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Abstract—Mobile users’ correlated mobility and data consumption patterns often lead to severe cellular network congestion in peak
hours and hot spots. This paper presents an optimal design of time and location aware mobile data pricing, which incentivizes users to
smooth traffic and reduce network congestion. We derive the optimal pricing scheme through analyzing a two-stage decision process,
where the operator determines the time and location aware prices by minimizing his total cost in Stage I, and each mobile user
schedules his mobile traffic by maximizing his payoff (i.e., utility minus payment) in Stage II. We formulate the two-stage decision
problem as a bilevel optimization problem, and propose a derivative-free algorithm to solve the problem for any increasing concave
user utility functions. We further develop low complexity algorithms for the commonly used logarithmic and linear utility functions. The
optimal pricing scheme ensures a win-win situation for the operator and users. Simulations show that the operator can reduce the cost
by up to 97.52% in the logarithmic utility case and 98.70% in the linear utility case, and users can increase their payoff by up to 79.69%

and 106.10% for the two types of utilities, respectively, comparing with a time and location independent pricing benchmark. Our study
suggests that the operator should provide price discounts at less crowded time slots and locations, and the discounts need to be
significant when the operator’s cost of provisioning excessive traffic is high or users’ willingness to delay traffic is low.

Index Terms—Wireless mobile data, time and location aware pricing, two-stage decision process, bilevel optimization.
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1 INTRODUCTION

C ISCO has predicated that the global mobile data de-
mand will grow at an anticipated annual growth rate of

61% from 2013 to 2018 [2], but the mobile cellular network
capacity has only been growing with an annual rate of
29% [3]. As a result, the total mobile data demand may
surpass the total network capacity globally very soon [4],
which could lead to significant performance deterioration
and customer satisfaction loss. In order to alleviate the
tension between supply and demand, the cellular operators
have been trying to increase the network capacity through
adopting new communication technologies (such as shifting
from 3G to 4G technologies) and obtaining more spectrum
(such as utilizing the TV white space for cellular commu-
nications [5]). Another equally promising approach is to
use economics mechanisms such as pricing to shape the
customer demand and fully utilize the existing network
resources [6].

One widely used pricing strategy for shaping cellular
data traffic is the usage-based pricing. For example, AT&T in
the USA has adopted a tiered usage-based monthly pricing
plan since 2010, with the current rate of charging $20 per
month for 300MB and $30 per month for 3GB of data
[7]. However, the current usage-based pricing scheme often
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computes mobile users’ network usage once every month,
and ignores the stochastic nature of traffic over time and
location.

From the cellular operator’s point of view, the aggre-
gate mobile data traffic varies significantly with time and
location, and there are easily identifiable peak hours and
crowded locations (such as business hours at commercial
buildings and night time in highly populated residential
areas) [8] [35]. In fact, a major cost for the cellular operator
is to cope with the peak demands at certain time slots
and locations; meanwhile, the network capacity is not fully
utilized at other time slots and locations. If a pricing scheme
is aware of such traffic stochastics and provides proper
incentives for users to shift traffic away from these time slots
and locations, it will lead to a win-win situation for both the
operator and users.

Time and location aware pricing is not completely new
in the industry. Some heuristic schemes of this type have
already existed in practice, such as MTN’s dynamic tariffing
in Africa and Uninor’s dynamic pricing in India, both of
which are designed for pricing voice calls [9]. The success
of these existing practices, together with the exploding wire-
less data demand, motivates us to provide a rigorous holistic
design of time and location aware pricing for wireless data
traffic. Notice that cellular operators usually charge data
traffic based on volume and charge voice calls based on call
durations, hence the optimal pricing schemes for these two
types of traffic will be very different.

The research results regarding time-aware (but location
independent) pricing for mobile data traffic only emerged
very recently. Reference [10] demonstrated the effectiveness
of time-aware pricing in terms of encouraging users to shift
traffic to later non-peak hours. Reference [11] illustrated the
possibility to use time-aware pricing to encourage users to
pre-download data before peak hours. However, neither of
them exploited the spatial dynamics of the traffic.

The only result regarding location-aware data pricing
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is the experiments from AT&T [12]. This pricing scheme
separates the whole network area into several regions, and
optimizes the prices for each region independently. Refer-
ence [12] demonstrated that a location-based pricing can
reduce network congestion, but did not provide analysis
regarding users’ mobilities, the impact of pricing on users’
payoffs, and the time dimension traffic variations.

The goal of this paper is to design a time and location
aware pricing scheme to provide benefits to both the cellular
operator and mobile users. Our main results and contribu-
tions are summarized as follows.

• Problem Formulation: To the best of our knowledge,
this is the first study regarding a holistic optimal
design of mobile data pricing in both time and spatial
domains. We capture the interactions between the
operator and users as a two-stage decision process,
considering users’ global and local mobility patterns
in the spatial domain and users’ delay preference in
the time domain.

• Optimal Algorithm Design: We formulate the time and
location aware pricing problem as a bilevel optimiza-
tion problem. The solution of the problem depends
on the choice of users’ utility functions. We propose
to use the derivative-free algorithm as a general
approach to solve the bilevel optimization problem,
with general increasing concave utility functions.

• Customized Low Complexity Algorithm Design: We also
propose easily implementable low complexity algo-
rithms, for two commonly used utility functions.
In particular, we propose the nonmonotone spectral
projected gradient algorithm for the logarithmic util-
ity case, and an algorithm combining the penalty
idea and the block coordinate descent strategy for
the linear utility case.

• Significant Performance Improvement: Simulations
show that both the cellular operator and users benefit
from the time and location aware pricing scheme.
In the logarithmic utility case, the cellular operator
reduces the extra cost for provisioning the peak
traffic by 97.52%, and users increase their payoffs
by 79.69%, comparing with a time and location in-
dependent pricing benchmark. In the linear utility
case, the cellular operator reduces the cost by up to
98.70%, and users increase their payoffs by up to
106.10%.

• Industry Insights: Simulation results show that the op-
erator will generally provide price discounts at less
crowded time slots and locations, and the discounts
need to be significant when the operator’s cost of
provisioning excessive traffic is high or the users’
willingness to delay traffic is low.

The rest of this paper is organized as follows. We intro-
duce the two-stage decision model in Section 2. In Section 3,
we present several algorithms for solving both the general
problem and the special cases with logarithmic and linear
utility functions. We verify the effectiveness of the proposed
pricing scheme and analyze the impact of system parame-
ters in Section 4. We finally conclude in Section 5.

 

Stage II: mobile users schedule the data usage in the 

scheduling interval to maximize their payoff. 

Stage I: the operator optimizes the prices at all 

locations within  𝑇0 time slots to minimize the cost. 

Fig. 1. Two-stage decision process.
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Fig. 2. An example with T0 = 12 and T = 4. A user active at time slot 3
can schedule his data at time slots 3, 4, 5, and 6 in set T3. A user active
at time slot 10 can only schedule his data at time slots 10, 11, and 12 in
set T10.

2 SYSTEM MODEL

We consider a cellular mobile network, where the cellular
operator determines prices and mobile users decide their
mobile data consumptions based on the prices. We assume
that mobile users are price-takers, who do not anticipate
the impact of their demands on the operator’s prices. Such
a price-taking behavior is reasonable, as the number of
subscribers is usually large for a single operator, and the
impact of a single user on the entire network is negligible.

We capture the above sequential interactions between
the operator and users as a two-stage decision process. Dur-
ing Stage I, the operator announces the prices for different
time slots (e.g., different hours) and different locations (cor-
responding to the coverage areas of different base stations).
In Stage II, each user decides his mobile data usage over
time, based on the prices and his own mobility. Figure
1 shows the two-stage decision process. Notice that the
existing commercial time and location independent usage
based pricing scheme (such as the one used by AT&T) is a
special case of the more general model in this paper.

Time Domain Modeling: In the time domain, the operator
makes the pricing decisions in Stage I, for an entire period
of T0 = {1, 2, . . . , T0} time slots. In Stage II, when a user
becomes active in time t ∈ T0

1, he can schedule the mobile
data consumption during one or more of the following time
slots: Tt = {t, t+ 1, . . . , Tt}, where Tt = min{t+T − 1, T0}.
We call T the scheduling interval2, which is usually smaller
than the operator’s pricing span T0. Figure 2 shows an
example with T0 = 12 and T = 4.

Spatial Domain Modeling: In the spatial domain, we con-
sider users’ mobility patterns, which capture their daily
movement habits [13]. The cellular operator is able to con-
struct aggregate mobility profiles for the entire user popula-
tion based on historical measurements [14]. There are two

1. For simplicity, we focus on the downlink transmission from the
operator’s base stations to the users in this paper. The uplink transmis-
sion can be analyzed similarly with a more detailed discussions about
the interference management issues.

2. With a slight modification of the model, we can allow scheduling
interval to be both user and time dependent. This will not change the
major insights of our analysis.
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types of mobility profiles: the global (long-term) one which
captures users’ mobility at a larger time scale (say over a
day or a week, which corresponds to T0 time slots in this
paper), and the local (short-term) one which captures users’
mobility at a smaller time scale (say over several consecutive
time slots, which corresponds to T time slots in this paper).

