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Abstract —Caching at the base stations brings the contents closer to the users, reduces the traffic through the backhaul links, and
reduces the delay experienced by the cellular users. The cellular network operator may charge the content providers for caching their
contents. Moreover, content providers may lose their users if the users are not getting their desired quality of service, such as maximum
tolerable delay in Video on Demand services. In this paper, we study the collaborative caching problem for a multicell-coordinated
system from the point of view of minimizing the total cost paid by the content providers. We formulate the problem as an Integer
Linear Program and prove its NP-completeness. We also provide an online caching algorithm that does not require any knowledge
about the contents popularities. We prove that the online algorithm achieves a competitive ratio of O(log(n)), and we show that the
best competitive ratio that any online algorithm can achieve is Ω(

log(n)
log log(n)

). Therefore, our proposed caching algorithm is provably
efficient. Through simulations, we show that our online algorithm performs very close to the optimal offline collaborative scheme, and
can outperform it when contents popularities are not properly estimated.

Index Terms —Multicell-coordinated systems, collaborative caching, cellular networks, online algorithm, competitive ratio.
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1 INTRODUCTION

Recently, content delivery has dominated the Internet
traffic. Services like Video on Demand accounts for 54%
of the total Internet traffic, and the ratio is expected
to grow to 71% by the end of 2019 [1]. This expected
increase motivated changes to the operations of cellular
networks, as the current infrastructure cannot cope with
this increase.

One way to handle the above challenge is to introduce
caching at the base stations. Caching at the base stations
can reduce the data traffic going through the backhaul
links, reduce the time required for content delivery,
and help in smoothing the traffic during peak hours.
Thus, providing good caching techniques is of high
importance. Note that the price of data storage devices
is dramatically decreasing year by year.

Caching in general has been extensively studied. A
few examples are those of [2], [3], [4]. The works
in [5], [6], [7] study caching in Content Centric Net-
works [8] which has different settings than the multicell-
coordinated system we consider in this paper. Caching
in cellular networks has been studied under different
settings and for different objectives. The objective of the
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work in [9] is to minimize the delay through content
popularity estimation in a single base station, while [10]
uses caching helpers to achieve the same objective. The
authors in [11], [12], [13] consider hierarchical caching
in cellular backhaul networks, while [14], [15] take
an information-theoretic approach to study hierarchical
caching.

All of the above-mentioned studies do not take advan-
tage of the backhaul links connecting the base stations,
by not allowing the base stations to collaborate. When a
base station receives a content request, it can retrieve a
copy of the content from another base station that cached
the content via the backhaul links, instead of retrieving
it from the original Content Provider via the Internet.
Therefore, collaboration among the base stations reduces
the operational cost of the cellular network and enhances
its performance. This will motivate the cellular network
operator to deploy collaborative caching.

Collaborative caching has only been considered re-
cently by proposing proactive caching schemes under
offline settings. By proactive caching we mean that the
caching decisions are made before the appearance of any
request for any content, and by offline settings we mean
that the caching scheme knows the exact popularities of
the contents (i.e. the exact number of requests that will be
made for every content). The fact that the exact contents
popularities are hard to estimate accurately motivates
us to propose a reactive caching algorithm under online
settings. By reactive caching we mean that our algorithm
makes a caching decision after the appearance of a
request for a content, and by online settings we mean
that our algorithm does not know the exact popularities

http://arxiv.org/abs/1509.02911v1


2

of the contents. Nevertheless, our algorithm works on
a per-request basis and caching decisions made by the
algorithm does not require the knowledge of the contents
popularities.

Some examples of proactive collaborative caching
schemes are the works of [16], [17], [18], [19]. The authors
in [16] propose a proactive offline caching scheme, and
develop a heuristic algorithm to minimize the content
access delay of all users. The authors assume that content
popularity is the same across different base stations. The
authors in [17] propose an offline caching scheme to
maximize the reward gained by the cellular network
operator when the cache of each base station is limited.
The work in [18] studies collaborative caching with the
objective of minimizing either the inter ISP traffic, the
intra ISP traffic, or the overall user delays, using a proac-
tive offline caching scheme and a heuristic algorithm.

The differences between our work and the works of
[16], [17], [18] are three folds:

• The works in [16], [17], [18] all require the infor-
mation of contents popularities, which may be hard
to estimate accurately, while our algorithm does not
need this information.

• Based on the popularity information, the works in
[16], [17], [18] all solve a static optimization prob-
lem. In contrast, our scheme works on a per-request
basis where the requests for contents are revealed
one by one, and the online algorithm has to make
a decision based on the number of requests seen so
far by the online algorithm.

• Although the work in [16] proposes an online al-
gorithm based on CCN caching, the algorithm is
a simple Least Recently Used (LRU) caching algo-
rithm and the authors do not provide any theoretical
proof of the algorithm’s performance.

In [19], the authors study collaborative caching among
small base stations deployed in a single macro-cell. The
objective of the study is to minimize the cellular network
operational cost, given the cache size at each small base
station and the bandwidth of the backhaul links. The
authors also propose a combined offline algorithm and
Least Frequently Used (LFU) replacement policy for in-
network cache management, and prove that the ratio of
the performance of the offline algorithm to the optimal
offline algorithm is within a factor of β, which is linear
in terms of the product of the number of potential
collaborators, the number of requests for each user, and
the number of cached contents at each small base station.
Our work is different in that we propose an online
caching algorithm that achieves a better performance
ratio when compared to the optimal offline algorithm.

We consider collaborative caching at the base stations
from a different perspective. Our objective is to minimize
the overall cost paid by the Content Providers (CPs).
We assume that caching a content at a base station
incurs two types of costs. The first type is the storage
cost, where CPs have to pay to the Cellular Network
Operator (CNO) in exchange for caching their contents.

This is motivated by the increasing trend of using in-
network cloudlets, services, and middleboxes, in which
the storage and computations are performed at small
clouds installed in the routers or the base stations of the
network [20], [21], [22], [23]. Moreover, the caching costs
paid by the CPs motivate the CNOs to perform caching
by providing them with an extra source of income.

The second type of cost is what we call User Attrition
(UA) cost [24]. This cost represents the expected cost of
losing users that are switching to other CPs because the
users are not getting their desired Quality of Service
(QoS). This is caused by the fact that the requested
content is cached far away from the users. For example,
users who are experiencing high delays when streaming
a video from one CP may switch to another CP, which
causes losses for the former CP. These two types of
costs yield a tradeoff on where the CPs choose to cache
their contents in order to minimize the total cost. In
this paper, we formulate the problem of caching in a
multicell-coordinated system as an optimization prob-
lem that minimizes the overall cost paid by the CPs,
while satisfying the users’ demands.

