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Abstract

Dynamic spectrum access (DSA) enables secondary networks to find and efficiently exploit spectrum

opportunities. A key factor to design a DSA network is the spectrum sensing algorithms for multiple

channels with multiple users. Multi-user cooperative channel sensing reduces the sensing time, and thus

it increases transmission throughput. However, in a multi-channel system, the problem becomes more

complex since the benefits of assigning users to sense channels in parallel must also be considered.

A sensing schedule, indicating to each user the channel thatit should sense at different sensing

moments, must be thus created to optimize system performance. In this paper, we formulate the general

sensing scheduling optimization problem and then propose several sensing strategies to schedule the

users according to network parameters with homogeneous sensors. Later on we extend the results

to heterogeneous sensors and propose a robust scheduling design when we have traffic and channel

uncertainty. We propose three sensing strategies, and, within each one of them, several solutions, striking

a balance between throughput performance and computational complexity, are proposed. In addition,
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we show that a sequential channel sensing strategy is the oneto be preferred when the sensing time

is small, the number of channels is large, and the number of users is small. For all the other cases, a

parallel channel sensing strategy is recommended in terms of throughput performance. We also show

that a proposed hybrid sequential-parallel channel sensing strategy achieves the best performance in all

scenarios at the cost of extra memory and computation complexity.

Index Terms

Dynamic spectrum access networks, multi-channel, cooperative channel sensing scheduling, through-

put maximization, traffic estimation, robust optimization.

I. INTRODUCTION

In order to increase current spectrum utilization, it has been proposed that secondary (unli-

censed) users (SUs) could efficiently exploit spectrum vacancies that are normally licensed to

primary users (PUs) in either temporal, frequency, or spatial domain in dynamic spectrum access

(DSA) networks [2]. The two-stage sense and transmit processing is a well-known DSA strategy

for SUs [3]. SUs first sense licensed channels and, if a channel is not occupied by PUs, the

SUs can then transmit on it. Otherwise, the SUs need to sense other channels to find possible

transmission. The sensing strategy is important for the performance of the SUs since if licensed

channels are sensed in a shorter time, SUs will have a longer access opportunity on the vacant

channels, which results in a larger throughput.

The sensing strategy over multiple channels for SUs is therefore an important issue that needs

to be addressed. That strategy, designed to optimize an objective metric, such as throughput,

delay or energy consumption, provides a time schedule to sense channels for SUs, so that a

decision is made as at which time instant each SU should sensewhich channels. If multiple SUs

are assigned to sense the same channel at the same time, a cooperative sensing is then pursued

for this channel, which can increase sensing accuracy and may reduce sensing time [4].

A. Related Work

Sensing strategies have so far been mostly investigated in what relates to sensing order

optimization and acquiring the stopping time in a sequential manner where channels are sensed

one after the other. To the best of our knowledge, [5] is the first to introduce the concept of sensing
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order. The authors proposed to sense channels in the decreasing order of the probability of being

idle. [6] also takes channel capacity and sensing time into account to derive the optimal sensing

order. A multi-user network is investigated in [7] where channels are being sensed in parallel,

but the only parameter used for the decision making is channel occupancy without considering

the impact of cooperative sensing. In [8], the authors proposed a scheduling scheme for spectrum

sensing based on the idea that when a channel is free, the channel can be sensed with a lower time

resolution set based on a backoff scheme. [9] proposed a robust routing schedule to maximize

the social network utility subject to the variance constraint. [10] proposed an online decision

scheduling algorithm to determine the sensing period together with a sequential detection for

spectrum sensing, which is robust to short-term channel change and possible data outliers.

B. Our Contribution

In addition to the sequential sensing order optimization which is analyzed considering all

physical layer details, unlike previous works, this paper is also the first which formulates the

general sensing strategy problem and addresses the compromises that exists between parallel and

sequential sensing strategies, i.e., assigning less usersto each channel in order to sense a large

number of channels in parallel versus the benefits of assigning multiple users to each channel to

cooperatively sense the same channel. Therefore, we propose several structured sensing strategies

to maximize system throughput, and we investigate the tradeoff among these strategies under

various circumstances. Finally, we discuss the robust design when the proposed sensing strategies

encounter uncertainty in PU channel occupancy and detection signal-to-noise ratio (SNR). The

contribution of this paper is thus threefold:

1) We introduce and formulate the general problem of sensingstrategy for optimal sensing

allocation of SUs to maximize system throughput. However, due to implementation and

analysis complexity, the general problem is not solved. This is one of the limitation of this

work;

2) Three classes of structured sensing strategies, i.e., sequential1, parallel, and sequential-

parallel multi-channel sensing strategies are proposed, resolved with optimal and heuristic

algorithms, and compared in presence of homogeneous and heterogeneous sensors;

1The optimal sequential strategy has been proposed in our previous work [6]. But in [6], we assume arbitrary sensing time.

Here we consider the practical physical layer sensing method to obtain the sensing time considering user cooperation.
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3) A robust optimization for the proposed strategies is provided to investigate how the sensing

strategy decision is affected when there is uncertainty forthe detected PU SNR and channel

occupancy.

The reminder of the paper is organized as follows. The systemmodel and problem formulation

are provided in Section II. The general and all the particular sensing strategies are presented and

analyzed in Section III. Section IV investigates the case ofheterogeneous sensors where sensing

SNRs are different for different sensors and channels. In Section V, the sensing strategies are

analyzed in the presence of uncertainty, and a robust optimization is provided. Numerical results

are provided and discussed in Section VI. Finally, Section VII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a DSA network withN SUs transceiver pairs andM channels as shown in Fig. 1.

Similar to most of the works in the literature, channels and PUs’ activity in the channels are

assumed to be fully independent [5]. PUs are assumed to transmit synchronously on the channels

in a time-slotted fashion with a slot duration equal toT [6]. Note that the time slot length in our

work is the period during which the channel and the traffic statistics can be considered almost

invariant. At the beginning of each time slot, the SU centralnetwork controller determines the

sensing strategy for SUs to maximize the total expected spectrum opportunities for transmission.

A spectrum sensing strategy includes the time schedule (e.g., sensing order) and job schedule

(which users sense which channels). After the users finish sensing a channel, sensing results are

sent to the central controller where they will be merged to make the final scheduling decision.

Since our work mostly focuses on the sensing scheduling aspects of the problem, the transmission

delay of sensing results to the controller is not considered2.

The channel gain between thei-th SU transceiver pair operating on them-th channel is

denoted ashm,i, and the channel gain from PU transmitter to thei-th SU receiver operating on

the m-th channel is denoted asgm,i. We thus define thei-th SU transmission capacity on the

m-th channel asCm,i = Bm log2(1+Γm,i), whereBm is the bandwidth of them-th channel,1 ≤
m ≤ M , Γm,i =

Pih
2
m,i

σ2
m

is the received SNR for thei-th SU on them-th channel,Pi is the

2In the literature, some works addressed this issue. For instance, constraints on the number of reporting sensors is discussed

in [11].
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Fig. 1. The network model with a primary user transmitter (TX), two SU TXs, and two SU receivers (RXs).

transmission power for thei-th SU, andσ2
m is the noise power on them-th channel. For simplicity,

we assumeΓm,i are the same for all SUs, which will be reduced toΓm and henceCm. For

heterogeneous sensors, we define the corresponding detection SNR asγm,i =
Ψmg2m,i

σ2
m

, whereΨm

is the transmission power of the primary user at channelm and gm,i is the channel gain from

PU to thei-th SU receiver on them-th channel. Note that for simplicity we assumed channel

sensing is performed at the SU receiver node. For the homogeneous case, the detection SNR

is denoted byγ. The probability for them-th channel of being occupied by primary users is

assumed to be known at the central controller asum, whereum can be estimated or measured

efficiently [6], [12] in the training phase, as will be discussed in Section V.

A. Cooperative Spectrum Sensing

Cooperative sensing is a well-known solution to enhance sensing performance [13]. The reason

is that as the collective decision is made with several individual sensing results, the requirement

of sensing accuracy for each individual user can be lowered,hence the sensing time can be

reduced. In a time slotted DSA network, since the status of the channel does not change during

one time slot, minimizing the sensing time for the channel implies increasing the expected
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transmission throughput [3] for SUs.