We denote the set of locations in the network as L =
{1, 2, . . . , L}. The operator constructs the global mobility
profile for all users:

α = {α(t, l) : α(t, l) ≥ 0,

L∑
l=1

α(t, l) = 1, t ∈ T0, l ∈ L},

(1)
where α(t, l) represents the probability of users appearing
at location l at time slot t from a long-term point of view.
A type a user can make more precise predications for his
mobility across time slots and locations through the local
mobility profile:

βa =
{
βa(t′, l′|t, l) : βa(t′, l′|t, l) ≥ 0,

L∑
l′=1

βa(t′, l′|t, l) = 1,

t ∈ T0, l ∈ L, t′ ∈ Tt \ {t}, l′ ∈ L
}
. (2)

Here βa(t′, l′|t, l) represents the probability of a type a user
appearing at location l′ at time slot t′, given that he has
appeared at location l at time slot t. We will explain the user
type in more details in Section 2.1. In this paper, we assume
that users will follow their daily routines and will not change their
mobility patterns by responding to the prices.

Reference [14] provided more discussions regarding how
the operator can construct the mobility profiles by learning
users’ movement history. In this paper, we assume that α
and βa (for all a) are known system parameters3.

Since the cellular operator will make price decisions
based on users’ responses to prices, we will analyze the two-
stage decision process through backward induction.

2.1 Users’ Decision in Stage II
In Stage II, a user needs to schedule his data usage to
maximize his payoff (i.e., utility minus payment), given the
prices announced by the operator in Stage I:

p = {p(t, l) : t ∈ T0, l ∈ L} . (3)

Here p is a T0×Lmatrix, and its (t, l)-th entry p(t, l) denotes
the price per unit of data traffic at time t and location l.

A user’s utility depends on several factors, including a
utility function that characterizes the user’s satisfaction level
of consuming certain amount of data traffic in a single time
slot, the delay tolerance parameter δ ∈ [0, 1] that captures the
user’s willingness to wait, and the user’s mobility pattern
which predicts his locations in the next T time slots. We will
divide the user population into a set A = {1, 2, . . . , A} of
types4.We define the user type as follows.
Definition 1 (User Type). Users with the same utility func-

tion, delay tolerance parameter, and mobility profile
belong to the same user type.

3. We also consider the case where the mobility profiles have errors.
We use the idea of robust optimization to deal with the errors. Due to
space limit, we put it in Appendix A.

4. The operator can obtain the number of each type of users through
historical information or long-term learning [36].

2.1.1 Initial and Scheduled Demands
Consider a type a user who becomes active at time t and
location l with a demand of xinia (t, l) > 0 data traffic. The
superscript ini represents that this is the “initial” demand
before scheduling. If the prices announced by the operator
in Stage I are time and location independent, then the user
will consume xinia (t, l) amount of traffic immediately in time
slot t, as delaying the consumption will not increase the
utility or decrease the payment.

When prices are time and location dependent, the user
may choose to schedule the traffic to later time slots (and
hence at possibly different locations based on his mobility)
to maximize his payoff. We denote the traffic that a type a
user shifts from time t and location l to time t′ and location
l′ as xa(t′, l′|t, l). The traffic shift decisions form a vector:

xa(t, l) = {xa(t, l|t, l), xa(t′, l′|t, l), t′ ∈ Tt \ {t}, l′ ∈ L} .
(4)

Recall that Tt = {t, t + 1, . . . , Tt}. Basically, if the user
decides to use the data at the current time slot t, then the
location can only be l (which is known). We denote this
amount of data as xa(t, l|t, l). If the user chooses to use the
data at one of the future time slots in Tt \ {t}, then the
possible locations are determined by the mobility pattern.

Furthermore, we assume that a user’s total demand does
not change through scheduling (in the expected sense), i.e.,

xinia (t, l) = xa(t, l|t, l) +

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)xa(t′, l′|t, l).

(5)
Here βa(t′, l′|t, l) is the local mobility profile defined in (2).

2.1.2 Utility, Payment, and Payoff Maximization
Next we characterize how the user will calculate the utility,
payment, and payoff based on the scheduled traffic.

We denote a type a user’s utility function as ua(·). Due to
the principle of diminishing marginal returns [15], [16], we
assume that the utility function is increasing and concave.
For mathematically simplicity, we further assume that ua(·)
is smooth (continuously differentiable).

Under the “initial” data traffic consumption (before
scheduling), a type a user’s utility by consuming xinia (t, l)
data traffic is ua(xinia (t, l)).

Under the new consumption profile xa(t, l) (after
scheduling), a type a user’s new perceived utility is calcu-
lated by the Discounted Utility Model (DUM)5 in behavioral
economics [17]. The discounted utility accounts for the
future discounted value of a good in its present value, by
exponentially discounting the value according to the delay
[18]. The DUM is commonly used in modeling users’ in-
tertemporal choice, as it captures users’ psychological fac-
tors in time preference by a single discount rate. Hence with
the scheduled traffic, the user’s utility for the consumption
profile xa(t, l) can be written as (6) (on the top of next page).

5. As an example, we consider a user who watches a movie, which
corresponds to the consumption of xm amount of data. Under the
“initial” traffic consumption, he obtains a utility u(xm). However, if he
schedules to watch half of the movie immediately and the other half of
the movie one hour later, his perceived utility is u(0.5xm)+ δu(0.5xm)
for the new traffic consumption profile. Here δ is the exponentially
discounting parameter.
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U(xa(t, l)) = ua(xa(t, l|t, l)) +

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)δt
′−t
a ua(xa(t′, l′|t, l)). (6)

P (xa(t, l)) = p(t, l)xa(t, l|t, l) +

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)p(t′, l′)xa(t′, l′|t, l). (7)

The utility U(xa(t, l)) captures the decrease of util-
ity due to delay through the delay tolerance parameter
δa ∈ [0, 1]. Users of different types may have different delay
tolerances. Users who are less patient will have a smaller
delay tolerance parameter δa, and are less willing to delay
his traffic in exchange for a smaller payment.

For practical methods of estimating users’ delay toler-
ance and utility, we refer interested readers to [10] and [19].
In this paper, we assume that these parameters have been
estimated accurately and are known.

A user’s (expected) usage-based payment with the
scheduled traffic is calculated in (7).

The user’s objective is to maximize his payoff (i.e., utility
minus payment) by choosing the best traffic scheduling
decision. Mathematically, a type a user who has an initial
demand of xinia (t, l) at time t and location l needs to solve
the following traffic scheduling problem:

Problem 1: User’s Traffic Scheduling Problem
max U(xa(t, l))− P (xa(t, l))

s.t. (5) and xa(t, l) ≥ 0 (8)
var: xa(t, l) defined in (4).

The constraint xa(t, l) ≥ 0 in (8) requires the scheduled data
traffic vector xa(t, l) to be component-wise nonnegative.

Since the utility function ua(·) is smooth and concave,
Problem 1 is a smooth convex optimization problem. There-
fore, the KKT conditions of Problem 1 shown in (9)–(13)
(on the top of next page) are sufficient and necessary for its
global optimality. Here λa(t, l) is the Lagrangian multiplier
associated with the equality constraint (5) in Problem 1. We
can see from the KKT conditions that if βa(t′, l′|t, l) = 0,
then xa(t′, l′|t, l) = 0 is a solution. Intuitively, if the mobility
pattern suggests that the user will never go to a position l′

at time slot t′, e.g., βa(t′, l′|t, l) = 0, then naturally the user
will set xa(t′, l′|t, l) = 0.

Notice that if the utility function is strictly concave (e.g.,
the logarithmic utility function), then the optimal solution
of Problem 1 is unique; while if the utility function is
not strictly concave (e.g., the linear utility function), then
the optimal solution of Problem 1 might not be unique,
which implies that a user may have more than one optimal
scheduling decision. To overcome this technical difficulty,
we assume that the operator can guide the user to choose
one particular solution that the operator prefers (if Problem
1 has multiple optimal solutions)6. This does not affect the

6. One way to achieve this is that the operator provides recommen-
dation to the user through a mobile app. The operator can compute the
optimal scheduling solution for the user, and send the best recommen-
dation to the user. The TUBE mobile app designed in [10] can be used
to achieve the above functionalities.

user’s maximum achievable payoff, but will make discus-
sions later on considerably cleaner.

2.2 The Cellular Operator’s Decision in Stage I
In Stage I, the operator needs to optimize the time and
location dependent prices to minimize his cost, considering
the impact on the users’ scheduling decisions in Stage II.

2.2.1 The Cellular Operator’s Cost
We will consider two types of cost for the network operator:
the cost of provisioning demand exceeding capacity, and the
price discounts offered to the users as incentives.

Cost of Previsioning Excessive Demand: When the data
traffic exceeds the network capacity at a particular time slot
and location, the operator will incur a significant additional
cost to accommodate the extra traffic. Such a cost can be
in two forms: (i) some of the traffic may not be delivered
immediately, hence the users will experience a degraded
Quality-of-Service due to an excessive delay, which in turn
may lead to user churn and reduce the operator’s revenue in
the long run; (ii) the operator may need to obtain additional
network resources at an extra cost, such as offloading to
WiFi networks belonging to a different operator, or tem-
porally leasing spectrum from other cellular operators [20].
When the total scheduled user demand (from all user types)
at time slot t and location l is xaft(t, l) (calculated in (14),
on the top of next page), the cost of satisfying additional
demand exceeding a capacity C is [10]:

f(xaft(t, l)) = γmax
{
xaft(t, l)− C, 0

}
.

Here γ is the cost for serving an additional unit of traffic
beyond the capacity.

