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ABSTRACT
Wireless spectrum is a scare resource, but in practice much
of it is under-used by current owners. To enable better use
of this spectrum, we propose an auction approach to dynam-
ically allocate the spectrum in a secondary market. Unlike
previous auction approaches, we seek to take advantage of
the ability to share spectrum among some bidders while re-
specting the needs of others for exclusive use. Thus, un-
like unlicensed spectrum (e.g. Wi-Fi), which can be shared
by any device, and exclusive-use licensed spectrum, where
sharing is precluded, we enable efficient allocation by sup-
porting sharing alongside quality-of-service protections. We
present SATYA (Sanskrit for “truth”), a strategyproof and
scalable spectrum auction algorithm whose primary contri-
bution is in the allocation of a right to contend for spec-
trum to both sharers and exclusive-use bidders. Achieving
strategyproofness in our setting requires appropriate han-
dling of the externalities created by sharing. We demonstrate
SATYA’s ability to handle heterogeneous agent types involv-
ing different transmit powers and spectrum needs through
extensive simulations.

1. INTRODUCTION
Spectrum is a limited and expensive resource. For exam-

ple, the 2006 Federal Communications Commission (FCC)
auctions for 700 - 800 MHz raised almost $19 billion dol-
lars. Hence, the barrier to entry for potential spectrum buy-
ers is high. One can either buy a lease on spectrum cov-
ering a large area at a high price or use the limited spec-
tral bands classified as unlicensed (e.g. Wi-Fi). Such un-
licensed bands are subject to a “tragedy of the commons”
where, since they are free to use, they are over-used and per-
formance suffers [8]. Efforts such as the recent FCC ruling
on white spaces are attempting to free additional spectrum
by permitting opportunistic access [4]. However, such ef-
forts are being met with opposition by incumbents (such as
TV broadcasters and wireless microphones manufacturers)
who have no incentive to permit their spectrum to be shared.

Motivated by these observations, many researchers and
companies (e.g., [7, 34, 19]) have proposed allowing spec-
trum owners and spectrum users to participate in a secondary
market for spectrum where users are allocated the use of

spectrum in a small area on a dynamic basis based on their
short- or medium-term needs. This approach is beneficial
for two reasons. First, it allows flexible approaches to deter-
mining how best to allocate spectrum rather than relying on
the decision making of regulators like the FCC in the United
States. Second, it provides an incentive for spectrum that is
currently owned but unused or under-used (such as the tele-
vision spectrum) to be made available by its owners. Note,
by secondary market we mean, one in which the owner of a
chunk of spectrum leases different frequencies to other users
who bid for the spectrum. The FCC has also recognized the
potential use of a secondary spectrum market and has begun
encouraging spectrum owners in certain bands to sublease
the spectrum [18].

Prior work has proposed a number of auction designs to
support such a market. However, the possibility of sharing
in such markets has not been sufficiently explored. Most
auctions provide exclusive access: the allocation is such that
no winners interfere. However, this may not be the most ef-
ficient use of spectrum. For example, devices like wireless
microphones are only used occasionally, so even if they re-
quire exclusive access while in use some other device may
be able to use the same spectrum on a secondary basis when
they are not. This heterogeneity of devices and demands is
a source of opportunities for sharing. Further, many devices
are capable of using a medium access controller (MAC) to
share bandwidth when given the right to contend.

Rather than full sharing, as in the Wi-Fi model, using an
auction has two key advantages. First, it provides revenue
and thus incentives for primary spectrum owners to open up
spectrum to other uses. Second, it provides incentives for
different potential users to describe (through bids) their dis-
tinct needs for spectrum access, be it exclusive or with shar-
ing. With Wi-Fi, if too many people try to use the same ac-
cess point, service degrades and may become unacceptable
for all of them, and no one has an incentive to consider the
(negative) externality their use imposes on others.

Current proposals for secondary-market spectrum auctions
are either unable to support the externalities created by two
interfering devices sharing the same channel, or do not scale
to realistic problem sizes and interference graph topologies.
Solutions that ignore the possibility of sharing rely on bid-
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ders caring only about whether or not they are allocated a
channel. With sharing, bidders also care about with whom
they share the channel.

