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Distributed and Fair Beaconing Rate Adaptation
for Congestion Control in Vehicular Networks

Esteban Egea-Lopez and Pablo Pavon-Mariño

Abstract—Cooperative inter-vehicular applications rely on the exchange of broadcast single-hop status messages among vehicles,
called beacons. The aggregated load on the wireless channel due to periodic beacons can prevent the transmission of other types of
messages, what is called channel congestion due to beaconing activity. In this paper we approach the problem of controlling the
beaconing rate on each vehicle by modeling it as a Network Utility Maximization (NUM) problem. This allows us to formally apply the
notion of fairness of a beaconing rate allocation in vehicular networks and to control the trade-off between efficiency and fairness. The
NUM methodology provides a rigorous framework to design a broad family of simple and decentralized algorithms, with proved
convergence guarantees to a fair allocation solution. In this context, we focus exclusively in beaconing rate control and propose the
Fair Adaptive Beaconing Rate for Intervehicular Communications (FABRIC) algorithm, which uses a particular scaled gradient
projection algorithm to solve the dual of the NUM problem. The desired fairness notion in the allocation can be established with an
algorithm parameter. Simulation results validate our approach and show that FABRIC converges to fair rate allocations in multi-hop and
dynamic scenarios.

Index Terms—Vehicular Communications, beaconing congestion control, rate control, fairness, Network Utility Maximization.
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1 INTRODUCTION

INTER-VEHICLE communications based on wireless tech-
nologies pave the way for innovative applications in

traffic safety, driver-assistance, traffic control and other ad-
vanced services which will make up future Intelligent Trans-
portation Systems (ITS) [1]. Communications for Vehicular
Ad-Hoc Networks (VANET) have been developed and stan-
dardized in the last years. At the moment, a dedicated short
range communication (DSRC) bandwidth has been allocated
to vehicular communications at 5.9 GHz and both American
and European standards [2] have adopted IEEE 802.11p
[3] as physical and medium access control layers, based
on carrier-sense multiple access with collision avoidance
(CSMA/CA). These networks are characterized by a highly
dynamic environment where short-life connections between
vehicles are expected as well as adverse propagation condi-
tions leading to severe or moderate fading effects [4].

Cooperative inter-vehicular applications usually rely
on the exchange of broadcast single-hop status messages
among vehicles on a single control channel, which provide
detailed information about vehicles position, speed, head-
ing, acceleration, curvature and other data of interest [5].
These messages are called beacons and are transmitted peri-
odically, at a fixed or variable beaconing rate. Beacons provide
very rich information about the vehicular environment and
so are relatively long messages, between 250 and 800 bytes,
even more if security-related overhead is added [6]. In
addition, vehicles exchange other messages on the control
channel: service announcements and event-driven messages as a
result of certain events. For instance, emergency messages are
transmitted only when a dangerous situation is detected.
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The aggregated load on the wireless channel due to
periodic beacons can rise to a point where it can limit or
prevent the transmission of other types of messages, what
is called channel congestion due to beaconing activity. Control
schemes are required to prevent this situation and several
alternatives are available: adapting either the beaconing
rate, the transmission range, the transmission data rate,
the carrier sense threshold or a combination of some of
them [6]. In this paper we focus on the control of the
beaconing rate of each vehicle. The goal is to limit the
channel bandwidth used by beacons to ensure that the
remaining capacity is available to event-based messages.
The practical implementation of the system impose two
strong requirements on the control scheme, in addition to
keep the channel load under a desired level: first, to be
distributed and, second, to grant beaconing rates to each
vehicle in a fair way. Being distributed means that vehicles
should control their rate making use only of the signaling
information exchanged with their neighbor vehicles and
without relying on any centralized infrastructure. Besides,
to reduce the signal overhead, the exchanged information
should be kept to a minimum. The control scheme should
also provide quick and effective adaptation to changes in
the environment, such as the channel conditions and the
number of vehicles in range. The limits on such capabilities
are captured by the convergence properties of the algorithm in
use.

Fairness must be guaranteed as a safety requirement
since beacons are used to provide vehicles with an accurate
estimate of the state of their neighbors [6]. Consequently,
the fairness goal implies that no vehicle should be allo-
cated arbitrarily less resources than its neighbors, under
the constraints imposed by the available capacity. However,
even starting from the previous principle, several notions
of fairness can be defined, and in most of them there is a
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trade-off between fairness and efficiency [7]: more fairness
results usually in a less efficient use of the shared resource.
But less efficiency is detrimental to safety, since in general,
the higher the beaconing rate, the higher the quality of
the state information [6]. Thus, using an inadequate notion
of fairness implies not simply wasting resources but also
has a negative influence on the safety of the users. In
conclusion, in vehicular networks it is necessary not only to
provide fairness but also to be able to select the appropriate
fairness notion. This ability is a distinguishing feature of the
algorithm put forward in this paper with respect to other
proposals [8], [9], [10], [11], [12].

Several beaconing rate control schemes have been pro-
posed in the literature [8], [9], [10]. Although most of them
are able to bring the channel load to the desired level, none
of them is able to meet all the aforementioned requirements.
In particular, all of them consider a very basic approach
to fair allocation of beaconing rates, without a formal def-
inition and rigorous convergence support. In some cases,
the combination of a basic notion and its particular imple-
mentation may result in an unnecessarily low rate and so a
decrease in safety as we discuss later with an example. In
summary, the issue of fairness is not completely addressed
yet. There are two questions related to this issue. One is
which is the appropriate notion of fairness in vehicular
networks and whether different scenarios require different
notions of fairness. Another one is how to enforce a par-
ticular fairness notion and control it dynamically. In this
paper we focus on the latter one, which has already been
considered in other contexts as we discuss next.

Distributed rate control has been extensively studied in
other contexts. In particular, Network Utility Maximization
(NUM) has received much attention in the field of con-
gestion control in packet switched data networks since the
seminal work of Kelly [13], and the connection found by Mo
and Walrand [14] with fairness in bandwidth allocation. Sur-
prisingly and in spite of the similarities, such an approach
has not been adopted for congestion control in vehicular
networks. Therefore, in this paper we describe a new ap-
proach to the problem of beaconing rate control in vehicular
networks, modeling it as a NUM rate allocation problem,
where each vehicle is associated a so-called utility function,
such that the problem objective becomes the maximization
of the sum of utilities of each vehicle. Applying the NUM
theory allows us to design a broad family of decentralized
and simple algorithms, with proved convergence guaran-
tees to a fair allocation solution, supported by the rigorous
developments of NUM theory. In addition, thanks to the
work in [14], the notion of fairness of a beacon rate allocation
in vehicular networks can be formally defined and general-
ized. The particular (concave) shape of the utility function
of the vehicles is related to the different notions of fairness
induced globally, the so-called (α, ω)-fairness allocations. As
a result, different control schemes can be designed in order
to enforce a particular type of fairness, such as proportional
fairness (α = 1), or max-min fairness (α → ∞). As we will
show, NUM modeling allows us to design beaconing rate
control algorithms with all the discussed requirements: they
are distributed, they require the exchange of a small amount
of control information and they can be configured to obtain
different notions of global fairness, well-defined and with

guaranteed convergence properties. We propose a particular
algorithm and validate it with extensive simulations in static
and dynamic scenarios. Its performance is evaluated and
compared to one of the alternative state-of-the-art proposals.

