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Abstract—Existing Location-based social networks (LBSNs), e.g., Foursquare, depend mainly on GPS or cellular-based localization
to infer users’ locations. However, GPS is unavailable indoors and cellular-based localization provides coarse-grained accuracy. This
limits the accuracy of current LBSNs in indoor environments, where people spend 89% of their time. This in turn affects the user
experience, in terms of the accuracy of the ranked list of venues, especially for the small screens of mobile devices; misses business
opportunities; and leads to reduced venues coverage.
In this paper, we present CheckInside: a system that can provide a fine-grained indoor location-based social network. CheckInside
leverages the crowd-sensed data collected from users’ mobile devices during the check-in operation and knowledge extracted from
current LBSNs to associate a place with a logical name and a semantic fingerprint. This semantic fingerprint is used to obtain a more
accurate list of nearby places as well as to automatically detect new places with similar signature. A novel algorithm for detecting fake
check-ins and inferring a semantically-enriched floorplan is proposed as well as an algorithm for enhancing the system performance
based on the user implicit feedback. Furthermore, CheckInside encompasses a coverage extender module to automatically predict
names of new venues increasing the coverage of current LBSNs.
Experimental evaluation of CheckInside in four malls over the course of six weeks with 20 participants shows that it can infer the actual
user place within the top five venues 99% of the time. This is compared to 17% only in the case of current LBSNs. In addition, it
increases the coverage of existing LBSNs by more than 37%.

F

Index Terms—Location-based services, Semantic Indoor floorplans,
Location-based social networks

1 INTRODUCTION

S Ocial networking applications, e.g., Facebook, have be-
come one of the most important web services that provide

Internet-based platforms for users to interact with other peo-
ple that are socially-relevant to them. With the advances in
location determination technologies, the flourishing of GPS-
equipped mobile devices, and the development of wireless
Internet connectivity during the last decade; location-based so-
cial networks (e.g., Foursquare, Facebook Places, etc) started
to emerge. Such LBSNs allow users to share their location
information with other people in their social structure [2].
In addition, they provide services with spatial relevance to
the users such as finding interesting places within a certain
geographical area. Moreover, LBSNs provide businesses op-
portunities for better user reach, including location-based ads
and location-based business analytics. This leads to a wide
interest in such networks both from academia and industry
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with companies such as Foursquare reporting nearly 55 million
users with over 7 billions check-ins and millions more check-
ins every day1.

The main interaction among users in LBSNs is location
sharing through the notion of check-in where users voluntarily
share their locations with their peers. During the check-in
operation, the user is presented with a ranked list of nearby
venues to choose her current location. With the limited screen
size of mobile phones, accurate ranking of location-based
query results becomes crucial as the user would find it hard
to scroll beyond the top few results. A number of approaches
have been proposed in literature to tackle the venues ranking
problem in LBSNs. These approaches either rely on experts to
evaluate places, rely on the review of all users that visited these
places previously, rank places based on the closest distance to
the estimated user location, or based on places popularity [3],
[4]. Regardless of the ranking algorithm used, places ranking
usually depends on the accurate localization of the phone user
for better efficiency and accuracy in location queries. However,
traditional LBSNs depend on the GPS and/or network-based
localization techniques. Consequently, current LBSNs provide
reasonable accuracy only for outdoor environments or entire
buildings.

On the other hand, in indoor environments, GPS is unre-
liable and the accuracy of cellular-based approaches range
from a few hundred meters to kilometers. Even when WiFi is
turned on (e.g., using Google MyLocation), our experiments
below show that the median distance error in estimating the
actual venue location is 84m, which is still coarse-grained for

1. https://foursquare.com/about (last accessed Sep. 2015.)
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indoor environments. Such inaccuracy leads to a worse user
experience, which in turn is reflected on the accuracy of the
collected data and the business value. With the fact that users
spend about 89% of their time indoors [5], this sparks the need
for a new LBSN that can work well in indoor environments.

Directly extending current LBSNs to use an accurate indoor
location determination technique from literature does not solve
the problem (as we quantify in the evaluation section) since
there are a number of challenges that need to be addressed in
order to have a truly indoor LBSN. Specifically, all indoor
localization techniques that leverage smartphones sensors,
including WiFi, have an average localization error in the range
of few meters. This error in localization can lead to placing
the user on the other side of the wall in a completely different
venue [6]. Moreover, as LBSNs are organic systems which
are based on users’ contribution, their data are susceptible to
some noise in the form of incorrect check-ins. These errors
lead to problems in venue ranking and labelling. Furthermore,
the system needs to be energy-efficient to avoid phone battery
drainage. Finally, and most importantly, an indoor LBSN
should learn the labels of indoor locations automatically to
answer nearest-location queries efficiently and accurately. This
cannot be done manually for scalability reasons and due to the
inaccuracies of user check-ins and location.

In this paper, we introduce CheckInside: a fine-grained
indoor LBSN that combines physical and logical localization
techniques to address the above challenges and identify the
user actual place accurately. The core idea is to link crowd-
sensed data collected from users’ smart phones during the
check-in operation or opportunistically; with the available
venues information retrieved from the traditional LBSNs.
When the user performs a check-in operation, multi-modal
sensor information (e.g., inaccurate indoor location, oppor-
tunistic images and audio samples, etc), are processed by
the CheckInside server to construct a sensor-based fingerprint
for the current user location. This fingerprint is filtered and
matched against different venues fingerprints stored in the
CheckInside venues database, which is constructed from the
current information in traditional LBSNs and information ex-
tracted from previous check-ins in a crowd-sensing approach.
The candidate venues achieving the closest matches with the
user current place are then returned and displayed as a ranked
list to the user. The venue selected by the user, to check-in
at, is implicitly used to label the location, update the venues
fingerprint database, as well as provide a dynamic feedback
on the quality of the different sensors. All sensors used by
CheckInside either have a low-energy profile, are already
used for other purposes, or are explicitly used by the user.
Hence, CheckInside is energy-efficient. To further address the
inherent inaccuracy in indoor localization and fake check-ins
taking place outside the actual venue, CheckInside employs a
novel outlier detection technique to distinguish fake check-ins
from correct ones. This allows CheckInside to determine the
true fingerprint of a particular venue, and consequently using
only correct check-ins for floorplan semantic labelling and for
assessing the weights of the different sensors in the feedback
module. In addition, CheckInside can extend the coverage of
current LBSNs using a coverage extender module that can

Category Sub-categories
Food & Restaurants restaurant, cafe, dessert shop, ice-cream shop, bakery
Clothing & Fashion clothing store, accessories store, shoe store, cosmetic

store, jewelry store
Entertainment & Arts cinema, theater, gym, gaming room, pool hall
Others book store, bar, salon, high-tech outlet, grocery store,

department store, supermarket
TABLE 1: Venues categories.

predict the names of uncovered venues.
We implemented CheckInside on Android phones and eval-
uated it in four malls with 711 stores over six weeks with
20 different users. Our results show that it can provide the
actual venue within the top five list in 99% of the cases as
compared to 17% only in Foursquare. In addition, CheckInside
can accurately detect new venues, increasing the coverage of
current LBSN by more than 37%. Our main contributions are
summarized as follow:
• We conduct a study to assess the performance of current

LBSNs in indoor areas. Our study reveals interesting
findings regarding the limitations of current LBSNs in
terms of coverage and quality of the ranked venues list
(Sec. 2).

• We present the architecture and details of the CheckInside
system as a fine-grained indoor LBSN that can address
the limitations of the current LBSNs, provide semantic-
rich floorplans, as well as increase the venues coverage
of current LBSNs (Sec. 3 and 4).