1) Primary User Detection:Consider a secondary receiver that needs to detect primary users

sending pilot signals on a particular channel [4]. Letτ be the sensing time and assume that

the receiver’s sampling frequency isfs such thatNs = τ × fs samples are gathered to make

the decision of whether a channel is occupied by a primary user. The minimum sensing time

required to satisfy the given detection quality under additive white Gaussian noise (AWGN)

channel by the optimal detector, i.e., the matched filter is equal to:

τ =
[Q−1(Pf)−Q−1(Pd)]

2

γfs
, (1)

whereγ is the detected SNR andPd is the probability of detection, defined as the probability

of detecting the primary user when it is present.Pf is the probability of false-alarm defined

as the probability of wrongly finding the channel occupied when it is actually vacant. Note

that even though we consider only AWGN channels, the discussion can be extended to any

detection model as long asPd andPf are represented as a function of SNR. For example,Pd

and Pf as a function of fading parameters can be found in [3, SectionV]. In addition, we

choose the sensing sampling frequency as the Nyquist frequency which equals to two times the

corresponding channel bandwidth in our simulations.

2) Fusion Rules:Sensing results reported by different users may be combinedin different

manners, known as fusion rules [13]. In what follows, we discussORandAND hard fusion rules

because they are commonly used in the literature and also they provide bounds for the more

general rulek-out-of-N . Assume allN users are homogeneous, i.e., they have the samePd and

Pf . Thus, the cumulative probability of detection and false-alarm are given asQd = 1−(1−Pd)
N ,

andQf = 1 − (1 − Pf)
N for the OR fusion rule respectively, and asQd = PN

d , andQf = PN
f

for the AND fusion rule respectively.

From equation (1), the minimum cooperative sensing time byN homogeneous users to satisfy

theQd andQf is expressed as

τ =











[Q−1(1− N
√

1−Qf )−Q−1(1− N
√
1−Qd)]

2

γfs
for the OR Rule,

[Q−1( N
√

Qf )−Q−1( N
√
Qd)]

2

γfs
for the AND Rule.

(2)

Throughout the paper, we also defineτm,n as the cooperative sensing time of channelm by n

sensors. Equation (2) provides two important insights. First, for any channelm (we thus drop
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Fig. 2. The gain of incorporating more users into the cooperative sensing process decreases when the number of users increases.

The used parameters arefs = 5 kHz, Qd = 0.9, and SNR is−5 dB.

the channel index),τn is a decreasing function ofn. The other insight is related to the number of

cooperative sensors. As illustrated in Fig. 2, the sensing time gainτn−τn+1, i.e., adding another

user to the process of cooperative sensing, decreases whenn increases. The most improvement

in cooperative sensing time is therefore obtained when two users cooperate instead of sensing

a channel by one user. This behavior promotes the idea of distributing the users more evenly

among channels. We will use this result in Section III-C. Note that in the discussions above,

it is assumed that the detection SNRγ is given and the same for all users. The case with

heterogeneous sensors (different detection SNRs thusPd andPf for different users) and the case

with a random SNR will be investigated in Section IV and V, respectively.

B. Problem Formulation

We define the beginning of a time slot as the reference pointt = 0, and the elapsed time

when the sensing process for channeli is finished asT (i)
I . Note thatT (i)

I depends on the sensing

order and user allocation schemes, and the sensing time for channeli depends on the number of

users allocated to it. As illustrated in Fig. 3(a), if channel i is found available, it is a potential

spectrum opportunity with durationT − T
(i)
I . The expected throughput obtainable from the
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spectrum opportunity of channeli is thus equal toCi(1− ui)(T − T
(i)
I ). The elapsed time for a

channel which is not sensed can be assumed to beT (no throughput gain). Our objective is to

maximize the total expected normalized throughputR from all channel spectrum opportunities3

by deciding the optimal sensing strategy, i.e.,

max
A

E{R(A)} =
M
∑

i=1

(T − T
(i)
I (A))Ci(1− ui)

T
, (3)

whereE{·} is the expectation operation andA is a sensing strategy. Note for any channeli,

T
(i)
I (.) is a function ofA.

III. SPECTRUM SENSING STRATEGIES WITH HOMOGENEOUSSENSORS

A sensing strategy determines the order in which the channels are sensed and the number of

users which sense a channel. In addition, the sensing strategy should also provide the timing

schedule for each user to sense different channels. The optimal sensing strategy, which is

calledgeneral strategyin this paper, includes any possible strategy to sense a set of channels. For

instance, consider the scenario in Fig. 3(b) with4 channels and3 users. Channel1, 2, and4 are

sensed respectively by users1, 2, and3 starting from the beginning of the slot. To sense channel

3, there are3 possibilities: i) User1 solely senses channel3 when it finishes its job sooner than

user2 and3. Hence sensing channel3 is finished atT (3)
I = τ1,1 + τ3,1; ii) User 1 waits for user

3 to finish its job and then they cooperatively sense channel3 andT
(3)
I = τ4,1 + τ3,2; iii) Both

users1 and3 wait also for user2 and then sense channel3 cooperatively andT (3)
I = τ2,1 + τ3,3.

As shown in the figure, it is assumed that option (ii) is the optimal solution. However, due to the

large number of possible solutions, solving for the generalstrategy is highly cumbersome and can

not be done efficiently in a timely manner, and it is also difficult to be implemented in practice.

Therefore, in this section, to simplify the general sensingstrategy, we propose three classes

of multi-channel sensing strategies with particular structures. Each strategy can be considered

as a sub-optimal scheme for the general strategy. In other words, we assume specific sensing

3In this paper, our focus is on the spectrum opportunity detection part and our objective is thus to maximize the potential

throughput for other transmitting users which do not participate in the sensing process. The transmission scheduling problem

where users participate both in sensing and transmission isout of the scope of this paper and remains as our future work. The

potential throughput in (3) thus represents an upper bound on the actual network throughput when joint sensing and transmission

assignment of users is taken into account.
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Fig. 3. (a) Sensing structure when channeli is sensed by a subsets with |s| users. (b) A general sensing strategy where user1

waits for user3 to finish its job and then they sense channel3 cooperatively. (c) An example of parallel strategy where channel

3 is not sensed. (d) An example of sequential strategy with thechannel (Ch) sensing order (Ch2,Ch 1,Ch 3,Ch 4) by all users.

(e) Sequential-parallel strategy where (Ch2, Ch 1) are sensed sequentially by users1 and2 and in parallel for (Ch3, Ch 4) by

user3.

strategies and, given this strategy, we provide the optimalanswer. We assume in this section that

we have homogeneous sensors with the same detected SNRγ.

The three proposed strategies are: i) asequential strategywhere all channels, which can be

sensed inT , are sensed cooperatively by allN users in a sequential manner, ii) aparallel strategy

where channels are cooperatively sensed in parallel with a subset of users, and iii) a mixture

of sequential and parallel strategies calledsequential-parallel strategywhere different sets of

channels are sensed in parallel, but channels in each set aresensed in a sequential manner. An

example for each strategy is provided in Fig. 3.

A. Sequential Sensing Strategy

The sequential strategy with cooperative sensing was first discussed in [6]. We briefly review

this strategy and show an example in Fig. 3(d). Given a list ofusers and channels, it is assumed

that all users cooperatively sense each channel, and channels are thus sensed one by one.

Therefore, the cooperative sensing time of any channelm by N sensors is given byτm,N .

The sensing order is defined asA = (a1, a2, . . . , aM) which is a permutation of(1, 2, . . . ,M),

e.g.,a1 = 3 implies that the first channel being sensed cooperatively byall users is channel3.
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The expected spectrum opportunity throughput can then be re-written from equation (3) as

max
A

E{R(A)} =
M
∑

i=1

(T − T
(ai)
I )Cai(1− uai)

T
, (4)

whereT (ai)
I = min

{

∑i
j=1 τaj ,N , T

}

. In [6], it is proved that the optimal sensing order is found

by sorting the channels in decreasing order ofCj(1−uj)

τj,N
, j = 1, . . . ,M .

B. Parallel Sensing Strategy

In this strategy, channels are sensed in parallel and the central controller makes the decision

on the number of users who should sense each channel. Intuitively, when no user is assigned

to a channel, the channel is not sensed and no spectrum opportunity throughput is available for

this channel. Each user thus senses only one channel. An example of this strategy is illustrated

in Fig. 3(c). The optimization problem can be represented as

max
A

E{R(A)} =
M
∑

i=1

(T − τi,ki)Ci(1− ui)

T
, s.t.

M
∑

i=1

ki = N, (5)

whereki is the number of users assigned to channeli andA = k = (k1, k2, . . . , kM). This is a

classical integer programming problem. In the following, we first discuss a dynamic programming

(DP) solution, and then a heuristic solution. At the end, thecondition to have an integer

assignment is relaxed and a relaxed optimization problem isdiscussed.

