, we envision that this technique would be sporadi-
cally triggered, for example, by an incoming phone call or
when entering the vehicle (upon Bluetooth connect).

Applications. In this paper, we have concentrated only
on distinguishing drivers and passengers, a complete
system should also include cellphone-based speed detection
techniques to determine whether the car is driving. As
alluded to in the introduction, there are several applications
of this driver phone use detection system: 1) it could
automatically bring up less distracting driver user inter-
faces; 2) the beeps might only be transmitted when a call or
text is coming in, to determine whether the phone should
ring or whether the call should go to voicemail; 3) the
“driving” status might be displayed in friends dialer
applications to discourage them from calling. Integration
with vehicle controls, is another dimension that could be
explored. Perhaps a driver chatting on the phone should
increase the responsiveness of a vehicle’s braking system,
since this driver is more likely to break late. It could also
affect the level of intrusiveness of lane-departure warning
and other driver assist systems. Finally, the information
could be used to lock the phone to prevent the driver from
calling—we note, however, that the system is not secure
against a user intentionally trying to fool it. Thus, it is less
suitable for such enforcement actions.

7 CONCLUSIONS

We developed a driver mobile phone use detection system
that requires only software changes on smartphones. It
achieves this by leveraging the existing infrastructure of car
speakers for ranging via Bluetooth.

The proposed system detects driver phone use by
estimating the range between the phone and car’s speakers.
To estimate range, we developed an acoustic-based relative
ranging technique in which the phone plays and records a
specially designed acoustic signal through car’s speakers.
Our specially designed acoustic signal is unobtrusive as
well as robust to background noise when driving. Our
algorithm achieves high accuracy under heavy multipath
in-car environments by using sequential change-point
detection to identify the first arriving signal.

We further demonstrated the viability of distinguishing
between driver’s and passenger’s phone use working
within the confines of the existing handsfree audio
infrastructure. Our prototype showed the generality of
our approach, as we applied it to two different phone types
and two different cars under various scenarios. Our system
can achieve over 90 percent of detection rates as well as
accuracy, with low false positive rate.
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Fig. 17. ROC curves of detecting the phone at driver’s seat under
different number of combined bumps.
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