• We implement the CheckInside system and thoroughly
evaluate its performance (Sec. 5).

Finally, sections 6, 7, and 8 discuss related work, highlight
system limitations, and conclude the paper respectively.

2 STUDY OF THE LIMITATIONS OF CURRENT
LBSNS FOR INDOOR ENVIRONMENTS

To motivate our work, we conducted a study to quantify the
limitations of traditional LBSNs for indoor location based
services as well as illustrate the characteristics of the check-
in data at these LBSNs. We use Foursquare in our study. We
investigate the limitations of Foursquare in terms of two main
factors: coverage (the number of indoor venues covered by a
LBSN to the total number of venues available) and quality of
location information (ranking and distance error of the actual
venue in the list of nearby venues). Moreover, we quantify
how frequently certain stores exist in more than one shopping
mall (i.e., chain of stores belonging to the same brand) which
can be leveraged to increase LBSNs venues coverage ratio.
To perform this study, we developed an Android application
that uses the Foursquare API to perform check-ins at venues
visited by participants. When a contributor issues a check-in
query, the application consults Foursquare to retrieve the list
of nearby venues that satisfy the user query. The retrieved list
along with the ground truth venue, selected by the contributor
or manually entered if the actual venue is not presented in the
list, are stored on the phone for later analysis.

We surveyed 711 stores in four different malls by 20 people.
Venues covered by the study are divided into four categories
as shown in Table 1. We had two modes of operation for WiFi:
on and off. When WiFi was turned on, as recommended by
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61% 

35% 

4% 

Hit Ratio Miss Ratio Granuality Mismatch

Fig. 1: Venues coverage in Foursquare. "Granularity mismatch" refers
to identifying a venue (e.g., a specific restaurant) by a coarse-grained
label (e.g., food court).

Category #actual
venues

#covered
venues

% of
coverage

Food & Restaurants 101 91 90.0%
Clothing & Fashion 374 235 62.8%
Entertainment & Arts 23 14 60.8%
Others 213 96 45.0%
Total 711 436 61.3%

TABLE 2: Summary of indoor coverage for each category.

Foursquare application, this leads to higher localization accu-
racy as compared to using cellular localization as quantified
in the next subsections.

2.1 Coverage Study

Coverage refers to the percentage of places that are included
in the Foursquare database. Fig. 1 gives the overall coverage
statistics and Table 2 gives the category details. Our study
shows that there are three main issues: missed venues, granu-
larity mismatch, and duplicate entries.

First, Foursquare misses about 39% of venues in the four
malls included in the study (not registered at all or registered
at a different granularity as discussed below).

Additionally, there is a mismatch between the users’ expec-
tations of a place name and the label returned by Foursquare
(granularity mismatch issue). For example, for some restau-
rants, Foursquare reports "food court" as the name of the venue
(the actual venue name is not registered in the Foursquare
database), which is not expressive enough for participants
about their current place, as the food court area contains a
large number of venues. This contributes to 4% of the venues
in the study.

Finally, we noticed also that 8% of the venues were regis-
tered more than once with slightly different names. We believe
that the reason for this redundancy is that some users failed to
find their current venue in the returned list from Foursquare
due to inefficiencies in its ranking function and opted to
register a new name.

Moreover, the coverage and the granularity mismatch prob-
lems of Foursquare are much worse in non-business buildings
such as educational and residential venues. For example, in our
university campus, only the university name and the names
of buildings are covered (e.g., no lectures halls names or
department names).

The coverage problem differs by category as shown in
Table 2. It is observed that most covered venues are those
where users spend a considerable amount of time like food

Avg. check-ins/venue 122.5
Avg. users/venue 57.2
Avg. tips/venue 5.4

% of check-ins
done by the same
user/venue

53.4%

TABLE 3: Average check-ins
statistics per venue.

Category Percentage
Food & Restaurants 88.1%
Clothing & Fashion 87.2%
Arts & Entertainment 56.5%
Others 73.7%

Overall 82.3%

TABLE 4: Percentage of brand
stores in the four malls.
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Fig. 2: Quantifying the quality of the default Foursquare ranking
function (WiFi on).

venues. In contrast, other venues like clothing stores have high
miss ratios as users in these venues are busy browsing items
and may not have enough time to perform check-ins.

Table 3 provides statistics from Foursquare check-ins data
including: the average number of check-ins performed at each
venue, the average number of tips and the average number of
users at each venue, and how frequently users repeat check-
ins at the same venue. As evident from the table, venues have
sufficient number of tips (5.4 in our case), which motivate us
to leverage words extracted from user tips to infer the user
place. Moreover, given that on average 53.4% of total check-
ins at all venues are repeated by the same users, the user-venue
familiarity can be harnessed as a feature in the place inference.

Finally as illustrated in Table 4, the majority (about 82%)
of shops in the four malls contained in this study are local and
international brand venues that have many branches (chain of
stores) distributed across different geographical locations. This
information is valuable for CheckInside to increase the venues
coverage (as we discuss in Sec. 4.6).

2.2 Quality Study
To assess the quality of location information provided by
Foursquare in indoor places, our study answers two questions:
(1) What is the average error in distance between the actual
venue and the top venue in the ranked list of nearby venues
provided by Foursquare? and (2) What is the rank of the actual
venue in the list of nearby venues?

To calculate the inter-venues distance, we have used the
shortest door-to-door walking distance. Our study comprises
two cases of the WiFi connectivity: on and off.

WiFi turned on: Fig. 2(a) shows that the median dis-
tance error is about 84m, which is not suitable for indoor
environments. Similarly, for the second question regarding
venues ranking, Fig. 2(b) shows that more than 47% of actual
venues has a rank that is higher than 30 in the list returned
by Foursquare. The actual places that were not provided in
the returned list are either not included in the Foursquare
databases (74% of cases) or covered venues that are ranked
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Fig. 3: Quantifying the quality of the default Foursquare ranking
function (WiFi off).

beyond the default list size of Foursquare (i.e., 30). In addition,
we observed from the collected data that there are about 6%
of the reported venues that are outdoor venues (even though
the user was indoors).

WiFi turned off: Fig. 3(a) shows that the error in distance
is larger than 200m in 45% of cases and even worse it reaches
500m, which happens when the top venue is outside the actual
user building. Regarding the venues rank accuracy, Fig. 3(b)
shows that about 82% of actual venues do not appear on the
list of nearby venues (contains at most 30 venues) returned by
Foursquare. This is due in part to the coarse grained accuracy
of cellular based localization. More specifically, we observed
that while performing check-ins at a set of neighboring venues
(same block of a building), the venues lists returned from
Foursquare are very similar. The most prevalent reason is that
the phone serving cell (from the cellular service provider) is
the same in this block, making it difficult to identify the user
location. In addition, the venues that are always returned on the
top of the list are the most popular (having the largest number
of check-ins) venues in the nearby area. Finally, about 22%
of the reported venues are outdoor venues.

2.3 Summary of Findings

In summary, our study highlights that a user will find a
difficulty in finding her venue in the list and will either add a
duplicate venue or not check-in at all, reducing both the system
coverage and the user experience as well as missing business
opportunities. This means that there is a potential to enhance
the venues rankings of LBSNs for better user experience
as well as reducing duplicates in the LBSN database. In
addition, automatic prediction of uncovered venues names has
the potential of increasing venues coverage and reducing the
granularity mismatch.