In the formulated optimization problem, we assume
the exact knowledge of the contents popularities. Based
on this knowledge, a proactive offline algorithm for
collaborative caching can achieve the optimal solution,
similar to [16], [17], [18], [19]. Since in real life scenarios
this knowledge is unavailable, an online algorithm is
needed for caching at the base stations. In the online
algorithm, a decision for caching at a base station is
made when a content is requested, and the caching
decision cannot be changed in the future because the
CP has already paid the caching cost. To measure the
performance of the online algorithm, we use the concept
of competitive ratio. The competitive ratio is the ratio of
the performance of the online algorithm to the perfor-
mance of the optimal offline algorithm. In this paper,
we present an online algorithm with a competitive ratio
of O(log(n)), where n is the total number of requests in
the cellular network. The competitive ratio we obtain is

close to the lower bound of Ω( log(n)
log log(n) ) which we prove

in Section 4.7, since log log(n) is small even when n is
large (i.e. log log(106) ≈ 4.3).

Specifically, we make the following contributions:

• We formulate the problem of collaborative caching
in multicell-coordinated systems as an Integer Lin-
ear Program (ILP), aiming to minimize the overall
cost paid by the CPs and we prove that the problem
is NP-complete.

• We provide an online algorithm for collaborative
caching in multicell-coordinated system that does
not require the knowledge of the contents popu-
larities. We prove that the competitive ratio of the
online algorithm is O(log(n)).

• We prove that the best competitive ratio that any
online algorithm can achieve is lower bounded by

Ω( log(n)
log log(n) ).
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• We compare the performance of the offline collabo-
rative caching and the online collaborative caching
through extensive simulations. Simulation results
reveal that the online algorithm can tolerate inaccu-
racies in measuring the contents popularities, which
is not provided by any of the prior work [2], [3], [4],
[10], [13], [15], [16], [17], [18], [19].

The rest of the paper is organized as follows: In Section
2 we specify our settings. In Section 3 we present the ILP
problem formulation and prove its NP-completeness. In
Section 4 we present the online algorithm followed by
the proof of its O(log(n)) competitive ratio. We also
prove that the competitive ratio of any online algorithm

is lower bounded by Ω( log(n)
log log(n)). Section 5 presents

our simulation results. We finally conclude the paper in
Section 6.

2 SETTINGS

We consider a cellular network consisting of a set
K = {1, 2, . . . , k, . . . ,K} of cache-capable base stations
connected to each other via backhaul links. The back-
haul links also serve as a connection to the Internet
through the cellular system gateway. In the rest of
the paper, we use the words base station and cache
interchangeably. Let K + 1 denote the index of the
contents providers servers located in the Internet. Fig.
1 provides an example of our system model. We have
M = {1, 2, . . . , j, . . . ,M} contents with sizes S =
{s1, s2, . . . , sj , . . . , sM} that can be requested by the users
connected to the base stations. Let γij denote the number
of requests for the j-th content generated by users in the
i-th base station.

Due to the dramatic decrease in data storage prices, we
assume that the cache capacity of each base station is un-
limited. However, there is a unit cost fkj associated with
caching the j-th content at the k-th base station. Having
a caching cost will limit the number of contents cached
at a base station. Moreover, as explained in Section 1,
there is an increasing trend of using in-network cloudlets
in which the base station itself becomes a small cloud.
Also, due to the fast development and cost reduction of
storage devices, the cache size can be very large with
low cost.

Let T k
ij denote the UA cost associated when the i-

th base station retrieves the j-th content from the k-th
base station, and let TK+1

ij denote the UA cost associated
when the i-th base station retrieves the j-th content from
the Internet. If we associate a cost between any two
directly connected base stations, then for any two base
stations i, k, T k

ij can be computed using the minimum
cost path between i and k, and thus satisfies the triangle
inequality (i.e. T k

ij ≤ T k′

ij + T k
k′j).

Our objective is to find a caching setup that minimizes
the aggregated caching and UA costs while satisfying
the users’ demands. We introduce the formulation of the
optimization problem in the next section.

3 PROBLEM FORMULATION

In this section, we formulate the problem of collaborative
multicell-coordinated system, followed by the proof of
the problem’s NP-completeness.

3.1 Collaborative Case Formulation

Before presenting our formulation, we introduce the
following variables:

Ykj =







1 if the j-th content is cached
at the k-th base station.

0 otherwise.

Xk
ij =







1 if the i-th base station retrieves the
j-th content from the k-th base station.

0 otherwise.

XK+1
ij =







1 if the i-th base station retrieves the
j-th content from the Internet.

0 otherwise.
We formulate the problem as the following Integer

Linear Program (ILP):

min
K
∑

i=1

K+1
∑

k=1

M
∑

j=1

T k
ijX

k
ijγijsj +

K
∑

i=1

M
∑

j=1

fkjYkjsj

Subject to

Xk
ij ≤ Ykj , ∀i, j, k (1)

K+1
∑

k=1

Xk
ij ≥ 1{γij>0} ∀i, j (2)

In the objective function of the above problem, the first
term is the total UA cost, and the second term is the total
caching cost. The first set of constraints ensures that a
content can be retrieved from a base station only if the
content is in the cache of that base station. The second set
of constraints ensures that if a content is requested, then
the content is served either from the cache of the local
base station, the cache of a neighboring base station, or
from the Internet.

In the following section, we present the proof of the
problem’s NP-completeness.

3.2 NP-Completeness Proof

In this section, we show that the ILP optimization prob-
lem presented in the previous section is NP-complete by
proving the following theorem:

Theorem 1. The ILP optimization problem is NP-complete.

Proof: Since we have M(K2 + K) constraints, we
can easily check the feasibility of any given solution in
polynomial time by checking that the set of constraints
(1)-(2) are not violated, thus the problem is in NP.

To prove that the problem is NP-hard, we reduce
the set cover problem, which is known to be an NP-
complete problem, to an instance of our problem. The
set cover problem is defined as follows: Given a set
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Fig. 1: Collaborative multicell-coordinated system.

of elements U = {u1, u2, . . . , uN} called the universe,
and a family of subsets of the elements in the universe
B = {b1, b2, . . . , bL}, where each subset bk has a cost ak.
The objective is to find a collection of subsets of B, whose
union is the universe, and its total cost is minimized.

The reduction from the set cover problem to our
problem is done as follows: (1) The number of contents
in our problem is set to 1. (2) Each element ui in the set
cover problem is mapped to a base station requesting
the content in our problem. (3) The caching cost of the
k-th base station fk is set to ak. (4) The demand γi is set
to 1 for all base stations. (5) The UA cost T k

i is set to 0
if ui ∈ bk and is set to 2ak otherwise.

Note that due to the reduction from the set cover
problem to our problem, all the elements in the set cover
problem are covered iff the total UA cost of the solution
to our problem is 0. Now we prove that there exists a
solution to the set cover problem of cost no greater than
A iff there exists a solution to our problem with a cost
no greater than A.