Cost due to Price Discount: When the cellular operator in-
centivizes users to shift traffic to less crowded time slots and
locations through offering a price discount, the operator also
experiences a loss of revenue. This can be viewed as another
type of cost. Let us consider a benchmark flat-rate usage-
based pricing p0, which is time and location independent
following most operators’ practice today. We assume that
the cellular operator can only provide discounts, but cannot
charge prices higher than the benchmark (i.e., p(t, l) ≤ p0).
Recall our time and location aware prices are given in (3).
Then the discount at time t and location l is p0 − p(t, l) ≥ 0.
The constraint of providing discounts ensures that the new
pricing scheme can only reduce the cost of the users, and
hence will be embraced by users and supported by regu-
lators during actual implementation. Moreover, since not
providing any discounts is a feasible choice, the operator
will not experience a total cost higher than today’s time
and location independent pricing benchmark. Hence the
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p(t, l)− u′a(xa(t, l|t, l)) + λa(t, l) ≥ 0, xa(t, l) ≥ 0, (9)

βa(t′, l′|t, l)
[
p(t′, l′)− δt

′−t
a u′a(xa(t′, l′|t, l)) + λa(t, l)

]
≥ 0, t′ ∈ Tt \ {t}, l′ ∈ L, (10)

xinia (t, l) = xa(t, l|t, l) +

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)xa(t′, l′|t, l), (11)

xa(t, l|t, l) [p(t, l)− u′a(xa(t, l|t, l)) + λa(t, l)] = 0, (12)

xa(t′, l′|t, l)βa(t′, l′|t, l)
[
p(t′, l′)− δt

′−t
a u′a(xa(t′, l′|t, l)) + λa(t, l)

]
= 0, t′ ∈ Tt \ {t}, l′ ∈ L. (13)

xaft(t, l) =

A∑
a=1

xafta (t, l) =

A∑
a=1

xa(t, l|t, l) +

t−1∑
t′′=max{t−T+1,1}

L∑
l′′=1

βa(t, l|t′′, l′′)xa(t, l|t′′, l′′)

 , t ∈ T0, l ∈ L. (14)

“discount-only” pricing scheme leads to a win-win situation
for both the operator and users.

When the price for time slot t and location l is p(t, l), the
loss of revenue of serving the users’ scheduled traffic at time
slot t and location l is:

(p0 − p(t, l))xaft(t, l). (15)

Here xaft(t, l) is all users’ usage in time slot t at location l
after scheduling.

2.2.2 The Cellular Operator’s Price Optimization
The cellular operator’s goal is to minimize his expected
total cost across all time slots, locations, and user types,
considering the global mobility pattern α defined in (1).

Let us denote the optimal solutions of Problem 1 as
x∗a(t, l) for t ∈ T0, l ∈ L, and a ∈ A. Notice that x∗a(t, l)
depends on the price p, that is, it is a function of p. After
scheduling, the optimal total amount of usage at time slot t
and location l of all types of users, denoted as xaft∗(t, l),
can be calculated by (14), given x∗a(t, l).

Problem 2: The Operator’s Price Optimization Problem

min
T0∑
t=1

L∑
l=1

α(t, l)
[
f
(
xaft∗(t, l)

)
− p(t, l)xaft∗(t, l)

]
s.t. 0 ≤ p(t, l) ≤ p0, t ∈ T0, l ∈ L (16)
var: p(t, l), t ∈ T0, l ∈ L.

Some remarks on Problem 2 are as follows. First, we
remove the term p0

∑
t,l x

aft∗(t, l) from the objective of
Problem 2, compared with (15). This is because scheduling
does not change the total traffic, i.e.,

p0

∑
t,l

xaft∗(t, l) = p0

∑
t,l,a

xaft∗a (t, l) = p0

∑
t,l,a

xinia (t, l).

Second, since x∗a(t, l) is a function of the price p, it follows
that the price p is the only decision variable of Problem
2. Third, whether we can obtain the explicit expression of
x∗a(t, l) in terms of p depends on the utility function ua(·).
It turns out that if the utility functions are logarithmic and
linear functions, we can obtain the closed-form expression
of x∗a(t, l) with respect to p. We will further discuss this in
Sections 3.2 and 3.3. For general concave utility functions,

we can combine Problems 1 and 2, and reformulate it as an
equivalent bilevel problem.

2.3 Problem Reformulation

The two-stage decision problems (Problem 1 and Problem 2)
can be equivalently reformulated as a bilevel optimization
problem. In a bilevel optimization problem [21], a lower-
level problem is embedded into an upper-level optimiza-
tion problem. In this paper, the cellular operator’s pricing
problem (Problem 2) is the upper-level one, and the users’
scheduling problem (Problem 1) is the lower-level one.

When the lower-level problem is convex, its optimal
solution can be characterized by the necessary and sufficient
KKT conditions, which can be embedded into the high-level
problem and lead to the bilevel optimization formulation.
By substituting the KKT conditions (9)–(13) into the opera-
tor’s pricing Problem 2, we obtain the bilevel problem:

Problem 3: Bilevel Pricing and Scheduling Problem

min
T0∑
t=1

L∑
l=1

α(t, l)
[
f
(
xaft(t, l)

)
− p(t, l)xaft(t, l)

]
s.t. (9)− (13), (14), (16)

var: p(t, l), λa(t, l), xa(t, l), xaft(t, l), t ∈ T0, l ∈ L, a ∈ A.

Problem 3 is a nonconvex quadratic program.
Key notations of our model are summarized in Table 1.

TABLE 1
KEY NOTATIONS

Symbol Physical Meaning Eq.
α Global mobility profile (1)
βa Local mobility profile of the type a user (2)
p Price announced by the operator (3)

xinia (t, l)
Initial demand of the type a user

at time slot t and location l before scheduling (5)

xa(t, l)
Traffic shift decision vector of the type a user

at time slot t and location l (4)

xaft(t, l)
Total scheduled demand from all types of users

at time slot t and location l after scheduling (14)

λa(t, l) Lagrangian multiplier associated with (5) (9)–(13)
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3 MODEL SOLUTION

In this section, we propose efficient algorithms for solving
the bilevel pricing and scheduling problem (Problem 3). In
Section 3.1, we first present a general solution approach
which can be applied to solve the heterogenous case with
any increasing concave utility functions. Then in Sections 3.2
and 3.3, we propose customized low complexity algorithms
for two special homogenous utility cases by judiciously
exploiting the structures of the problem.

3.1 A General Solution Approach

In this subsection, we propose a general solution approach
for Problem 3, which can be applied to the heterogenous
case with general increasing concave utility functions.

In Problem 3, the design variables are data usage
xa(t, l), xaft(t, l), KKT multipliers λa, and price p for all
t ∈ T0, l ∈ L, a ∈ A. In fact, we know from (9)–(13),(14)
that xa(t, l), xaft(t, l) and λa are all functions of p. Hence,
Problem 3 can be seen as an optimization problem with
regard to p by eliminating the variables xa(t, l), xaft(t, l)
and λa. More specifically, Problem 3 is equivalent to the
following Problem 4, with the variable being p.

Problem 4
min H(p)

s.t. (16)
var: p(t, l), t ∈ T0, l ∈ L,

where H(p) is the optimal value of the following problem

Problem 5

min
T0∑
t=1

L∑
l=1

α(t, l)
[
f
(
xaft(t, l)

)
− p(t, l)xaft(t, l)

]
s.t. (9)− (13), (14)

var: λa(t, l), xa(t, l), xaft(t, l), t ∈ T0, l ∈ L, a ∈ A.

Problem 4 is a box-constrained optimization problem.
Next, we discuss the differentiability of H(p) with respect
to p and the calculation of H(p) for a given particular p,
since both of them play important roles in solving Problem
4.

The objective function H(p) of Problem 4 might not be
differentiable for some choices of utility functions ua(·). In
fact, when the utility function ua(·) is linear, H(p) in Prob-
lem 4 is discontinuous (and hence nondifferentiable) with
respect to p.An illustrative example is given in Appendix B,
which can be found in the supplemental material section of
the manuscript center. Therefore, it is generally impossible
to directly apply gradient-based methods to solve Problem
4.

Fortunately, computing H(p) for any given p, i.e., solv-
ing Problem 5 with a fixed p, is relatively simple. Problem
5 is a convex optimization problem, since its objective func-
tion is convex, and the constraint set is convex and is com-
posed of solutions of the users’ traffic scheduling problem
(Problem 1). More specifically, if the utility function ua(·) is
strictly concave (e.g., a logarithmic function), Problem 1 has
a unique solution, so Problem 5 has a unique feasible point.
Hence, solving Problem 5 is equivalent to solving convex

Problem 1 and thus simple. If the utility function ua(·) is
linear, Problem 1 is a linear program, so the constraint of
Problem 5 is a polyhedral set. Since the objective function
of Problem 5 is piecewise linear with respect to xa(t, l),
Problem 5, after introducing some auxiliary variables, is a
linear program. Hence, if the utility function ua(·) is linear,
solving Problem 5 is also simple.

The above analysis motivates us to use the derivative-
free algorithm [22] to solve Problem 4. The derivative-
free algorithm, as a general solution approach, can solve
Problem 4 with various types of increasing concave utility
functions.

We propose to use the recently developed DYCORS
(DYnamically COordinate search using Response Surface
models) algorithm [23], which is one of the derivative-free
algorithms, to solve Problem 4. The DYCORS algorithm is
designed to solve the box-constrained large-scale optimiza-
tion problem. The basic idea of the DYCORS algorithm is to
build and maintain a surrogate model [24] of the objective
function at each iteration, and generate trial solutions by
using a dynamic coordinate search strategy. The next iterate
is selected from a set of random trial solutions obtained by
perturbing only a subset of the coordinates of the current
best solution, which is helpful in finding the global mini-
mum. Moreover, the probability of perturbing a coordinate
decreases as the algorithm reaches the computational bud-
get.