3 SYSTEM OVERVIEW

In this section, we present a typical scenario of how Check-
Inside works to illustrate the high level flow of information
through the system architecture (Fig. 4). The CheckInside
client installed on the user’s phone triggers sensor data col-
lection when a user is stable in a certain venue for some time
(detected by the Fixed Venue Determination module). The
sampled sensors are only those which are enabled according
to the data collection policy configured in the User Privacy
Profile. Once a user issues a check-in request, the CheckIn-
side client forwards the collected sensors information to the
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Fig. 4: CheckInside system architecture.

CheckInside cloud server. Sensors used are either low-energy
sensors (e.g., inertial sensors), sensors that are already used
for other purposes (e.g., cellular information), and/or sensors
that are used opportunistically if the user turned them on
for other purposes (e.g., WiFi, camera, mic). At the heart
of CheckInside is an indoor localization technology. We use
the Unloc system [7] due to its high accuracy, low-energy
consumption, and its reliance only on the phone sensors.

Using the reported phone location, even with a coarse-
grained accuracy, the Venues Database Manager contacts
traditional LBSNs, e.g., Foursquare, to obtain a list of nearby
venues and their associated information (e.g., pictures, user
tips, and other check-ins data). These candidate venues are
combined with the list of nearby venues already stored in
the CheckInside database and the merged list is annotated
with the multi-sensor fingerprint of each venue stored in the
CheckInside venues database.

The Features Extraction Module creates a test fingerprint
of the current user location based on the collected sensors
information.
The Venues Ranking Module performs a series of ac-
cept/reject filtering operations on the returned venues from
the Venues Database Manager to reduce the candidate set
based on the location and WiFi fingerprint by computing
the pairwise similarity among fingerprints of the test and
candidate places. It then performs a set of ranking operations,
based on the different sensors employed, to rank the candidate
locations. The different rankings are then aggregated using the
Rank Aggregation Module to produce a final ranked list of
candidate locations. This list is returned to the user to select
the check-in venue.

Once the user selects her current venue, the Incorrect
Check-ins Detector Module runs to handle outliers and noise
in the user location check-in operations performed far from the
actual venue. After the incorrect check-ins are removed, the
User Feedback Module uses the correct check-ins to update
the weights of the different ranking modules to enhance the
future system performance. Concurrently, the selected user
place and the test fingerprint are passed to the Semantic
Floorplan Labelling Module to label the venue location on
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the map.
Finally, if the test place is not suitably matched to any of

the candidate venues in the venues database, it will be marked
as a new place and the Coverage Extender Module will try
to predict its name.

4 THE CHECKINSIDE SYSTEM
In this section, we present the details of CheckInside mod-
ules depicted in Fig. 4. Without loss of generality, we take
Foursquare as an example of traditional LBSNs for the rest of
the paper.

4.1 Sensor Sampling Module
This module is responsible for collecting the sensor features
from the user’s phone including the accelerometer, micro-
phone, camera, gyroscope, magnetometer, and the received
WiFi signal strength values from the available access points.
The GPS is also queried with a low duty cycle to detect
the user’s transition from outdoors to indoors. The sensor
measurements are piggy-backed to the cloud server when the
user performs a check-in operation.

4.2 Privacy Controller
Privacy is an important issue in the design of mobile sensing
applications. People are sensitive to data captured by their
phone, particularly multimedia data, and how this data is used
by the application. Given this fact, CheckInside gives users
full control over the sensed data by means of a personalized
privacy configuration. Specifically, CheckInside has different
modes of operations (full sensors, partial sensors, privacy
insensitive data only, etc) that tailor the amount of data
collected based on the user’s preferences. There is a trade-off
between the performance of the system and privacy. However,
according to recent studies [8], most sensors harnessed by
CheckInside (inertial sensors and WiFi) are enabled by most
users and even the privacy-sensitive sensors (i.e., camera and
microphone) are enabled by about 78% of users according
to the same study. Finally, we process most of the collected
sensors data locally on the user’s device, further enhancing the
user privacy.

4.3 Energy Consumption
As sensors sampling (to capture a place fingerprint) needs
several seconds, initiating it after the user starts a check-in
process will incur a high delay. The phone sensing, therefore
need to run in the background to have the place fingerprint
ready when the user wants to check-in. However, continuous
sensing without duty cycling leads to faster battery depletion.
To save the phone battery, we apply the adaptive sensor
scheduling scheme triggered sensing [9]. The key idea behind
triggered sensing is that sensors that are relatively inexpen-
sive in energy consumption (e.g., accelerometer) is used to
trigger the operation of more expensive sensors (e.g., camera
and mic). In addition, all sensors are sampled at low rates
(compass, accelerometer and gyroscope at 24Hz; WiFi at
1Hz; audio at 32Hz). We quantify the energy consumption
of CheckInside in Sec. 5.3.3.

4.4 Fingerprint Preparation

This module is responsible for preparing the test fingerprint for
the venue the user is currently located at as well as retrieving
the fingerprints for candidate venues from the venues database.
It consists of three main modules: Fixed Venue Determination,
Venues Database Manager and Feature Extraction (green mod-
ules in Fig. 4):

4.4.1 Fixed Venue Determination
To reduce energy consumption and enhance users’ privacy,
this module determines if the user is stationary at the same
venue for certain amount of time to start data collection.
Since the estimated indoor location may have inherent er-
rors that may place the user at the wrong side of a wall,
i.e., another venue, we revert to using WiFi similarity for
determining the stationarity within a venue, which gives better
performance [7]. In particular, the system considers that a user
is staying at the same venue if the similarity of consequently
received signal strength from WiFi APs is larger than a certain
threshold. We experimented with different similarity functions
[6], [10], [11] and found that a modified version of [6] gives
the best performance. Specifically, given two lists of APs at
two locations (APs1) and (APs2), the similarity is given as:

S =
1

|APsu|
∑

a∈APsu

(f1(a) + f2(a))
min(f1(a), f2(a))

max(f1(a), f2(a))
(1)

where APsu is the union of the MAC addresses of the APs
in the two locations, f1(a) and f2(a) are the fraction of
times each unique MAC address a was observed over all
recordings in the two locations respectively. Note that this
metric has the advantage of not depending on the signal
strength (which varies by different devices) and, different from
[6], is normalized to be independent of the number of APs at
a particular location (it ranges from 0 and 2).

Once the user is detected to be stationary, sensors data as
well as the stay duration are collected. When the user performs
a check-in operation, sensor features are piggy-backed with the
check-in request to the CheckInside server. Otherwise, if the
user leaves the venue without performing a check-in, all venue
related data are discarded.

4.4.2 Venues Database Manager
This module prepares a list of the candidate venues that will be
further filtered out and ranked by the Venues Ranking Module
to identify the user location. It first consults the Foursquare
database to retrieve the list of nearby venues given the cur-
rent user location. Other data retrieved from the Foursquare
database include the pictures associated with the venue, tips,
check-in history, and location2. It then stores/updates this data
in the CheckInside local database and retrieves the associated
multi-sensor fingerprint of the retrieved list as well as the
location of the venues as estimated by CheckInside, if the
venue already exists in our database. It also builds an index
for brand venues (having branches in different buildings) that

2. The venues’ location in the Foursquare database are not accurate as they
are based on the outdoor GPS location or the network-based location.
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will be used by the Coverage Extender Module to increase
venues coverage.

Since 8% of the venues were registered in the Foursquare
database more than once with slightly different names (Sec. 2),
to mitigate this problem for brand venues (constituting 82% of
shops in the four malls), we compare the list of brand names
with all names registered on the venue database based on the
edit distance using the Levenshtein algorithm for the string
similarity calculation [12]. The venue name encountering an
edit distance from a brand name less than a certain threshold
is updated to the brand name. On the other hand, for the non-
brand venues, we compare the names of all registered venues
on the same building against each other using the edit distance.
Names having low edit distances will be clustered together as
representatives of the same venue.

