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A One-to-Many Bargaining Framework
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Abstract—We study the cooperation of the mobile network operator (MNO) and the venue owners (VOs) on the public Wi-Fi
deployment. We consider a one-to-many bargaining framework, where the MNO bargains with VOs sequentially to determine where to
deploy Wi-Fi and how much to pay. Taking into account the negative externalities among different steps of bargaining, we analyze the
following two cases: for the exogenous bargaining sequence case, we compute the optimal bargaining solution on the cooperation
decisions and payments under a predetermined bargaining sequence; for the endogenous bargaining sequence case, the MNO
decides the bargaining sequence to maximize its payoff. Through exploring the structural property of the optimal bargaining sequence,
we design a low-complexity Optimal VO Bargaining Sequencing (OVBS) algorithm to search the optimal sequence. More specifically,
we categorize the VOs into three types based on the impact of the Wi-Fi deployment at their venues, and show that it is optimal for the
MNO to bargain with these three types of VOs sequentially. Numerical results show that compared with the random and worst
bargaining sequences, the optimal bargaining sequence improves the MNO’s payoff by up to 14.8% and 45.3%, respectively.

Index Terms—Wi-Fi deployment, venue owner, Nash bargaining.
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1 INTRODUCTION

1.1 Motivation

THE proliferation of mobile devices has lead to an explo-
sive growth of global mobile data traffic, so the mobile

network operators (MNOs) are seeking innovative approaches
to expand the network capacity and improve users’ quality
of experience. With the recent technology developments
and standardization efforts (e.g., Hotspot 2.0 and the ac-
cess network discovery and selection function [2]), Wi-Fi
data offloading has emerged as an important approach to
alleviate cellular congestion. A recent study [3] showed
that Wi-Fi has offloaded 65% of total mobile traffic in the
major cities in Korea. Furthermore, the Wireless Broadband
Alliance’s report [4] estimated that the annual global Wi-Fi
deployment rate will increase to 10.5 million in 2018.

Instead of building their own Wi-Fi hotspots, many
MNOs have been collaborating with venue owners (VOs),
which are the owners of public places such as shopping
malls and stadiums, on hotspot installment [4]. Since a
large volume of cellular data traffic is generated from these
crowded public places, MNOs are especially interested in
deploying hotspots at these venues to relieve the traffic
congestion. With the location information provided by Wi-Fi
hotspots, MNOs can also earn profits by delivering context-
aware mobile advertisements to mobile users.1 Meanwhile,
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1. Although the MNO can also deliver advertisements through the
cellular network, users are much more receptive to advertising through
Wi-Fi due to their voluntary use of Wi-Fi [5]. Furthermore, Wi-Fi usually
provides more accurate user localization, and is more suitable for
supporting multimedia advertisement due to the higher data rate.

VOs also welcome the MNOs’ help in building the carrier-
grade Wi-Fi, which usually provides a higher capacity and
better integration with the cellular network than a regular
Wi-Fi [5], hence significantly enhances the mobile users’
experience and attracts more visitors to those Wi-Fi available
venues. Moreover, the carrier-grade Wi-Fi can help both
MNOs and VOs collect visitor analytics, provide location-
based services, and promote products or activities [4], [5].
Therefore, both MNOs and VOs benefit from the Wi-Fi
deployment and have incentives to provide Wi-Fi service co-
operatively. For example, AT&T has been cooperating with
some VOs (such as Starbucks) to install the public Wi-Fi
networks [6]. Although this kind of MNO-VO cooperation
is increasingly popular, the detailed economic interactions
among MNOs and VOs still have not been sufficiently
explored and understood by the existing literatures. This
motivates us to extensively analyze both MNOs and VOs’
strategies in the cooperative Wi-Fi deployment in this paper.

1.2 Our Work

We consider a case where both MNOs and VOs have
considerable market power, and study the cooperative Wi-
Fi deployment problem under the one-to-many bargaining
framework.2 Specifically, a monopoly MNO bargains with
multiple VOs sequentially, i.e., at each step, the MNO bar-
gains with only one VO for deploying Wi-Fi at the cor-

2. The case where different sides have unbalanced market power
can be studied in the same framework as in this paper, using the
asymmetric Nash bargaining formulation [7].

ar
X

iv
:1

60
8.