In the remainder of this paper we first review related
works in section 2. In section 3 we provide a background
on the classical NUM approach for rate allocation in packet
switched networks and its connection with fairness. Af-
terwards, the beaconing congestion control problem for
vehicular networks is formulated as a NUM rate allocation
problem in section 4, where we also propose a particular
algorithm. In section 5, it is validated and compared with
other proposals in static scenarios. In section 6 we extend the
comparison and evaluation in different dynamic scenarios.
Finally, conclusions and future work are discussed in section
7.

2 RELATED WORK

Transmissions in vehicular networks are broadcast in nature
and use a CSMA-based medium access control (MAC) with
constant contention window and no acknowledgment or
retransmission. ETSI standards define a 10 MHz control
channel for vehicular communications at 5.9 GHz [2]. Pe-
riodic beaconing over one-hop broadcast communications
supports cooperative inter-vehicular applications by dis-
seminating status and environmental information to vehi-
cles on the control channel [5]. The rate of beacons has an
influence on the quality of service of the applications. In
fact, some applications may require a certain beaconing re-
ception frequency, which is dependent on propagation losses,
the number of contending nodes and other considerations,
although standards [5] specify the required beaconing gener-
ation rate. A framework for decentralized congestion control
(DCC) in the control channel has been published by ETSI
[15], which can accommodate a variety of controls such as
transmit power, message rate or receiver sensitivity, though
the currently suggested mechanisms are very basic, and
extensions are being discussed.

Regarding pure beaconing rate control proposals, [8], [9]
propose rate control algorithms that comply with a global
generic beaconing rate goal. The former, called LIMERIC,
uses a linear control based on continuous feedback (beacon-
ing rate in use) from the local neighbors, whereas the latter,
called PULSAR, uses an additive increase multiplicative
decrease (AIMD) iteration with binary feedback (congested
or not) from one and two-hop neighbors. Both of them,
however, show limitations. Regarding fairness none of them
define this formally: PULSAR claims targeting a “best-
effort” approach to max-min fairness allocation by the use
of AIMD, whereas LIMERIC aims to “achieve fairness such
that all the nodes converge to the same message rate”.
LIMERIC is shown to converge to a unique equal rate
for every vehicle, which is below the optimal proportional
fairness rate by design. In fact, there is a trade-off between
the convergence speed and the distance to the optimal value.
And, in any case, the convergence is only proved when
all the vehicles are in range of each other, not for multi-
hop scenarios. Regarding PULSAR, it requires synchronized
updates and piggybacking congestion information from
vehicles at a two hops. Authors of LIMERIC propose to
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combine the LIMERIC rate adaptation mechanism with the
PULSAR piggybacking of two-hop congestion information
to achieve global fairness [8], but it is not proved neither
discussed in detail. Finally, a recent work [16] also shows
that both LIMERIC and PULSAR separately actually may
fall into unfair configurations. The authors of [16] propose as
a solution heuristic techniques that ensure that two neighbor
vehicles cannot diverge in their allocated rate. As we show
later, it may actually prevent the algorithm to achieve an
optimal fair allocation in some scenarios. In summary, these
and other techniques proposed to date do not ensure correct
convergence to a well-defined fair configuration and have
no theoretical support for global convergence.

Transmit power control (TPC) has been investigated in
recent proposals [6], [17], which show that TPC can be prone
to instabilities, and its accuracy relies on the quality of the
propagation model. There is a related concept called aware-
ness control: the techniques to adapt the communications
parameters, such as transmit power or beaconing rate, to the
requirements of an application, whose goal may be safety
or any other such as tracking. Joint transmit power and rate
control to enforce particular application quality of service
requirements has been studied in [6], [10], [11], [18]. In [10]
the beaconing rate is set by the requirements of a particular
tracking application and authors propose to control the
transmission range in order to keep the channel occupancy
within the desired levels. EMBARC [18] is a combination
of LIMERIC with a dynamic tracking error control, letting
vehicles with higher dynamics transmit with higher rates,
while using LIMERIC to adjust the remaining capacity to
the desired goal. INTERN [11] lets the application set the
minimum power and rate which requires and uses LIMERIC
to equally share the excess of capacity. Let us note that
these proposals do not actually attempt to jointly control
both transmission variables, but let the application on top
set the minima required and then control the excess of
capacity by adjusting one of them. Our proposal is also
actually compatible with this approach. Each vehicle can
dynamically set its transmit power according to its require-
ments and each vehicle can independently set a minimum
beaconing rate as required by an application and, since it is
included in the constraints of the optimization problem, it is
enforced by the algorithm. In all the proposals this approach
obviously prioritizes application requirements over strict
congestion control, since violations of the desired level of
channel utilization may occur in some scenarios [11]. This
may be counterproductive in some cases, since the channel
might become congested to the point few beacons can be
transmitted, and deserves further study which is out of the
scope of this paper. In [12] authors do discuss joint control
of power and rate, but no concrete algorithm is provided
and fairness is not considered.

Finally, differentiated quality of service levels can also be
provided using beaconing rate control: with our approach
different behaviors can be assigned to certain subsets of
vehicles by either enforcing weighted fairness by selecting
appropriate weights (ω) for each vehicle utility function, or
even by using totally different utility functions for each ve-
hicle. In both cases vehicles do not need to know the weights
or utility functions used by other vehicles. This combined
with the dynamical setting of minimum and maximum rate

parameters can be used to implement prioritized beaconing
allocation and congestion control. A vehicle with special needs,
such as a platoon leader, can simply increase the weight
of its utility function or minimum and maximum rate pa-
rameters. Our algorithm will allocate it higher rates, while
reducing the rates of other vehicles if needed to comply with
the congestion constraint and still keeping the fairness of the
allocation. The study of these matters is left as future work
and we focus here on homogeneous utility functions.

3 BACKGROUND

In this section we describe the key ideas on the NUM mod-
eling for rate allocation in packet switched networks, that
lay the foundations of our work in vehicular networks. For
more detailed information we refer to [13], [14]. For a deeper
background in convex optimization, problem decomposi-
tion and its applications to communication networks we
refer to [19], [20], [21], and references therein.

3.1 The NUM problem for rate allocation in packet
switched networks

Let G(N,E) be a packet switched network, being N the
set of nodes and E the set of links. Let D be a set of traffic
sources. For each traffic source d, we denote rd the unknown
bandwidth to be allocated to d. We denote asD(e) the subset
of demands whose traffic traverses link e. The basic NUM
modeling of the rate allocation problem is:

max
rd

∑
d

Ud(rd) subject to: (1a)∑
d∈D(e)

rd ≤ ue ∀e ∈ E (1b)

rd ≥ 0 ∀d ∈ D (1c)

The objective function (1a) maximizes the sum of the
utility functions Ud of each source. Constraints (1b) mean
that the sum of the traffic traversing a link e, should not
exceed link capacity ue. Finally, constraints (1c) prohibit
assigning a negative amount of bandwidth to a source.

Functions Ud for each demand d are strictly increasing
and strictly concave twice-differentiable functions of the
rate rd of that demand. Being Ud an increasing function
means that sources always perceive more bandwidth as
more useful, and are always willing to transmit more traffic
if allowed. Being concave means that a sort of diminishing
returns effect occurs in rate allocation, i.e. increasing the
bandwidth of a source from r to r + 1 means a higher
increase in utility, than increasing a unit of bandwidth
from r + 1 to r + 2. The objective function (1a) is strictly
concave, and problem (1) is a convex program with a unique
optimum solution.