4.4.3 Feature Extraction Module
This module extracts the features used to characterize a certain
venue to generate the test fingerprint of the location the user is
currently at, and is used later by the Venues Ranking Module.
Features extracted cover both the user’s behavior as well as
surrounding environment. Specifically, we use the following
features:

Location: This is based on the Unloc system [7] that
performs dead-reckoning to provide a rough estimate of the
phone location. To reset the dead-reckoning accumulated error,
it leverages points in the environment with unique sensors sig-
natures (e.g., elevators, turns, etc). Unloc has the advantages of
not requiring any calibration or infrastructure, high accuracy,
and low energy consumption.
Mobility data: This group of features captures users’ behavior
while visiting different venues as it is a key indicator of place
category. For example, people are stationary for a longer time
in restaurants and they mostly visit them during a certain time
of day (i.e., meals time). Similarly, users may go to certain
shops more frequently based on the season (e.g. ice cream
shops in summer). On the other hand, users are more mobile
in clothing shops and there is no fixed pattern for the visiting
time of this category. CheckInside uses three mobility features
to characterize the nature of venue: (1) the user activity in the
venue, (2) the timestamp (time within day) this type of venue
is usually visited, and (3) the time the user spends in this
venue.
The first feature, the user activity, is define as the ratio (r)
between the user mobility time to user stationary time within a
certain period. User mobility is retrieved from Android activity
recognition service, which can distinguish whether the user
is stationary or moving. This is quantized into three levels:
stationary (e.g., sitting in a restaurant, if r < 0.2), browsing
(e.g., in a clothing shop, if 0.2 < r ≤ 2), and walking (e.g.,
in a grocery store, if r > 2) [13].
On the other hand, visiting time is quantized into different
periods within the day: early morning, late morning, early
afternoon, late afternoon, early evening, and late evening3.
Finally, stay duration is quantized into 30 minutes intervals.

3. generalization to other granualities, e.g. over a week or a year, is left to
future work.

1

Fig. 5: Pictures taken at different stores: The top left group shows
example pictures used to differentiate stores (image features). The top
right and bottom left groups show pictures taken at different venues
with different light intensities and different floor types respectively
(color/light features). Finally, the bottom right group shows some
blurred images in our collection.

The fingerprint associated with the three mobility features is
the histogram of the feature samples collected at this particular
venue from different check-ins.
WiFi Fingerprint: Due to the limited range of WiFi in indoor
environments, it can be used to characterize venues indoors.
CheckInside stores the fraction of times each unique MAC
address was observed in the venue over all check-ins as the
WiFi fingerprint for that venue.
Sound Fingerprint: Sound captured by a mobile device’s
microphone is a rich source of information that can be used to
make accurate inference about the surrounding environment.
For example, some venues (e.g., a music store) play music
in the background while others (e.g., a library) are qui-
eter. To recognize venues using ambient sound, CheckInside
fingerprinting is based on the signal amplitude to capture
the loudness of the sound [6]. Specifically, the amplitude is
divided into 100 equal intervals and the number of samples
per-interval is normalized by the total number of samples in
the recording. The 100 normalized values are considered to
be features of the ambient environment. Since sound from the
same venue can vary over time, we divide the day into 24
1-hour bins and use a separate sound fingerprint for each bin.
Image Fingerprint: There are many features used in literature
to represent images including the Scale-Invariant Features
Transform (SIFT) [14] and the gist features [15] which cap-
tures local and scene features in images respectively. While
these features capture the essential characteristics of images,
they are not directly appropriate for our system due to their
large size. For instance, each SIFT feature is a 128 dimensional
vector and there are several hundred of such SIFT vectors
for an image. The large size makes it inefficient for image
matching, which is not suitable for the real-time operation
required by CheckInside.

To resolve this problem, we leverage the visterms compact
features [16] which reduce the size of the SIFT features signifi-
cantly by efficient clustering. A visterm is treated as a term in a
document (image in our case) which has an Inverse Document
Frequency (IDF) to indicate its discriminative power. Once
visterms are extracted from an image, they can be matched
efficiently against visterms extracted from the images retrieved
from the venues database in a manner similar to keywords in
text retrieval.

Color/Light Fingerprint: A large number of stores have
a thematic color as part of their decoration, e.g., red at
McDonalds. The wall and floor colors contribute significantly
to this theme (Fig. 5). Floors may be covered with carpets,
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Fig. 6: Comparison between the magnitude of normalized magnetic
field in an electronic and a clothing store.

ceramic tiles, or wooden strips, all of which are discriminating
attributes of the ambiance. Based on this, pictures taken from
different spots in a store are likely to reflect this theme.
CheckInside extracts dominant colors and light intensity from
pictures of floors and walls by transforming the pixels of
the floor images from the RGB space to the hue-saturation-
lightness (HSL) space. This has the advantages of removing
the effect of shadows of objects and people, and the reflections
of light; and decoupling the floor and wall colors from the
ambient light intensity [6].

We run the K-means clustering algorithm on the HSL image
representation of all pictures taken at the same venue. The
K-means algorithm divides the pixels into K clusters, such
that the sum of distances from all pixels to their centroid
is minimized. The centroids of these clusters, as well as the
cluster sizes, together form the color/light fingerprint of that
venue.
Magnetic Fingerprint: The natural magnetic field has two
characteristics: the uniqueness of magnetic field distortion
from one location to another in a building, and its time
invariance. This enables the deployment of magnetic-field
distortion-based location estimation. The ambient geomagnetic
fingerprint can be modeled as a vector M of three components
mx,my , and mz which represent the measured magnetic field
in the three directions x, y and z. The collected magnetic
readings are normalized using mean normalization, and the
magnitude of each reading is computed [17]. A comparison
between the magnitude of the normalized magnetic field
collected at a clothing and an electronic venues is shown in
Fig. 6.

The FFT is applied on the normalized magnetic signature to
generate an energy signature independent of time and walking
patterns. This will avoid the burden of collecting magnetic
information in different directions in order to construct an
accurate magnetic map.
SSID Fingerprint: The SSID of an Access Point (AP)
installed in a certain venue may be indicative of the venue
name given that the vast majority of shops have a wireless
Internet connection. The WiFi scan collected while the user
is performing a checks-in contains a number of AP SSIDs
overheard at that place. Consequently, the location’s SSID
fingerprint is represented as the SSID of the AP that has
the strongest average RSS in that scan. However, before
computing the strongest AP, APs having SSID holding
common AP manufacturers or service providers names (e.g.,
LinkSys or Vodafone) are filtered out.
OCR Fingerprint: Opportunistic images captured while users
visiting a place may contain menus, store logo, or postings.

CheckInside mines words from these images by incorporating
the HP Tesseract OCR engine [18]. The set of words extracted
from place-related images constitute its OCR fingerprint.
However, the venues database manager keeps track of tips
posted by users at candidate venues crawled from Foursquare.

Familiarity: It indicates how frequently a user visits the
same venue and/or the venue’s brand and is measured by
the number of check-ins the user has performed at the venue
and/or its brand. We hypothesis that this feature will outper-
form popularity used in [1] as the place popularity is measured
over all users and a certain venue may be popular in general
but the current user is not interested in it.