The first direction is easy to see. If there exists a solu-
tion to the set cover problem with cost A, then the sets
form the caches and the total cost of our problem is A.
To prove the other direction, suppose we have a solution
to our problem with a cost of A = ACaching + UAtotal,
where ACaching is the total caching cost and UAtotal is
the total UA cost. Then we have the following two cases:

• The total UA cost is equal to 0. In this case, the
selected caches yield the collection of sets for the
set cover problem with cost A.

• The total UA cost is greater than 0. This means that
there are some elements in the corresponding set
cover problem that are still not covered. In this case,
for each base station i whose incurring a non-zero
UA cost, we cache the content at a new cache k
(i.e. select a new subset bk) such that T k

i = 0. Since
fk + T k

i = ak + 0 ≤ 2ak, the new total cost A′ < A.
Then go back to case 1.

4 ONLINE ALGORITHM

4.1 Definitions

In the online version of the problem, the users’ requests
for contents are revealed one by one. The online algo-
rithm has to make a decision to satisfy the request either
by caching the content in a nearby base station or by
retrieving the content from the Internet or from a base
station that already has the content in its cache. The
algorithm’s decisions cannot be changed in the future,
and the decisions must be made before the next request
is revealed, so the online algorithm works without the
knowledge of contents popularities as opposed to the
offline ILP formulation.

To compare the performance (i.e. the total cost) of
the online algorithm to that of the optimal offline al-
gorithm, we use the concept of competitive ratio. Other
works have used the concept of competitive ratio, but
for different problems such as online routing [25] or
energy efficiency [26]. We define the competitive ratio
as the worst-case ratio of the performance achieved
by the online algorithm to the performance achieved
by the optimal offline algorithm, i.e., if we denote the
performance of the online algorithm by Pon, and the
performance of the offline algorithm by Poff , then the
competitive ratio is:

sup
t

sup
all input

sequences in [0,t]

Pon

Poff
.

As the ratio gets closer to 1, the online performance
gets closer to the offline performance. In other words,
the smaller the competitive ratio, the better the online
algorithm’s performance.

Before we present the online algorithm, we point out
the following observation. Due to the assumption that
the cache capacities of the base stations are unlimited,
the decision of caching a content at a base station is
independent from the other contents, so we can view our
problem as M independent caching subproblems. Even
with this decomposition, the proof of NP-completeness
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presented in Section 3.2 still holds for every subproblem,
since we reduce the set cover problem to an instance of
our problem that has one content. In the sequel, we only
consider the j-th content, and hence, the content-index
j is omitted in the subscript of the notations throughout
the rest of the paper. Moreover, in the online algorithm
and in the proof of the competitive ratio, every term will
be multiplied by the content size sj , and hence, we set
sj = 1.

4.2 The Online Algorithm

The online algorithm for collaborative caching is pre-
sented in Algorithm 1. We note that Algorithm 1 is for a
specific content. For multiple contents, each content will
have its own instance of the algorithm.

Throughout the algorithm, the following notations are
used:

• W : the set of base stations already caching the
content.

• V : the set of requests processed so far by the algo-
rithm.

• p(k): the potential function of the k-th base station.
• For a cache u and a request v arriving at the i-th

base station, d(u, v) = T u
i

• For a set of caches X and a request v arriving at the
i-th base station, d(X , v) ≡ mink∈X d(k, v).

• [x]+ ≡ max{x, 0}.

Algorithm 1 Online Collaborative Caching

1: W ← {K + 1}, V ← φ,Cost = 0, initializePotentials()

2: for each new request v arriving at the i-th base
station do

3: if The i-th base station is already caching the
content then

4: Satisfy the request
5: else
6: V ← V ∪ {v}
7: updatePotentials(W, v)
8: w ← argmaxk(p(k)− fk)
9: if p(w) − fw > 0 then

10: W ←W ∪ {w}
11: Cost = Cost+ fw
12: computeNewPotentials(W,V )
13: end if
14: assign v to α = argmink∈W d(k, v)
15: Cost = Cost+ T i

α

16: end if
17: end for

The functions initializePotentials(), updatePotentials(),
and computeNewPotentials() used in Algorithm 1 are
presented in Algorithm 2.

The intuition behind Algorithm 1 is the following: we
define a potential function for each base station. When
a new request for a content arrives at a base station,

Algorithm 2 Functions used in Algorithm 1

initializePotentials()
for all k ∈ K ∪ {K + 1} do
p(k) = 0

end for

updatePotentials(W, v)
for all k ∈ K ∪ {K + 1} do
p(k) = p(k) + [d(W, v) − d(k, v)]+

end for

computeNewPotentials(W,V )
for all k ∈ K ∪ {K + 1} do
p(k) =

∑

v∈V [d(W, v) − d(k, v)]+

end for

the algorithm updates the potential function of each
base station, which represents the total UA cost of the
requests seen so far when that base station retrieves
the content from the base station with the lowest UA
cost (probably itself). The algorithm decides to cache the
content at a base station when the potential of that base
station exceeds its caching cost.

4.3 Implementation and Complexity

The execution of Algorithm 1 is done by the Mobil-
ity Management Entity (MME) of the cellular network,
which acts as a centralized controller [27]. Different
architectures for cellular networks like Software-Defined
Cellular Networks [28] take advantage of the centralized
controller. The MME has access to the topology of the
cellular network as well as the contents cached at each
base station. The content providers pay the operators for
running the caching algorithm at the MMEs and storing
the contents at the base stations.

When a request for content arrives at a base station,
the base station responds with the requested content if it
already has a copy of the content in its cache. Otherwise,
the base station sends a message indicating the requested
content to the MME to execute the algorithm. Based on
the available information to the MME (i.e. the topology
of the cellular network as well as the contents cached
at each base station), the MME runs the algorithm and
decides whether the content has to be cached at a new
base station w or not. The MME then relays to the new
base station w (if any) the decision to cache the requested
content and relays to the requesting base station the
decision of which base station to retrieve the content
from.

Next, we analyze the complexity of Algorithm 1.
Recall that K denotes the number of base stations. The
initializePotentials() subroutine is executed once and has
a complexity of O(K). For every new request, executing
the updatePotentials() subroutine, finding the base station
with the maximum difference between the value of
the potential function and the caching cost (line 5 in
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Algorithm 1), and executing the computeNewPotentials()
subroutine each has a complexity of O(K). Note that
the computeNewPotentials() subroutine is executed only
when the content is cached at a new cache, and hence is
executed at most K times. Therefore, for n total number
of requests, the overall complexity of implementing the
algorithm is O(Kn+K2).