Several problem decomposition strategies allow to
find decentralized implementations of gradient-based algo-
rithms with convergence guarantees to solve problem (1).
Interested readers can find a surveyed view in [22] and ref-
erences therein. In section 4, we will use as starting point of
our proposal for vehicular networks the dual decomposition
of problem (1), adapting the technique in [23].
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3.2 Connection with fairness

As in every resource allocation problem, the optimum rate
allocation in a network should balance two competing
efforts: maximizing the total network throughput (

∑
d rd)

and the fairness of the allocation. In this context, fair means
avoiding those allocations where some demands are granted
a high amount of bandwidth while others suffer starvation.

Capturing the essence of what a fair resource allocation
is not an easy task, and fairness has been defined in a
number of different ways. One of the most common fairness
notions is max-min fairness. A rate allocation r is said to
be max-min fair if the rate of any demand d1 cannot be
increased without decreasing the rate of some other demand
d2 which in r received less bandwidth (rd2 ≤ rd1 ). Kelly [13]
proposed the concept of proportional fairness. A vector r∗

is proportionally fair if for any other feasible rate allocation
r, the aggregate of the proportional change of r respect to
r∗ is negative: ∑

d

rd − r∗d
r∗d

≤ 0, ∀r feasible

That is, the percentages of increases/decreases respect to
any other allocation should sum negative. In [14], Mo and
Walrand extended the notion of proportional fairness. Let
w = (wd, d ∈ D) be a vector of positive weight coefficients,
α ≥ 0. A rate allocation r∗ is said to be (α,w)-proportionally
fair if for any other feasible allocation r it holds that:∑

d

wd
rd − r∗d
r∗d
α ≤ 0, ∀r feasible (2)

The importance of the previous definition of fairness
is that, if the following utility functions Ud are used, the
optimal solutions of NUM rate allocation problems are also
(w,α)-fair.

Ud(rd) =


wdrd if α = 0

wd log rd if α = 1

wd
r1−α
d

1−α if α > 0, α 6= 1

(3)

This connection was shown in [14], for the basic NUM
rate allocation problem (1) and extends to a much more
general class of problems.

The wd values can be used to give more importance
to the rates allocated to some demands, that is, to achieve
weighted fairness. If all demands are equal for the system
(wd = 1,∀d ∈ D), classical fairness notions are produced for
some α values. In particular, 0-proportional fair solutions
(α = 0) are those which maximize the throughput

∑
d rd.

Actually, these solutions can be arbitrarily unfair, granting
all the link bandwidth to some demands, and zero to others.
If α = 1 we have the Kelly notion of proportional fairness.
In addition, it can be shown that max-min fairness solutions
are obtained when α→∞ [14].

There is no consensus on which particular value of α
is best suited for being “fair enough” in a resource allo-
cation context. Actually, this decision is clearly application
dependent. Lower values of α tend to produce solutions
where the amount of traffic carried

∑
d rd is higher, but with

larger differences between the rates allocated to different
demands (more “unfair”). In its turn, higher α values reduce

0 1 2

l2l1l0
r0 r2

r1 r1

Fig. 1. Three vehicles transmitting r0, r1 and r2 beacons/s respectively.
Dashed lines show transmission ranges: vehicle 1 is in transmission
range of vehicles 0 and 2, whereas vehicles 1 and 2 are only in range of
vehicle 1.

the difference between demands, commonly at the cost of
a lower aggregated throughput [7]. In any case, control
algorithms can enforce the notion of fairness by setting the α
parameter.

4 NUM MODELING OF THE BEACONING RATE CON-
TROL PROBLEM IN VEHICULAR NETWORKS

In the previous section we described the classical NUM ap-
proach to congestion control in multihop end-to-end trans-
missions in wired packet switching networks. Although the
vehicular context, that is, one hop broadcast transmissions,
may seem very different at first sight, in this section we
show that it is still a valid approach, describe its application
and discuss similarities and differences.

As previous considerations, let us remark that the goal
in both cases is to prevent congestion, that is, to keep the
usage of resources at a desired level. Now, in our case the
resource involved is the wireless channel, which is spatially
shared by different nodes, whereas in the classical case
the shared resources are network links. Let us also remark
that alternative goals may have been defined, such as the
maximization of throughput or the reception beaconing rate,
that is, the frequency of correctly received beacons. We
focus in this paper solely on the control of the transmission
beaconing rates, which is also the customary approach in
other proposals [8], [9], because: first, to take into account
the reception rate we need to bring into consideration
MAC behavior, which in most practical situations is out of
effective control by the user, and propagation models which
require to control the transmit power usually. We leave
them as future work. Second, as pointed out also in [8], [9],
good performance at reception can be indirectly obtained by
keeping the beaconing channel load at a certain level. For
instance, the information dissemination rate, a performance
metric that includes MAC, hidden-node and physical losses,
is maximized when the fraction of channel capacity used is
kept at 0.6 to 0.7 [10]. A value of 0.6 to 0.7 is also found as
the optimum channel load with respect to packet reception
in recent works [24].

Before formally defining the problem, we provide an
informal description of the problem illustrated in Fig. 1.
The key idea is to notice that every vehicle acts as a source,
transmitting beacons which use a fraction of the wireless
channel of their neighbors; and as a resource, defining a
wireless channel that is shared with the vehicles in range.
That is, we can assign every vehicle a virtual resource, a
virtual link lv , which has a given capacity which is shared
by all sources that are in range, including its own beacons.
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As can be seen in Fig. 1, vehicle 1 is transmitting beacons
at a rate r1 beacons/s which are using the spatially shared
channel of both neighbors, that is, virtual links l0 and l2 as
well as its own virtual link l1. Thus, an analogy with packet
switching networks would be that the rate r1 is traversing
the three links to get to its destination. Conversely the total
load of resource l1 is the sum of the three rates using it,
r0 + r1 + r2. So the goal is to assign rates such as the total
load of the links they are using is below a certain limit.
In the following, we formally pose the NUM problem for
vehicular networks. Let us note that, although useful to get
an informal idea, we do not use the concept of virtual link
for the moment to avoid introducing potentially confusing
terms.

Let V be a set of vehicles in a vehicular network. Each
vehicle v ∈ V transmits beacons at a rate rv beacons/sec,
with a constant transmit power. Beacons are broadcast and
are received by neighbor vehicles in reception range. Let
n(v) denote the set of neighbor vehicles of v, which includes
v. The total rate received by each vehicle is the sum of the
rates in its set of neighbors and we are interested in limiting
this amount to a maximum C , that is, a Maximum Beaconing
Load (MBL), to avoid channel congestion.

The NUM version of the beaconing rate allocation prob-
lem is given by:

max
rv

∑
v

Uv(rv) subject to: (4a)∑
v′∈n(v)

rv′ ≤ C ∀v ∈ V (4b)

Rminv ≤ rv ≤ Rmaxv ∀v ∈ V (4c)

The objective function (4a) is the sum of the utility
Uv(rv) for each vehicle, which depends on the rate rv
allocated to it. In order to enforce different fairness notions
we take vehicle utility functions as the ones in (3). This way
we ensure that a rate allocation to the vehicles is α-fair if,
and only if, it is the optimum solution of (4). Constraints (4b)
mean that the beaconing load at a given vehicle, which is
the one generated by the neighboring vehicles plus its own
load (

∑
v′∈n(v) rv′ ), must be below the MBL (C). Finally,

constraints (4c) force the vehicle rates to be within a min-
imum (Rminv ) and maximum (Rmaxv ) value. Let us remark
that each vehicle can independently set its own minimum
and maximum rates, which can be used by an application
to guarantee a minimum reliability.

In summary, problem (4) reflects our two goals: (1) to
control the congestion while (2) maximizing the allocated
rates in a controllable fair way.