4.5 New Venue Determination
As LBSNs are organic systems which are based on users’
contributions, some venues may not be covered yet (e.g., 35%
in case of Foursquare) as illustrated in the study shown in
Sec. 2. When the user issues a check-in request, CheckInside
should determine if the test venue is a new (i.e., visited for the
first time) one, or it is already included in the venues database,
to decide where to forward the test place fingerprint. If the test
venue is new, the coverage extender module is used to predict
its name. Otherwise, the venue ranking module is employed
to match the test venue fingerprint against candidate venues
retrieved from the venue database. To recognize whether the
current venue is new or not, we draw on the WiFi similarity
(using Eq. 1) among the current place WiFi bind and all candi-
date places WiFi fingerprints. If the maximum WiFi similarity
among test venue and other candidate venues is lower than
a certain threshold (1.2 in our system), this indicates that the
place is not covered yet by the system.

4.6 Coverage Extender Module
Given the fact that the vast majority (82%) of stores in large
shopping malls belong to well-known international or local
brands, as shown in the study in Sec. 2. CheckInside leverages
this fact to extend the coverage of current LBSNs by predicting
the names of venues that are not yet included in the LBSN
database.

To predict the name of a venue, CheckInside relies on
two subsequent approaches. The first approach uses the WiFi
scan collected during the check-in at the test location. It will
first determine the strongest AP at that location. The SSID
of the strongest AP is compared against a predefined list
of brand names (retrieved from the CheckInside database).
The venue name that encounters the lowest edit distance with
the strongest AP SSID is deemed as the predicted name
for the new venue. To decrease the false positive (FP) rate,
venue naming is confirmed only if the lowest edit distance is
less than certain threshold. Nevertheless, if the first approach
failed to predict the name, the system will compare the test
place logical fingerprint (the complete fingerprint excluding
WiFi, magnetic and location) against the logical fingerprints
of all brand venues in other malls (indexed in the venues
database). Our intuition is that most shops belonging to the
same brand share decorations, color themes, lighting styles,
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may play the same type of music, and have similar mobility
data. Consequently, logical fingerprints matching of test venue
against brand venues will be able to predict the correct name
for brand venues with high probability.

4.7 Venues Ranking Module
This component is responsible for ranking the candidate list
generated by the Venues Database Manager. It accomplishes
this by three main components (blue in Fig. 4): filtering,
feature-based ranking, and rank aggregation.

4.7.1 Filtering
The function of this component is to eliminate candidate
venues that are not likely to be similar to the test venue.
This helps in increasing the efficiency and accuracy of the
next ranking modules. Filtering is performed based on the
current user location and the WiFi fingerprint. Both filters
are run independently and concurrently returning a number
of candidate venues. To avoid excessive filtering, each filter
returns a fixed number of locations (taken the same as the
Foursquare API default of 104). The output lists of the two
filters are aggregated, generating the candidate list. The num-
ber of places in the candidate list can be extended/shortened
depending on the confidence in the place inference or/and the
user preference.

Filtering By Location: This is performed by placing a
threshold on the distance between the current user location
and the candidate venue location. The metric used for distance
calculation is the shortest door-to-door walking distance, rather
than the euclidean distance. To speed up the retrieval of closest
candidate venue to user location, we use an R-tree to index
the venues database.

Filtering By WiFi Fingerprint: It is performed by comput-
ing the similarity between the test venue WiFi fingerprint and
all candidate venues WiFi fingerprints using Eq. 1 and then
returning the venues with the highest scores.

4.7.2 Feature-based Ranking
This module orders candidate venues according to their pair-
wise similarity with the test venue. CheckInside employs all
extracted features for matching the test place against candidate
places. Each ranker orders the pruned list of nearby venues
received from the filtering component based on one of the
features in parallel.

Sound ranker: To compute the degree of similarity between
two sound fingerprints, we use the Euclidean distance between
the corresponding sound fingerprint 100-dimensional vectors.

Image ranker: We employ the technique developed in [16]
for image search to our image ranking operation. Specifically,
we use an inverted index constructed from the corpus of
images in the venues database. The inverted index is a mapping
of each visterm feature in the test images to the images in the
database containing that visterm. The IDF of found visterms
in a candidate venue are averaged to get the venue score. The
list of candidates are returned ranked in order of their average
IDF score.

4. https://developer.foursquare.com/docs/venues/search

Mobility data ranker: This module computes the similarity
based on visiting time (v), user activity (r), and stay duration
(d) between each venue in the candidate list and the user
test venue. The similarity is taken as the joint probability
of the different mobility features at the candidate venues. In
particular, the mobility similarity (m) between the current user
mobility test data (v, r, and d) and a venue fingerprint (F ) is
given by:

m = P ((v, r, d)|F ) = P (FV = v).P (FR = r).P (FD = d)
(2)

Where P (FV = v) can be obtained from the histogram of
the user visiting time at the candidate venue, P (FR = r) from
the histogram of the user activity, and P (FD = d) from the
histogram of stay duration.

This metric indicates that a candidate venue is good if it
has a high probability of matching the current user mobility
behavior. For example, food venues would have close visiting
time (e.g., at meals time), long stay durations (e.g., 30+
minutes), and similar user activity (e.g., sitting) with high
probability.
Color/Light ranker: The color/light similarity is performed
based on the Euclidean distance between their cluster cen-
troids and the clusters’ sizes [6]. The similarity (S) between
fingerprints F1 and F2 is defined as:

S =
∑
i,j

1

δ(i, j)

sizeOf(C1i)

T1

sizeOf(C2j)

T2
(3)

where C1i, C2j are set of clusters for fingerprints F1 and F2

respectively. T1, T2 are the total number of pixels in clusters
in F1 and F2 respectively, and δ(i, j) is the centroid distance
between the ithcluster of F1 and the jth cluster of F2.
Magnetic field ranker: It estimates the similarity between the
magnetic signal vector at a test place Ma and a candidate place
Mb by the Euclidean distance defined as:

S(Ma,Mb) =
√

(mx
a −mx

b )
2 + (my

a −my
b )

2 + (mz
a −mz

b)
2

(4)
SSID ranker: It computes the string similarity using the edit
distance among the SSID of strongest AP in the WiFi bind of
the test venue and candidate venues names. For a candidate
venue with duplicate names, the average edit distance among
all names of the candidate venue and the test venue name is
deemed as their similarity measure.
OCR ranker: It matches venues tips against OCR text mined
from images captured at the test place. As a preprocessing step,
stop words and non grammatical words are filtered out. Finally,
the ranker orders candidate venues based on the number of
overlapping terms between the texts extracted from OCR and
from the user tips [19].
Familiarity ranker: It ranks more familiar venues with respect
to the current user higher in the list.

4.7.3 Rank Aggregation
Once the different rankers provide their ranked lists of places,
this module fuses them into a single ranked list. We ex-
perimented with CombSUM as an example of score-based
methods (combine the different lists based on the assigned

https://developer.foursquare.com/docs/venues/search
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scores in the individual lists) and the Borda’s method as
an example of order-based ones (combine the lists based on
the order of places in each individual list); both representing
data fusion (unsupervised rank aggregation) techniques [20].
In addition, we experimented with different learning-to-rank
(supervised rank aggregation) algorithms like AdaRank [21]
and Ranking SVM [22]. We compare the different techniques
in Sec. 5.3.1.

4.8 User Feedback Module
A significant characteristic of the users’ interaction with a
LBSN is that the user explicitly selects a venue to check-in
from the list of nearby venues, which acts as a “ground-truth”
for the user current place. This feedback not only provides
information about the performance of CheckInside venues
ranking algorithm, but it also can improve the system future
performance by identifying which ranker provides the best
performance.
Specifically, rankers performance varies from venue to another.
For example, some venues have distinct color theme (e.g.,
restaurants), other have unique sound signature (e.g., libraries
are quiet), and no WiFi signal is overheard in some venues.
After each check-in, the rankers weight is updated to reflect the
degree of user satisfaction to the returned results. We leverage
this user feedback to weigh the different rankers. Initially,
to ensure correctness, fake check-ins are filtered out by the
incorrect check-ins detection module. Then, we start with all
rankers having an equal weight. After each check-in operation,
and given that the candidate list contains l venues, each ranker
is assigned a score of l − i, where i is the rank of the actual
venue in the ranker’s list. These scores are then normalized to
add to one.