In order to execute the algorithm, the MME needs to
maintain two tables. The first table includes the value
of the potential function of each base station. For the
second table, it suffices to store the number of requests
that arrived at each base station, since the value of
[d(W, v)−d(k, v)]+ in the computeNewPotentials() subrou-
tine is the same for requests arriving at the same base
station. Therefore, the storage requirement needed at the
MME is of order O(K). Note that the size of the tables
is independent of the content’s size. Therefore, as the
size of the content becomes larger, which is the case for
future content delivery traffic, the size of the tables will
not grow.

4.4 Preliminaries

To compute the competitive ratio of the algorithm, we
compare the algorithm’s cost with the cost of the offline
optimal solution. In the optimal offline solution, let W ∗

denote the set of base stations caching the content. Then,
the cost of the offline optimal solution is given by:

C∗ =
∑

w∈W∗

fw +
∑

v∈V

d(W ∗, v) (3)

Let the optimal solution W ∗ consist of l caches
c1, c2, . . . , cl. In the optimal offline solution, each re-
quest is satisfied by retrieving the content from a cache.
Hence, W ∗ divides the requests into optimal clusters
C1, C2, . . . , Cl. For example, if the optimal solution de-
cides to cache a content on three caches c1, c4, and c5,
then the first cluster C1 consists of c1 and all the base
stations retrieving the content from c1, the second cluster
C2 consists of c4 and all the base stations retrieving the
content from c4, and so on.

4.5 Proof Outline

We start by proving that the algorithm maintains the
invariant p(k) ≤ fk for all k ∈ K ∪ {K + 1} (Lemma
1). Based on Lemma 1 and the triangle inequality, we
show that after j requests from cluster Ci, there is a
cache where the UA cost from the optimal cache ci is
1
j [fci + 2

∑

v∈Ci
d(W ∗, v)] (Corollary 1). This is used to

show that the UA cost of the algorithm is within a
logarithmic factor of the total optimal cost C∗ (Lemma
2).

For each new request v, we define a credit ĉ(v). We
show that ĉ(v) = min{d(W, v),mink{fk − p(k) + d(k, v)}}
(Lemma 3). We then show that the algorithm’s total
caching cost never exceeds the total credit of the requests
in V (Lemma 4). Using Corollary 1, we show that the
total credit is within a logarithmic factor of the total
optimal cost C∗ (Lemma 5).

4.6 The Proof

Lemma 1. p(k) ≤ fk, ∀k ∈ K ∪ {K + 1}.

Proof: We prove this lemma by induction on the
number of requests considered by the online algorithm.
For the first request, the invariant holds since p(k) = 0
for all k ∈ K ∪ {K + 1}. We inductively assume that
the invariant holds just before a new request v arrives
and prove that the invariant holds after v is assigned to
retrieve the content from a cache.

Let W be the set of caches that have cached the con-
tent, and let V be the set of requests considered so far by
the algorithm. Let p(k) =

∑

v′∈V [d(W, v′)−d(k, v′)]+ ≤ fk
be the potential of cache k just before the new request
v arrives. Let p′(k) be the potential after the subroutine
updatePotentials() in the algorithm is executed. Finally, let
p′′(k) be the potential of cache k after the request v is
assigned to a cache. We want to prove that p′′(k) ≤ fk
for all k.

We have two cases:

• If the new request v does not change W (i.e. the new
request did not cause the content to be cached at a
new cache), then from the algorithm:

p′(k)− fk ≤ 0 ∀k

and p′′(k) = p′(k). Therefore, p′′(k) ≤ fk for all k.
• If the new request v causes the content to be cached

at a new cache w, then

0 < p′(w)− fw = [d(W, v) − d(w, v)]+ + p(w) − fw

≤ [d(W, v) − d(w, v)]+

where the first inequality holds because the content
is cached at w, the next equality holds from the
definition of p′(w), the last inequality holds from
the induction hypothesis p(w) ≤ fw. Therefore,
[d(W, v) − d(w, v)]+ ≥ p′(w) − fw > 0. This implies
that d(W, v) > d(w, v), which means that v will be
assigned to w and

d(W ∪ {w}, v) = d(w, v) (4)

From here, we have two cases:

– For all caches k where d(k, v) < d(w, v), we have
[d(W ∪ {w}, v)− d(k, v)]+ = d(w, v) − d(k, v).
Using (4), we get that

d(W, v) − d(w, v)

≥ p′(w) − fw

≥ p′(k)− fk

= [d(W, v)− d(k, v)]+ + p(k)− fk

≥ d(W, v)− d(k, v) + p(k)− fk

where the second inequality follows from the
fact that the content is cached at w, and the
first equality follows from the definition of p′(k).
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Therefore, d(W, v)−d(w, v) ≥ d(W, v)−d(k, v)+
p(k)− fk. Rearranging the terms we get

0 ≥d(w, v) − d(k, v) + p(k)− fk

≥d(w, v) − d(k, v)

+
∑

v′∈V

[d(W, v′)− d(k, v′)]+ − fk

≥d(w, v) − d(k, v)

+
∑

v′∈V

[d(W ∪ {w}, v′)− d(k, v′)]+ − fk

≥p′′(k)− fk

where the last inequality follows from the defi-
nition of p′′(k).

– For all caches k where d(k, v) ≥ d(w, v), we have
[d(W ∪ {w}, v)− d(k, v)]+ = 0. Therefore,

p′′(k) =
∑

v′∈V ∪{v}

[d(W ∪ {w}, v′)− d(k, v′)]+

=
∑

v′∈V

[d(W ∪ {w}, v′)− d(k, v′)]+

≤
∑

v′∈V

[d(W, v′)− d(k, v′)]+

= p(k) ≤ fk

where the first equality holds from the defini-
tion of p′′(k), the second equality follows since
[d(W ∪{w}, v)−d(k, v)]+ = 0, the third inequal-
ity follows since d(W ∪ {w}, v′) ≤ d(W, v′), ∀v′,
and the last equality follows from the definition
of p(k) before the request v appears.

Corollary 1. Let V be the request set, and W the set of
caches caching the content after all requests in V have been
considered. Then for every optimal cluster Ci with cache ci,

|V ∩ Ci|d(W, ci) ≤ fci + 2
∑

v∈Ci

d(W ∗, v)

Proof: for cache ci we have:

p(ci) =
∑

v∈V

[d(W, v)− d(ci, v)]
+

≥
∑

v∈V ∩Ci

[d(W, v) − d(ci, v)]

≥
∑

v∈V ∩Ci

[d(W, ci)− d(ci, v)− d(ci, v)]

≥
∑

v∈V ∩Ci

d(W, ci)− 2
∑

v∈V ∩Ci

d(ci, v)

≥
∑

v∈V ∩Ci

d(W, ci)− 2
∑

v∈Ci

d(ci, v)

where the second inequality is obtained by using the
triangle inequality (i.e. d(W, v) ≥ d(W, ci)− d(ci, v)).