We present SATYA a scalable, strategyproof auction algo-
rithm that permits different classes of spectrum users (shar-
ing and exclusive) to co-exist and share the spectrum, while
appropriately accounting for the resulting externalities. Al-
lowing bidders to report arbitrary externalities would yield
an intractable allocation problem. But the externalities in
our setting have significant structure, and SATYA uses a sim-
ple, yet expressive, language to allow bidders to express their
value for different allocations given probabilistic activation
patterns, interference, and different requirements for shared
vs exclusive-access spectrum. Using this language, we can
quantify the utility of a bidder for an allocation in terms of
the fraction of the bidder’s demand that is satisfied. Bid-
ders only interfere with other nearby bidders and, given a
model for resolving contention by devices allocated shared
spectrum and both simultaneous active, we can quantify the
resulting externality.

Even without sharing, finding an optimal channel assign-
ment involves solving a graph coloring problem and is NP-
hard [20], and we are unable to find an optimal allocation
fast enough to be reasonable for network deployment. De-
spite focusing on a single-parameter mechanism design prob-
lem by assuming that the components of a bidder’s type that
reflect its interference, usage patterns, and penalty for be-
ing blocked from accessing allocated (shared) spectrum by
an exclusive-use device on the network are known, a key
difficulty remains: unlike in settings without externalities a
straightforward greedy allocation approach that still allows
sharing fails to be monotonic.

An allocation algorithm in our domain is monotonic if,
submitting a larger bid for access to some fraction of a chan-
nel when active, always leads to an allocation in which the
bidder receives a (weakly) larger fractional share of channel
capacity, in expectation with respect to the activation pat-
terns of other devices, and whatever the bids of other de-
vices. Monotonicity is well known to be necessary and suffi-
cient for strategyproofness in single-parameter domains [29].
Strategyproofness, a property that guarantees that it is opti-
mal for each bidder to report his true value regardless of the
actions of other bidders, is desirable for two main reasons.
First, it provides strategic simplicity for bidders: they do
not need to perform any sophisticated reasoning about the
actions of others in order to determine how to participate.
Second, it greatly simplifies evaluating a potential auction
algorithm. If the algorithm is strategyproof, we can simply
assume bidders report their true valuations. Otherwise, we
would need to analyze the auction to determine the structure
of equilibrium bids; naively assuming that bidders would re-
port truthfully can overestimate both the efficiency of the
allocation that results and the revenue that is raised.

In providing monotonicity, SATYA therefore employs a
novel combination of bucketing bids into intervals wherein

they are treated equally within an interval (this idea was em-
ployed in Ghosh and Mahdian [15]), and a computational
ironing procedure that is used to validate the monotonicity
of an allocation and perturb the outcome as necessary to en-
sure monotonicity (this idea was introduced by Parkes and
Duong [30]). These techniques prevent cases where, if a
bidder raises his bid, the greedy algorithm selects a different
allocation that, at the time, is as good or better, but ends up
being worse.

To evaluate SATYA we use real world data sources to de-
termine participants in the auction, along with the sophis-
ticated Longley-Rice propagation model [3] and high res-
olution terrain information to generate conflict graphs. We
compare the performance of SATYA against other auction al-
gorithms and baseline computations. Our results show that,
when spectrum is scarce, allowing sharing using SATYA in-
creases social welfare by 40% over previous approaches.

In summary, this paper makes the following contributions:

∙ The first strategyproof, scalable auction design for dy-
namic spectrum access that allows sharing and exclusive
access by appropriately dealing with the externalities this
creates.

∙ An approach that accommodates different classes of wire-
less users, each with a different transmit power, spectrum
access, and activation patterns.

∙ The use of sophisticated propagation models and real
world data to demonstrate in simulation the efficacy of
SATYA.