01
82

7v
1 

 [
cs

.G
T

] 
 5

 A
ug

 2
01

6



2

responding venue.3 We analyze the bargaining solution of
each step, including the cooperation decision and payment,
by using the Nash bargaining theory [9]. Since the MNO’s
willingness to deploy new hotspots decreases as the number
of deployed hotspots increases, the cooperation between the
MNO and a particular VO imposes a negative externality to
the bargaining among the MNO and other VOs. Such an
externality significantly complicates the analysis. There are
very few literatures studying the one-to-many bargaining,
especially under the Nash bargaining theory. Our work
provides a systematic study on this problem.

In the first part of this paper, we study the exogenous bar-
gaining sequence scenario, where the MNO bargains with
VOs sequentially according to a predetermined bargaining
sequence. We take into account the data offloading benefit,
Wi-Fi operation cost, advertising profit, and business revenue
of the MNO and VOs. In particular, we differentiate the
MNO’s data offloading benefit at a venue during different
time periods (e.g., daytime and nighttime). We would like
to answer the following key questions: (i) Which VOs should
the MNO cooperate with? (ii) How much should the MNO pay
these VOs? We apply backward induction to compute the
optimal bargaining solution on the cooperation decisions
and payments.

In the second part of this paper, we study the endogenous
bargaining sequence scenario, where the MNO first deter-
mines the bargaining sequence and then bargains with VOs
accordingly. We want to answer the following key question:
Under what bargaining sequence can the MNO maximize its
payoff? Based on the analysis in the first part, we can com-
pute the MNO’s payoff under a fixed bargaining sequence.
However, due to the complex structure of the one-to-many
bargaining, we often cannot obtain the closed-form solution
of such a payoff. Therefore, it is very challenging to directly
compare the MNO’s payoffs under all possible bargaining
sequences and determine the optimal one.

To tackle the high complexity of the optimal sequencing
problem, we first establish an important structural property
of the one-to-many bargaining. More precisely, we catego-
rize VOs into three types based on the impact of the Wi-
Fi deployment at their venues. We show that there exists
a group of optimal bargaining sequences, under which the
MNO bargains with these three types of VOs sequentially.
As a result, we design an Optimal VO Bargaining Sequencing
(OVBS) algorithm that searches for the optimal bargain-
ing sequence from a significantly reduced set. In fact, the
structural property we prove in this paper is general, and
is valid for many other one-to-many bargaining problems.
We further characterize two special system settings, where
we can explicitly determine the optimal sequence without
running OVBS.

In the third part of this paper, we study the influence of
the bargaining sequence on the VOs’ payoffs. Our analysis

3. More precisely, the one-to-many bargaining contains several types.
The most common type is the one-to-many bargaining with a sequen-
tial bargaining protocol. Another type is the one-to-many bargaining
with a concurrent bargaining protocol, where the buyer bargains with
multiple sellers concurrently [8]. In practice, conducting the concurrent
bargaining is much more difficult than the sequential bargaining, as
it requires the evaluation of simultaneous responses of all bargainers.
In this paper, we focus on the sequential bargaining protocol in the
one-to-many bargaining.

shows that: (i) When VOs are homogenous, it is beneficial
for a VO to bargain with the MNO as early as possible; (ii)
When VOs are heterogenous, “the earlier the better” is no
longer true in general.

The main contributions of this paper are as follows:

• Study of the one-to-many bargaining with cooperation
cost: To the best of our knowledge, this is the first
work studying the one-to-many bargaining with the
cooperation cost (i.e., Wi-Fi deployment and opera-
tion cost) under the Nash bargaining theory. We
show that with the cooperation cost, the bargaining
sequence significantly influences the bargaining re-
sults. We analyze the one-to-many bargaining with
both exogenous and endogenous bargaining sequences.
The results in this paper are general enough to be
applied in other one-to-many bargaining problems.

• Modeling and analysis of the cooperative Wi-Fi deploy-
ment: As far as we know, this is the first work study-
ing the economic interactions among the MNO and
VOs in terms of the cooperative Wi-Fi deployment.
We show the negative externalities among different
steps of negotiation, and analyze the bargaining re-
sults for any given bargaining sequence.