Using the invariant fci ≥ p(ci) from Lemma 1 and
rearranging the terms, we get:

|V ∩ Ci|d(W, ci) ≤ fci + 2
∑

v∈Ci

d(W ∗, v)

where d(W ∗, v) = d(ci, v) for all v ∈ Ci follows from the
definition of cluster Ci.

In the next lemma, we use Corollary 1 to bound the
UA cost incurred by the online algorithm.

Lemma 2. Let
∑

v∈V d(W, v) denote the total UA cost
incurred by the online algorithm. Then

∑

v∈V

d(W, v) ≤ log(n+ 1)
∑

w∈W∗

fw

+ (2 log(n+ 1) + 1)
∑

v∈V

d(W ∗, v)

Proof: Let Ci be an optimal cluster with cache ci.
Let ni ≡ |Ci| be the number of requests in Ci, and
let v1, v2, . . . , vni

be the requests in Ci in the order
considered by the algorithm.

For each request vj , let Wvj be the set of caches caching
the content at vj ’s assignment time. Then, using triangle
inequality we have

d(Wvj , vj) ≤ d(Wvj , ci) + d(ci, vj)

From Corollary 1, we have

d(Wvj , ci) ≤
1

j
[fci + 2

∑

v∈Ci

d(W ∗, v)]

Therefore

d(Wvj , vj) ≤
1

j
[fci + 2

∑

v∈Ci

d(W ∗, v)] + d(ci, vj)

Summing over all vj ∈ Ci we get that
∑ni

j=1 d(Wvj , vj)

≤[fci + 2
∑

v∈Ci

d(W ∗, v)]

ni
∑

j=1

1

j
+

ni
∑

j=1

d(ci, vj)

≤ log(ni + 1)fci

+ (2 log(ni + 1) + 1)

ni
∑

j=1

d(ci, vj)

The lemma follows by summing over all clusters.

The next 3 lemmas are used to bound the caching
cost incurred by the online algorithm. To do this, we
define a credit ĉ(v) to each new request v. We show that
ĉ(v) = min{d(W, v),mink{fk − p(k) + d(k, v)}}. Then we
show that the total caching cost is upper bounded by
the total credits of all requests, which in turn is within
a logarithmic factor of the optimal offline cost C∗.

Lemma 3. For each new request v, ĉ(v) = fw−p(w)+d(w, v)
if v causes the content to be cached at w, and ĉ(v) = d(W, v)
otherwise.

Proof: Let p(k) denote the potential function of the
cache k just before a new request v arrives, and let
p′(k) = p(k) + d(W, v) − d(k, v) be the potential function
after the subroutine updatePotential() is executed.
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Now, if the new request v causes the content to be
cached at w, then from the algorithm,

0 < p′(w) − fw = p(w) + [d(W, v)− d(w, v)]+ − fw

= p(w) + d(W, v)− d(w, v) − fw

≥ p(k) + [d(W, v)− d(k, v)]+ − fk

≥ p(k) + d(W, v)− d(k, v) − fk

The first inequality holds because the content is cached at
w. The first equality follows from the definition of p′(w).
The second equality follows by using (4)(see the proof of
Lemma 1, page 6). The second inequality holds because
p′(w) − fw ≥ p′(k) − fk, ∀k and from the definition of
p′(k). Therefore, p(w) + d(W, v) − d(w, v) − fw ≥ p(k) +
d(W, v)− d(k, v)− fk. Rearranging the terms we get that
fw − p(w) + d(w, v) ≤ fk − p(k) + d(k, v). We also have
p(w) + d(W, v)− d(w, v)− fw > 0. Therefore, ĉ(v) = fw −
p(w) + d(w, v) if v causes the content to be cached at w.

On the other hand, if the new request v does not cause
an additional copy of the content to be cached, then from
the algorithm,

p′(k)− fk ≤ 0, ∀k

p(k) + d(W, v) − d(k, v)− fk ≤ 0, ∀k

d(W, v) ≤ fk − p(k) + d(k, v), ∀k

Therefore, ĉ(v) = d(W, v).
In the next lemma, we show that the total caching cost

incurred by the online algorithm is upper bounded by
the total credit of the requests in V .

Lemma 4. Let V be the set of requests, and let W be the set
of caches caching the content after all requests in V have been
considered. Then

∑

w∈W

fw ≤
∑

v∈V

ĉ(v)

Proof: We prove this lemma by a potential func-
tion argument. We define the potential function Φ =
∑

v∈V d(W, v) and calculate the change ∆Φ in the value
of the potential function when a new request v is consid-
ered. Let p(k) be the potential of each cache k just before
the new request v arrives.

If the new request v does not cause the content to be
cached at a new cache (i.e W is not changed), then ∆Φ =
d(W, v) = ĉ(v) by Lemma 3. Otherwise, if v causes the
content to be cached at w, then d(W ∪ {w}, v) = d(w, v)
(recall (4) in Lemma 1) for all v ∈ V , and d(W, v)−d(W ∪
{w}, v) = [d(W, v)− d(w, v)]+. Therefore,

∆Φ = d(w, v) −
∑

v′∈V

[d(W, v′)− d(W ∪ {w}, v′)]

= d(w, v) −
∑

v′∈V

[d(W, v′)− d(w, v′)]+

= d(w, v) − p(w)

From Lemma 3, we have ĉ(v) = fw − p(w) + d(w, v) =
fw + ∆Φ. Therefore,

∑

v∈V ĉ(v) = Φ +
∑

w∈W fw. The
lemma follows since Φ ≥ 0.

In the next lemma, we use Corollary 1 to upper bound
the total credit of the requests in V .

Lemma 5. Let V be the set of requests. Then
∑

v∈V

ĉ(v) ≤ (log(n)+1)
∑

w∈W∗

fw+(2 log(n)+1)
∑

v∈V

d(W ∗, v)

Proof: Let Ci be an optimal cluster with cache ci
and ni ≡ |Ci| be the number of requests in Ci. For
each request vj ∈ Ci, let Wvj be the set of caches
caching the content just before vj arrives. Note that
d(W ∗, vj) = d(ci, vj), ∀vj ∈ Ci.

The credit of each request vj is ĉ(vj) ≤
min{d(Wvj , vj), fci + d(W ∗, vj)} (using Lemma 3).
For the first request, ĉ(vj) ≤ fci + d(W ∗, vj). For the
remaining requests vj , j ≥ 2, we use Corollary 1 to get

ĉ(vj) ≤ d(Wvj , vj)

≤ d(Wvj , ci) + d(ci, vj)

≤
1

j − 1
[fci + 2

∑

vj∈Ci

d(W ∗, vj)] + d(ci, vj)

Summing over all vj , we get

ni
∑

j=1

ĉ(vj) ≤ fci + [fci + 2
∑

vj∈Ci

d(W ∗, vj)]

ni
∑

j=2

1

j − 1

+

ni
∑

j=1

d(W ∗, vj)

≤ (log(ni) + 1)fci + (2 log(ni) + 1)

ni
∑

j=1

d(W ∗, vj)

The lemma follows by summing over all clusters.
Now we are ready to prove the algorithm’s competi-

tive ratio

Theorem 2. The competitive ratio of the online algorithm is
no more than 4 log(n+ 1) + 2.