1.1 Related Work
There has been significant work on spectrum auctions where

a regulatory agency, such as the FCC in the United States,
sells rights to spectrum across large areas (see, e.g. [10, 11]).
However, we focus on secondary-market auctions, where the
existing owner of spectrum wishes to resell it to a large num-
ber of smaller users subject to interference constraints.

Most secondary-market spectrum auction algorithms do
not allow auction participants that interfere to share a chan-
nel [6, 13, 17, 32, 34]. Among these designs, VERITAS [34]
was the first spectrum auction algorithm based on a mono-
tone allocation rule, and thus strategyproof. However, VER-
ITAS does not support sharing. Zhou et al. [33] proposed
TRUST, which uses a double auction for cases when mul-
tiple owners are selling channels. In terms of supporting
technologies, the use of a spectrum database in facilitating
secondary market auctions has been proposed [19].

Turning to sharing, Jia et al. [24] envision spectrum own-
ers auctioning off spectrum rights to a secondary user when
it is not otherwise being used by the owner, and investigate
how revenue can be maximized in this setting. While win-
ners share with the spectrum owner in this way, there is no
sharing among participants and no interference is tolerated.

Gandhi et al. [14] use an approach that allocates many
small channels, and effectively enables sharing. However,
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their algorithm allows sharing only among bidders who want
only a portion of a channel. Thus, it cannot take advantage
of bidders who are not always active (e.g. wireless micro-
phones). Their approach is not strategyproof, and they per-
form no equilibrium analysis. Kasbekar and Sarkar [25] use
a strategyproof auction and allow bidders to express arbi-
trary externalities, but this lack of structure makes their ap-
proach intractable except in a very simple case.

The issue of externalities in auctions has been consid-
ered more generally. Jehiel et al. [22, 23] consider situa-
tions, such as the sale of nuclear weapons, where bidders
care not just about winning but about who else wins. How-
ever, the settings studied are without the computational chal-
lenges or need for expressiveness of our domain. A number
of papers have considered externalities in online advertis-
ing [9, 15, 16, 27, 31]. However, this work (and similarly
that of Krysta et al. [28] on the problem of externalities in
general combinatorial auctions) is not directly relevant, as
the externalities in spectrum auctions have a spectral struc-
ture, of which SATYA takes advantage.

2. AGENT MODEL
In order to find opportunities to share among heteroge-

neous agents (e.g., a user with a wireless device, or a TV
station), we need a language to describe the requirements of
each type of agent.

Our model uses discrete intervals of time (called epochs),
with auctions clearing periodically and granting the right
to agents to contend for access to particular channels over
multiple epochs. The ultimate allocation of spectrum arises
through random activation patterns of agents and interfer-
ence effects, and depends on specifics of the medium-access
control (MAC) contention protocol. The effect of this MAC
protocol is also modeled within SATYA.

The interference between agents and their associated de-
vices is modeled through a conflict graph, G = (V,E), such
that each agent i is associated with a vertex (i ∈ V ) and
an edge, e = (i, j) ∈ E, exists whenever agents i, j would
interfere with each other if they are both active in the same
epoch and on the same channel.

Recall that we allow for exclusive-use and “willing to share”
types of agents, where the former must receive access to a
channel without contention from interfering devices when-
ever they are active, while the latter can still obtain value
through contending for a fraction of the channel with other
interfering devices. We say that a channel is free, from the
perspective of agent i in a particular epoch, if no exclusive-
use agent j, who interferes with i and is assigned the right to
the same channel as i, is active in the epoch.

Formally, we denote the set of agent types T . Each type
ti ∈ T is a tuple Ti = (xi, ai, di, pi, Ci, vi), where
∙ xi ∈ {0, 1} denotes whether the agent requires exclusive

use of a channel in order to make use of it (xi = 1) or
willing to share with another agent while both are active
on the channel (xi = 0).

∙ ai ∈ (0, 1] denotes the activation probability of the agent:
the probability that the agent will want to use the chan-
nel, and be active, in an epoch. Our model assumes that
the activations of agents in each epoch are independent
of other epochs and other agents.