4.1 Dual decomposition

In order to find a decentralized algorithm solving (4) we
use a dual decomposition of the problem. We first form the

Lagrangian function L of (4) relaxing the constraints (4b):

L(r, π) =
∑
v

Uv(rv) +
∑
v

πv

C − ∑
v′∈n(v)

rv′

 = (5)

=
∑
v

Uv(rv)− rv ∑
v′∈n(v)

πv′

+ C
∑
v

πv

where πv ≥ 0 are the Lagrange multipliers (prices) asso-
ciated with the relaxed constraints. Multiplier πv is usually
interpreted as the price per transmitted traffic unit that other
vehicles need to pay for occupying the (shared) channel
of vehicle v, the shared resource. In our particular case,
the prices actually reflect the congestion state of the link
associated to a vehicle, as we discuss later. The Lagrange
dual is the maximum value of the Lagrangian over the
domain of the rates. That is, given a set of non-negative
prices π, the optimal rate allocation solving the Lagrange
dual is:

r∗v(π) = arg max
Rminv ≤rv≤Rmaxv

{Uv(rv)− rv
∑

v′∈n(v)

πv′} (6)

We see that, to compute its rate, each vehicle v needs to
know just its own utility function Uv and the set of prices
πv′ of its neighbor vehicles and use them to solve problem (6).
Since the original problem is convex with linear constraints,
it has the strong duality property [19] and the Karush-Kuhn-
Tucker (KKT) conditions characterize its optimum solution.
Then, it can be shown that there are a set of optimum
link prices π∗ such that the associated rates according to
(6) are the optimal solution of the original problem (4). In
other words, if we obtain the optimum prices, then we can
compute the optimal rates with (6). The problem of finding
such optimum prices is called the dual problem, which can
be defined as:

min
π≥0

g(π) = min
π≥0
{ max
Rmin≤r≤Rmax

L(r, π)} (7)

In our case, it can be shown that the objective function in
(7), called the dual function, is strictly convex and differen-
tiable, since the objective function in (4) is strictly concave.
Thus, the dual problem (7) has a unique set of optimum
prices π∗. The classical dual approach for solving the rate
allocation problem consists of finding the dual optimal link
prices π∗ using a gradient-based algorithm, as a mean to (in
parallel) obtain the optimum rate allocation r∗.

To summarize, in order to find the optimal beaconing
rate allocation, vehicles have to exchange their prices π with
their one-hop neighbors and use them as input to the opti-
mization problem (6) which can be solved autonomously
by each vehicle with its local information. In Algorithm 1
we sketch this scheme for vehicular networks, applying a
constant-step gradient method, noticing that for the utility
functions in (3) the solution to (6) becomes:

r∗v(π) =

[
1

(
∑
v′∈n(v) πv′)

1
α

]Rmaxv

Rminv

(8)
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And that, given a set of prices π, the gradient of the dual
function g evaluated at π is given by:

∂g

∂πv
(π) = C −

∑
v′∈n(v)

rv′(π), ∀v (9)

Algorithm 1. Beaconing rate control with constant gra-
dient step

1: At k = 0, set initial vehicle prices π0
v and rates r0v

2: At each time k:
3: Each vehicle v receives the prices of neighbor vehicles

πkv′ , v
′ ∈ n(v). Then: rkv =

[
1

(
∑

v′∈n(v)
πv′ )

1
α

]Rmaxv

Rminv

4: Each vehicle v updates πk+1
v according to:

5: πk+1
v =

[
πkv − β

(
C −

∑
v′∈n(v) r

k
v′

)]
0

We finish this section by discussing and clarifying rele-
vant aspects of the algorithm and its practical implemen-
tation. We start with aspects related to the algorithm and
physical meaning of its parameters.

• The price (πv) reflects the congestion state of the
wireless channel of a vehicle and can be thought
of as the cost to use the vehicle shared channel.
Each vehicle measures its own perceived congestion
relative to the MBL when the gradient is computed
at each iteration k (step 4 of Algorithm 1): The price
increases when the channel is congested and the
other way round.

• Note that the implementation of this algorithm is
decentralized. At each step a vehicle updates and
broadcasts its price πkv to its neighbors. Then, each
vehicle updates its rate using only the information
from its one-hop neighboring vehicles. It is not nec-
essary to disseminate every price to all the vehicles.
Hence, unlike in packet switching networks [23],
where the communication of the path prices to the
sources may be problematic in a realistic scenario, in
the case of a vehicular network this solution can be
implemented in practice with little effort since the
link processing is done by the vehicles themselves,
that is each vehicle acts as source and link. From
another point of view: since transmissions are mainly
single-hop broadcast ones due to periodic beaconing,
congestion is due to the saturation of the spatially
shared wireless channel only in the neighborhood of
sources (vehicles). Therefore, vehicles simply have
to broadcast their feedback (prices) to inform all the
involved sources of the congestion state of the links
they use. That is, the sources of congestion of any
vehicle are within one-hop distance.

• Just by selecting the α parameter different notions of
fair allocations are obtained. Moreover, problem (4)
can be used to achieve not only different classes of
fairness but also to incorporate heterogeneous utility
functions and constraints for different vehicles. The
criteria for selecting a particular fairness notion are
application or even scenario dependent. We show
and discuss its effect with examples in the following
sections but a deeper discussion on the criteria to
select α is left as future work.

• Convergence of Algorithm 1 can be guaranteed even
for asynchronous operation of the vehicles, for a
sufficiently small β, adapting the sufficient conver-
gence conditions in [23] to our scenario. To see it, we
formally recover the concept of virtual link. Let us as-
sign a virtual link l ∈ L to each vehicle,L = 1, . . . , V ,
with capacity C . Then consider that each virtual link
lv is used by every vehicle which has vehicle v is in
reception range with a rate rj , j ∈ n(v), plus is own
rate rv . That is, we assume that each vehicle virtual
link is used by its own rate plus the rates of all the
neighbors in range. Now, problem (4) is equivalent
to problem P in [23], where its convergence to the
optimal allocation is proved.

• The parameter β controls the convergence speed of
the algorithm, a high value increases speed but a too
high one may cause oscillations. An upper bound
can be found in [23]. Since the algorithm converges
any initial price π0

v is valid. The values we use for
our simulations in next sections have been selected
by experimentation.

Next we discuss implementation and practical aspects.

• The procedure is robust against errors such as packet
losses due to fading, collisions or hidden-node inter-
ferences. We have simulated it with realistic MAC
and propagation models and the results show con-
vergence to the close vicinity of the optimal alloca-
tion in spite of packet losses.

• Each algorithm step k is executed periodically. Ve-
hicles spend a sample period Ts collecting feedback
from one hop neighbors and then update their prices
and rates according to Algorithm 1. The duration of
the sample period can be configured and so the ab-
solute convergence time depends on this parameter.
We have set Ts = 200 ms in our simulations.

Algorithm 1 can directly solve problem (4), and its
convergence is guaranteed for a sufficiently small value
of β. Unfortunately, the theoretical β bounds are usually
too pessimistic (too small) and in practice much higher
values of β still result in convergence. Since small β values
mean slower convergence, it is important to have the largest
possible step sizes, but it usually results in oscillations.
Moreover, the gradient update is actually a random pro-
cess, since gradients are subject to noisy observations and
messages can be lost. Then, we think it may be advisable
to have a conservative approach that do not overreacts to
congestion signals, and in the next section we present one
possible variation, where we introduce some modifications
and discuss practical considerations.