4.9 Semantic Floorplan Labelling Module
This component is responsible for the automatic labelling
of venue names on the floorplan. CheckInside starts with a
floorplan with rooms and corridors highlighted which can
be either manually uploaded or automatically generated from
crowdsourced data [23]. To enrich the floorplan with the
semantic labels of the venue names, one cannot simply use the
user check-in information, which provides the current venue
name and the current user location due to the errors inherent
in the check-in process in the form of incorrect check-ins.
So, as a preprocessing step, the incorrect check-in detection
module will identify and remove outlier and noisy check-ins
taking place outside the actual venue. Once the fake check-ins
are removed, the venue location is estimated as the mean of
the locations of the users who check-in at this venue. Based
on the law of large numbers, this mean converges to the
actual location as the number of samples increases. The venue
enclosing this location on the map is tagged accordingly.

4.10 Incorrect Check-ins Detection Module
In LBSNs, without a method for detecting fake check-ins, the
quality of location information is based solely on the honesty
of users. Fake check-ins can be performed in different ways

including faking GPS coordinates or checking-in a venue that
is not nearby. Moreover, the indoor localization algorithm
employed has inherent error in the range of few meters, which
may place the user at an incorrect venue. Fake check-ins
have a negative impact of the operations of LBSNs, including
monetary loss and degraded quality (e.g., in recommendation
services that make use of the check-ins data). In addition,
fake check-ins affect the performance of several modules of
CheckInside such as user feedback and semantic floorplan
labelling.

To address these challenges, CheckInside uses an unsu-
pervised outlier detection algorithm as there is no a-priori
model available for identifying correct check-ins. Our ap-
proach is based on the outlier detection in the WiFi signal
space. Specifically, we depend on the fact that independent
correct check-ins made at the same venue are adjacent in the
WiFi signal space and tend to cluster, while fake check-ins
are distributed over a larger area. Consequently, we apply
an agglomerative hierarchical clustering approach to detect
check-ins that are suspected to be erroneous. Later, label
assignment and user feedback incorporates only check-ins
tagged as correct. The system maintains all WiFi fingerprints
assigned to a venue during check-ins within a time window
(regardless of correctness), so that recent data can be used
to periodically reclassify clusters and detect outliers for that
venue. For location verification of a check-in of a user at
certain venue v, we utilize the recent k RSS vectors collected
by users claiming presence in v.

For the agglomerative hierarchical clustering algorithm,
clusters are successively merged in a bottom-up fashion, based
on the WiFi similarity metric in Eq. 1, until the similarity
falls below a pre-defined cut-off threshold d∗. The selection of
appropriate value for d∗ is based on formulating the threshold
identification problem as a Bayesian decision problem [11].
Once check-ins are grouped into clusters, the system identifies
which cluster includes the correct check-ins (the rest are
assumed to contain fake check-ins).

If we assume that most users make correct binds, it is
natural to take the largest cluster as the correct binding for
the venue. However, when the system starts, it has not yet
obtained enough check-ins and thus majority voting is not
feasible. Therefore, we identify the correct cluster of check-
ins c∗v given a set of check-in clusters (Cv) at venue v according
to the following criterion:

c∗v = argmin
c∈Cv

∑
m∈N (v)

ds(c, c
∗
m) (5)

where N (v) is the set of neighboring venues to venue v, c∗m
is the cluster of correct check-ins at neighboring venue m at
the time of computation, and ds(c, c∗m) is distance between the
two clusters centroids. The intuition is that the correct cluster
assignment for a venue is the one that is most similar to its
neighboring venues.

5 EVALUATION
CheckInside is evaluated through a multi-mall deployment that
include 711 stores distributed in four malls in two different
cities over six-weeks period.
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Venue Type CrowdSensing Foursquare

# of
Venue

# of
Image

# of
Color
/Light

# of
Sound

# of
Venue

# of
Image

# of
Tip

Food 101 1366 1087 380 91 1243 1299
Cloth.&Fash. 374 5031 2914 1237 235 374 641
Arts&Ent. 23 287 183 127 14 57 138
Others 213 2648 1514 847 96 234 277
Total 711 9332 5698 2591 436 1908 2355

TABLE 5: Description of collected data.

5.1 Data Collection
We recruited 20 participants to collect the necessary data for
evaluation. While visiting places, participants capture images
and record audio samples. Simultaneously the deployed data
collection tool collects user traces and samples WiFi. To col-
lect ground-truth (GPS is not available inside malls building),
participants manually label the venue when they depart the
place. Table 5 shows the description of collected data. The
light proximity sensors are used to make sure that pictures
are taken when the phone is in the user’s hand. The phone
orientation sensor is used to differentiate between pictures of
floors (used for color/light ranking) and other positions (used
in images ranking). About 22.7% of the pictures were blurred
images (Fig. 5).

Moreover, Foursquare is crawled to extract venues at-
tributes such as name, category, user tips, among others. The
dataset crawled from Foursquare contains only 436 stores (i.e.,
covered by Foursquare) out of the 711 stores used in this
evaluation.

5.2 Methodology
The participants are divided into four groups. Each group
of five participants is assigned to a mall. To make the data
collected as natural as possible, participants were asked to be-
have normally while visiting each place category. For example,
participants browse items in the shelves and wait in queues at
cashiers like normal customer at Clothing venues. Moreover,
each place is visited five times on different days by different
participants. The data is collected using different Android
phones including Samsung Galaxy S plus, Nexus One, Galaxy
Tab, among others. This captures the time-variant nature of the
fingerprint at the same venue as well as the heterogeneity of
users and devices. Finally, some participants check-in in the
neighborhood of the place (e.g., corridors) while others check-
in inside the place.

5.3 Performance Results
We start by evaluating the accuracy of different system mod-
ules and the performance of the system in different modes
of operation. Finally, we quantify the advantage of CheckIn-
side as compared to traditional LBSNs, in terms of ranking
accuracy, coverage and power consumption.

5.3.1 Performance of Different System Modules
1) New Venue Determination Module: To evaluate the ability
of CheckInside to recognize new places (not included in its
database), we perform a two round process. At the first round,
a WiFi fingerprint of each venue is matched against all WiFi
fingerprints of other venues in the database (not including
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itself) simulating the case when the user is at a new place.
At the second round, we match the WiFi fingerprint of each
venue against all other venues in the database (including itself)
simulating the case when the venue is covered by the system.
At each case, the maximum WiFi similarity is calculated and
compared against a predetermined similarity threshold. If the
maximum similarity is less than the similarity threshold, the
venue is confirmed as a new venue. Fig. 7 shows the effect of
varying the similarity threshold (from conservative to lenient)
on the CheckInside ability to recognize new venues. When the
system is conservative (i.e, small threshold) in recognizing new
places, it can avoid False Positive (visited places classified
as new one). As the threshold increased, the module will
recognize more new venues but at the cost of higher FP
rates. A similarity threshold of 1.2 is selected empirically as a
comprise between False Positive (FP) and True Positive (TP)
rates.
2) Venues Ranking Module:
Filtering: Filter accuracy refers to the ability of the filter
to return the actual venue within its list. Fig. 8 shows the
effect of changing the candidate venues list size on the filter
accuracy. It shows that both the WiFi and location-based
filters have comparable performance with a slight advantage to
WiFi-based filtering due to the wall-aliasing effect described
before. The accuracy can be further increased by combining
their output. CheckInside can achieve 100% accuracy with
a candidate list as small as 15 entries. This is compared to
Foursquare that can achieve only 29.5% for the same list
size as we presented in our earlier study. This highlights that
CheckInside can enhance the user experience, especially for
mobile devices with small screens. This is further enhanced
by the ranking modules.