∙ di ∈ (0, 1] is the fractional demand of the channel that
an agent who is willing to share access requires in order
to achieve full value when active. If xi = 1 the agent
cannot share, so di = 1.

∙ pi ∈ ℝ+ denotes the per-epoch penalty incurred by the
agent when it is active, but the assigned channel is not
free. Both exclusive use and non exclusive use agents
can have a penalty.

∙ Ci ⊆ C = {1, 2, . . .}, where C is the set of channels
to allocate, each corresponding to a particular spectrum
frequency, denotes the channels that agent i is able to
use (the agent is indifferent across any such channel.)
An agent receives an allocation of ⊥ when not assigned
a channel.

∙ vi ≥ 0 denotes the per-epoch value received by the agent
in an epoch in which it is active, the channel is free, and
in the case of non exclusive-use types, the agent receives
at least a share di of the available spectrum.

In this model, each agent demands a single channel. An
extension to multiple channels is discussed in our technical
report [26]. As the following examples show, this type space
provides a rich language for agents to describe their intended
usage pattern. In order to fully describe the auction we also
require a model of what fraction of an agent’s potential value
is realized when it shares a channel with other agents. We
defer a full description of this model to our technical report.

Examples
An agent who wishes to run a low-power (local) TV station
on a channel would be unable to share it with others when
active (xi = 1), would be constantly broadcasting (ai = 1),
and would have a very large penalty pi since it is unaccept-
able for the broadcast to be interrupted by someone turning
on another (exclusive use) device. Another agent might want
to use a device like a wireless microphone that also cannot
share a channel when active (xi = 1), but might be used only
occasionally (ai = 0.05) and might have a smaller value of
pi since it may be acceptable if it is occasionally unable to be
used because there is another exclusive agent also trying to
use the channel. For example, it might make sense to have
several such devices share a channel if they interfere with
each other sufficiently rarely.

There are also classes of agents capable of using a MAC
and thus sharing a channel (xi = 0). For example, someone
who wants to run a wireless network could have constant
traffic (ai = 1) that consumes a large portion of the channel
(di = 0.9), and might have a large penalty similar to a TV
station because completely disconnecting users is unaccept-
able. However, such an agent is willing to share the channel

3



with other non-exclusive types, and pay proportionately less
for a smaller fraction of the bandwidth. There might also
be opportunistic data users, for example a delay tolerant net-
work [21], who occasionally (ai = 0.2) would like to send a
small amount information (di = 0.4) if the channel is avail-
able. Such users might have a low or even no penalty as their
use is opportunistic.

3. DESIGN OF SATYA
Turning to the design of SATYA, we assume that the only

component of an agent’s type that can be misreported is vi,
with some bid bi ∕= vi possible. This makes our auction an
example of what Blum and Hartline [5] termed an attribute
auction, where, in addition to the bid, the auctioneer knows
some additional characteristics about each bidder. This is
a reasonable assumption to make in practice. Most other
characteristics, such as how often the agent makes use of the
channel, how much of the channel he uses, whether his de-
vices can use a MAC, and on what channels they can legally
broadcast, can be observed by the auctioneer. Assuming he
knows an agent’s penalty is a somewhat stronger assump-
tion, but we expect that the auctioneer will have at least a
broad idea of how well different applications tolerate pre-
emption. In addition, we assume that the auctioneer knows
the structure of the conflict graph.

Even if no agents are permitted to share channels, finding
the efficient allocation is NP-Hard [20], as assigning bid-
ders to channels such that no two neighbors have the same
channel is a graph coloring problem. Therefore we adopt
the same approach as previous strategyproof algorithms for
channel allocation, and seek to assign agents to channels
greedily. But in our setting, the effect of externalities and
sharing is that a straightforward greedy algorithm will fail to
satisfy the key property of monotonicity, which is necessary
and sufficient in providing for strategyproofness.

3.1 Externalities and Monotonicity
Let us first define the property of monotonicity in our set-

ting. Given a joint bid vector b = (b1, . . . , bn) received
from agents (with bj ≥ 0 for all j) and a joint type vec-
tor t = (t1, . . . , tn), an allocation algorithm A produces an
allocation A(b, t). Each agent i has some utility Ui(A(b, t))
for this allocation.