• Low-complexity optimal bargaining sequence search algo-
rithm: Motivated by the fact that the bargaining se-
quence influences the bargaining results, we formu-
late the MNO’s optimal bargaining sequencing prob-
lem. Then we prove an important structural property
for the optimal bargaining sequence, and design a
low-complexity OVBS algorithm to search the opti-
mal sequence. Numerical results show that the opti-
mal bargaining sequence improves the MNO’s pay-
off over the random and worst bargaining sequences
by up to 14.8% and 45.3%, respectively.

• Study of the bargaining sequence’s impact on VOs: We
prove that for homogenous VOs, bargaining with
the MNO at earlier positions always improves their
payoffs. However, for heterogenous VOs, earlier bar-
gaining positions may decrease their payoffs. To the
best of our knowledge, this is the first paper showing
and explaining this feature.

1.3 Literature Review

1.3.1 Deployment of MNO’s Wi-Fi Networks

There are a few literatures studying the MNO’s Wi-Fi access
point deployment problem. Zheng et al. in [10] proposed
Wi-Fi access point deployment algorithms, which provide
the worst-case guarantee to the interconnection gap for
vehicular Internet access. Wang et al. in [11] exploited users’
mobility patterns to deploy Wi-Fi access points, aiming at
maximizing the continuous Wi-Fi coverage for mobile users.
Bulut et al. in [12] analyzed some real user mobility traces
and deployed Wi-Fi access points based on the density of
users’ data access requests. Liao et al. in [13] investigated
the Wi-Fi access point deployment problem with the con-
sideration of both the coverage and localization accuracy.
Poularakis et al. in [14] studied a joint Wi-Fi access point
deployment and Wi-Fi service pricing problem. These works
focused on a single MNO’s Wi-Fi deployment decision, and
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did not consider the VOs, who may collaborate with the
MNO and compensate the MNO’s Wi-Fi deployment cost.

1.3.2 Economics of VOs’ Wi-Fi Networks
There have been many literatures studying the mobile data
offloading market, where the MNOs lease the VOs’ (or
resident users’) Wi-Fi networks to offload the cellular data
traffic. For example, Iosifidis et al. in [15] designed an iter-
ative double auction mechanism for an offloading market,
where the MNOs compete to lease the VOs’ Wi-Fi networks
for data offloading. The authors proposed an efficient allo-
cation and payment rule that maximizes the social welfare.
References [16], [17], [18] designed reverse auctions for an
MNO to motivate the VOs to offload the cellular traffic.
Gao et al. in [8] applied a bargaining framework to study a
similar Wi-Fi capacity trading problem. Furthermore, Yu et
al. in [19] focused on the VOs’ optimal Wi-Fi monetization
strategies by considering the Wi-Fi advertising technique.
However, these works assumed that the Wi-Fi networks
have already been deployed and are owned by the VOs.
They did not study the VOs’ cooperation with the MNO in
deploying the Wi-Fi networks.

1.3.3 One-to-Many Bargaining
In terms of the one-to-many bargaining, the most relevant
works are [8], [20]. Both papers studied the one-to-many
bargaining under the Nash bargaining theory. However,
since they did not consider the cooperation cost, their con-
clusion was that the bargaining sequence does not affect the
buyer’s payoff, and their analysis was limited to the one-to-
many bargaining with exogenous sequence. In our work, we
take into account the cooperation cost (i.e., Wi-Fi deployment
and operation cost), which complicates the one-to-many
bargaining with exogenous sequence. Such a consideration
also motivates us to study the one-to-many bargaining
with endogenous sequence. References [21], [22], [23] studied
several one-to-many bargaining problems, where the buyer
bargains with multiple sellers on a joint project that requires
the cooperation from all the participants. It is different from
our problem, as here the MNO may only cooperate with a
subset of the VOs on the Wi-Fi deployment.

The rest of the paper is organized as follows. In Section 2,
we introduce the system model. In Section 3, we analyze the
bargaining between the MNO and a single VO. In Sections
4 and 5, we study the one-to-many bargaining with exoge-
nous and endogenous bargaining sequences, respectively.
In Section 6, we investigate the impact of the bargaining
sequence on the VOs. We provide the numerical results in
Section 7, and conclude the paper in Section 8.