Ranking: The performance of different rankers in isolation
is shown in Fig. 9.

The WiFi and location-based rankers have the best accuracy
due to relatively lower noise compared to the other rankers.
The WiFi ranker, again, has better performance than the
location ranker due to the wall-aliasing effect.

For the Color/Light ranker, the average accuracy for detect-
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ing the user venue is about 42%. We observe that this ranker
performs well in stores where there is a large diversity in
the color and light intensities. For example, food places are
usually grouped into food court area and thus for economical
competition they have diverse color themes and decorations.
The image ranker achieves moderate accuracy (47.6%). This
is due in part to the 22.7% collected blurred images. Another
reason that made the image fingerprint less effective is that
most of adjacent venues are of the same category and the
majority of venues (over 50%) are clothing and fashion shops.
Therefore, pictures captured in one shop are similar to other
pictures taken at adjacent shops as they contain similar shelves
and items. We noticed that the image fingerprint achieves
high accuracy in small size shops, where the majority of the
captured pictures have a number of common interest points
due to the limited area available to take photos.
The sound ranker offers a little discriminative power as the
majority of stores have a small size at which the sound samples
recorded at a venue contain noise from adjacent stores. More-
over, the majority of shops are crowded with people, which
makes the sound fingerprint has similar background noise for
different stores. Finally, we observe that the majority of stores
are correctly identified based on their sound fingerprint are
those that either have no music played in the background or
are less popular venues having a small number of customers.

For the mobility ranker, the logical design of the malls,
which divides the available space into blocks mostly from
the same category prevents the diversity of mobility data
(user activity, visiting time, and stay duration). This leads
to ambiguity between adjacent stores. Another reason is that
the stay duration is highly affected by the time at which
users perform the check-in. For example, if a user performs a
check-in just after arriving a cafe (typically identified by long
stay periods), this will make the reported stay duration short,
leading to incorrect identification.
The magnetic ranker provides the actual venue on the top-5 of
the list in 49.5% of cases. This degraded performance is due to
the difference of the movement pattern of different users which
affect magnetic field distortion sensed by the phone compass.
The magnetic field can perform better when the magnetic
field is measured at each point in all direction forming a
complete circle as discussed in [24] which is impractical.
However, it can easily recognize stores having a distinct
pattern of magnetic distortion by metals and/or electronics
(e.g., electronic stores).
The OCR based ranker orders the actual venue on the top-10
of the list in 74% of cases. Its performance depends on the
amount of words mined from images, the amount of tips as
well as their overlapping terms. Consequently, it achieves best
accuracy in cafe and restaurant which contain large number of
tips conveying user feedback about different menu items and
the images uploaded or collected opportunistically at these
venues type always contain menus and/or store signage.
The SSID ranker performs well and it can correctly infer the
user location in about 49% of cases. The reason is that 58.7%
of venues have APs conveying SSIDs very similar to venues
name. However, about 18% of these AP are not the strongest
SSID in this venue.

 0.05

 0.1

 0.15

 0.2

0 20 40 60 80 100 120

N
or

m
. c

um
ul

at
iv

e 
w

ei
gh

t

Number of check-ins

WiFi
Location

Color
Image
Sound

Familarity
Mob. data

SSID
Mag
OCR

Fig. 11: Weight evolution of dif-
ferent rankers starting from equal
weights.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5

C
D

F

Rank of venue

With user feedback
Without user feedback

Fig. 12: The CDF of the rank of
the actual venue in final list.

Finally, familiarity ranking usually used in Foursquare does
not achieve the desired performance. This due to the unpre-
dictable nature of user behavior and the fact that on average
50% of generated of a venue check-ins are performed by first
time visitors (Sec. 2). The familiarity ranker, however, may be
important as a tie-breaker when other features are absent or
they reported approximately the same similarity values.

Finally, the last bar in Fig. 9 shows the CheckInside rank
aggregation performance with equal weights for all rankers.
The figure shows that the actual venue is within the first five
places 99% of the time. This is even enhanced using the
feedback module as quantified next.
Rank Aggregation: Fig. 10 compares the performance of
different rank aggregation algorithms. Evident from the fig-
ure, for data fusion algorithms, the Borda’s method provides
better performance than CombSUM as rankers have high
score variance which may make one ranker dominate the
others, even if it is not the best ranker. For learning-to-
rank algorithms, AdaBoost outperforms Ranking SVM as it
is designed to optimize loss functions incorporated with any
performance measure. Overall, AdaRank outperforms all rank
aggregation algorithm with slight improvement over Borda’s
method. However, we opt to use Borda’s method as it does
not need training, is simple to implement, and does not require
parameters tuning.
3) User Feedback Module: Fig. 11 shows how the weights
of the different modules evolve with time starting from equal
weights. The weights converge to values proportional to the
discriminative abilities of the different rankers as quantified in
the previous section. This is reflected on the overall accuracy
as shown in Fig. 12, where using the feedback module can
detect the actual venue 87% of the time compared to only
76% without using user feedback.
4) Incorrect Check-in Detection Module: Fig. 13 evaluates
the performance of the fake check-in detection at differ-
ent clustering threshold values d∗ ranging from conservative
(d∗=12dB) to lenient (d∗=16dB) clustering. It shows that the
trade-off between the probability of correct outlier detection
and false alarm (a correct check-in classified as an outlier).
Larger value of d∗ means that a WiFi bind has high probability
to join clusters which decreases the probability of detection.
This is due to some fake check-ins will fall into true clusters.
However, using large threshold value decrease the probability
of false alarm.
5) Semantic Floorplan Labelling Module: To understand
the accuracy of the outlier detection technique of CheckIn-
side regarding correctly inferring the venue location on the
floorplan, we select for each venue a group of erroneous
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check-ins (performed at corridors or at other shops), where pe
represents the probability of erroneous check-ins. We compare
to an “Oracle” (perfect) detector. Fig. 14 shows that the outlier
detection algorithm of CheckInside can provide from 9 to 19%
enhancement in detecting the actual venue location over a wide
range of pe. Note that, even with the Oracle detector, there are
still errors in labelling the venue due to the inherent errors
in the location determination system used. Unsurprisingly,
at high error rates, the detector has a low accuracy as all
detected neighbors have errors. We believe, however, that the
performance is reasonable to typical values of pe.
6) Coverage Extender Module: The coverage enhancement
is evaluated as the percentage of venues that are discovered by
CheckInside and are not included in the Foursquare database.
To evaluate the ability of CheckInside to increase the coverage
of current LBSNs, we performed a cross validation experiment
where all the venues of one mall are used as the test and
the venues of the other three malls are used as the database.
The ability of CheckInside to predict venues names using
APs SSIDs is shown in Fig. 15(a). The Fig. shows the
prediction accuracy at different values of edit distances among
venues names and strongest AP’s SSID. As the edit distance
increased, more venues name can be predicted at the cost
of false prediction. When the distance threshold reaches a
certain value, no more venues are added as the coverage
extension is bounded by the number of brand uncovered
venues. Eventually, the system is able to predict the names of
about 31% of uncovered venue without any false prediction.
Fig. 15(b) shows the logical localization based name prediction
accuracy by plotting venues coverage ratio for different venues
categories. It shows that this approach can predict the names
of 34% of uncovered venues increasing the coverage ratio
of the system from 65% (the Foursquare ratio including the
granularity mismatch) to 77%. The logical localization based
prediction accuracy depends on the category and it is better
for categories that are more likely to have many brand venues
and has a diversity in their ambient fingerprint, e.g., restaurants
chains.