Fixing the bids b−i = (b1, . . . , bi−1, bi+1, . . . , bn) of other
agents, an allocation algorithm is monotone if,

Ui(A((b′i, b−i), t)) ≥ Ui(A(b, t)),

for all bids b′i ≥ bi. This insists that the expected share of
a channel available to an agent, and thus its expected utility,
(weakly) increases as the agent’s bid increases.

With no sharing (and no externalities), a greedy alloca-
tion algorithm is monotone. However, Figure 1 shows how
monotonicity can fail for simple greedy algorithms in the
presence of sharing and externalities. The greedy algorithm
considers each agent in (decreasing) order of bids and al-

A B

Channels 

free: 1, 2

Channels 

free: 1

Figure 1: A potential violation of monotonicity. Nodes
A and B are in contention range. At node A’s location
channels 1 and 2 are free; at B only channel 1 is free.

locates him to the best available channel in terms of social
welfare (or no channel if that is better). If there is a tie, it
uses some tie-breaking rule, such as the lowest channel num-
ber. If agent A has a lower bid than agent B, the algorithm
assigns agent B to channel 1, then agent A to channel 2,
and both are fully satisfied. If agent A raises his bid so that
it is higher than agent B’s bid, then the algorithm greedily
assigns him to channel 1. Then, assuming sharing is better
than not assigningB a channel, it has no other option than to
assign agent B to channel 1, so the agents share the channel
and are less well off.

3.2 The SATYA Algorithm
To prevent violations of monotonicity from happening while

still using a greedy allocation rule, SATYA brings to bear
a novel combination of (a) forbidding some shared alloca-
tions during the process (using a bucketing approach), and
(b) canceling some shared allocations in a post-processing
step (using an ironing approach). SATYA treats all agents
in a bucket as if they bid the same amount, so changes of
bid that do not change the bucket to which the agent is as-
signed have no effect on the allocation and thus do not vi-
olate monotonicity. Furthermore, agents in different bucket
are allowed share only in a limited way, which prevents the
greedy assignment from introducing externalities, and thus
monotonicity violations, in such cases.
SATYA begins by assigning each agent i to a bucket Ki

based on his bid bi. There many ways this can be done as
long as it is monotone in the agent’s bid. For example, agent
i with a bid bi in the range [2ℓ, 2ℓ+1) could be assigned to
bucket Ki = ℓ. In general, we assume that this is done
according to some function �(k), such that bucket k contains
all agents with bids bi in the range [�(k), �(k + 1)).

The agents are assigned channels greedily, in descending
order of buckets, with the order of assignment for agents
within the same bucket determined randomly. A channel c
is considered available to allocate to agent i at some step in
the algorithm, and given the intermediate allocation A, if,
∙ the channel c is in Ci;
∙ assigning i would not cause an externality to a neighbor

from a higher bucket (combined demands of each neigh-
bor, that neighbor’s neighbors, and i’s are less than 1);

∙ and the combined demands of i and his neighbors from
higher buckets assigned to c are less than 1.

Note that this does not preclude allocations where some
agent does not have his demand fully satisfied. It simply
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requires that, in such cases, the agent is sharing with others
in his own bucket.

For the next agent to be allocated, i, SATYA finds the
channel that will have the maximum marginal effect on the
total value of all currently allocated agents and agent i it-
self. To do so, for every channel c that is available to the
agent, and including ⊥ and thus not allocating any spectrum
to the agent, SATYA estimates the expected value to each
agent j after assigning i to c. This estimate differs from the
agent’s actual bid by assuming that each agent in a given
bucket shares the same value. This is important for achiev-
ing monotonicity as we need to ensure the way an agent is
treated depends only on his bucket.