In Algorithm 1, we denote n0 as the number of space-
filling design points, n as the number of previously evalu-
ated points,m as the number of trial points in each iteration,
An = {p1, . . . ,pn} as the set of previously evaluated points,
and sn(p) as the response surface model built by using the
points in An. We denote Nfmax as the maximum number
of function evaluations allowed, and a strict decreasing
function ϕ(n) as the probability of perturbing a coordinate
whose values are in [0, 1]. Detailed discussions on the choice
of these parameters can be found in [23].

Algorithm 1 DYCORS Algorithm for Problem 4
Input: problem inputs p0, T0, L,A,α, γ, C, {βa, δa}a∈A

and algorithm inputs n0, I = {p1, . . . ,pn0
},m,Nfmax.

Output: p∗.
1: Evaluate H(p) at the initial points I = {p1, . . . ,pn0

}.
2: Let p∗ be the best point found so far. Set n = n0,An =
I .

3: while n < Nfmax do
4: Fit/update a response surface model sn(p) using the

data points in Bn = {(p, H(p)) : p ∈ An}.
5: Determine the probability ϕ(n).
6: Generate trial points Ωn = {yn,1, . . . ,yn,m} by:
7: (1) Select the coordinates to perturb.
8: (2) Randomly generate the trial points.
9: (3) Project the trial points onto the feasible set (16) (if

necessary).
10: Select the next iterate pn+1 from Ωn that minimizes

sn(p).
11: Compute H(pn+1) by solving convex Problem 5.
12: If H(pn+1) < H(p∗), then p∗ = pn+1.
13: Set An+1 = An ∪ {pn+1}, and reset n = n+ 1.
14: end while
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Theorem 1. If the objective function of Problem 4 is continu-
ous, then the sequences {pn} generated by the DYCORS
algorithm converge to the global minimum with proba-
bility one as Nfmax →∞.

Proof 1. Detailed proof can be found in [23], Section 2.

The DYCORS algorithm is powerful, in the sense that
it can be used to solve a very general class of Problem 4
with various types of increasing concave utility functions.
However, the algorithm often suffers slow convergence, as it
does not exploit the special structures of the problem. More-
over, for the algorithm to converge to the global minimum,
the objective of the corresponding problem is required to
be continuous. This requirement, however, is not satisfied
for Problem 4 with some choice of the utility function ua(·)
(e.g., the linear utility). In the following two subsections, we
consider two special homogenous utility cases, and design
tailored algorithms for Problem 4 by judiciously exploiting
the corresponding problems’ structures. According to the
characteristics of users’ wireless applications, the utility
function ua(·) can be either a linear function (such as file
transfer [25]) or a strict concave function (elastic applications
such as FTP and HTTP [26], [27]). We first consider the ho-
mogeneous case where the utility functions are logarithmic,
and then consider the homogeneous case where the utility
functions are linear.

3.2 Homogeneous Logarithmic Utility
In this subsection, we study the homogeneous case where
all users’ utility functions are logarithmic. We assume that
the utility function for a type a user is

ua(x) = ka log(1 + x),

where ka is a type specific parameter.
The user’s traffic scheduling problem with the logarith-

mic utility function in Stage II is a strict convex problem.
By solving its KKT conditions, we can obtain the explicit
expression of xa(t, l) in terms of the price p as follows:

xa(t, l|t, l) = max

{
ka

p(t, l) + λa(t, l)
− 1, 0

}
, (17)

xa(t′, l′|t, l) = max

{
kaδ

t′−t
a

p(t′, l′) + λa(t, l)
− 1, 0

}
, (18)

where t′ ∈ Tt \ {t}, l′ ∈ L. Here the KKT multiplier λa(t, l)
should be chosen such that (11) is satisfied. By substituting
(17) and (18) into (11), we see that the right hand side of
(11) is a monotonically decreasing function with respect
to λa(t, l). Hence we can use the binary search7 to find
the desired λ∗a(t, l) satisfying (11). The efficiency of the
binary search heavily depends on the initial search interval
containing λ∗a(t, l). Below we provide a lower bound and an
upper bound of the desired λ∗a(t, l):

ka
xinia (t, l) + 1

− p(t, l) ≤ λ∗a(t, l) ≤ ka.

Derivations of upper and lower bounds can be found in
Appendix D.

7. The complexity of binary search is O(log 1
ε
), where ε is the length

of the final search interval. In our simulations, we set ε = 10−6.
The impact of different choices of ε on the algorithm performance is
presented in Appendix C.

For the logarithmic utility case, the objective function
H(p) in Problem 4 can be obtained by substituting the
optimal x∗a(t, l|t, l) in (17) and x∗a(t′, l′|t, l) in (18) into (14).
Although in this case H(p) in Problem 4 is continuous with
respect to p, it is still nondifferentiable due to the max
operator in (17) and (18). To take advantage of the explicit
expressions of (17) and (18) and circumvent the difficulty of
nondifferentiability of H(p) with respect to p, we propose
a smoothing gradient-based method to solve Problem 4. In
particular, we propose to smooth the objective H(p) first,
and then use the efficient spectral projected gradient method
to solve the smoothed problem.

More specifically, we will approximate the max function
θ(x) = max{x, 0} by the following smoothing function:

θ̃(x;µ) =
1

2

(
x+

√
x2 + µ

)
, (19)

where the smoothing parameter µ is a sufficiently small
positive number. It can be verified that

0 ≤ θ̃(x;µ)− θ(x) ≤
√
µ

2
.

This implies that θ̃(x;µ) uniformly converges to θ(x) as µ
goes to zero8.

Using (19), we smooth the operator’s cost function
f(·) and the user’s optimal scheduled traffic xa(t, l), both
containing the max operator. For notational simplicity, we
denote the smoothed cost function and the scheduled traffic
as f̃(·;µ) and x̃a(t, l), and the smoothed new usage as
x̃afta (t, l) (which is a linear combination of x̃a(t, l)). We thus
obtain a smoothed problem of Problem 4, which we denote
as Problem 6:

Problem 6: Smoothed Problem

min H̃(p;µ)

s.t. (16)
var: p(t, l), t ∈ T0, l ∈ L.

The objective function of Problem 6 is given in (20) (on the
next page), where λ̃∗a(t, l) should be chosen such that (21) is
satisfied. Note that λ̃∗a(t, l) can be computed by the binary
search in the same fashion as λ∗a(t, l).

Problem 6 is a smooth box-constrained optimization
problem. We propose to use the nonmonotone spectral
projected gradient (SPG) algorithm (on the next page) [28]
to solve Problem 6. The pseudocode for the SPG algorithm
is presented in Algorithm 2, where Proj is the projection
operator.

Three distinctive advantages of the SPG algorithm in the
context of solving Problem 6 are as follows. First, the box
constraint (16) is easy to project onto, and thus the SPG
algorithm can be easily implemented to solve Problem 6.
Second, since the SPG algorithm requires only the gradient
information but not the high-order derivative information,
it is suitable for solving large-scale optimization problems.
Last but not least, the nonmonontone line search and the
special choice of the stepsize make the SPG algorithm
converge very fast and thus enjoy a quite good numerical

8. Uniform convergence implies that for any ε > 0, there exists a µ̄
such that |θ̃(x;µ)− θ(x)| < ε, for all µ ≤ µ̄ and x.
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H̃(p;µ) =

T0∑
t=1

L∑
l=1

α(t, l)
[
f̃
(
x̃aft∗(t, l);µ

)
− p(t, l)x̃aft∗(t, l)

]
, (20)

where

x̃aft∗(t, l) =

A∑
a=1

x̃aft∗a (t, l) =

A∑
a=1

x̃∗a(t, l|t, l) +

t−1∑
t′′=max{t−T+1,1}

L∑
l′′=1

βa(t, l|t′′, l′′)x̃∗a(t, l|t′′, l′′)

 , t ∈ T0, l ∈ L,

x̃∗a(t, l|t, l) = θ̃

(
ka

p(t, l) + λ̃∗a(t, l)
− 1;µ

)
, t ∈ T0, l ∈ L, a ∈ A,

x̃∗a(t′, l′|t, l) = θ̃

(
kaδ

t′−t
a

p(t′, l′) + λ̃∗a(t, l)
− 1;µ

)
, t ∈ T0, l ∈ L, a ∈ A, t′ ∈ Tt \ {t}, l′ ∈ L.

xinia (t, l) = x̃a(t, l|t, l) +

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)x̃a(t′, l′|t, l), t ∈ T0, l ∈ L. (21)

performance. The nonmonontone line search (Line 6 in
Algorithm 2) does not require the objective values mono-
tonically decreasing at each iteration, which makes the trial
points much easier to be accepted and is helpful in prevent-
ing the algorithm getting stuck at a local minimizer. The
spectral stepsize (αk+1 in Line 16 of Algorithm 2) minimizes
‖αsk − yk‖2, and thus provides a two-point approximation
of the secant equation underlying Quasi-Newton methods
[29], which often enjoy superlinear convergence rates.

Theorem 2. Any accumulation point9 of the sequence gener-
ated by Algorithm 2 is a KKT point10 of Problem 6.

Proof 2. Detailed proof can be found in [28], Theorem 2.4 in
Section 2 on Page 6. Note that Algorithm 2 in this paper
is named SPG2 in [28].