1) Dynamic Programming:As a resource allocation problem, we propose the following

dynamic programming (DP) solution to find the optimal assignment [14]. Thestageof the DP is

the channel number. Thus, starting from channel1, we must decide at each stage, how many of the

remaining users should be assigned to the particular channel considered. The decision variable is

the number of users, the instantaneous payoff is the throughput which may be obtained from this

channel, and the value functionvk(n) is the total expected throughput which can be obtained

from the optimal assignment from now on whenk channels andn users remain. Transition

possibilities naturally depend on the remaining number of users. Then, the Bellman equation

can be written as

vk(n) = max
0≤j≤n

{

(T − τk,j)Ck(1− uk)

T
+ vk−1(n− j)

}

. (6)

The terminal condition is when no users remain to be assigned, i.e.,vk(0) = 0, ∀k. We thus have

v1(n) =
(T−τM,n)CM (1−uM )

T
, meaning that in the last stage, any remaining users should be assigned
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to the last channel (channelM). The DP is finite, so it is solved by backward induction, and

the maximal throughput is equal tovM(N). Note that since the channels are sensed in parallel,

sensing order and the order of channels in the DP are irrelevant.

In the proposed DP solution, we choose the users as resource to be assigned since the DP

has a lower runtime complexity compared to the case where channels are assigned. Consider

an optimal assignmentAo = (k1, . . . , kM) with a given number of users. Assume one new user

is assigned to channeli to achieve an optimal allocation; for any other channelj, we should

thus have the conditionE{R(k1, . . . , ki + 1, . . . , kM)} ≥ E{R(k1, . . . , kj + 1, . . . , kM)}, ∀j 6= i,

and it can be simplified as(τi,ki − τi,ki+1)Ci(1 − ui) ≥ (τi,kj − τi,kj+1)Cj(1 − uj). Therefore,

each new user is added to a channeli with currently ki assigned users which has the highest

(τi,ki − τi,ki+1)Ci(1− ui) value. The DP algorithm for the parallel sensing strategy ispresented

in Algorithm 1.

Algorithm 1 Pseudo Algorithm for Parallel DP Solution
1: for m = 1 : M do

2: for n = 1 : N do

3: R(m,n) = (T − τm,n)Cm(1− um)

4: end for

5: end for

6: R(:, 0) = 0

7: A = 0

8: while N > 0 do

9: m∗ = argmax
m

∆R = R(m, km + 1)−R(m,km), 1 ≤ m ≤ M

10: km∗ = km∗ + 1

11: N = N − 1

12: end while

2) Greedy Heuristic:The high execution complexity of the DP solution prompts theneed to

have a low-complexity heuristic. A simple, yet efficient solution is a greedy heuristic that puts

more users on a channel with a higher product of the channel capacity Ci and the probability

of availability 1− ui. We thus propose

ki =

[

N
Ci(1− ui)

∑M

j=1Cj(1− uj)

]

, (7)

where[·] is the rounding operation. Since the sum ofki values derived from equation (7) is not

necessarilyN , if N−∑M
j=1 kj > 0 the remainingN−∑M

j=1 kj users are assigned to the channel
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with the maximumCj(1− uj), otherwise
∑M

j=1 kj −N additional users are eliminated from the

channels starting with maximumCj(1−uj). We refer to this heuristic in the figures as “Par-GH

(An.)” and “Par-GH (Sim.)”.

3) Constraint Relaxation:In this section, we propose to relax the constraint of the optimiza-

tion problem in equation (5) whereki is not necessary an integer. This helps us to derive a

bound for the parallel strategy. It can be easily shown that the objective functionE{R(A)}
is not a simple concave function, yielding to a non-convex optimization programming solution

that, given the reduced size, it can still be optimally solved by brute-force search. The detailed

derivation for relaxed optimalki are provided in Appendix A.

C. Analytical Comparisons for Sequential and Parallel Strategies with Homogeneous Channels

In this section, we compare the analytical throughput performance for the sequential and

parallel strategies assuming that all channels have the same capacityC and channel occupancy

rateu, i.e., the channels are homogeneous. It is complex to analytically derive the throughput

performance for heterogeneous channels since it depends onmultiple channel capacities and

occupancy rates. We therefore only focus our effort on obtaining analytical results for the

homogeneous case to gain a better insight on the conditions,e.g., number of channels, number

of users, capacity, and occupancy rate, which make one scheme better than the other, as fewer

variables are involved. Let us start with the parallel strategy.

In the parallel scheme, it can be observed that in practical scenarios, it is always better

to sense more channels than to cooperatively sense fewer channels. For the case of similar

channels, assume there are two channels and two users (M = N = 2). The throughput when

each user senses a channel (no sensing cooperation) can be given by2C(1−u)(T −τ1) (channel

index was dropped). The throughput of cooperatively sensing only one channel is given by

C(1−u)(T −τ2). Cooperatively sensing the same channel in the parallel strategy is thus optimal

whenC(1−u)(T−τ2) > 2C(1−u)(T−τ1) ⇒ 2τ1−τ2 > T . Note this condition is rarely met, so

it can be claimed that when channels are similar, it is better, for the parallel scheme, to distribute

the users as much as possible to sense and exploit more channels. Given this insight and based

on what we observed in Fig. 2, the total throughput of the parallel scheme is represented as

E{RPar
Hom} =

(M − r)[C(1− u)(T − τL)] + r[C(1− u)(T − τL+1)]

T
, (8)
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whereL = ⌊N
M
⌋, ⌊·⌋ is the floor operator, andr is the reminder of the division, i.e.,r =

mod(N,M). The intuition is as follows. We should first assignL users to each channel and

the remainingr users are distributed amongr channels, sor channels will be sensed byL+ 1

users and the others byL users. We can also derive the analytical throughput performance of

the parallel sensing greedy heuristic algorithm for homogeneous channels. Since channels are

assumed similar, users are evenly assigned to channels and the remaining users are assigned to

one of the channels. DefiningQ = [N
M
], the throughput obtained by this heuristic can thus be

given by:

E{RPar−GH
Hom } =































































































N(T−τ1)C(1−u)
T

if N < M,

M(T−τQ)C(1−u)

T
if MQ = N andN ≥ M,

(M−1)(T−τQ)C(1−u)

T

+
(T−τN−(M−1)Q)C(1−u)

T
if MQ < N andN ≥ M,

(M−t)(T−τQ)C(1−u)

T

+
(T−τQ−MQ+N−(t−1)Q)C(1−u)

T
if MQ > N,N + (t− 1)Q < MQ,

MQ ≤ N + tQ, wheret ∈ Z
+,

andN ≥ M.

(9)

For the sequential model, the sensing time of each channel isτN , so at most⌊ T
τN
⌋ channels

can be sensed. Let us defineK = min{⌊ T
τN
⌋,M}. The total throughput is thus given by

E{RSeq
Hom} =

C(1− u)
K
∑

i=1

(T − iτN )

T
=

KC(1− u)
(

T − K+1
2

τN
)

T
(10)

Using equations (8) and (10), we are able to find the operatingregions where one of the strategies

outperforms the other, as will be illustrated in Section VI.

D. Sequential-Parallel Strategy

We propose in this section a hybrid strategy named sequential-parallel. As can be seen in

the example provided in Fig. 3(e), channels are divided intoseveral subsets, where within each

channel subset, a subset of users are adopting sequential cooperative sensing. In other words,
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within each channel subset, a sequential strategy is followed while different channel subsets are

sensed in parallel. The decision to be made is thus to find the channel subsets, the assignment

of users to each subset and the sequential sensing order within each subset.

We define a functionRs(Sm, n) which is the maximum expected throughput obtainable from

sequentially and cooperatively sensing byn users the channel subsetSm. From Section III-A,

we already have the optimal sequential strategy within one channel subset. With this type of

structure, the throughput maximization problem is indeed aKnapsack problem [15] where we

are looking for the best 2-tuples(Sm, n) to put in the knapsack. In the following, a dynamic

programming model and a greedy heuristic are proposed to solve this problem.

1) Dynamic Programming:Given the functionRs, the state variable in the DP equation is

represented by(S, n), whereS is a subset of channels, not sensed yet, andn is the number of

remaining users, not assigned to any channel set. The decision is one of the subsets ofS and

the number of users assigned to it. Therefore, the total number of possible actions is equal to

2|S|(n+ 1). The Bellman equation can be given by

v(S, n) = max
0≤j≤n,X⊆S

{

Rs(X , j) + v(S − X , n− j)

}

, (11)

whereX is the decision variable which is a subset ofS. The DP model is of infinite-horizon, so

it can be solved by value iteration [14]. As soon as we reach any state withv(∅, n) or v(S, 0),
the ongoing payoff is zero and the solution is terminated.