Proof: From Lemma 2, we have
∑

v∈V

d(W, v) ≤ log(n+ 1)
∑

w∈W∗

fw

+ (2 log(n+ 1) + 1)
∑

v∈V

d(W ∗, v)

and from Lemmas 4 and 5, we have
∑

w∈W

fw ≤ (log(n)+1)
∑

w∈W∗

fw+(2 log(n)+1)
∑

v∈V

d(W ∗, v)

Combining the two bounds we get
∑

w∈W

fw +
∑

v∈V

d(W, v) ≤ (2 log(n+ 1) + 1)
∑

w∈W∗

fw

+ (4 log(n+ 1) + 2)
∑

v∈V

d(W ∗, v)

≤ (4 log(n+ 1) + 2)C∗
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4.7 Lower Bound

To prove the lower bound of the competitive ratio of
any online algorithm under our settings, we measure
the competitive ratio of the online algorithm against
an oblivious adversary. For a deterministic algorithm,
the adversary knows how the algorithm works, so the
adversary can always generate an input sequence such
that the deterministic algorithm performs worst on that
input. For a randomized algorithm, the adversary knows
the algorithm’s code, but does not know the randomized
result of the randomized algorithm, so the performance
of the randomized algorithm is not worse than the
performance of the deterministic algorithm against the
same adversary. This means that a lower bound on the
competitive ratio of the randomized algorithm is also a
lower bound on the competitive ratio of the determin-
istic algorithm. In the next theorem, we show that the
competitive ratio of any randomized online algorithm is

lower bounded by Ω( log(n)
log(log(n)) ).

The proof of the lower bound is done by showing an
example, such that any online algorithm executed on
this example cannot get a competitive ratio less than

log(n)
log(log(n)) . Therefore, the best competitive ratio achieved

by any online algorithm is log(n)
log(log(n)) . Moreover, the

performance we consider is the worst-case performance,
so one counter-example is sufficient.

Theorem 3. Under our settings, the best competitive ratio
achieved by any randomized online algorithm against an

oblivious adversary is lower bounded by Ω( log(n)
log(log(n)) ).

Proof: We prove the theorem through an example.
Let T be a complete binary tree of height H such that:

• Each vertex represents a base station.
• Each edge between two vertices represent the UA

cost between the corresponding directly-connected
base stations.

• The UA cost from the root to each of its children is
D.

• On every path from the root to a leaf, the cost drops
by a factor of m on every step.

• The UA cost from vertex i to vertex k is the aggre-
gated cost of the edges from i to k.

• The caching cost of every non-leaf vertex is set to
infinity, while the caching cost of the leaves is set to
f .

The height of a vertex is the number of edges on the
path to the root. The cost from a vertex of height h to
each of its children is D

mh . The tree is shown in Fig. 2.
For a vertex z, let Tz denote the subtree rooted at

vertex z. We observe the following:

• The cost from a vertex of height h to any vertex in
Tz is at most mD

(m−1)mh , which is the UA cost from
vertex z to a leaf in Tz .

• The cost from a vertex z of height h to any vertex
not in Tz is at least D

mh−1 , which is the cost from a
vertex z to its parent.

By Yao’s principle [29], it suffices to show that there
is a probability distribution over the request sequence,
for which the ratio of the expected cost of any deter-
ministic online algorithm to the expected optimal cost is

Ω( log(n)
log(log(n)) ).

To define an appropriate probability distribution, we
divide the request sequence into H + 1 phases. Phase 0
consists of 1 request located at the root. After the end of
phase h, 0 ≤ h ≤ H , if zh is not a leaf, the adversary
selects zh+1 uniformly at random and independently
between the two children of zh. Phase h + 1 consists of
mh+1 requests located at zh+1.

The total number of requests is at most m
m−1m

H , which
must not exceed n. The optimal solution is to cache the
content at zH , and each phase h except for the last one,
incurs a UA cost of at most mD

m−1 . Therefore, the optimal

total cost is at most f +H mD
m−1 .

Now, let Alg be any deterministic online algorithm,
and let h, 0 ≤ h ≤ H − 1, be any phase except for the
last one. We fix the adversary’s random choices z0, . . . , zh
up to the end of phase h, and consider the expected cost
paid by Alg for requests and caches not in Tzh+1

.
If Alg did not cache the content at any cache located

in Tzh at the moment the first requests in zh+1 arrives,
then the content was cached at a cache located in T /Tzh
from a previous phase. Therefore, the UA cost for the

requests located at zh ∈ Tzh/Tzh+1
is at least mhD

mh−1 = mD,
since these requests has to retrieve the content by going
through the parent zh. Otherwise, since zh+1 is selected
uniformly at random and independently between zh’s
children, then, with a probability of at least 1/2, there is
at least one cache located in Tzh/Tzh+1

that cached the
content. Therefore for every fixed choice of z0, . . . , zh, the
expected cost paid by Alg for requests and caches not in
Tzh+1

is at least min{mD, f/2}, in addition to the costs
for requests and caches not located in Tzh .

Hence, at the beginning of phase h, 0 ≤ h ≤ H , the
expected cost paid by Alg for requests and caches not
in Tzh is at least hmin{mD, f/2}. For the last phase,
Alg incurs an additional cost of at least min{mD, f} for
requests and caches in TzH .

For m = H and f = HD, the total expected cost of
Alg is at least hmin{HD,HD/2} + min{HD,HD} ≤
hHD

2 + HD = HD h+2
2 , while the optimal cost is at

most HD 2H−1
H−1 . Hence the competitive ratio is lower

bounded by Ω(H). We also have the constraint that the

total number of requests, which is at most HH+1

H−1 must

not exceed n. Setting H = ⌊ log(n)
log log(n)⌋ yields the claimed

lower bound (see the Appendix).

5 SIMULATION RESULTS

5.1 Settings

In this section, we compare three caching schemes:
the online collaborative scheme described in Section 4,
the optimal offline collaborative caching scheme rep-
resented by the ILP formulation described in Section
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Fig. 2: Tree structure used in the proof of Theorem 3.

3 and computed using CPLEX [30], and the optimal
offline non-collaborative caching scheme, which does not
allow collaboration among the base stations, and can be
formulated in a similar way to our ILP formulation.