Now the only left question for applying the SPG algo-
rithm (Algorithm 2) to solve Problem 6 is the calculation
of the gradient ∇H̃(p;µ) of the smooth objective function
H̃(p;µ). It turns out that ∇H̃(p;µ) can be calculated by
using the implicit function theorem (albeit the dependence
of λ̃∗a(t, l) satisfying (21) on p cannot be explicitly written).
According to the composite rule of differentiation, we can
calculate the gradient of the smoothed objective function in
Problem 6 with respect to p as in (22) (on the top of next
page). Notice that∇p(t, l) = Et,l in (22), where Et,l denotes
the T ×L matrix with all entries being zero except the (t, l)-
th entry being one. Now, to compute ∇H̃(p;µ), we only
need to compute ∇λ̃∗a(t, l) for t ∈ T and l ∈ L. Next, we
apply the implicit function theorem to show the existence of
∇λ̃∗a(t, l) and compute ∇λ̃∗a(t, l).

It is simple to check that the right hand side of (21), as
a function of λ̃a(t, l), strictly decreases as λ̃a(t, l) increases.
Hence, the derivative of the right hand side of (21) with
respect to λ̃a(t, l) is not equal to zero. By the implicit
function theorem, we know∇λ̃∗a(t, l) exists. Then, by taking
derivatives with respect to p on both sides of (21), we obtain

∇x̃∗a(t, l|t, l) +

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)∇x̃∗a(t′, l′|t, l) = 0.

9. An accumulation point is a point which is the limit of a subse-
quence.

10. A KKT point is a point which satisfies the KKT conditions of the
optimization problem [29].

Substituting (23) and (24) (on the next page) into the above
equation, we can obtain ∇λ̃∗a(t, l).

Algorithm 2 SPG Algorithm for Problem 6
Input: problem inputs p0, T0, L,A,α, γ, C, {βa, δa}a∈A

and algorithm inputs α0, αmin, αmax,M, ξ, σ1, σ2, ε, µ.
Output: pµ.

1: Let pµ = p0.

2: while ||Proj
(
pk −∇H̃(pk;µ)

)
− pk|| > ε do

3: Compute dk = Proj
(
pk − αk∇H̃(pk;µ)

)
− pk.

4: Set η ← 1.
5: Set p+ = pk + ηdk.
6: while H̃(p+;µ) > max

0≤j≤min{k,M−1}
H̃(pk−j ;µ)

+ ξη
〈
dk,∇H̃(pk;µ)

〉
do

7: Find ηnew ∈ [σ1η, σ2η], set η ← ηnew.
8: Set p+ = pk + ηdk.
9: end while

10: Let ηk = η, pk+1 = p+,
sk = pk+1 − pk, yk = ∇H̃(pk+1;µ)−∇H̃(pk;µ).

11: Compute bk = 〈sk,yk〉.
12: If H̃(pk+1, µ) < H̃(pµ), then pµ = pk+1.
13: if bk ≤ 0 then
14: Set αk+1 = αmax.
15: else
16: Compute ak = 〈sk, sk〉 and

αk+1 = min{αmax,max{αmin, ak/bk}}.
17: end if
18: end while

From the above analysis, as the parameter µ goes to zero,
H̃(p, µ) uniformly converges toH(p). Moreover, the solution
of Problem 6 also converges to the solution of Problem 4
[30]. Therefore, when the parameter µ is very close to zero,
the solution pµ of Problem 6 returned by Algorithm 2 will
be very close to the one of Problem 4.

Finally, when applying the SPG algorithm to solve Prob-
lem 6, we employ the continuation technique [31]. That is,
to obtain an approximate solution of Problem 4, we solve
Problem 6 with a series of gradually decreasing values for
µ, instead of using a small fixed µ. It turns out the continu-
ation technique can reasonably improve the computational
efficiency.
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∇H̃(p;µ) =

T0∑
t=1

L∑
l=1

α(t, l)
[
∇f̃

(
x̃aft∗(t, l);µ

)
−∇p(t, l)x̃aft∗(t, l)− p(t, l)∇x̃aft∗(t, l)

]
, (22)

where

∇f̃
(
x̃aft∗(t, l);µ

)
=
γ

2

1 +
x̃aft∗(t, l)− C√

(x̃aft∗(t, l)− C)
2

+ µ

∇x̃aft∗(t, l),
∇x̃aft∗(t, l) =

A∑
a=1

∇x̃aft∗a (t, l),

∇x̃aft∗a (t, l) = ∇x̃∗a(t, l|t, l) +

t−1∑
t′′=max{t−T+1,1}

L∑
l′′=1

βa(t, l|t′′, l′′)∇x̃∗a(t, l|t′′, l′′),

∇x̃∗a(t, l|t, l) =
−ka

(
∇p(t, l) +∇λ̃∗a(t, l)

)
2
(
p(t, l) + λ̃∗a(t, l)

)2

1 +

ka
p(t,l)+λ̃∗a(t,l)

− 1√(
ka

p(t,l)+λ̃∗a(t,l)
− 1
)2

+ µ

 , (23)

∇x̃∗a(t, l|t′′, l′′) =
−kaδt−t

′′

a

(
∇p(t, l) +∇λ̃∗a(t′′, l′′)

)
2
(
p(t, l) + λ̃∗a(t′′, l′′)

)2

1 +

kaδ
t−t′′
a

p(t,l)+λ̃∗a(t′′,l′′)
− 1√(

kaδ
t−t′′
a

p(t,l)+λ̃∗a(t′′,l′′)
− 1
)2

+ µ

 . (24)

3.3 Homogeneous Linear Utility
In this subsection, we consider the homogeneous case with
the linear utility function, i.e., ua(x) = ρax, where ρa is
a type specific parameter. In this case, the users’ traffic
scheduling problem (Problem 1) reduces to
max (ρa − p(t, l))xa(t, l|t, l) (25)

+

Tt∑
t′=t+1

L∑
l′=1

(
δt
′−t
a ρa − p(t′, l′)

)
βa(t′, l′|t, l)xa(t′, l′|t, l)

s.t. (5) and xa(t, l) ≥ 0

var: xa(t, l) defined in (4).

The optimal solution of problem (25) is:

{xa(t, l) ≥ 0 : xa(t, l) satisfies (5),

and xa(t′, l′|t, l) = 0 if δt
′−t
a ρa − p(t′, l′) < υ(t, l)}, (26)

where
υ(t, l) = max

(t′,l′)∈{(t,l)}∪{Tt\{t}×L}

{
δt
′−t
a ρa − p(t′, l′)

}
. (27)

If there is only one element in {(t, l)} ∪ {Tt \ {t} × L} such
that the maximum in (27) is achieved, then problem (25)
has a unique solution; otherwise problem (25) has multiple
solutions.

To overcome the computational difficulty of Problem 3
(with the linear utility function), we propose to penalize the
complementarity constraints (12) and (13) to the objective
function with a parameter τ . This transforms Problem 3 to
Problem 7.
Problem 7: Penalty-Based Problem

min

T0∑
t=1

L∑
l=1

α(t, l)
[
f
(
xaft(t, l)

)
− p(t, l)xaft(t, l)

]
+ τ

A∑
a=1

T0∑
t=1

L∑
l=1

[
φa(t, l|t, l) +

Tt∑
t′=t+1

L∑
l′=1

φa(t′, l′|t, l)

]
s.t. (9)− (11), (14), (16)

var: p(t, l), λa(t, l),xa(t, l), xaft(t, l), t ∈ T0, l ∈ L, a ∈ A.

Here φa(t, l|t, l) and φa(t′, l′|t, l), corresponding to the com-
plementarity constraints, are as follows:

φa(t, l|t, l) = [p(t, l)− ρa + λa(t, l)]xa(t, l|t, l),

φa(t′, l′|t, l) =
[
p(t′, l′)− δt

′−t
a ρa + λa(t, l)

]
xa(t′, l′|t, l)

· βa(t′, l′|t, l).
Problem 7 is equivalent to Problem 3 (with the linear

utility function) as long as the penalty parameter τ is
sufficiently large. This is because in Problem 7 we are trying
to minimize the summation of two terms, one is the original
objective function of the total cost in Problem 3, and the
other is the penalized term of linear complementary con-
straints. Intuitively, when the penalty parameter is sufficient
large, the latter one will dominate the former one, and we
will minimize the latter one with higher priority and the
former one with a lower priority. The above intuition is
formally stated in the following theorem.
Theorem 3. There exists a τ0 > 0, such that Problem 7 with

any τ ≥ τ0 and Problem 3 with the linear utility function
share the same local minimizers and KKT points.

Proof 3. Detailed proof can be found in [29], Theorems 17.3
and 17.4 in Chapter 17.

The threshold value τ0 in Theorem 3 is unknown in
practice. However, we can choose it through a trial and
error process. We can start with an initial estimation of
τ , solve Problem 7 (using Algorithm 3 discussed below)
until convergence, and check whether the complementarity
constraints (12) and (13) are satisfied at the solution. If yes,
then we are done; otherwise we increase τ and then solve
Problem 7 again.

Although Problem 7 is still nonconvex due to the non-
convex objective function, all of its constraints are convex,
and the variables are decoupled in the constraints. This
motivates us to use the block coordinate descent (BCD) algo-
rithm to solve Problem 7 [32]. The key idea of the BCD algo-
rithm is to partition variables in Problem 7 into two blocks:
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{p,λa}a∈A and {xa(t, l), xaft(t, l)}t∈T0,l∈L,a∈A. When we
fix the variables in one block, Problem 7 becomes a linear
programming problem of variables in the other block, and
thus can be solved efficiently (to its optimality). Then we
iteratively solve the variables in two blocks until the algo-
rithm converges. Algorithm 3 provides the details of the
BCD algorithm11.