Finally, agent i is greedily assigned to the channel that
maximizes the sum of the expected bid values of each agent
(already allocated, and itself) without leaving any agent with
a negative utility. The decision could be to allocate ⊥ and
thus no spectrum to the agent. In the event of a tie, the agent
is assigned to the lowest numbered among the tied channels
(including preferring ⊥, all else equal).

After all agents in a bucket are assigned channels, there
is an ironing step in which monotonicity of the allocation is
verified, and the allocation perturbed if this fails. First, the
allocation procedure is re-run for each agent, to determine
what would happen had he been in a lower bucket. These
counterfactuals are used to determine if the agent might have
been able to be allocated a channel in a lower bucket. If so,
this might cause a monotonicity violation where an agent
bids more but ends up less well off, and so the provisional
allocation is modified by changing the assignments of the
neighbors with whom he shared a channel to ⊥. This is the
ironing step: removing failure of monotonicity. In Figure 1,
this would mean that rather than A and B sharing a channel,
ironing would assign B to ⊥ to ensure that monotonicity is
not violated for A.

A full description of the allocation and pricing algorithms
and a proof that this approach ensures monotonicity are avail-
able in the our technical report [26].

4. EVALUATION
In this section we compare the performance of SATYA

to VERITAS. Since VERITAS does not permit sharing, we
modify it slightly and implement VERITAS-S, which per-
mits sharing as long as there are no externalities imposed
(i.e. sharing is permitted only when the combined demands
of sharing agents do not exceed the capacity of the chan-
nel). We also implement GREEDY, a version of SATYA
without bucketing and ironing that provides higher overall
efficiency. GREEDY is neither strategyproof nor monotone.
Thus, agents’ bids need not match their true values. How-
ever, to set as high a bar as possible, we assume they do so.
Since it gets to act on the same information but has fewer
constraints than SATYA, GREEDY serves as an upper bound
for our experiments.
Parameters: As shown in Table 1, all our experiments use

Agent Type Act. Prob. Value Penalty Demand
Exclusive-Continuous 1 [0, 1000] 10000 1

Exclusive-Periodic [0.05, 0.15] [0, 1000] 5000 1
Sharing-High 1 [0, 1000] 10000 [0.3, 1]
Sharing-Low [0, 1] [0, 1000] 5000 [0.3, 1]

Table 1: Mix of agents used in the evaluation

four classes of agents bidding for spectrum. Note that, in
the table, we we have normalized the values so the table re-
flects the range of aivi rather than the range of vi. Each class
represents different applications. For example, a TV station
serving a local community is an agent who wants exclusive
access for a long period of time. A wireless microphone is
an example of an agent who wants exclusive access but for
short periods of time. A low-cost rural ISP is an example of
a Sharing-High agent who expects to actively use the spec-
trum but can potentially tolerate sharing, and a regular home
user is an example of a Sharing-Low class agent whose spec-
trum access pattern varies. Note, each class of agents may
have different transmit powers and coverage areas than the
others. Since our goal is to evaluate the efficacy of SATYA
in exploiting opportunities for sharing, we assign 5% of the
total agents as exclusive-continuous, 15% exclusive-shared,
30% Sharing-High, and the remaining 50% Sharing-Low.
Methodology: Each auction algorithm takes as input a con-
flict graph for the agents. To generate this conflict graph
in a realistic manner, we implement and use the popular
Longley-Rice [1] propagation model in conjunction with high
resolution terrain information from NASA [2]. This sophis-
ticated model estimates signal propagation between any two
points on the earth’s surface factoring in terrain information,
curvature of the earth, and climactic conditions. We use this
model to predict the signal attenuation between agents, and
consequently the conflict graph between the bidding agents.

We use the FCC’s publicly available CDBS [12] database
to model the transmit power, location, and coverage area of
Exclusive-Continuous users. Note, this information as well
as the signal propagation predictions are sensitive to geo-
graphic areas. We model the presence of all other types
of agents using population density information. Agents are
scattered across a 25 mile x 25 mile urban area in a random
fashion that factors in population density. Since each class of
agent has a different coverage area, we determine that a pair
of nodes conflicts if the propagation model predicts signal
reception higher than a specified threshold.