4.2 Fair Adaptive Beaconing Rate for Intervehicular
Communications (FABRIC)
In this section, we propose FABRIC (Fair Adaptive Beacon-
ing Rate for Intervehicular Communications), a variation
of Algorithm 1, where the prices of the links (Step 2) are
updated in a different form:

πk+1
v =

πkv − βsign
C − ∑

v′∈n(v)

rv′


0

(10)
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where sign(x) returns the sign (positive, negative or
zero) of the argument. That is, in this case the vehicle price
is increased by a constant β when the channel is congested
and decreased by β otherwise, but never below zero. Even
though it is not a gradient projection, this variation also
converges to the optimal value. In fact, let us note that it
can be equivalently considered a scaled gradient projection
algorithm [20, Sec. 3.3.3], where the price update is done
by πk+1

v =
[
πkv − βM(k)−1

(
C −

∑
v′∈n(v) r

k
v′

)]
0
, and the

sequence of symmetric positive definite diagonal matrices
M(k) is given by

[M(k)]ii =

{
|sgi(k)| if |sgi(k)| > 0

1 if |sg(k)| = 0
(11)

with sgi(k) = C −
∑
v′∈n(i) r

k
i′ . Therefore, the algorithm

meets the conditions given in [26] for convergence to a point
arbitrarily close to the optimum, for β small enough. FAB-
RIC aims to have a reasonably fast convergence compared
to that of a standard gradient algorithm (Algorithm 1) while
limiting the maximum variation of the rates using the sign
function. This is a conservative approach, to smooth out
wide variations of beaconing rate that may occur because
of the noisy observations in which we base the gradient
updates. In any case, since there are multiple possibilities
[20], we think that it should be considered a useful one
among other alternatives, whose evaluation we leave as a
future work.

Let us now discuss implementation details. The per-
ceived congestion, that is, the difference between channel
capacity and the fraction used can be obtained in several
ways, either by monitoring the channel, that is, measuring
the Channel Busy Time (CBT), or by counting the number
of correctly received beacons. In both cases, the result is an
estimate of the real channel occupation, since it depends
on channel conditions and collisions. Another possibility
is to let vehicles inform others of their current beaconing
rate by piggybacking it in the beacon. This is our choice
and in our opinion the more reliable option with regard to
the accuracy of the rate control, since it informs about the
actual offered load of the channel in absence of errors, such
as fading or interference. Moreover, when packets are lost, it
provides additional robustness against noisy measurements.
Even though some beacons may get lost, receiving at least
one beacon during the sampling period is enough to recover
the actual price and rate used by a neighbor. On the other
hand, the algorithm requires each vehicle v to store and
send a non-negative real number, its price πv . So, regarding
overhead, vehicles should broadcast at most their current
beaconing rate plus the price, both piggybacked in a beacon,
which adds little overhead to the current procedures, for
instance, two 32-bit extra fields, around 1% for 500-byte
beacons. To compare, LIMERIC combined with PULSAR
requires to piggyback in a beacon the locally measured CBT
and the maximum CBT reported by the one-hop neighbors,
that is, two real numbers, so the overhead is exactly the
same as the FABRIC one.

Second, we consider synchronous or asynchronous imple-
mentations. In the first case, all the vehicles update their
rates at the same instant with the received prices. This is
possible in practice for vehicles equipped with a GPS device.

TABLE 1
Common Parameters for Simulations

Parameter Value
Data rate (Vt) 6 Mbps
Sensitivity (S) -92 dBm

Frequency 5.9 GHz
Power 251 mW
Noise -110 dBm

SNIR threshold (T ) 4 dB
Neighbor Table update time 1 s

Sample period Ts 200 ms
Beacon size (bs) 500 bytes

Maximum Beaconing rate (Rmax
v ) 10 beacons/s

Minimum Beaconing rate (Rmin
v ) 1 beacons/s

β 2.8× 10−5

π0
v 1.252× 10−3

f 0.22
αL (LIMERIC) 0.1
βL (LIMERIC) 1/150

In that case, all the neighbor prices are available prior to
the beaconing rate update. In the second case, each vehicle
may update its rate at different instants. Thus, some vehicles
may not have all the updated prices from their neighbors
and oscillations may occur, which are called flapping. To
avoid them, we propose to use an anti-flapping parameter, f ,
so that we consider that a gradient coordinate is 0 when
its absolute value is below a fraction f of the capacity.
This way vehicles lock their prices when they are close to
the MBL, and rate oscillations are prevented. In Section 5
we preliminary validate this procedure experimentally, but
leave a more detailed study for a future work.

5 VALIDATION

In this section we test the validity of our algorithm and
assumptions, in a static scenario where vehicles do not
move which allows us an accurate control of the vehicles
interactions. The results of FABRIC are compared with those
of LIMERIC [8]. However, LIMERIC properties have only
been proved so far for single hop scenarios and, in fact,
our simulations show that unfair allocations are obtained in
multihop scenarios. Thus, in order to provide a fair compar-
ison, we have simulated LIMERIC combined with PULSAR
(referred to as LIMERIC+PULSAR when used together) as
the authors of LIMERIC suggest [8], according to the details
of [27].

Simulations setup. We summarize first the simulation pa-
rameters that are common to the simulations studies in this
and the following section. The simulations have been imple-
mented with the OMNET++ framework and its inetmanet-
2.2 extension [28], which implements the 802.11p standard.
This library also implements a realistic propagation and
interference model for computing the Signal to Interference-
plus-Noise Ratio (SINR) and determining the packet recep-
tion probabilities, considering also capture effect.

In our tests, vehicles are located on a straight single
lane road and their positions are either deterministic, that is
equally spaced with distance d m or randomly positioned
according to a Poisson distribution of average density ρ
vehicles/m. Both free space and Nakagami-m propagation
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Fig. 2. Selected beaconing rate in a one-hop scenario for FABRIC and
LIMERIC with 100 and 200 vehicles and with and without anti-flapping
(f ) parameters. LIMERIC parameters have been set to αL = 0.01 and
βL = 1/150. Optimal values shown with a straight line.

models have been used. In both cases, the path loss expo-
nent has been set to 2 or 2.5 depending on the scenario.
These are slightly lower values than those reported by
[25], measured in suburban scenarios. Higher values result
in shorter transmission range and so congestion is more
unlikely and its effects milder. Thus, our values model a
worst case scenario. Nakagami-m shape parameter has been
set to m = 1 or m = 3, to model severe (Rayleigh) or
moderate fading conditions. The MBL has been set to 3.6
Mbps, which is 60% of the available data rate of 6 Mbps.
We use a beacon size of 500 bytes plus 76 bytes of MAC
and physical headers, which results in a maximum channel
capacity of C = 781.25 beacons/s. Table 1 summarizes the
rest of common parameters, used unless another value is
explicitly mentioned in the text. All the simulations have
been replicated 10 times with different seeds.

5.1 All vehicles in range of each other
In the first scenario vehicles are positioned along a 1000
m long line with a Poisson distribution of average density
ρ = 0.1 and ρ = 0.2 vehicles/m, with N = 100 and
N = 200 vehicles respectively. The propagation model is
a deterministic free space model, with path loss exponent
of 2 and vehicles using 1000 mW of transmit power, which
makes all of them to be in range of each other. The op-
timum value for the beaconing rate is r∗ = C/N , that is
r∗ = 7.8125 and r∗ = 3.906 beacons/s respectively. In
Fig. 2 we show the evolution of the beaconing rate with
time, in algorithm steps. Vehicles update their beaconing
rate every Ts = 1 s in this scenario. In the synchronous
case all the vehicles perform their updates at the same time
instant, whereas in the asynchronous one the instant is uni-
formly distributed along the period. As can be seen, FABRIC
quickly converges to the optimum value without oscillations
in the synchronous case, whereas in the asynchronous some
oscillations can occur, that are corrected with the use of the
anti-flapping technique described in the previous section.