Algorithm 3 BCD Algorithm for Problem 7
Input: problem inputs p0, T0, L,A,α, γ, C, {βa, δa}a∈A

and algorithm inputs τ, ε0.
Output: p.

1: Initialization: ε =∞
2: while ε > ε0 do
3: Solve Problem 7 in terms of variables {p,λa}a∈A,

assuming other variables are fixed.
4: Solve Problem 7 in terms of variables

{xa(t, l), xaft(t, l)}t∈T0,l∈L,a∈A, assuming other
variables are fixed.

5: ε is the relative tolerance of the new and old xa.
6: end while

The complexity of solving the linear program problem
[33] with respect to the variables {p,λa}a∈A (Line 3 in Algo-
rithm 3) isO

(
(T0TL

2A)1.5(T0LA)2
)
, and the complexity of

solving the linear program problem with respect to the vari-
ables {xa(t, l), xaft(t, l)}t∈T0,l∈L,a∈A (Line 4 in Algorithm
3) is O

(
(T0TL

2A)1.5(T0TL
2A)2

)
. The complexity of the

entire BCD algorithm is still an open problem [34]. However,
the BCD algorithm converges very fast in practice, and most
of the objective improvement is achieved in the first few
iterations.

The proposed BCD algorithm can be easily imple-
mented, since we can use a mature linear programming
solver to solve each step. The algorithm is guaranteed to
converge to a KKT solution, which is in general the best we
can do for the general NP-hard problems.
Theorem 4. The sequence generated by Algorithm 3 globally

converges to a KKT point of Problem 7.

Proof 4. Proof can be found in [32], Sections 4 and 5.

4 SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
time and location aware pricing scheme for the two homoge-
nous utility scenarios.12 For each scenario, we illustrate both
the effectiveness of the proposed pricing scheme and the
impact of various system parameters.

4.1 Homogeneous Logarithmic Utility Scenario

4.1.1 The Effectiveness of Our Pricing Scheme
In this part, we first compare the performance of the SPG
algorithm with that of the DYCORS algorithm. Then we use

11. The parameter ε is the relative error, and ε0 is the relative error
tolerance which is a small positive number. In our simulations, we set
ε0 = 10−6.

12. We also simulate a time-dependent pricing algorithm and com-
pare it with our proposed time and location aware pricing scheme. Due
to space limit, we put it in Appendix E.

TABLE 2
COMPARISON BETWEEN SPG AND DYCORS (A SMALLER OBJECTIVE

MEANS A BETTER PERFORMANCE)

instances
(T0 × L)

SPG Algorithm DYCORS Algorithm
obj. value cpu time obj. value cpu time

instance 1
(8× 3)

-476.4558 0.1404 -476.1956 90.2466

instance 2
(8× 3)

-397.6181 0.0936 -397.4685 90.3714

instance 3
(8× 3)

-527.4697 0.1092 -527.2909 87.6570

instance 4
(10× 3)

-664.9654 0.1872 -664.3879 126.6884

instance 5
(10× 3)

-447.4030 0.2028 -447.1550 133.7241

instance 6
(10× 3)

-635.6959 0.1872 -635.4643 111.1975

instance 7
(12× 3)

-776.1302 1.1544 -775.4417 386.0401

instance 8
(12× 3)

-621.9934 1.0608 -621.6543 392.7481

instance 9
(12× 3)

-544.1266 0.9984 -543.8739 388.0246

instance 10
(24× 3)

-1552.6 3.6192 -1551.8 1845.0

instance 11
(24× 3)

-1330.4 3.2604 -1329.9 2002.7

instance 12
(24× 3)

-1496.3 3.1512 -1495.6 1870.9

an example to illustrate the effectiveness of the proposed
pricing scheme.

We compare the performance of our proposed SPG al-
gorithm (Algorithm 2) with that of the DYCORS algorithm
with Nfmax = 2000, by testing these two algorithms on
some randomly generated instances. Table 2 shows the
detailed comparison. Simulation results show that the SPG
algorithm can (almost) always find the global optimal solu-
tion13, with much less CPU time compared to the DYCORS
algorithm.

To test the effectiveness our pricing scheme and gain
more insights, we perform simulations based on real data
from references [13] [14]. Figure 14 shows the initial traffic
pattern under time and location independent pricing. The
length of each time slot is 1 hour. Each location corresponds
to the coverage area of one base station. The data is mea-
sured in 108 bytes. We assume that the network capacity
C = 5, the user’s scheduling interval T = 12, users’ utility
parameter ka = 1, and the time and location independent
price benchmark p0 = 1.

We set the operator’s cost parameter γ = 30 and the
users’ delay parameter δ = 0.6. Figure 4 shows the aggre-
gate shifted traffic under the optimized time and location
dependent pricing. Figure 5 shows the corresponding opti-
mized prices. The results in both figures are computed by
the SPG algorithm.

13. Notice that the SPG algorithm works slightly better than the
DYCORS algorithm in terms of objective values. This is because the
DYCORS algorithm does not use the gradient information and can
only find an approximate solution in the neighborhood of the optimal
solution with a given maximum number of function evaluations. The
quality of the returned solution by the DYCORS algorithm depends
on the maximum number of function evaluations. In contrast, the SPG
algorithm uses the gradient information and can find a relatively better
solution.
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Fig. 4. The shifted traffic under time and location
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Fig. 7. The impact of γ with δ = 0.8.
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Fig. 8. The impact of δ with γ = 1.

We can get some useful insights from the simulation
results. First, the traffic can be smoothed by using our pro-
posed time and location aware mobile data pricing scheme.
In this example, the variance of traffic14 is decreased by
62.65%. Second, our proposed pricing scheme leads to a
win-win situation for both the operator and users. The cellu-
lar operator can decrease its total cost (consisting of the cost
of demand exceeding capacity and the loss of revenue due
to discounts) by 95.45% (not directly shown in the figure).
More specifically, the operator only uses 4.55% of the initial
network cost (under the time and location independent
pricing) to provide price discounts to mobile users, and
completely avoid the cost of demand exceeding capacity
with the new optimized prices. Mobile users can increase
their aggregate payoff (utility minus payment) by 55.37%
through proper traffic scheduling and taking advantage of
the price discounts.

4.1.2 The Impact of System Parameters

We simulate and study how the average discount to the
users and the total demand exceeding capacity change with
the following two system parameters: the operator’s cost
parameter γ, and users’ delay parameter δ. The average
discount to the users is defined as∑T0

t=1

∑L
l=1

p0−p(t,l)
p0

T0L
,

14. The traffic variance is computed as
E
[
(xaft(t, l)− E[xaft(t, l)])2

]
.

and the total demand exceeding capacity is defined as

T0∑
t=1

L∑
l=1

max{x(t, l)− C, 0}.

Figure 6 (whose dimension is smaller than that of Figure
3, due to computation complexity) shows the benchmark
data traffic pattern under a time and location independent
pricing scheme. We assume that the network capacity C =
100 MB, users’ scheduling interval T = 12, the number of
user type A = 1, users’ utility parameter ka = 20, and the
benchmark price p0 = 1.

We first analyze the impact of the cellular operator’s cost
parameter γ.

The cellular operator’s goal is to minimize the total cost,
which includes both the cost of demand exceeding capacity
and loss of revenue due to discounts. When γ increases,
the operator has more incentives to offer deeper discounts
to prevent demand exceeding capacity. Figure 7 illustrates
how the average discount to the users (the black solid line)
and the total demand exceeding capacity (the blue dashed
line) change with γ, where users’ delay parameter δ = 0.8.

Figure 7 shows that the average discount offered by
the operator is in general an increasing function of γ. As
γ becomes large, the operator has more incentive to offer
a larger discount. When γ is large enough, the operator
has offered enough discount to the users to achieve the
maximum smoothing effect, and any larger discount will
not reduce the cost of demand exceeding capacity. Hence the
discount eventually converges to a constant (around 0.046
in Figure 7).
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Fig. 9. The usage under setting I (γ = 30 and
δ = 0.8) .
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Fig. 10. The usage under setting II (γ = 10 and
δ = 0.6).
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Fig. 11. Prices under two settings (upper: setting
I, lower: setting II).

Figure 7 also shows that the amount of demand exceed-
ing capacity is a monotonically decreasing function of γ. As
γ becomes larger, a larger discount from the operator will
reduce the amount of traffic exceeding the capacity. When γ
is large enough, the operator’s average discount no longer
changes, hence the traffic no longer changes and converges
to a constant (in this case zero traffic exceeding capacity).

In summary, the operator tends to provide a large dis-
count only when the demand exceeding capacity causes a
large cost due to large value of γ.

Then we analyze the impact of users’ delay parameter δ.
A user’s goal is to maximize his total payoff (utility mi-

nus payment). A larger δ means that the user is less sensitive
to delay, and is more willing to delay his traffic to exploit the
price discount. Figure 8 illustrates how the average discount
(i.e., the black solid line) and the total demand exceeding
capacity (i.e., the blue dashed line) change with δ, where
the operator’s cost parameter γ = 1.