The simulations are run on a random topology, where
the base stations are uniformly distributed in a square
area of size 50× 50 square kilometers and there is a link
between two base stations if the distance between them
is less than a certain threshold. If we associate a UA cost
between any two directly connected base stations, then
for any two base stations i, k, T k

ij can be computed using
the path with the minimum UA cost between i and k. We
set the number of contents M to 20, where each content
has a size chosen uniformly at random from the set {10,
11, . . . , 20}MB. The popularity of each content at each
base station is chosen according to a Zipf distribution
[31], with parameter ζ, where the popularity of a content

of rank j is given as 1/jζ
∑

M
m=1 1/mζ

. We assume that content

ranking in a base station is different and independent
from the ranking in other base stations (i.e. content j
may be ranked first in a base station but ranked fifth in
another base station). The results in all of the figures are
the average of 100 runs.

5.2 Results with Accurate Estimation of Content
Popularities

We study the effect of changing different parameters on
the cost of all schemes. In Fig. 3(a), we study the effect
of changing the number of base stations. As can be ob-
served from the figure, the cost of the non-collaborative
scheme is at least 4 times and 3 times that of the cost of
the offline and the online collaborative schemes, respec-
tively. We also observe that the offline non-collaborative
scheme cost increases at a higher rate than the col-
laborative schemes when we increase the number of
base stations. The reason behind the above observations
is that a base station in the non-collaborative scheme
has to retrieve the content from the Internet, if the
base station did not cache the content. On the other
hand, the base station in the collaborative scheme can
retrieve the content from a nearby base station that has
the requested content. This shows the scalability of the
collaborative caching schemes. Therefore, it is crucial to
enable collaboration among the base stations, which is

not done in most of the previous work as described
above.

In Fig. 3(b), we study the effect of changing the
Zipf distribution parameter ζ. First, we observe that the
cost of the non-collaborative scheme is at least 3 times
the cost of the offline collaborative scheme, and varies
between 1 to 3 times the cost of the online collabo-
rative scheme, as the non-collaborative scheme cannot
retrieve a content from a nearby base station. Second,
we observe that the offline non-collaborative scheme cost
decreases as ζ increases. This is because as ζ increases,
less number of contents are requested more often, and
the non-collaborative scheme caches the most popular
files. Third, we observe that the offline collaborative
scheme cost does not change much as ζ increases. This
is because the offline collaborative scheme can retrieve
contents from nearby base stations.

In Fig. 3(c), we study the effect of changing the
average caching cost. First, we observe that the cost
of the non-collaborative scheme is at least 2 times the
cost of both of the offline and the online collaborative
schemes. Second, we observe that the total cost of the
non-collaborative scheme increases at a higher rate than
the collaborative schemes as the average caching cost
increases. The reason behind both observations is that
the non-collaborative scheme does not allow content re-
trieval from nearby base stations, which means that each
content may be cached at more than one base station,
which increases the total caching cost. On the other hand,
the collaborative schemes tend to cache each content
at a single base station, and all other base stations can
retrieve the content without caching an additional copy
of the content or retrieve it from the Internet.

Moreover, in Fig. 3(c), we start with a caching cost
that is less than the attrition cost (i.e. fkj < T k

ij), then
we increase the caching cost until it becomes larger than
the attrition cost (i.e. fkj > T k

ij). We can see a tradeoff
between the caching cost and the attrition cost in this
figure for the non-collaborative caching scheme. In the
non-collaborative scheme, the content is either cached
or retrieved from the Internet. When the caching cost
is low, all base stations tend to cache the content and
thus achieving low cost. As the caching cost increases,
the base stations tend to retrieve the contents from the
Internet instead of caching. However, retrieving from
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Fig. 4: Total cost of all schemes vs average number of
users.

the Internet is costly. On the other hand, when the
caching cost is large, the collaborative caching scheme
tends to retrieve from nearby base stations. Thus the
collaborative caching scheme achieves lower cost than
the non-collaborative caching scheme.

From all of the plots in Fig. 3, we note that enabling
collaboration among base stations has a significant im-
pact on the cost reduction. We also note that the cost
of the online collaborative scheme is very close to the
cost of the optimal offline collaborative scheme, with
a maximum degradation of three folds, and that the
online collaborative scheme can achieve a cost reduction
of four folds over the cost of the offline non-collaborative
scheme.

In Fig. 4, we study the impact of increasing the average
number of users at each base station on the cost of each
scheme. As can be seen from the figure, the cost of
the online collaborative scheme is less than that of the
cost of the non-collaborative caching scheme. This is due
to the collaborative property of the online collaborative
scheme, where a content can be retrieved from a nearby
base station.

In Fig. 5, we measure the per demand cost savings
percentage of the collaborative schemes with respect to
the non-collaborative scheme. Here, we measure the cost
of the collaborative schemes for 100 different sets of
demands. For each set of demand, we normalize the
cost of the collaborative schemes with respect to the
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Fig. 5: The empirical CDF of the per demand cost savings
percentage with respect to the non-collaborative scheme.

cost of the non-collaborative scheme, and then subtract
it from 1. Denote the cost of the offline collaborative
and the offline non-collaborative for the r-th set of
demands as Ccol(r) and Cnon(r), respectively. We com-
pute the per demand cost savings as Rcol(r) = (1 −
Ccol(r)
Cnon(r)

) × 100%. After that, the empirical CDF of the

vector [Rcol(1), Rcol(2), . . . , Rcol(100)] for the 100 sets of
demands is plotted. We do the same process for the
online collaborative scheme. From the figure, we observe
that the relative cost savings between the offline col-
laborative scheme and the online collaborative scheme
is similar among all sets of demands. We also observe
that the online collaborative cost savings varies between
65% to 75%. The reason is that the non-collaborative
scheme cannot retrieve cached contents from another
base station.

5.3 Results with Errors in Estimating the Contents
Popularities

In Fig. 6, we repeat the simulations as in Fig. 3, when
a 50% error margin is introduced to the popularity
estimation. Formally speaking, we generate two sets
of requests, the estimated requests set and the actual
requests set, where the estimated requests γ̂ij are cho-
sen randomly from a uniform distribution in the range
[0.5γij, 1.5γij ]. We use the set of estimated requests to
solve the collaborative and the non-collaborative caching
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Fig. 6: Total cost of all schemes with 50% error margin in popularity estimation.
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percentage with respect to the non-collaborative scheme
with 50% error margin in popularity estimation.

optimization problems, then we calculate the total cost
based on the answer of the optimization problem and the
set of actual requests. In the online collaborative scheme,
the total cost is calculated using the actual requests,
since the online collaborative scheme works when a new
request for a content arrives at a base station.