2) Greedy Heuristic:Similar to the classical Knapsack problem, the greedy approach starts

with the 2-tuple whose ratio of throughput versus the number of users is maximum. When

a channel subset and the number of users assigned to this subset are decided, the algorithm

is continued for the remaining users and channels. The greedy algorithm can be found in

Algorithm 2. As discussed in [15], the greedy heuristic is guaranteed to have a performance

higher than half of the optimal result.

E. Iterative-Parallel Solution for the General Spectrum Sensing Strategy

The solutions provided for the parallel sensing strategy raise the idea of using an iterative

solution for the general model. Let us call the solution algorithm proposed for the parallel

strategyParallelStrategy(·), which could be any of the proposed solutions. In the first iteration

of the iterative approach for the general model, a decision based on the parallel strategy is
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Algorithm 2 Pseudo Algorithm for Sequential-Parallel Greedy Heuristic Solution
1: while N > 0 do

2: Select 2-tuple(S∗, n∗) with maximum Rs(Sm,n)
n

3: Remove all entries(Sm, n) if Sm ∩ S∗ 6= ∅

4: Remove all entries(Sm, n) if n > N − n∗

5: N = N − n∗

6: end while

Fig. 4. An example of the proposed Iterative-Parallel solution for the general sensing model.

made to sense some channels in parallel. Those channels are removed from the list and for

the remaining channels, a new decision is made based on the parallel strategy. Iterations are

continued until all channels are sensed (or until the end of time slot). However, we observe that

in the parallel strategy users are all synchronized, while in the iterative solution, sensing time

of the channels may be different, and hence users finish theirfirst assigned job in different time

instants.

To be able to employ the parallel strategy iteratively, we use the following approach, which is

illustrated with an example in Fig. 4. The parallel strategyhas been called in the beginning of the

time slot and the optimal decision is to sense channel1 by user one and channel2 by user two.

Now, consider the point that sensing the first channel (shortest sensing time) is finished and user

one becomes idle. We call this point the new reference point where a new decision is made. The
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remaining sensing time of channel2 is known, so if a new job (sensing channel3) is assigned

to a designated user who is currently busy, we have to wait first for this user to finish its current

job which takes(τ21 − τ11) time unit, and then the user starts the new job. It is equivalent to

assume that the sensing time of any remaining channel, here channel3, by this designated user,

starting at new reference point, is the sum of remaining sensing time of the channel being sensed

by this designated user and the original sensing time of the remaining channel, which is equal to

(τ21−τ11)+τ31. Similarly, the cooperative sensing time of channel3 is updated to(τ21−τ11)+τ32

because user one should wait for user two to finish and then join for a cooperative sensing. For

cooperative sensing, as discussed in Section II-A, all collaborators should start at the same time,

so the updated sensing time for a channel is defined based on the longest remaining job. As

described in Algorithm 3, in each iteration, the list of remaining channels is updated and based

on the remaining job of the users, the table of all sensing times by different subsets of users is

recalculated. By modifying the length of the time slot in each iteration (as throughput function

is linear versus the time slot), the reference point is redefined. Note thatτ []s is a matrix with

M × 2N entries which keeps the sensing time of each channel sensed cooperatively by a subset

of users, as discussed in Section II-A2. After each iteration, some channels remain which are

still not sensed. Therefore, a new decision is made only considering the remaining channels. It

is worth noting that this algorithm is run offline in the beginning of the time slot (similar to a

DP) to find the optimal strategy, then the strategy is followed and applied to the time slot. It

is clear that since we are running the parallel algorithm, weare maximizing the instantaneous

payoff, so the proposed solution is a myopic solution and notnecessarily optimal.

Algorithm 3 Pseudo Algorithm for Iterative-Parallel Solution
Function IterativeParallel(N,M, τ

[]
s , T ).

CH = 1 : M

while IsNotEmpty(CH) & T > 0 do

SensingSchedule=ParallelStrategy(N ,CH,τ []
s ,T ).

CH = CH-SensedChans (SensingSchedule).

T = T -MinSensingTime (SensingSchedule).

τM=UPDATE(T ,τ []
s ,SensingSchedule).

Solution=[Solution SensingSchedule].

end while

return Solution.
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TABLE I

MEMORY SPACE AND COMPUTATIONAL COMPLEXITY OF HOMOGENEOUS SENSING STRATEGIES.

Strategy Memory Computation

Sequential O(M) O(M2)

Parallel-DP O(MN) O(MN2)/O(M2N)

Parallel-Heuristic O(1) O(M)

Sequential-Parallel-DP O(2MN) O(22MN2)

Sequential-Parallel-Heuristic O(2MN) O(22MN2)

Iterative-Parallel-DP O(MN) O(M2N2)

F. Memory Usage and Computational Complexity Discussion

It is not possible to solve the throughput optimization problem in the general sensing strategy

in polynomial time, since all permutations ofM channels along with all ways to divideN

users amongM channels need to be considered. In terms of the memory space complexity, the

maximum memory space required for it isO(2M2N) to keep the sensing time of any subset

of channels by any subset of users, whereO(·) is the big O notation. For the other proposed

strategies, the memory space and computational complexityare summarized in Table I. Note

that for the sequential-parallel strategy, even though their big O complexity is the same, DP has

more lower order computation terms than the heuristic (e.g., 3n3+2n2+n versusn3 while both

areO(n3)). In addition, in calculating the computational complexity, the execution time to fill

the required data structures, already taken into account inthe memory usage, is not considered

to avoid repetition.

IV. SPECTRUM SENSING STRATEGIES WITH HETEROGENEOUSSENSORS

In the previous section, it was assumed that the users are homogeneous in sensing with the

same detection SNRγ for all channels and all users. Due to different distances between the

SUs and PU transmitter, as well as channel variations, sensors in practice may have different

detection SNRs and consequently different sensing times tofulfill a given sensing accuracy. In

this section, the optimal sensing strategy is therefore investigated assuming different detection

SNR valuesγm,i for SU i in channelm. In this paper we assume a more realistic scenario where

the cooperative sensing time is the same for all participating users and sensing reports are sent

to the controller at the same time. We do not address the scenarios where the sensing duration is
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Fig. 5. Cooperative sensing time byAND fusion rule versus single-user sensing to satisfy aggregated sensing accuracy of

Q∗
d = 0.9 andQ∗

f = 0.15. Other parameters arefs = 4 kHz, noise powerσ2 = 10−5 W and the detection SNR for the first

userγ1 = −5 dB.

different for different users and the fusion center has to wait to receive the last report to make its

decision. Considering this assumption, a key observation is that, depending on the fusion rule,

the cooperative sensing time to meet targetQ∗
f andQ∗

d values may even increase with additional

users if a user with a significantly lower detection SNR cooperates. Fig. 5 illustrates this fact.

Only between the crossover points at−7 dB and−3 dB should the users cooperatively sense

the channel to achieve the lowest sensing time. Below a−7 dB SNR for the second user, the

channel should be sensed only by the first user, which has a significantly better SNR than the

second user. Similarly, when the second user SNR is above−3 dB, only the second user should

sense the channel for the best performance.

For each channelm and within a set of sensorsS, with known SNRs, we can thus find the

optimal subset of usersS∗
m ⊆ S to cooperatively sense this channel. The cooperative sensing

time for a channelm will be the minimum sensing time such that the target sensingaccuracy

is satisfied. Let us call itτ ∗m. In the following, we discuss howτ ∗m is found for a channelm. It

should be noted that findingτ ∗m is just an initial step in the scheduling optimization procedure and

we then come back in Section IV-A to the original optimization problem, which is to maximize
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the potential throughput by providing solutions to our proposed scheduling strategies.

Consider a subsetS of all N users with an SNR vector(γm,1γm,2 . . . γm,N). If we assume that

all users inS cooperatively sense channelm, the minimum cooperative sensing timeτm,S can

be found by solving the following optimization model

min
τ,Υ

τ, s.t.Qd ≥ Q∗
d, Qf ≤ Q∗

f , (12)

where τ is the cooperative sensing time andΥ = (ǫ1 . . . ǫN) is the detection threshold of all

users. For the matched filter detection, we have [4]Pf,i = Q( ǫi√
τfsθiσ2

w

) andPd,i = Q( ǫi−τfsθi√
τfsθiσ2

w

),

where ǫi is the detection threshold,τ is the sensing time,θi is the PU signal power so that

γi = θi
σ2
w

, σ2
w is the noise power andfs is the sampling frequency. Channel index has been

dropped in all parameters above.