Figure 8 shows that the average discount first increases
with δ (i.e., δ ∈ (0, 0.3]), then decreases (i.e., δ ∈ [0.3, 0.8]),
and finally goes to zero (i.e., δ ∈ [0.8, 1]). When δ > 0, it
is possible to incentivize the user’s behaviors by providing
a discount. With δ increasing in the interval (0, 0.3], the
operator will provide an increasingly larger discount to
encourage users to shift the traffic, because a user is more
willing to delay his traffic with a larger δ in this interval.
With δ increasing in the interval [0.3, 0.8], a user becomes
increasingly willing to shift his traffic even with a small
discount, and hence the operator’s optimal price discount
actually decreases. When δ is large enough, because of the
concavity of the logarithmic utility function, the user is
willing to spread out his traffic in multiple time slots to
maximize its utility even without a price incentive [17].
Hence, when δ ∈ [0.8, 1], there is no need for the operator to
provide a discount (under the current cost parameter γ = 1).

Figure 8 also shows that the amount of demand exceed-
ing capacity first decreases with δ (i.e., δ ∈ (0, 0.3]), then
remains stable (i.e., δ ∈ [0.3, 0.8]), and finally increases
(i.e., δ ∈ [0.8, 1]). With an increasing price discount for
δ ∈ (0, 0.3], the user is willing to delay more traffic which
induces a smoother usage pattern. When δ ∈ [0.3, 0.8], the
traffic pattern remains almost the same as it has already
been significantly flattened. When δ ∈ [0.8, 1], because of the
concavity of the logarithmic utility function, a user strongly
prefers to delay his traffic to later time slots to maximize
the utility, which may lead to newly created peak hours
under the current parameter setting γ = 1. Hence, with δ

increasing in [0.8, 1], more demand is delayed to the later
time slots which causes more demand exceeding capacity.

In summary, the operator only provides large price dis-
counts when users are not willing to delay their traffic (i.e.,
the case where δ is small).

4.2 Homogeneous Linear Utility Scenario
4.2.1 The Effectiveness of Our Pricing Scheme
In this part, we verify the effectiveness of the proposed
pricing scheme.15

We use the same network example shown in Figure 14
to illustrate the effectiveness of the BCD algorithm.

We simulate two different settings of parameters. Under
setting I, we set γ = 30 and δ = 0.95, and our proposed
time and location aware pricing (computed by the BCD
algorithm in Algorithm 3) leads to a shifted traffic pattern
as shown in Figure 9. Under setting II, we set γ = 10 and
δ = 0.7, and the corresponding shifted traffic pattern is
shown in Figure 10. Figure 11 shows the operator’s optimal
time and location aware prices for both settings, in which
the upper one corresponds to Figure 9, and the lower one
corresponds to Figure 10.

We can get some useful observations from the simulation
results. First, how much traffic can be smoothed heavily
depends on the system parameters. Under Setting I where
γ = 30 and δ = 0.8, the variance for data usage {x(t, l)}
is decreased by 56.39%. Under Setting II where γ = 10
and δ = 0.6, the variance for data usage is decreased by
46.11%. This is because a larger cost parameter γ makes
the operator more willing to provide price incentives, and
a larger delay tolerance parameter δ makes the users more
willing to delay the traffic. Second, our proposed pricing
scheme leads to a win-win situation for both the operator
and users. The cellular operator can decrease its total cost by
98.01% under setting I and 70.20% under setting II. Mobile
users can increase their payoff by 107.37% under setting I
and 102.80% under setting II.

4.2.2 The Impact of System Parameters
We use the same network example showed in Figure 6 to
analyze the impact of the operator’s cost parameter γ and
users’ delay parameter δ.

15. Numerical results show that the BCD algorithm can achieve
global optimality for small-scale problems, comparing with a bench-
mark branch and bound algorithm. Such a comparison becomes infea-
sible when the problem size becomes large, due to the high complexity
of the branch and bound algorithm.
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Fig. 13. The impact of δ with γ = 10.

We first analyze the impact of the cellular operator’s cost
parameter γ.

Figure 12 illustrates how the average discount to the
users (i.e., the black solid line) and the total demand ex-
ceeding capacity (i.e., the blue dashed line) change with γ,
where users’ delay parameter δ = 0.9.

Figure 12 shows that the average discount offered by
the operator is in general an increasing step function of γ.
It is increasing, as a larger cost γ encourages the operator
to give a larger discount. It is a step function, because a
user’s scheduling decision is not continuous with respect
to the price. There is an exception when γ = 3.4, where
the average discount decreases instead of increases with γ.
The reason is that under this particular parameter setting,
users choose to shift the traffic to immediate adjacent time
slots rather than slots at even later times, which leads to a
smaller discount.

Figure 12 also shows that the amount of demand exceed-
ing capacity is a monotonically decreasing function of γ. As
γ becomes larger, a larger discount from the operator will
reduce the amount of traffic exceeding the capacity.

Then we analyze the impact of users’ delay parameter δ.
Figure 13 illustrates how the average discount (i.e., the

black solid line) and the total demand exceeding capacity
(i.e., the blue dashed line) change with δ, where the opera-
tor’s cost parameter γ = 10.

Figure 13 shows that the average discount is a piecewise
function of δ, where most of the segments are decreasing in
γ (e.g., the segment corresponding to [0.6,0.7]). The reason
is that a segment corresponds to the same shifted usage
pattern, and a larger δ reduces the operator’s needs of pro-
viding price discounts. However, for the general trend of the
average discount, it first increases with δ (i.e., δ ∈ [0.3, 0.45])
and then decreases with γ (i.e., δ ∈ [0.45, 1]). When δ is very
small, there is no point of providing any discount to users,
as users are very unlikely to delay traffic. When δ increases
to the point that it is possible to incentive users’ behaviors,
there is a sharp increase of the discount. When δ is large
enough, the operator only needs to provide a small discount
to incentivize the users to shift to the desirable time slot.

Figure 13 also shows that the amount of demand ex-
ceeding capacity is a decreasing function of δ. There is a
special case when δ = 0.5. The main reason is that the
integrated problem not only considers users’ scheduling
problem, but also considers the operator’s pricing problem.
When δ = 0.5, we can see from the discount curve in Figure
13 that there is a sharp decrease of the offered discount,
which leads to a relatively small increase in the demand
exceeding capacity.

In summary, the logarithmic case and the linear case are
different. In the linear case, the objective function of the
operator is discontinuous with respect to the prices; while it
is continuous in the logarithmic utility case. As a result, the
operator’s optimal pricing and users’ scheduling traffic are
not smooth under the linear utility function, while they are
continuous under the logarithmic utility function. These are
consistent with our analysis in Sections 3.2 and 3.3.

5 CONCLUSION

In this paper, we study the time and location aware pricing
scheme for wireless mobile data networks. We use a two-
stage decision process to model the interaction between the
cellular operator and users. Simulation results show that our
time and location aware pricing scheme not only reduces the
operator’s cost but also increases users’ payoff. We further
derive some insights for industry practice. The operator
should provide price discounts at less crowded time slots
and locations to incentivize users to smooth their traffic. The
operator will only provide deep discount when the cost of
serving demand exceeding capacity is high, or when the
users’ willingness to delay traffic is low.

Our next step plan is to conduct large scale comprehen-
sive simulation studies of the algorithm performance based
on realistic mobile data usage traces, and create mobile apps
to further help users make automated traffic scheduling
decisions. The integration of WiFi and cellular (e.g., 4G)
networks is also a promising topic for future exploration.

APPENDIX A
ROBUST OPTIMIZATION CONSIDERING ERRORS IN
THE MOBILITY PRIFILES

We discuss the accuracy of the mobility profiles and the
impact of errors to the optimization.

First, Ghosh et al. claimed that the profile-based location
predictions are more accurate than a common statistical
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approach. Essentially, the mobility profiles take into account
the daily routes of mobile users. Furthermore, the methods
proposed in [14] can filter out noises (i.e., very brief location
stay durations) to achieve more accurate characterization of
mobility profiles.

We then discuss the impact of the errors to the optimiza-
tion. If the mobility profiles have errors, then these errors
will affect both the objective function and constraint of Prob-
lem 1. To highlight the dependence of the objective function
of Problem 1 on the mobility profiles, we write the objective
function of Problem 1 as U(xa(t, l),βa)− P (xa(t, l),βa).

To deal with the errors in the objective, we can use the
idea of robust optimization. Let Φa be the uncertainty set
of βa. Without loss of generality, we can model it as an
ellipsoid intersecting with a probability simplex. Instead of
maximizing the objective of Problem 1, we can maximize
the optimal value of problem

min
βa∈Φa

U(xa(t, l),βa)− P (xa(t, l),βa). (28)

To deal with the errors in the constraint, we introduce a
tolerance parameter ε > 0 and enforce∣∣∣∣∣xa(t, l|t, l) +

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)xa(t′, l′|t, l)− xinia (t, l)

∣∣∣∣∣
≤ ε, ∀ βa ∈ Φa. (29)

Note that the introduction of ε > 0 in the above is necessary,
since it is generally not possible for some xa(t, l) to satisfy
the linear constraint

xinia (t, l) = xa(t, l|t, l) +

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)xa(t′, l′|t, l)

for all βa ∈ Φa (unless Φa contains only a single point).
Therefore, when there are errors in the mobility profiles,

we can solve the following robust optimization problem
(instead of Problem 1)

max
xa(t,l)≥0

min
βa∈Φa

U(xa(t, l),βa)− P (xa(t, l),βa)

s.t.
∣∣∣xa(t, l|t, l) +

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)xa(t′, l′|t, l)

−xinia (t, l)
∣∣∣ ≤ ε, ∀ βa ∈ Φa.

(30)
When there are no errors in the mobility profiles, we can set
ε = 0 in Problem (30) and it reduces to Problem 1.