The amplitude of the oscillations decreases with the number
of vehicles since the relative weight of the outdated prices
is lower in the updates.

Regarding LIMERIC, Fig. 2 shows that, although it as-
signs the same fraction of the bandwidth to all vehicles,
such fraction is 15% below and 7% below the optimal one
respectively. It is noticeable that LIMERIC does not achieve
the optimal value [8] even in an ideal scenario like this one.
The reason is that the LIMERIC operation is controlled by
two parameters αL and βL, such that by design the rate
allocation uses a fraction of the available channel capacity
equal to NβL

αL+NβL
. Better utilizations result when αL is small

respect to βLN , but this also results in slower convergence
times. The values used in this paper are the ones suggested
by the authors in [8].

5.2 Multihop ideal scenarios and differences between
fairness notions
In these tests, we evaluate two more demanding scenarios
where not all vehicles have the same number of neighbors.
In addition, we compare and discuss how the fairness pa-
rameter α results in different allocations. An ideal channel is
considered and packets are not lost. In the first one, vehicles
are positioned along a 1500 m long line, with a Poisson
distribution of average density ρ = 0.14 vehicles/m. In Fig.
3a we plot the results for the beaconing rate selected versus
the position on the road of the vehicles.

We also plot the exact optimal allocations calculated by
solving the NUM problem (4) with a numerical optimiza-
tion solver, provided by JOM [29]. Proportional fairness is
obtained with α = 1 and as α is increased the allocation
tends to max-min fairness. We plot results for α = 2 and
α = 6.

Beaconing rates. Results show that FABRIC converges to
a solution close to the optimal value in all cases, being
better as α decreases. The reason is that when the opti-
mal allocation shows pronounced differences between the
rates of neighbor vehicles at some points, as occurs with
proportional fairness here, the algorithm needs more steps
to converge. The solution in Fig. 3a has been achieved after
100 steps (20 s) of the algorithm. Note that an scenario like
the one shown, in which the optimal proportional fairness
allocation has sharp differences between neighbor rates, is
a counter-example to the proposal of [16], which suggests
enforcing fairness by limiting the differences in the rate
allocations of neighbor vehicles.

The convergence to the exact optimal allocation may
be long, specially if the optimal allocation shows a jagged
shape, but from a practical point of view, for randomly
positioned scenarios and realistic propagation models, it is
not necessary truly maximize the utility function to obtain
acceptable results. That is, even though the allocation is
not yet optimal the CBT is already below the MBL and the
allocation is close to the optimal, for instance, as shown in
next sections, for α = 1 the root-mean-square error between
the rates and the optimal allocation is 1.4951 beacons/s after
20 steps (4 s) and 80% of the vehicles measure a CBT below
the MBL.

LIMERIC+PULSAR assigns all the vehicles exactly the
same rate. In fact, this is the expected behavior in any sce-
nario, since, with PULSAR, the maximum CBT experienced
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(b) Two clusters of vehicles approaching a traffic jam. Cluster B is in
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the traffic jam. A schematic diagram is shown below.

Fig. 3. Beaconing rate versus position in an ideal multi-hop scenario and traffic jam scenario for FABRIC and LIMERIC+PULSAR.

by both one and two-hop neighbors is used as a feedback
signal by LIMERIC. In the particular scenario of Fig. 3a this
behavior can be consistent with achieving max-min fairness.

Fairness. As α increases, the optimal allocation tends
to assign the same rate to all vehicles, trading efficiency
by fairness [7]. Fig. 3a clearly shows how the allocation
becomes flatter as it tends to max-min fairness. It also shows
that the fairness degree of the allocation can be effectively
controlled by FABRIC.

Whether is preferable to set proportional, max-min or
any other α-fairness is a matter of discussion and possibly
application or scenario dependent. For instance, an scenario
like this one may model a traffic jam. Since vehicles at the
edges of the jam may be more exposed to other vehicles
approaching at high speed, it may be desirable to use
proportional fairness since it assigns a higher beaconing
rate at the border vehicles In any case, the key advantage
of FABRIC is that it can be configured with the α parameter
to achieve any of the fairness notions. Moreover, vehicles
can use different fairness goals simultaneously and the
parameters can even be dynamically set.

To emphasize the importance of an adequate selection of
the fairness notion in vehicular networks and its influence
on the safety of users we provide the scenario shown in Fig.
3b as a simple but illustrating example. We have a traffic jam
with a high density of vehicles and two clusters of vehicles
approaching it, separated by a distance of 900 m With a
transmission range of 1000 mW, the three vehicles of cluster
B are in range of both the first 14 vehicles in the jam and
of all the 20 vehicles in cluster A. There are 150 vehicles in
the traffic jam, all in range, resulting in a high congested
channel.

Here the basic approach to fairness of LIMERIC, that
is assigning all vehicles an equal rate, combined with the
PULSAR implementation which uses the maximum CBT
observed within two hops, makes that vehicles in cluster A,
2000 m away and with no congestion in the channel, use the
same beaconing rate of 2.35 beacons/s that vehicles in the
traffic jam. Hence, it unnecessarily reduces the beaconing

rate, which may affect the safety if those vehicles are driving
at high speeds. On the contrary, with FABRIC, vehicles
in cluster A correctly use the maximum beaconing rate of
10 beacons/s, since their channel is not congested at all.
Moreover, the rates used by cluster B vehicles depend on
the choice of α, that is, the fairness notion selected. With
α = 1 the maximum rate is used and as it increases, the rate
is decreased, being equal to the one in the traffic jam (2.608
beacons/s) only when max-min fairness (α = 6) is selected
as expected, and only for the first vehicle in the cluster.

Except for the distances used in the example, it is not
an unlikely scenario which shows the need for mechanisms
that provide well-defined fairness control in vehicular net-
works. FABRIC provides this control as a first step but a
study on the proper applicability of the fairness alternatives
and its dynamical setting is left as future work.

5.3 Realistic scenario with hidden nodes and packet
losses
In this scenario vehicles we use the same positioning as in
Scenario 2 and test the effects of a realistic environment.
The propagation models have been set to free space and
Nakagami-m with path loss exponent equal to 2.5. In both
cases, the transmit power has been set to 251 mW which
results in a transmit range of 531.5 m for free space and
an average of 510.5 m for Nakagami-m [17]. Let us remark
that, with this setting, there are interferences due to hidden
nodes. In fact, in this scenario we can see the effects of MAC
and hidden collisions as well as fading and channel errors
in our model, since it has been simulated with an accurate
802.11p and propagation model, including SINR evaluation
and capture effect.

Beaconing rate. In Fig. 4a we show the allocated beacon-
ing rate for each algorithm. Confidence intervals at 95%
have been computed but, since the maximum radius of
the confidence interval does not exceed 0.05 and 0.3 bea-
cons/s for free space and Nakagami-m respectively, they
are not shown to avoid cluttering the figure. Again, as
α increases the optimal allocation tends to become flat.
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(b) Effective beaconing rate delivered at 250 m, r̂v(250), and average
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Fig. 4. Realistic multi-hop scenario at t = 18 s, with Free Space and Nakagami m=3, for FABRIC asynchronous and LIMERIC+PULSAR.