For AND fusion rule, we also have thatQf =
∏

i∈S(Pf,i) andQd =
∏

i∈S(Pd,i), wherePf,i

and Pd,i, 1 ≤ i ≤ N are the probability of false alarm and detection for thei-th user inS,

respectively. Note they are both functions ofτ and detection thresholdsΥ. We thus have|S|
equations and|S|+1 variables (τ andǫi), and we are looking for the minimumτ and a feasible

Υ. The optimization problem above can be solved by a solver to find the minimum cooperative

sensing timeτm,S .

The sensing time found above is the cooperative sensing timewhen all users in a subsetS

cooperate. However, as we previously discussed, increasing the number of cooperating sensors

does not necessarily improve the sensing time, and the optimal set of users can be a subset of the

users. Therefore, the optimal sensing time for channelm can be given byτ ∗m = min
S⊆{1,2,··· ,N}

τm,S ,

whereS is any subset ofN users, and the cooperative sensing time for this subset is given

by equation (12). The complexity of finding the best subset can be decreased fromO(2N) to

O(N2) by the fact that it is not required to check all subsets. The user with the best SNR

should necessarily be one of the cooperating sensors, so if we sort the vector of SNRs in

a descending order and rename the users accordingly, only the sensing time ofN subsets

{1}, {1, 2}, . . .{1, 2, . . . , N} should be found and compared. Starting from{1} towards larger

subsets, we continue the search until the cooperative sensing time increases by adding the next

user. We can see that this is equivalent to finding an SNR threshold and only have users who

have an SNR greater than this threshold participate to the cooperative sensing.

Since the complexity of solving equation (12) depends on thesolver and the algorithm used,
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we call it E(N). From now on, we assume that the we know the optimal sensing time and the

optimal sensing set for any channel, found withE(N)+O(MN2) complexity, and the cooperative

sensing time for any subset of users found with anE(N) + O(M2N) complexity. Using those

pieces of information, we now discuss how the sequential, parallel and sequential-parallel sensing

strategies can be designed.

A. Sequential Sensing with Heterogeneous Sensors

As discussed, for any channelm, we could find the optimal set of users and the optimal sensing

time τ ∗m. We use this optimal sensing time to find the optimal channel sensing order by sorting

the channels in the decreasing value order ofCm(1−um)
τ∗m

, and each channel is cooperatively sensed

by its optimal set of users. Therefore, the only change compared to the case with homogeneous

sensors is that a channel is not sensed by all users and a user will not thus necessarily sense all

channels. The results will be called “Seq (Opt.)” in the numerical results figures.

As solving equation (12) and finding the optimal sensing timemay be cumbersome for a large

number of users, we propose the following average-based heuristic called “Seq-Heuristic-Avg”

in the figures. For each channelm, we assume that the channel is sensed only by the users

who have a detection SNR greater than the average SNR of all users. The rationale behind this

heuristic is that, for a large number of users, there will also be a large number of users in the

sensing set. As discussed previously, the cooperative sensing time gain is significant mostly for

the first users. Therefore, discarding a few users will not have a major impact on the performance.

We then assume that all users who have a SNR higher than the average have the same average

SNR and we find the cooperative sensing time from equation (1)denoted byτAvg
m . Channels are

sensed in descending order ofCm(1−um)

τ
Avg
m

.

B. Parallel Sensing with Heterogeneous Sensors

We saw that each channel has an optimal set of users to cooperatively sense that channel.

If those sets were disjoint, it would be optimal to sense all channels in parallel, each one with

its optimal set. Since the sets are not necessarily disjoint, we propose the following assignment

strategies which follow similar concepts to the ones proposed for homogeneous sensors. Using

the cooperative sensing time for any channel and by any set ofusers given from equation (12),

we could have a dynamic programming model to find the optimal assignment, and a sub-optimal
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scheme with a lower complexity similar to the one proposed inAlgorithm 1. Note that since

the sensors are heterogeneous, the latter approach is not the solution of the DP (as it was for

homogeneous sensors) and results in a sub-optimal assignment (i.e., the order of user assignment

to channels is important here). We call the optimal and heuristic approaches respectively “Par-DP

(Opt.)” and “Par-DPSim-HetSens” in the numerical results figures.

We also propose a classical greedy scheme, using the averagesensing time introduced for

sequential strategy. The channels are sorted in decreasingorder of Cm(1−um)

τ
Avg
m

. The best channel is

selected and the user with the best SNR for this channel is assigned to the channel and removed

from the list of users. The algorithm is then continued for other channels. If one user is assigned

to all channels and there are still unassigned users (i.e.,M < N), the assignment is restarted

from the first channel to add another sensor. This approach iscalled “Par-Avg-Greedy-HetSens”

in the numerical results. As can be seen, the objective of this heuristic is to explore the most

channels in parallel with their best user sets.

C. Sequential-Parallel Sensing with Heterogeneous Sensors

Similar to the Section III-D with homogeneous channels, we can find the expected throughput

which can be obtained from a set of channels sensed cooperatively by a set of users in a selective

manner. This is equivalent to using the sequential approachproposed above for any set of users

and channels. Recall that due to heterogeneity in sensing, all users may not sense all channels.

Forming a matrix with anO(2M2N) complexity, we could have a DP model to find the optimal

assignment. It is called “Seq-Par-DP (Opt.)” in the numerical results figures. The complexity will

however be too high. In the following, we thus propose a heuristic with a very low complexity.

In this heuristic, called “Seq-Par-Heuristic” in the numerical results figures, channels are sorted

based on the obtainable throughput divided by the number of sensors, given the optimal sensing

time. The first channel which is selected thus has the maximumRm(τ∗m)
|S∗

m| whereRm(τ
∗
m) is the

throughput obtainable from channelm if it is sensed by its optimal set of users. After selecting

the first channel, any other channeli whose optimal set of sensors is a subset of the optimal set

of the selected channel (i.e.,S∗
i ⊆ S∗

m) is also selected to be sensed by the same set of sensors

in a sequential manner. All these channels are removed from the list and a new decision is made

for the remaining channels and users. Naturally, the optimal set of users and optimal sensing

time for all remaining channels must then be recalculated based on the remaining users.
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TABLE II

MEMORY SPACE AND COMPUTATIONAL COMPLEXITY OF HETEROGENEOUSSENSING STRATEGIES.

Strategy Memory Computation

Sequential (Opt) O(MNE(N)) O(M2)

Seq-Heuristic-Avg O(M) O(M2)

Parallel (DP,Opt) O(M2NE(N)) O(M22N )

Parallel-DPSim-Het O(M2NE(N)) O(MN2)

Parallel-Avg-Greedy O(MN) O(M2N)

Sequential-Parallel (DP,Opt) O(2M2NE(N)) O(2M22N )

Sequential-Parallel-Heuristic − O(M2NE(N))

D. Memory Usage and Computational Complexity Discussion with Heterogeneous Sensors

The complexity comparison of different solutions for the heterogeneous cases is summarized

in Table II. The main difference between homogeneous and heterogeneous cases from complexity

point of view is the extra calculation for equation (12) for each channel, which is denoted by

E(N). In other words, after finding the optimal sensing time and optimal sets for each channel,

the complexity is similar to homogeneous scenarios.

V. ROBUST SPECTRUM SENSING SCHEDULING DESIGN

Observing equation (3), it can be seen that three system parameters, i.e., PUs duty cycleu,

detection SNRγ, embedded in sensing time, and received SNR of SU transmission, embedded

in capacity, have a random nature while in previous sections, we assumed a perfect knowledge of

those parameters. A robust optimization, maximizing the throughput while keeping its variation

below a threshold, can be provided for those parameters to take into account their random nature.

Since in this paper we focused on the sensing without taking the actual transmission into account,

we continue to use the assumption of full knowledge of the channel capacity and discuss how

the variation of the two other random parameters affect the decision made by different sensing

strategies.

We now separately relax the assumptions that we have full knowledge for the duty cycleu and

the detected SNRγ, i.e., we first analyze the case with imperfectly known duty cycle while the

detected SNR is still assumed perfectly known, and then the inverse case is investigated. In the

actual system, we need to estimate those parameters accurately so that the estimates would not



23

degrade the system performance tremendously. In the following robust system design, we first

propose a low-complexity average estimator to estimate theduty cycleu on a single channel,

based on the discrete-time Markov chain (DTMC) assumption for PU transmission traffic [6], and

then we analyze the statistics for the proposed estimator. Second, we formulate two uncertainties,

i.e., primary traffic and channel uncertainty, and combine them with our proposed cooperative

spectrum sensing scheduling schemes as a joint robust optimization problem. The primary traffic

uncertainty comes from the estimation errors of the duty cycle, and the channel uncertainty

comes from the detected SNR, which is not a constant but a random variable following a certain

distribution.