In Fig. 6(a), we study the effect of changing the num-
ber of base stations. As can be observed from the figure,
the offline and online collaborative schemes can achieve
a cost reduction of at least 500% and 100% over the cost
of the non-collaborative scheme, respectively. We also
observe that the offline non-collaborative scheme cost
grows at a higher rate than the collaborative schemes
as the number of base stations increases. The reason
is that an error in estimating the contents popularities
may cause the non-collaborative scheme not to cache the
correct contents, in which case the contents are retrieved
from the Internet. On the other hand, the collaborative
scheme can retrieve the contents from a nearby base
station that has the requested contents.

In Fig. 6(b), we study the effect of changing the Zipf
distribution parameter ζ. First, we observe that the cost
of the non-collaborative scheme is increased by at least
3-fold compared to the cost of the offline collaborative
scheme, and the cost of the non-collaborative scheme
can increase up to 10-fold compared to the cost of the
online collaborative scheme. This is because the non-
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Fig. 8: The empirical CDF of the per demand cost
savings percentage of the online collaborative scheme
with respect to the offline collaborative scheme with 50%
error margin in popularity estimation.

collaborative scheme cannot retrieve a content from a
nearby base station. Second, we observe that the offline
non-collaborative scheme cost decreases as ζ increases.
This is because as ζ increases, less number of contents are
requested more often, and the non-collaborative scheme
caches the most popular files. Last, we observe that the
offline collaborative scheme cost does not change much
as ζ increases. This is because the offline collaborative
scheme can retrieve contents from nearby base stations.

In Fig. 6(c), we study the effect of changing the average
caching cost. First, we observe that the cost of the non-
collaborative scheme is at least 3 times the cost of both of
the offline and the online collaborative schemes. Second,
we observe that the total cost of the non-collaborative
scheme increases at a higher rate than the collabora-
tive schemes as the caching cost increases. The reason
behind both observations is that the non-collaborative
scheme prohibits retrieving the contents from nearby
base stations, which means that each content may be
cached at more than one base station, which increases the
total caching cost. On the other hand, the collaborative
schemes tend to cache each content at a single base sta-
tion, and all other base stations can retrieve the content
without caching an additional copy of the content or
retrieve it from the Internet.

In Fig. 7, we repeat the simulation as in Fig. 5, when
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Fig. 9: Total cost of all schemes with errors in content ranking estimation.

a 50% error margin is introduced to the popularity
estimation. We observe that due to the error margin in
popularity estimation, there is a small variance in the
cost savings of the offline collaborative scheme over the
offline non-collaborative scheme. We also observe that
the online collaborative scheme cost savings varies be-
tween 71% to 76% over the cost of the non-collaborative
scheme in all sets of demands.

Fig. 8 shows the per demand cost savings percentage
of the online collaborative schemes with respect to the
offline collaborative scheme when the number of base
stations is set to 10, the Zipf distribution parameter ζ is
set to 1.1, the average caching cost is set to 200, and a 50%
error margin in popularity estimation is introduced. The
per demand cost savings percentage is calculated in a
similar manner to that in Fig. 5. From the figure, we note
that the online collaborative scheme can outperform the
offline collaborative scheme in 40% of the demand sets,
and it can achieve around 22% of cost savings over the
offline collaborative scheme. This is because the offline
collaborative scheme may consider an unpopular content
to be popular due to the inaccuracies in estimating the
contents popularities. On the other hand, the online
collaborative scheme is not affected by the inaccuracies
in estimating content popularities, as it makes a caching
decision when a new request for a content arrives at a
base station.

In Fig. 9, we repeat the simulations as in Fig. 3 when
we introduce errors in estimating the contents ranking.
The results are averaged over 20 runs. In Zipf popu-
larity distribution, lower ranking number means higher
popularity. To introduce the errors in estimating contents
ranking, we generate two sets of requests, the estimated
requests set and the actual requests set. The estimated
requests set is generated by changing the contents rank-
ing at each base station randomly. For example, if the
actual ranking of a content at a base station is fifth, then
the estimated ranking of the same content at the same
base station may be first.

From the figure, we note that the total cost of the
non-collaborative scheme varies between 2 times to 9

times of the total cost of the collaborative schemes as
the number of base station increases (Fig. 9(a)). As we
change the Zipf distribution parameter, the total cost
of the non-collaborative scheme is at least twice the
total cost of the collaborative schemes (Fig. 9(b)). Finally,
as the average caching cost increases, the total cost of
the non-collaborative scheme varies between 100% to
400% of the total cost of the collaborative schemes (Fig.
9(c)). The reason behind all these observation is that the
collaborative schemes have a lower total UA cost since
the collaborative schemes can retrieve the content from
a nearby base station.

Fig. 10 is similar to Fig. 7 when we introduce errors
in estimating the contents ranking. The results are for
20 different sets of demands. From the figure, we note
that the relative cost savings of the offline collaborative
scheme varies between 87% to 92% over all sets of
demands, while the relative cost savings of the online
collaborative scheme varies between 62% to 92% over
all sets of demands.

In Fig. 11, we measure the relative cost savings of the
online collaborative scheme to the offline collaborative
scheme over 20 different sets of demands, when we
introduce errors in estimating the contents ranking. From
the figure, we note that in 30% of the demand sets, the
total cost of the online collaborative scheme is less than
the total cost of the offline collaborative scheme. This is
mainly due to the inaccuracies in estimating the contents
ranking.

6 CONCLUSION

In this paper, we study the problem of content caching
in a collaborative multicell-coordinated system, with
the objective of minimizing the total costs paid by the
content providers. We formulate the problem of col-
laborative caching as an optimization problem, and we
prove that it is NP-complete. We also provide an online
algorithm for the problem. The online algorithm does
not require any knowledge about the content populari-
ties. Through extensive simulations, we show that the
collaborative caching schemes provide higher savings
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Fig. 10: The empirical CDF of the per demand cost
savings percentage of the online collaborative scheme
with respect to the offline collaborative scheme with
errors in content ranking estimation.
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Fig. 11: The empirical CDF of the per demand cost
savings percentage of the online collaborative scheme
with respect to the offline collaborative scheme with
errors in content ranking estimation.

than the non-collaborative caching scheme, which means
that applying the simple online algorithm is better than
solving the non-collaborative optimization problem. The
simulations also show that our online caching scheme
can also outperform the optimal offline collaborative
scheme when there are inaccuracies in estimating the
contents popularities.

APPENDIX

To show that setting H = log(n)
log log(n) will satisfy the

inequality HH+1

H−1 ≤ n, we show that setting H = log(n)
log log(n)

will satisfy HH+1

H/2 ≤ n.

≤
HH+1

H/2
≤ n

2HH ≤ n

H +H log(H) ≤ log(n)

Setting H = log(n)
log log(n) yields

log(n)

log log(n)
+

log(n)

log log(n)
log(

log(n)

log log(n)
) ≤ log(n)

1 + log(
log(n)

log log(n)
) ≤ log log(n)

1 + log log(n)− log log log(n) ≤ log log(n)

The last inequality holds when n ≥ 16.
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