We repeat each run of the experiment 10 times and present
averaged numbers across runs. In these experiments, the
number of channels is 5. In tuning SATYA, we experimented
with a variety of methods for determining to which bucket to
assign an agent. We omit these results for space reasons, but
based on them use buckets of size 500 (�(k) = 500k).

In our experiments, we evaluate our approach using two
metrics. The first, social welfare, is the sum of the valuations
of winning agents (includes externalities). This measures
how happy the participants are with the resulting allocation.
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Figure 2: Quality of Allocation

Results for other measures of the efficiency are similar and
are reported in our technical report [26]. The second is rev-
enue, the sum of agents’ payments. This measures the incen-
tive spectrum owners have to make their spectrum available
to the auctioneer.

4.1 Varying the Number of Agents
Figure 2 shows the performance of various algorithms as

a function of the number of agents participating in the auc-
tion. As seen in Figure 2(a), the social welfare (relative to
the baseline of VERITAS) attained by SATYA increases with
an increase in the number of agents. This is a direct con-
sequence of assigning channels to more agents capable of
sharing the spectrum. This shows that, despite externali-
ties from sharing, the additional agents allocated consider
it valuable. At 600 bidders, SATYA realizes a gain of 25%
over VERITAS-S and 40% over VERITAS in the total social
welfare of the network. With fewer agents, all three algo-
rithms demonstrate similar performance because almost all
agents can either be allocated a channel of their own or are
impossible to satisfy.

Overall, VERITAS-S and VERITAS do not make the best
use of agents that can share. This is demonstrated in Fig-
ure 2(b), which is the distribution of different classes of agents
assigned channels by each algorithm. As the number of
agents increases, VERITAS-S and VERITAS significantly
reduce the fraction of agents capable of sharing who are
assigned channels (relative to SATYA). However, all algo-
rithms demonstrate a similar performance in the fraction of
exclusive bidders who are assigned channels. Hence, SATYA
is capable of taking advantage of sharing by allocating chan-
nels to more of such users. As expected, GREEDY outper-
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Figure 3: Revenue as a function of number of agents

forms all strategyproof auctions and is able to assign more
sharing agents. The difference in performance between SATYA
and GREEDY is primarily due to bucketing. Ironing does
occur but has only a minor effect. Hence, the main takeaway
is that SATYA increases the number of allocated agents and
thus social welfare.

4.2 Measuring Revenue
We consider social welfare the most important measure of

performance: a market that finds success in the long run will
allocate resources to those that find the most value. How-
ever, in our setting revenue may also be important to provide
an incentive for current spectrum owners to participate in the
secondary market. First, we measure the total revenue ob-
tained as a function of the number of agents bidding for spec-
trum without reserve prices. We do not include GREEDY in
this analysis because it is not strategyproof and it is not clear
what agents will bid and thus what the actual revenue would
be. As seen in Figure 3, the revenue obtained by SATYA and
is much lower than VERITAS for smaller numbers of agents.
We omit VERITAS-S from the figure for readability, but its
performance also suffers. This is a consequence of sharing
making it easier to accommodate agents.

To improve revenue, we institute reserve prices, minimum
bids agents must make to participate in the auction. VERI-
TAS explored a similar opportunity to increase revenue by
limiting the number of channels sold. Using a reserve price
of 400, we experiment to measure revenue by varying the
number of bidders. As Figure 3 shows, this increases rev-
enue for the auctioneer significantly for all algorithms. The
increase is most pronounced with 50 agents (not shown be-
cause the improvement is so large) where revenue goes from
essentially zero to approximately ten thousand. SATYA, which
without a reserve price lost revenue by being too efficient
in allocating agents, benefits slightly more than VERITAS.
With a large number of agents, the reserve price is essen-
tially irrelevant because of the amount of competition; with
550 agents the gain is below 12%. Hence, the the main take-
away is that with appropriate reserve prices, the increase in
efficiency enabled by SATYA does not have to come at the
the cost of revenue. Additional results about reserve prices
are available our technical report.
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