A. Primary Traffic Estimation: Average Estimator and Its Performance Analysis

The PU traffic on a single channel is modeled as a DTMC [16], where z represents the

current state of the PU (also termed as a PU traffic sample). Statesz = 0 and z = 1 indicate

the PU is absent and present, respectively within one slot time T . This traffic is characterized

by the steady-state distribution and the transition probabilities. The probability of PU absence is

denoted asP0 = Pr{z = 0} = 1−u and of PU presence asP1 = Pr{z = 1} = u. The transition

probabilities from statex to statey is denoted asPxy with four probabilities{P00, P01, P10, P11}
with u = P01

P01+P10
, P00 + P01 = 1, andP10 + P11 = 1.

Assume we obtainW PU traffic samples to form a vectorz = (z1, z2, · · · , zW ), zi ∈ {0, 1},

1 ≤ i ≤ W under perfect sensing from a PU channel. Our goal is to estimate the duty cycle

u using these observed traffic sampleszi. We adopt a low-complexity average estimator, i.e.,

û = 1
W

W
∑

i=1

zi [16]. Its expected value is shown to beE{û} = 1
W

W
∑

i=1

E{zi} = u, and therefore it

is an unbiased estimator. To derive its variance, we apply the results in [16, Eq. (15)] to obtain

Var{û} =
u(1− u)

W
+

2u(1− u)r(rW −Wr +W − 1)

W 2(1− r)2
, (13)

wherer = P11−P01
4. Note that the asymptotic value for the variance ofû is limW→∞ Var{û} = 0,

which means that as we increase the number of PU traffic samples, the variance for the estimator

will go to zero to make a perfect estimation.

4Note that [16, Eq. (15)] is the variance foru assuming the traffic samples follow a continuous-time Markov chain (CTMC).

However, if we constraint the CTMC by using uniform sampling, it would turn into the DTMC, where we can simply replace

Γu in [16, Eq. (15)] withr in (13). The detailed derivation can be found in Appendix B.
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B. Robust Optimization

In this section, we formulate the robust optimization problem regarding the primary traffic

uncertainty and channel uncertainty, i.e., the estimationerrors for duty cycle and statistical

behavior from the detected SNR, respectively. Note that we relax one variable at a time and

keep the other one fixed so that we can observe their effect separately.

1) Primary Traffic Uncertainty:By using the estimates of duty cyclêui in the proposed

system, where the channel activity is assumed independent among channels, with given traffic

samplesWi, 1 ≤ i ≤ M for all channels, we first formulate the robust optimizationproblem by

maximizing the expected estimated throughput, subject to the constraints that the variance for

the estimated throughput should be no greater than a given thresholdη [9], i.e.,

Robust Optimization Problem 1:

max
S

E{R̂(S)} =
M
∑

i=1

(T − T
(i)
I (S))Ci(1− E{ûi})

T
,

s.t.S ∈ A, Var{R̂(S)} =

M
∑

i=1

(T − T
(i)
I (S))2C2

i Var{ûi}
T 2

≤ η, (14)

where R̂(S) is the estimated throughput andS is an element in the sensing strategy setA.

Since the estimator for the duty cycle is an unbiased estimator, i.e., E{ûi} = ui, we have

E{R̂(S)} = R(S). In addition, we can obtain Var{R̂(S)} by substituting the equation (13) into

equation (14). To solve this robust optimization problem (ROP), we search for all the possible

elementsS in A, sort the corresponding estimated throughput in a descending order, and then

adopt this order to search for the variance constraint untilwe have the variance being less or

equal toη. This optimal solution is summarized in Algorithm 4.

From a practical system design point of view, we do not have the information of how many

traffic samples should we use in advance. Therefore, we need to have another optimization

problem formulation to obtain an efficient system design. Asobserved in ROP 1, the objective

functionE{R̂(S)} does not depend onWi, which means that we can always achieve the optimal

solution without considering the variance constraint. However, since Var{R̂(S)} is a decreasing

function in terms ofWi, as we keep increasingWi, we can achieve any arbitrary variance

constraint if we have sufficient traffic samples. Hence, we propose to obtain the minimum number

of traffic samples if we have the variance constraint, or to obtain the minimum variance of
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estimated throughput if we have a sensing energy constraint, which are listed as two ROPs as

follows respectively.

Robust Optimization Problem 2:

min
Wi

M
∑

i=1

Wi, s.t. Var{R̂(S)} ≤ η, (15)

and

Robust Optimization Problem 3:

min
Wi

Var{R̂(S)}, s.t.
M
∑

i=1

Wi ≤ ǫ. (16)

Here we show that the above two ROPs are equivalent by the following Lemma.

Lemma 1:ROP 2 and ROP 3 are equivalent, i.e., the optimal solution forboth problems are

the same.

Proof: See Appendix C.

From the above Lemma, we can solve either ROP 2 or ROP 3 to have an efficient system design

by minimizing both sensing energy and variation for the throughput.

Algorithm 4 Pseudo Algorithm for Solving ROP 1
1: for i = 1 : |A| do

2: Qi = E{R̂(Si)}.

3: end for

4: SortQi in a descending order with the corresponding strategyE = (E1, E2, · · · , E|A|), Ei ∈ A.

5: i = 1.

6: while Var{R̂(Ei)} > η do

7: if i ≥ M then

8: return no solution.

9: else

10: i = i+ 1.

11: end if

12: end while

13: return optimal strategyE∗
i .
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2) Channel Uncertainty for PU Detection:In this section, we relax the assumption that the

detected SNRγ is a constant value for all SUs. Instead, we modelγ as a random variable

for all SUs and we would like to discuss how its variation willaffect the sensing scheduling

optimization and thus our system performance. First, assume the channel gaing from PU to SU

receiver follows a Rayleigh distribution. We can easily show thatγ = Ψg2

σ2 follows an exponential

distribution f(γ) = βe−βγ if γ ≥ 0, elsef(γ) = 0 with a parameterβ. Second, we make an

assumption that the random variableγ should be constrained within a certain lower bound and

upper bound, i.e.,γ ∈ (φL, φU). The lower bound is due to the fact that the PU detector suffers

from some channel uncertainty effects (e.g. frequency offset and noise uncertainty), hence it can

not detect PU signal below a SNR value which is called theSNR wall[4]. The upper bound

comes from the fact that the PU detector shown in equation (1)only targets the range of low

SNR much less than0 dB. Hence, the truncated probability density function (PDF) for γ can

be derived asf(γ) = βe−βγ

∫ φU
φL

f(γ)dγ
= βe−βγ

e−βφL−e−βφU
, γ ∈ (φL, φU), elsef(γ) = 0. The mean for this

truncatedγ can be derived asE{γ} = 1
β
+ φLe

−βφL−φUe−βφU

e−βφL−e−βφU
. Followed by the above assumptions,

we can formulate a similar optimization problem as shown in ROP 1 which is to maximize the

expected throughput given the variance constraint under the SNR variation, i.e.,

Robust Optimization Problem 4:

max
S

E{R(S)} =

M
∑

i=1

(

T − E

{

A(i)(S)
γ

})

Ci(1− ui)

T
,

s.t.S ∈ A, Var{R(S)} = Var

{

1

γ

}

[

M
∑

i=1

{A(i)(S)}Ci(1− ui)

T

]2

≤ η, (17)

since the sensing time can be written asT
(i)
I (S) = A(i)(S)

γ
, whereA(i)(S) is a constant value

depending on the sensing strategy and the fusion rule. In order to obtain the first and second

moments for the throughput, we apply the following Lemma.

Lemma 2:Given a random variableγ with its truncated exponential PDF̄f(γ) for γ ∈
(φL, φU) with the shape parameterβ, we can obtain the first and second moments for its inverse

random variable respectively asE
{

1
γ

}

= β(Ei(βφL)−Ei(βφU ))

e−βφL−e−βφU
, andE

{

1
γ2

}

= β

e−βφL−e−βφU
[ e

−βφL

φL
−

e−βφU

φU
− β(Ei(βφL)− Ei(βφU))], where Ei(x) =

∫∞
x

e−t

t
dt is the exponential integral.

Proof: For the first moment of1
γ
, it can be derived by calculating it directly by the definition

and with change of variable technique. For the second momentof 1
γ
, it can be derived using
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integral by parts combining with the result of its first moment.

From Lemma 2, we can derive the variance for1
γ

and therefore the variance for the throughput. In

addition, to solve ROP 4, we can apply the same Algorithm 4 by simply replacing the objective

and subjective functions accordingly.

VI. NUMERICAL RESULTS

In this section, numerical results evaluating the expectednormalized throughput from spectrum

opportunities under different strategies are presented and discussed.