With free space propagation, after 18 s asynchronous FAB-
RIC approximately tracks the optimal allocations (shown
in Fig. 3a, previous section) for α = 1 and α = 2 and
the realistic environment tends to smooth the allocation.
LIMERIC+PULSAR again removes almost all the differences
between node rates. In both cases, FABRIC works properly
in spite of hidden node collisions and interferences.

Fading effects. With fading (Nakagami-m), FAB-
RIC reduces the beaconing rate globally, whereas
LIMERIC+PULSAR increases it. This opposite behav-
ior is due to the different feedback signals used.
LIMERIC+PULSAR uses directly the measured CBT. In this
case, fading results in a decrease of the measured CBT and
hence LIMERIC increases linearly the rate, 5% on average
consistent with an equal lost of packets due to fading
[17]. On the contrary, FABRIC uses the price piggybacked
in received beacons. There is now a chance of receiving
beacons from far away nodes and all received prices are
used to compute the next rate in step 3 of Algorithm 1. In
fact, we have measured an average increase of 10% in the
time-averaged number of neighbors for the fading scenario.
Consequently, the allocated rate is reduced, particularly on
the borders, whereas in the middle nodes, whose number of
neighbors change less, is kept equal.

CBT. The MBL constraint is met for all vehicles and cases
at t=18 s, as shown in Fig. 4a. In fact, we show in next
sections that CBT is below the MBL for most of the vehicles
only after a few seconds. As expected, proportional fairness
(α = 1) provides the more efficient allocation, closer to the
maximum allowable use of the channel, at the cost of less
fairness. LIMERIC+PULSAR is driven by CBT and hence
the reduction due to fading (Nakagami-m) is compensated
by an increase in rates (Fig. 4a), keeping the CBT at the
same level. On the contrary, the effect of fading on FABRIC,
as discussed before, reducing the rates results in a global
reduction of CBT. If necessary, this behavior can be corrected
in the implementation of FABRIC by filtering unreliable
links: using only the reported prices from neighbors whose
beacons are received a certain number of times, for instance.
Testing it has been left as future work.

Performance. To better measure the effectiveness of the
algorithms in a lossy scenario, we define the effective delivery

ratio at distance d, Dv(d) = cv(d)
nSv (d)

, where cv(d) is the total
number of correctly received copies of a beacon up to a dis-
tance d of the transmitter v and nSv (d) is the total number of
copies of a beacon whose power is above the sensitivity up
to that distance. That is, Dv(d) indicates how many copies
of a broadcast beacon are correctly received at a distance no
greater than d from the transmitter. We then define effective
beaconing rate at distance d, as r̂v(d) = rvD̄v(d), that is, a
measure of the actually received beaconing rate at a certain
distance of the transmitter. Thus, r̂v is a performance metric
from the point of view of the transmitter. From the point
of view of the receiver we show the average Inter-Beacon
Reception Time (IRT) measured by the vehicles.

From Fig. 4b we see a reduction around 20% to 25% at
250 m, D̄v(250). The losses are mainly caused by collisions
and so the reduction in delivered beacons is more pro-
nounced for the border nodes, whose receivers have more
potential hidden nodes, and is almost equal for all the pro-
posals evaluated. It reflects that the higher rates allocated by
FABRIC at the border nodes are balanced by the lower ones
at the middle nodes in terms of causing hidden-node colli-
sions. For comparison, the same scenario with no beaconing
control, all vehicles transmitting at 10 beacons/s results in a
CBT of 0.9 and 30% of collided packet in the middle section.
The IRT for LIMERIC+PULSAR, since all the vehicles use
practically the same rate, directly shows the losses due to
collisions with Free Space and a mixture of collisions and
fading with Nakagami-m. With FABRIC, it includes all those
effects and adittionally averages the different rates used for
vehicles at different positions. FABRIC actually outperforms
the measured IRT of LIMERIC+PULSAR, except for α = 2
and Nakagami in the midle part of the scenario. The alloca-
tion of FABRIC with high rates at the borders and low ones
in the middle results in fewer collisions and a lower average
IRT.

6 DYNAMIC SCENARIOS

In this section we investigate the FABRIC performance
in dynamic configurations, where vehicles move. We look
mainly at the time evolution of the selected beaconing rate
and CBT. Our goal is to test the ability of FABRIC to perform
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(a) Beaconing rate versus time for a single vehicle approaching the
cluster of vehicles at 32 m/s.
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Fig. 5. Vehicle approaching a cluster of 200 motionless nodes. FABRIC asynchronous and LIMERIC+PULSAR.

smooth transitions from low to high congestion situations
and whether it results in oscillations.

6.1 Single vehicle and traffic jam

The first scenario involves (i) a cluster of statically posi-
tioned vehicles along a 1500 m road segment, using the
same random Poisson positioning of Section 5.3, and (ii) a
single vehicle approaching the cluster, starting 1320 m away
from the last cluster car, and moving at a constant speed
of 32 m/s until it passes the cluster. This configuration can
model different real scenarios such a highway with a traffic
jam in one direction and a single vehicle moving in the
opposite direction. The goal of this configuration is to show
the dynamics of FABRIC in an extreme case where a vehicle
switches from no or very few neighbors to a congested
state, and back again. Let us note that, with the selected
parameters shown in Table 1, a channel can accommodate
approximately 78 vehicles in range at the maximum rate.
The case of a congested cluster approaching another one is
considered in the next configuration. Finally, let us remark
again that MAC collisions, hidden node interference and
propagation errors are present in these scenarios. Since we
are interested in the time evolution of the variables we plot
only the results of one replication (all of them show a similar
evolution).

Beaconing rates. In Fig. 5a we show the time evolution of
the beaconing rate of the moving vehicle for FABRIC and
LIMERIC+PULSAR. Beaconing rates of the cluster vehicles
are not shown since the effect of the single moving vehicle in
their rate is negligible. With both fairness notions FABRIC
can keep the single vehicle at the maximum rate until the
vehicle is in range of at least 78 neighbors, at t = 40.8
s. Afterwards, it reduces its rate according to the state of
the channel in practically the same way as its neighbors
(compare with Fig 4a). This happens both in free-space
and Nakagami-m configurations. In the latter, variations are

smoother in the middle, showing that some earlier pike
effects of packet losses caused by fading are compensated
in the presence of a large number of neighbors (e.g. in
congested areas), and at the same time convergence is faster
since the feedback (number of received prices) is higher. The
effective beaconing rate r̂v(250) shows the same trend that
as in the previous section, with an average drop of 20% at
250 m. In its turn, the moving LIMERIC vehicle reduces
the rate earlier than necessary and recovers it later, even
with free space propagation. Actually it does not recover
the maximum rate until it is completely out of range at
t = 105.8 s. It also shows a characteristic oscillatory be-
havior of LIMERIC+PULSAR [9].

CBT. Finally, Fig. 5b shows the CBT of all the vehicles
for FABRIC with α = 1 . Interestingly, FABRIC quickly
moves rates out of congestion at the beginning. Moreover,
these results which are the time evolution of those in Fig.
4a bottom confirm that it is not necessary to achieve the
optimal allocation to meet the MBL constraint, showing that
after only a few steps at t=4 s, 80% of the vehicles measure a
load below the MBL. In fact, as α increases both beaconing
rate and CBT (not shown in the figure) show a steeper
reaction to congestion, that is, in a congested state vehicles
quickly and abruptly reduce their rates and then increase
them until convergence is achieved.