Problem (30) is a semi-infinite programming problem
[37], since it involves a finite number of variables and an
infinite number of constraints. Although it is hard to solve
Problem (30) analytically, we can numerically solve it, for
instance, by the DYCORS algorithm. This is because given
any xa(t, l), we can compute its objective value and check
its feasibility efficiently. Specifically, computing the objective
value of Problem (30) is equivalent to solving convex prob-
lem (28). Checking whether xa(t, l) is feasible to Problem
(30) requires solving the following problem:

max
βa∈Φa

|xa(t, l|t, l) +

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)xa(t′, l′|t, l)

−xinia (t, l)|
(31)

TABLE 3
SETUP OF THE EXAMPLE

Parameters Values
Total time slots T0 = 2
Total locations L = 1

Number of user types A = 1
Scheduling time interval T = 2

Global mobility profile α = [1 1]T

Local mobility profile β = [1 1]T

Unit cost for demand exceeding capacity γ = 1

Initial data traffic pattern xini = [1 1]T

Network capacity C = 1
Delay parameter δ = 1

The above problem can be solved by solving two convex
problems

min
βa∈Φa

−
Tt∑

t′=t+1

L∑
l′=1

βa(t′, l′|t, l)xa(t′, l′|t, l)

and

min
βa∈Φa

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)xa(t′, l′|t, l).

The key conclusion in our paper will not change if the
errors are relatively small. Specifically, the operator will
set higher prices at peak hours and crowded locations.
However, the mobility patterns may affect the operator’s
decision of when and where to provide the lower prices,
and how much to reduce the prices.

APPENDIX B
AN EXAMPLE OF DISCONTINUOUS H(p)

We consider a linear utility function ua(x) = x. In the setup
shown in Table 3, we evaluate H(p) at two different prices
p1 = [1 1 − ε]T and p2 = [1 − ε 1]T , where ε is a sufficient
small positive number. When p = p1, a user will schedule
his traffic as xaft = [0 2]T to maximize his payoff, and
H(p1) = 2ε− 1; while when p = p2, a user’s optimal traffic
(to maximize his payoff) is xaft = [1 1], and H(p2) = ε− 2.
Hence, a small change of p (4p = p1−p2 = [ε −ε]T ) leads
to a large change of H(p) (4H = H(p1) −H(p2) = 1 + ε
). This implies that the objective function H(p) of Problem
4 can be discontinuous (and hence nondifferentiable) with
respect to p.

APPENDIX C
THE IMPACT OF ε ON THE ALGORITHM PERFOR-
MANCE

We first introduce the general idea of binary search. We
take the binary search for λ∗a(t, l) as an example, with the
initial search interval [λLa , λ

U
a ], where λLa = λa(t, l) and

λUa = λ̄a(t, l). The general idea of the binary search is to
evaluate the value of function g(·) at the middle point of the
search interval, i.e., λMa =

λL
a +λU

a

2 . Here function g(·) is:

g(λa(t, l)) = xa(t, l|t, l) +

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)xa(t′, l′|t, l)

− xinia (t, l), (32)
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Fig. 14. Initial traffic of 24 time slots
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Fig. 16. Initial data usage under flat rate pricing

where

xa(t, l|t, l) = max

{
ka

p(t, l) + λa(t, l)
− 1, 0

}
, (33)

xa(t′, l′|t, l) = max

{
kaδ

t′−t
a

p(t′, l′) + λa(t, l)
− 1, 0

}
. (34)

If the function value at the middle point is equal to the
target value, i.e., g(λMa ) = 0, then the iteration ends and the
optimal solution is the middle point. Otherwise, we replace
the upper bound or lower bound of the search interval with
the middle point, hence shorten the length of the search
interval by half. The iteration process continues until the
optimal solution is found or the search interval is small
enough. After n iterations, the length of the search interval

is λa(t,l)−λ
a
(t,l)

2n . Mathematically, the process ends when the
length of the search interval is small enough, i.e.,

λa(t, l)− λa(t, l)

2n
≤ ε,

where ε is a small enough positive number. When the
iteration process ends, we choose the middle point as the
solution, i.e.,

λa(t, l) =
λLa + λUa

2
.

To find an ε-optimal solution, the binary search needs

dlog2(
λa(t,l)−λa(t,l)

ε )e iterations. Hence, the complexity of
binary search is O(log 1

ε ), which is polynomial in terms of
1
ε .

Now we discuss the error of the ε-optimal λa(t, l) gener-
ated by the binary search. If the target value is equal to the
function value at the middle point, then the middle point is
the optimal solution, and the error is zero. Otherwise, the
error of the ε-optimal λa(t, l) is [38], [39]:

∆ := |λa(t, l)− λ∗a(t, l)| ≤ λa(t, l)− λa(t, l)

2n+1
≤ 1

2
ε.

In our simulations, we set ε = 10−6.
To check the impact of ε on the performance of the

SPG algorithm, we perform simulations on the example in
Section 4.1.1, and Figure 14 shows the initial traffic pattern
under time and location independent pricing of the exam-
ple. The length of each time slot is 1 hour. Each location
corresponds to the coverage area of one base station. The

data is measured in 108 bytes. We assume that the network
capacity C = 5, the user’s scheduling interval T = 12,
users’ utility parameter ka = 1, and the time and location
independent price benchmark p0 = 1. We set the operator’s
cost parameter γ = 30 and the users’ delay parameter
δ = 0.6.

We calculate the operator’s total cost using the SPG al-
gorithm under different values of ε, i.e., ε = 10−2, ε = 10−3,
ε = 10−4, ε = 10−5, ε = 10−6, ε = 10−7, and ε = 10−8.
Figure 15 shows the optimal total cost obtained by the SPG
algorithm under different ε. Simulation results show that as
long as ε is not too large (i.e., ε ≤ 10−4), different choices of
ε will not affect the final results significantly.

APPENDIX D
DERIVATIONS OF UPPER AND LOWER BOUNDS OF
λ∗a(t, l)

On one hand, by substituting λa(t, l) = ka in (17) and (18),
it is simple to check

xa(t, l|t, l) +

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)xa(t′, l′|t, l) = 0,

which shows that λa(t, l) is an upper bound of the desired
λ∗a(t, l). On the other hand, by substituting

λa(t, l) =
ka

xinia (t, l) + 1
− p(t, l)

in (17) and (18), we obtain

xa(t, l|t, l) +

Tt∑
t′=t+1

L∑
l′=1

βa(t′, l′|t, l)xa(t′, l′|t, l)

≥ xa(t, l|t, l) = xinia (t, l).

This implies that λa(t, l) is a lower bound of the desired
λ∗a(t, l).

APPENDIX E
PERFORMANCE COMPARISON BETWEEN THE TIME
AND LOCATION AWARE PRICING SCHEME AND THE
TIME-DEPENDENT PRICING SCHEME

Here we simulate a time-dependent pricing algorithm [10]
and compare it with our proposed time and location aware
pricing scheme.
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Fig. 17. Usage under time and lo-
cation aware pricing (the logarithmic
utility case)
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Fig. 18. Usage under time-
dependent pricing (the logarithmic
utility case)
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Fig. 19. Usage under time and loca-
tion aware pricing (the linear utility
case)
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Fig. 20. Usage under time-
dependent pricing (the linear
utility case)

To see the comparisons clearly, we perform simulations
on a simple example with 8 time slots and 3 locations. From
Figure 13 in [13], we can directly read the user data usage
at three different base stations in one day. We aggregate the
data every 3 hours and get the following data usage pattern:

x0 =

 8 0 0 2 8 3 5 2
0 0 8 3 16 2 4 3
2 2 3 10 4 1 7 2

 .

Matrix x0 represents the initial data usage in 8 time slots at
three locations under flat rate pricing, as plotted in Figure
16. The length of each time slot is 3 hours. Each location
corresponds to the coverage area of one base station. The
unit of the data is 108 bytes.

We construct the mobility profile based on [14] and [40]
as follows:

α =

 0.2 0.15 0.1 0.3 0.4 0.4 0.3 0.3
0.1 0.05 0.2 0.4 0.5 0.4 0.3 0.2
0.7 0.8 0.7 0.3 0.1 0.2 0.4 0.5

 .

We further assume that the user’s traffic scheduling
interval T = 4 and the network capacity C = 5.

We first compare the performances of the two pricing
schemes in the homogeneous logarithmic utility case. We
assume that the cost parameter γ = 30 and the delay
tolerance parameter δ = 0.6. Figure 17 shows the new
data usage pattern under the proposed time and location
aware pricing scheme, and Figure 18 shows the new data
usage pattern under the time-dependent (but not location
aware) pricing scheme. We can see that the data usage
pattern under the time and location aware pricing scheme is
smoother than the pattern under the time-dependent pricing
scheme. Furthermore, the operator’s cost reduction under
the time and location aware pricing scheme is 97.58%, and
the cost reduction under the time-dependent pricing scheme
is 60.82%.

We then compare the performances of the two pricing
schemes in the homogeneous linear utility case. We assume
that the cost parameter γ = 30 and the delay tolerance
parameter δ = 0.95. Figure 19 shows the new data usage
pattern under the proposed time and location aware pricing
scheme, and Figure 20 shows the new data usage pattern
under the time-dependent (but not location aware) pricing
scheme. Similarly, the data usage pattern under the time and
location aware pricing scheme is smoother than the pattern
under the time-dependent pricing scheme. Furthermore, the
operator’s cost reduction under the time and location aware

pricing scheme is 97.06%, and the cost reduction under the
time-dependent pricing scheme is 63.56%.
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