A. Throughput Comparisons for All Strategies

In Fig. 6, it can be observed that, among the parallel strategies, the constraint relaxation

achieves the largest throughput because the solution in equation (5) is not necessarily integer

hence it provides an upper bound for the parallel strategies. Second, there exists a performance

gap between the proposed greedy heuristic strategy and the optimal parallel strategy. This can be

explained by the fact that in the heuristic, we only considerthe traffic and channel information,

but we ignore the impact of the fusion model and thus sensing time. Third, the sequential

strategy outperforms the parallel strategies when the number of users is small. This is due to the

fact that all channels can be sequentially sensed in a time slot with small sensing time for each

channel. In addition, the number of channels is large compared to the number of users so that the

sequential strategy would not waste as many spectrum opportunities as the parallel strategies.

Finally, as expected, the sequential-parallel strategy performs better than pure sequential and

parallel strategies, and the proposed iterative parallel strategy can not outperform the sequential-

parallel. The proposed greedy heuristic for the sequential-parallel does not perform well for the

selected parameter values. Note that in Fig. 6 we consider the OR rule, but for theAND rule

we also have similar results.

B. Throughput Comparisons for Parallel and Sequential Strategies

To have a better insight on all the strategies, we vary different parameters in Fig. 7 to show

their impact on the optimal throughput. We assume that all channels have the same parameters

to simplify the results interpretation.
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Fig. 6. Performance comparison for parallel strategy with greedy heuristic (Par-GH), dynamic programming (Par-DP), constraint

relaxation (Par-Relax), sequential strategy (Seq), sequential-parallel strategy with greedy heuristic (Seq-Par-GH), sequential-

parallel strategy with dynamic programming (Seq-Par-DP),and iterative parallel strategy (Iterative-Parallel) under OR fusion

rule versus the number of users. Simulation parameters areT = 5 ms,Γ = 10 dB, Qd = 0.9, Qf = 0.15, M = 6, γ = −5

dB, B = 0.5fs = (1, 1.5, 2, 2.5, 3, 5) kHz, andu = (0.1, 0.2, 0.3, 0.4, 0.5, 0.3) for each channel.

In Fig. 7(a), we first vary variousQd. A higher targetQd implies a longer sensing time, and

we thus observe a performance degradation for all strategies. When the sensing time is short, the

sequential strategy guarantees that all channels will be sensed. On the other hand, the parallel

strategy senses a maximum ofN channels which is less thanM . Hence it can be seen that

the parallel strategy performs better than the sequential when the sensing time is long since the

spectrum opportunities in the last channels in the sequential schedule will be very short or null.

The sequential-parallel strategy naturally outperforms the sequential and parallel strategies. It

can be seen that when the sensing time is very short, the performance of the sequential strategy

and the sequential-parallel is the same. This means that theoptimal decision by the sequential-

parallel strategy also senses all channels by all users. When sensing time is very long, the

sequential-parallel results are close to the parallel strategy.

It can be seen that analytical results provided in Section III-C are matched well with the

numerical results except for the parallel strategy for verylarge values ofQd. For the selected
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simulation parameters, sensing time with a few number of sensors to satisfy a largeQd is larger

than the time slot. We saw that the parallel analytical approach tries to distribute users as much

as possible with less cooperation, so the throughput will bezero for large values ofQd. The

optimal solution however selects the maximum cooperation on a single channel.

Comparing theAND andOR rules, the performance is similar for the parallel strategy. Except

for very large values ofQd, the parallel strategy, for bothAND andOR rules, distributes the users

evenly among channels, implying that each user will sense one channel and no cooperation takes

place forN ≤ M . Therefore, the fusion model is irrelevant. For the sequential strategy, we can

see that theAND rule outperforms theORrule when the sensing time is short. It can be explained

by the fact that the sensing time is shorter for theAND rule. However forQd = 1−Qf = 0.85,

they have the same performance and after that theOR rule performs better since the sensing

time becomes shorter for theOR rule. It is worth noting that decreasingQf or decreasing the

sampling frequency has a similar impact for both rules, as the sensing time increases.

In Fig. 7(b), the number of users is fixed to three. When the number of channelsM increases,

it is expected to have some performance gain. However, the parallel strategy can not sense more

than three channels and thus its throughput saturates at three channels. The sequential strategy

performance increases with more channels until no more channels can be sensed. Given the

sensing time equal toτN , maximum⌊ T
τN
⌋ channels may be sensed in one time slot, which is

⌊ 5 ms
1.8 ms⌋ = 2 channels in this figure. The sequential-parallel strategy may have three user subsets

and in each subset, maximum⌊ T
τ1
⌋ = ⌊ 1 ms

3.4 ms⌋ = 1 channels can be sensed. The saturation thus

occurs atM = 3. Discussions related to comparingAND andOR fusion rules are similar to the

previous figure.

When we increase the number of users, it is expected to observe that whenN < M , the

parallel strategy can not sense all channels, so that the sequential strategy outperforms the

parallel strategy. When the number of users increases, the parallel strategy is able to sense all

channels, so it becomes superior. However in Fig. 7(c), the sequential scheme can not sense

more than two channels whenN ≥ 2, and three channels whenN ≥ 4. So its performance

improves mostly by the decrease in the cooperative sensing time. However, the parallel scheme

will be able to sense four channels when the number of users increases from2 to 4, and then

for larger number of users benefits from cooperative sensing. Its performance is thus always

superior to the sequential scheme.
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Fig. 7. Throughput comparisons for using theOR fusion rule of parallel (Par-OR), sequential (Seq-OR), sequential-parallel (Seq-

Par-OR), and theAND fusion rule of parallel (Par-AND), sequential (Seq-AND), sequential-parallel (Seq-Par-AND) strategies

with homogeneous channels. Simulation results (Sim.) are shown to be matched with analytical results (An.).

The other interesting point to observe is that as the number of users increases, the gap between

OR and AND fusion rules increases because cooperative sensing becomes more likely and for

the givenQd andQf , the OR fusion model has shorter cooperative sensing times.

C. Performance Comparison for Heterogeneous Sensors

In this section, we discuss the performance of the proposed solutions for the scenarios with

heterogeneous sensors. Due to space limit, we only provide the heterogeneous version of Fig. 7(c)



31

since the results are similar for other scenarios. Further,the results are only for theAND fusion

rule because with theOR rule, mixing any set of SNRs does not worsen the performance and

the cooperative sensing time will not be worse than the non-cooperative; therefore, the notion of

optimal set of sensors is not applicable. Instead of a fixed detection SNR equal to−5 dB, in this

section users have an exponentially distributed random SNRwith an average of−5 dB but limited

to the bound(−15, 0) dB. Fig. 8 is the heterogeneous version of Fig. 7(c) comparing sequential,

parallel and sequential-parallel strategies together andwith the proposed heuristics. We ran the

simulation for 500 runs for all schemes except the sequential-parallel DP forN = 6, which

was repeated 100 times. However, it can be seen that the confidence intervals are acceptable

for 90% confidence. It should be noted that even though the second heuristic proposed for the

parallel strategy does not perform well, it is provided to reveal the fact that when two users

with different SNRs cooperate, the performance can be worse. For this heuristic, there are four

channels, so up toN = 4, each user has one channel. ForN = 5, two users cooperate, but

it may degrade the performance since those cooperating users are not selected optimally in the

second heuristic. Compared to Fig. 7(c), we can also see thatthroughput is higher here with

heterogeneous sensors. This can be explained by Jensen’s inequality. Considering throughput

as a function of detection SNR, i.e.,R(γ), we observed that this function is convex in the

range of(−15, 0) dB (but concave for higher values of SNR). Therefore, it is expected to have

R(E{γ}) ≤ E{R(γ)}.