Finally, using the two approaches subsequently will allow
CheckInside to extend the coverage of traditional LBSNs by
37%.

5.3.2 Performance in Different Modes of Operation
Fig. 17 shows the performance of CheckInside in different
modes of operation that can trade-off accuracy and privacy. In
particular, we compare the full system using all sensors (Full)
with using only location information derived from the indoor
localization technique (Loc. only), and the system when the
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camera is turned off (Cam. off), mic is turned off (Mic. off) and
when both are tuned off (Mic.-Cam. off). The figure shows that
CheckInside can provide 58% better performance in estimating
the exact venue than a simple system that is based only
on location estimation. This confirms the usefulness of the
semantic fingerprint. The figure also shows that CheckInside
can maintain high accuracy in detecting the exact venue
location (71%) even when the privacy-sensitive sensors are
turned off.

5.3.3 Comparison with other Systems

We compare the performance of CheckInside to Foursquare (as
a typical LBSN) and the place naming approach in [25] that
extends traditional LBSNs to do semantic fingerprint matching
using the information available about the venues from LBSN
(i.e., visit time, popularity, tips, and images SIFT and gist
features) but without taking the venue physical location nor
the phone sensors (except the camera) into account for places
inference.

As illustrated in Fig. 16(a), CheckInside correctly inferred
the exact venue in 87% of the cases compared to less than 36%
for the best of the other two systems. Moreover, CheckInside
can infer the correct venue within the top 5 venues 99% of
the time as compared to 62% for the closest system, leading
to a better user experience.

Fig. 16(b) shows the distance error between the actual venue
and the top venue suggested by different systems. As evident
from the figure, CheckInside median distance error is less than
7m as compared to less than 52m for the closest systems.
This highlights that CheckInside can provide better value for
location-based business.

Fig. 18 compares the power consumption of CheckInside
with the other two systems. The power is calculated using
the PowerTutor profiler [26] and the Android APIs using
the HTC Nexus One cell phone. The figure shows that the
camera is the most energy hungry sensors. However, due to
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the CheckInside triggered sensing scheme, its energy con-
sumption is still better than other techniques that use the
camera continuously. Moreover, when the camera is turned
off, e.g. in the privacy-preserving mode, CheckInside power
consumption is comparable to the most power efficient system,
with superior accuracy advantage (Fig. 17). In addition, noting
that the inertial sensors are always running to detect the phone
orientation changes and WiFi may be already turned on by the
phone user, CheckInside typically consumes little extra energy
in addition to the normal phone operation.

6 RELATED WORK

Previous work focus on three main categories: venues discov-
ery, venues description, and venues recommendation.

Venues Discovery means to learn significant locations that
are semantically meaningful to people such as home or work.
Techniques [27], [28] mine the user GPS trajectory and other
extracted features (e.g., duration spent at each location) to infer
this information. Other techniques, e.g., PlaceSense [29], use
RF beacons to extract the visited places, while others, e.g.,
SenseLoc [30], rely on both WiFi and GPS; and accelerom-
eter to detect visited places and distance travelled by users.
CheckInside complements these techniques by providing finer-
grained labelling and categorization of indoor locations with
richer semantics.

Another category of techniques, e.g., SurroundSense [6],
use manually-created semantic fingerprints to infer the user
location. CheckInside, on the other hand, automatically creates
these fingerprints in a way transparent to the user (i.e., more
ubiquitous). Moreover, it addresses the incorrect association
between the current user location and the check-in venue.
Finally, it provides a complete system for both indoor LBSNs
and semantic floorplan labelling.

Venues Description refers to assigning either category (e.g.,
restaurant, drug store) [19], [31], business naming (e.g., KFC)
[25], informal labels (e.g., my hometown) [32], or activities
or function associated with the location (e.g., eating, playing
football, PoIs) [33]–[37] to venues. Some of venues descrip-
tion techniques depend on data collected from smartphones by
crowd-sensing, e.g., [19], [33]. The CSP system [19] exploits
opportunistically captured images and audio clips from smart-
phones to link place visits with place categories (e.g., store,
restaurant). Other techniques, e.g., [32], exploit existing large-
scale data collections (e.g., Yelp PoI database) or location-
based community-generated content (e.g., Foursquare). The
closest work to ours is the place naming technique in [25]
that integrates OCR text from images, mobility data, and
image features with information about venues available from

social networks to provide category (e.g., food), business (e.g.,
KFC), or personal naming (i.e, home and work) of venues
visited by users. This system, however, focuses only on the
offline analysis of data collected within known venues (i.e.,
it assumes zero localization error) and does not distinguish
between indoor an outdoors venues. CheckInside, on the other
hand, targets indoor LBSNs, exploits more sensing dimensions
available in mobile devices to address intentional or accidental
location and check-in inaccuracies and enhances the ranking
performance of LBSNs, is oriented for indoor operation, and
works in real-time to provide the user with an accurate
list of nearby venues. Moreover, CheckInside generates a
semantic floorplan of indoor buildings and leverages the user
implicit feedback in the check-in operation to adapt the system
dynamically. Finally, our system increases the venues coverage
percentage of current LBSNs.

Venues Recommendation With millions of users of LB-
SNs, rich knowledge has accumulated about places visited
by users which enables suggesting meaningful locations to
the user. In [38], the system matches users profile data (age,
gender, cuisine preferences, and income) against the price and
category of a restaurant using a Bayesian network model.
Other systems, e.g., [39], exploit users’ rating for places avail-
able online (e.g., Yelp) to suggest places to their user; while
other recommendation system [40] employ user-generated tra-
jectories to find interesting locations. CheckInside can provide
richer and fine-grained venue information, which can be used
by these system to provide better recommendations.

7 DISCUSSION

Other Applications: CheckInside is currently applied to shop-
ping malls. However, the same concept can be extended to
other venue types (e.g., educational buildings). In addition,
the user visiting patterns can be analyzed to provide valuable
statistics (i.e., indoor analytics).
Energy-Performance Tradeoff: CheckInside fuses different
phone sensors to identify the user current place accurately,
which may consume more energy. To further reduce energy
consumption, in addition to triggered sensing and leverag-
ing energy-efficient sensors, users can select energy-friendly
modes (e.g. disable energy-hungry sensors like camera and
the sound sensor), possibly reducing the system accuracy.
Nonetheless, CheckInside still outperforms the of other sys-
tems in this case with significantly better energy consumption
(Figs. 17 and 18).

8 CONCLUSION

We presented the CheckInside as a fine-grained indoor
location-based social network. CheckInside leverages data
mined opportunistically from the users’ phone sensors and data
about venues extracted from traditional LBSNs to fingerprint
each venue. It then applies a number of filtering and ranking
steps to create a ranked list of candidate locations that are
returned to the user to select a venue to check-in at. Check-
ins performed by users are forwarded to the incorrect check-in
detection module to handle noise in the check-in data. The
user implicit feedback from the correct check-in operation
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is used to dynamically adjust the system parameters. We
also presented novel approaches for semantic labelling of
the building floorplan and extending the venues coverage of
current LBSNs. Extensive evaluation of CheckInside in four
malls shows that CheckInside can infer the actual venue 99%
of the time within the top 5 venues in the candidate list. In
addition, it increases the coverage of current LBSNs by 37%
by predicating names of uncovered venues.
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