6.2 Bridge over highway

Finally, we examine a extreme scenario, where a static
cluster of approximately 200 vehicles is set along a 1500
m highway segment oriented north-south (y axis), and it is
crossed at the middle position by another highway west-east
oriented (x axis). A bridge is situated at the crossing, so that
the west-east highway passes over the north-south highway.
A moving cluster of 100 vehicles, stretching over 600 m,
moves from west to east at a constant speed of 32 m/s,
starting 1500 m away from the bridge. The moving cluster
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(a) Beaconing rates versus time for the cluster of 100 vehicles crossing
the bridge at 32 m/s. Top: FABRIC. Bottom: LIMERIC+PULSAR
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(b) CBT versus time for the cluster of 100 vehicles crossing the bridge.
Top: FABRIC. Bottom: LIMERIC+PULSAR

Fig. 6. Beaconing rates and CBT versus time for a cluster of 100 nodes crossing a bridge over a highway at 32 m/s. Nakagami m=3 propagation.
FABRIC asynchronous and LIMERIC+PULSAR.

(a) Beaconing rates versus time for the cluster of 200 static vehicles on
the highway. Top: FABRIC. Bottom: LIMERIC+PULSAR

(b) CBT versus time for the cluster of 200 static vehicles on the
highway. Top: FABRIC. Bottom: LIMERIC+PULSAR

Fig. 7. Beaconing rates and CBT versus time for a cluster of 200 static vehicles on the highway. Nakagami m=3 propagation. FABRIC asynchronous
and LIMERIC+PULSAR.

approaches the static cluster, crosses the bridge, and moves
away. For both clusters, the initial position and propagation
configurations have been set as in the previous scenarios:
Poisson and free space and Nakagami-m and again the
transmission range results in hidden nodes. Due to lack of
space, only the Nakagami-m results are shown, yielding to
the same conclusions as the ones for free-space.

In Fig. 6 and 7 we show the time evolution of the
beaconing rates and CBT for all the vehicles in both clusters.
In both cases, FABRIC reduces the rate of the vehicles as the
transmission ranges overlap, but never below 3 beacons/s
in any cluster. Fig. 6a illustrates the evolution of the rate
allocations in the moving cluster. With FABRIC, vehicles at
the rear increase at the beginning their rates, as the front
ones reduce theirs when they are entering the range of the
highway vehicles, and conversely as they move away from
the bridge. The time evolution of the rates of the static
vehicles plotted in Fig. 7a shows how the central vehicles
reduce their rates when the cluster passes and recover them
later. The rate variations are small at the center and higher
at the vehicles on the edges, since the feedback from their
neighbors is weaker. As shown in Fig. 6b and Fig. 7b, FAB-
RIC also succeeds in keeping the channel at an allowable
utilization (approx. 50%). Results for LIMERIC+PULSAR

show again that it tends to assign the same rate to all the
vehicles and exhibits an oscillatory behavior in both rates
and CBT when both clusters are in range of each other.

6.3 Traffic queue

In the previous subsections we have shown worst case
scenarios, where either a large group of vehicles start simul-
taneously from an highly congested state or merge together.
In this last scenario we look at a more likely situation,
where the congestion is building up progressively. Our
goal is to examine the behavior and convergence time of
the algorithms. In Fig. 8 we show the time evolution of
the beaconing rates in an scenario where there is a static
cluster of 76 vehicles all in range of each other. There is
no congestion, since it is below the 78 vehicles transmitting
at maximum rate that allows the MBL. Batches of 3 new
vehicles are added at the origin 700 m away and move at 32
m/s until they reach the end of the queue and then stop. A
new batch is created every 5 s. This scenario may model an
on-ramp where vehicles join a jammed highway.

As can be seen, with FABRIC both vehicles in the jam
and vehicles in the batches keep the maximum rate un-
til they actually contribute to congestion, when they are
in range of each other after 18 s. On the contrary, with
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Fig. 8. Vehicles arrive at a traffic jam in batches, building up a queue.
Beaconing rate time evolution for FABRIC (top) and LIMERIC+PULSAR
(bottom). A schematic drawing is shown below.

LIMERIC+PULSAR vehicles again start reducing the rate
earlier because of the two-hop congested state they are
receiving as feedback from the preceding batch. Regarding
convergence time of the vehicles in the batches, defined
as the time interval elapsed since a vehicle start to re-
duce the rate until it has reached the value of the queue,
FABRIC shows an average of 1.73 s compared to 5.45 s of
LIMERIC+PULSAR.

7 CONCLUSION AND FUTURE WORK

In this paper we model for the first time, to the best of
our knowledge, the problem of beaconing rate control in
vehicular networks as a NUM rate allocation problem. This
modeling opens the door to formally define and apply
fairness notions to beaconing rate allocations in vehicles.
In addition, it provides a mathematical framework to de-
velop decentralized and simple algorithms with proved
convergence guarantees to a fair allocation solution. In this
respect, we have presented a family of algorithms based on
the gradient optimization of the dual of the rate allocation
problem. Within this family, we have proposed the Fair
Adaptive Beaconing Rate for Intervehicular Communica-
tions (FABRIC) algorithm. FABRIC, is a decentralized rate
allocation algorithm with theoretical and empirical conver-
gence properties, which requires limited signaling overhead
between vehicles.

We have validated FABRIC by exhaustive simulations in
both static and dynamic scenarios, for different position dis-
tributions and propagation models. Results show that FAB-
RIC effectively generates fair beaconing rates allocations.
Moreover, only in a few steps, the algorithm is able to move
the rates out of the congestion state and close to the optimal
allocation. Simulations also confirm that the algorithm is
robust against packet losses due to collisions or fading.
Our results have been compared with LIMERIC+PULSAR,
a relevant rate allocation scheme in vehicular networks.

There are still a number of practical considerations and
implementation alternatives that can be evaluated in order
to tune the algorithm. First, the β parameter controls the
convergence speed and the amplitude of fluctuations and

there is a wide range of possible values meeting the conver-
gence condition to test. Second, filtering of unreliable links
may provide a more accurate measurement of congestion
(gradient computation) in fading scenarios. Even the use of
alternative congestion measurements such as the measured
CBT can be tested. We intend to carry out an extensive
evaluation of these matters in a future work.

Additionally, from a more general perspective, we have
shown how different values of the fairness parameter α
result in different allocations, which may be more adequate
depending on the intended application or scenario. As we
discussed with a particular example, a too basic fairness
notion may directly influence the safety of the vehicles.
Therefore, it is necessary to study which is the appropriate
notion of fairness in vehicular networks and whether dif-
ferent scenarios require different notions of fairness. This
is an open question left as future work but a positive
answer implies that it is also necessary a mechanism to
dynamically control fairness. In this sense, one of the key
advantages of FABRIC and our approach is that the fairness
allocations can be controlled with this single parameter.
Moreover, this approach allows to use different values for
each vehicle or even to use totally different utility functions,
which can be both dynamically changed. And vehicles do
not need to know the functions or values used by other
vehicles. Therefore, in addition to the practical utility of
our proposal, in our opinion, one of the main contributions
of this paper is the establishment of the NUM model as
an effective and rich framework for developing beaconing
rate control schemes in vehicular networks. Consequently,
as a future work, we intend to further explore variations of
the discussed problem in the context of vehicular networks.
In particular, a comparative application and evaluation of
alternative fairness notions and the introduction of hetero-
geneous utility functions and constraints in the problem.

Finally, our model also provide support for the quality
of service needs of the applications, which usually require
to control additional variables such as transmit power. In
fact, many recent proposal let the application freely set
minimum values for one or severals variables and then
apply a distributed control for the rest of them over the
remaining capacity, which might results in violations of the
MBL. It is interesting to have a more integrated approach
and so we are working on a reformulation of the problem to
jointly control power and beaconing rate.
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