D. Performance Comparison for Primary Traffic and Channel Uncertainty

In this section, we compare the throughput performance under primary traffic and channel

uncertainty by solvingthe Robust Optimization Problem 1andRobust Optimization Problem 4,

respectively. To demonstrate the results, we choose the proposed parallel sensing strategy as

an example with fusionOR rule. For primary traffic uncertainty design inRobust Optimization

Problem 1, by applying the parallel sensing strategy, the strategy constraint, i.e.,S ∈ A, would

be
N
∑

i=1

ki = N , and the sensing timeT (i)
I (S) is equal toτi,ki , as shown in equation (5). For

channel uncertainty design inRobust Optimization Problem 4, by applying the parallel sensing

strategy, the strategy constraint is also
N
∑

i=1

ki = N , while the constant factor isA(i)(S) =

[Q−1(1− ki
√

1−Qf )−Q−1(1− ki
√
1−Qd)]

2

fs
, from equation (2). Fig. 9 shows the normalized throughput
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the noise power, we set its varianceσ2 = 10−8 W. The confidence interval for each simulation points is set to be90%.

loss with the standard deviation of the throughput constraint for primary traffic uncertainty case

given a constant number of traffic samplesW for all channels, and for the channel uncertainty

case. Note that they are compared with the same average detection SNR γ in −5 dB. The

normalized throughput loss is defined as the throughput lossfrom maximal throughput without

variance constraint and normalized by it. From the figure, first we observe that, as we increase

the standard deviation of the throughput constraint, whichmeans that we have relaxed the robust

optimization constraint, we have a lower throughput loss. This is due to the fact that we have more

search space for the optimal allocationki, and hence we can achieve higher throughput. Second,

as we increase the number of traffic samplesW , the throughput loss decreases. This is because

as we use more traffic samples to estimate the channel busy rate ui, we have less uncertainty on

the estimation. Therefore we can have lower variance for theestimator, which results in lower

variance for the throughput. In other words, we can achieve larger throughput with the same

variance constraint. Third, we can observe that the decreasing rate for the channel detection
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N = 10, M = 6, γ = −5 dB for the traffic uncertainty,(φL, φU ) = (−15,−1) dB, B = 0.5fs = (1, 1.5, 2, 2.5, 3, 5) kHz,

u = (0.1, 0.2, 0.3, 0.4, 0.5, 0.3) andP00 = 0.9 for each channel.

uncertainty case is smaller than for the primary traffic uncertainty. This means that if we have

channel detection uncertainty, it will be difficult to achieve low throughput loss compared with

traffic uncertainty. This is important since in practice, accurately estimating the instantaneous

detection SNR can be difficult. Finally, as we increase the constraint, the optimal allocation

solution ki will also change accordingly. Note that as the standard deviation is large enough,

the normalized throughput loss will eventually go to zero, i.e., to provide the same optimal

allocation as the optimization without constraint, e.g.,k
∗ = (0, 2, 2, 2, 2, 2) whenW = 20. In

addition, since we have a discrete solution space forki, if the variance threshold does not increase

significantly, the solution may stay the same hence resulting in the ladder type curve as shown

for channel detection uncertainty case.

E. Design Examples

In this section, we elaborate two design examples for primary traffic uncertainty by solving

ROP 2 assuming that we do not have knowledge of primary trafficstatistics. To achieve the
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Fig. 10. Total number of samples comparison for Design I and Design II with parallel sensing strategy underOR fusion rule

versus the standard deviation of throughput. Simulation parameters areT = 5 ms,Γ = 10 dB, Qd = 0.9, Qf = 0.25, N = 10,

M = 6, γ = −5 dB, B = 0.5fs = (1, 1.5, 2, 2.5, 3, 5) kHz, u = (0.1, 0.2, 0.3, 0.4, 0.5, 0.3) andP00 = 0.9 for each channel.

maximal throughput without variance constraint with the optimal allocationk∗
i , we substitute

it in ROP 2 to solve for the minimum number of traffic samples that we need to use to

achieve the minimum variance for the throughput. We proposetwo designs, i.e., homogeneous

and heterogeneous estimation, shown asDesign 1:min
W

W, s.t. Var{R̂(S)} ≤ η, and Design

2: min
Wi

M
∑

i=1

Wi, s.t. Var{R̂(S)} ≤ η. Design 1represents the case where we estimate the traffic

duty cycle for all channels with the same number of traffic samples, whileDesign 2is when we

estimate the traffic duty cycle on each channel with its own necessary number of traffic samples.

Fig. 10 shows the total number of samples needed to achieve a certain standard deviation of

throughput. First, as we relax the threshold to have less robustness, we need less number of

samples for estimation. Second, sinceDesign 2 is a general optimization process considering

traffic characteristics for each channel, it can achieve thesame standard deviation threshold using

less number of samples. Finally, from the system design point of view, for example, if we want

to achieve a robust design for the optimal throughput with standard deviation less than3.55

kbits/s, we need to use at least100 samples for traffic estimation.
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VII. CONCLUSIONS

In this paper, we propose and compare several cooperative spectrum sensing strategies for

homogeneous and heterogeneous sensors, i.e., sequential,parallel, and sequential-parallel to

schedule users to sense multiple channels in order to achieve the optimal throughput. For

each strategy, we introduce several solutions including low-complexity heuristic and dynamic

programming methods. In addition, we propose a robust scheduling design in terms of both

primary traffic and channel detection uncertainty, and a design guideline is also provided for

primary traffic estimation given the throughput variation constraint. In terms of throughput

performance, we show that with longer sensing time, such as when we have a stringent constraint

on probability of detection, smaller number of channels, orlarger number of users, the parallel

sensing strategy is recommended. Otherwise the sequentialsensing strategy should be adopted.

A hybrid sequential-parallel sensing strategy has the benefits of both approaches and perform

better in almost all scenarios while it suffers from a high complexity limiting its implementation

and usage.

APPENDIX A

ANALYTICAL APPROXIMATION FOR THEGENERAL PARALLEL STRATEGY

We provided an analytical analysis for the case with homogeneous channels. For a more general

case, it can be seen that the convexity of the throughput function of the parallel strategy depends

onτi,ki values, so it should be investigated whether the function ofsensing time versus the number

of collaborators is a convex function or not. For this aim, wedefinef(x) = Q−1( k
√

1−Qf)−
Q−1( k

√
1−Qd) (please see equation (2). Examining the Hessian of this function shows that

f(k) is not convex unless if there are enough users. The exact threshold for the number of

users to have a convex function depends on the other parameters such asQd andQf . Therefore,

for a large number of users, if we approximatef(k) by an exponential function in the form

ae−bk, a > 0, b > 0, the optimal user allocation can be found analytically by convex optimization,

which is equal to:

k∗
i =

ln(abCi(1− ui))

b
− 1

Mb

M
∑

j=1

abCj(1− uj) +
bN

M
, (18)

where1 ≤ i ≤ M . Fig. 11 confirms that fitting with an exponential function isnot accurate when

the number of users is low, but is acceptable when there are a large number of users. In practical
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scenarios, it is expected to have a large number of users, otherwise the problem can easily be

solved by a Brute-Force method, so that the exponential approximation and consequently the

analytical derivation for optimal assignment are very helpful.

APPENDIX B

DERIVATION OF THE VARIANCE FOR THE AVERAGE ESTIMATOR

The variance of the proposed̂u can be written as

Var{û} = E{[û− E{û}]2}

= E







(

1

W

W
∑

i=1

zi

)2






− u2

=
1

W 2

W
∑

i=1

E
{

z2i
}

+
2

W 2

W−1
∑

i=1

W−i
∑

j=1

E {zizi+j} − u2. (19)
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The expressionE {zizi+j} in equation (19) is the correlation terms betweenzi andzi+j , and we

denoted asRi,i+j. For Ri,i+j, ∀j ≥ 0, we can solve it by its recursive definition, i.e.,

Ri,i+j = E{zizi+j} = Pr{zi = 1, zi+j = 1}

= Pr{zi = 1, zi+j−1 = 1} × P11

+ Pr{zi = 1, zi+j−1 = 0} × P01

= Ri,i+j−1 × P11 + (u− Ri,i+j−1)× P01

= Ri,i+j−1 × r + u× P01, (20)

wherer = P11 − P01. The initial condition for the recursive equation (20) isRi,i = E{z2i } = u.

Hence, solving the recursive equation (20) gives the result

Ri,i+j =
uP01(1− rj)

1− r
+ urj. (21)

By plugging equation (21) into equation (19), we can simplify it as the result shown in equa-

tion (13).

APPENDIX C

PROOF OFLEMMA 1

First consider ROP2. Define the objective function asf(W) =
M
∑

i=1

Wi, and the constraint func-

tion asg(W) = Var{R̂(S)}. Assume we obtain the optimal solutionW∗ = (W ∗
1 ,W

∗
2 , · · · ,W ∗

M)

to minimize the functionf(W). Defineǫ = f(W∗). This means for any other feasible solutions

W 6= W
∗ satisfyingg(W) ≤ η, we always havef(W) ≥ ǫ. The above statement is equivalent

to if we find a solutionW such thatf(W) ≤ ǫ, we should always have the constraint being

violated, i.e.,g(W) ≥ η. Among all of these possibleW′
s, we want to find the one with

minimum g(W), which forms the proposed ROP 3. We can see that since all the possible

W 6= W
∗ gives g(W) ≥ η, while we knowg(W∗) ≤ η by the original constraint, we can

conclude thatW∗ is still the optimal solution for ROP3 to minimize g(W). Note that we

can also proof the other equivalence by the same technique, i.e., given the optimal solution for

ROP3, we can show that it is also the optimal solution for ROP2.
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