2 SYSTEM MODEL

2.1 Basic Settings
We consider one mobile network operator (MNO), who
operates multiple macrocells and bargains with venue own-
ers (VOs) to deploy Wi-Fi access points. For simplicity, we
assume that each venue (such as a cafe) has a limited space
and hence is covered by only one cellular macrocell. Since
deploying Wi-Fi at a particular venue only offloads traffic
for the corresponding macrocell under our assumption and
does not benefit other macrocells, the MNO can consider

the Wi-Fi deployments for different macrocells separately.
Without loss of generality, we study the MNO’s strategy
within one macrocell.

We consider a set N , {1, 2, . . . , N} of VOs, whose
venues are non-overlapping but covered by the same macro-
cell. According to [24], the mobile traffic exhibits a peri-
odical daily pattern. Hence, we divide a day equally into
T ∈ {1, 2, . . .} time periods, and assume that when Wi-Fi
is deployed at venue n,4 the expected amount of offloaded
macrocell traffic during the t-th (t = 1, 2, . . . , T ) time period
is Xt

n ≥ 0. We define

Xn ,
(
X1

n, X
2
n, . . . , X

T
n

)
(1)

as the offloading vector of VO n. Each VO n ∈ N is further
characterized by parameters Rn, Cn, and An:

• Rn ≥ 0 denotes the extra revenue that Wi-Fi cre-
ates for VO n’s business (e.g., via attracting more
customers and collecting customer analytics);5

• Cn ≥ 0 denotes the total cost for the MNO to deploy
and operate Wi-Fi at venue n, including the install-
ment fee, management cost, and backhaul cost;6

• An ≥ 0 denotes the advertising profit to the MNO
when Wi-Fi is deployed at venue n.7

We assume that the information of Xn, Rn, Cn, and An for
all n ∈ N is known to the MNO and all VOs.8 This allows
us to focus on studying the optimal bargaining decisions
in this paper. In our future work, we will further analyze
how incomplete and asymmetric information affects the
cooperation among the MNO and VOs.

2.2 MNO’s Payoff, VO’s Payoff, and Social Welfare
We use bn ∈ {0, 1} to denote the bargaining outcome
between the MNO and VO n: bn = 1 if they agree on the
Wi-Fi deployment at venue n, and bn = 0 otherwise. We
use pn ∈ R to denote the MNO’s payment to VO n.9 As
we will see in Sections 3 and 4, under the Nash bargaining
solution, pn = 0 whenever bn = 0, i.e., there is no transfer if
no agreement is reached.

4. To simplify the description, we use venue n to refer to VO n’s
venue.

5. Different from Xn, we aggregate the extra revenues obtained
by VO n during different time periods into a single parameter Rn.
The reason is that VO n’s payoff is linear in Rn, as we will discuss
in Section 2.2. Hence, considering the total value leads to the same
result as considering different values in different time periods. Similar
explanations apply for the definitions of parameters Cn and An.

6. In practice, some VOs undertake the backhaul cost for the MNO.
This can be easily incorporated into our analysis by properly redefining
Rn and Cn.

7. Sometimes VOs promote their products via Wi-Fi, and we include
the corresponding advertising profit in Rn.

8. In practice, the MNO and VOs can estimate these parameters. For
example, parameter Xn can be estimated by combining the results in
[24] and [3], which studied the spatial-temporal distribution of cellular
traffic and the percentage of offloaded cellular traffic, respectively.
Parameters Rn and An are mainly determined by the statistics like the
number of customers and the customers’ average sojourn time, which
can be estimated by the method proposed in [25]. Parameter Cn can
be estimated based on [26], which showed the Wi-Fi hotspots’ detailed
capital expenditures (e.g., equipment fees) and operating expenses (e.g.,
backhaul costs, power costs, and maintenance fees).

9. We allow pn to be negative, in which case VO n pays the MNO.
This will be the case when deploying Wi-Fi is more beneficial to VO n
than to the MNO.
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To simplify the notations, we define

bn , (b1, b2, . . . , bn) and pn , (p1, p2, . . . , pn) (2)

as the bargaining outcomes and payments between the
MNO and the first n ∈ N VOs, respectively.

The MNO’s payoff depends on the offloading benefit,
advertising profit, Wi-Fi deployment and operation cost,
and its payment to VOs. Based on bN and pN , the MNO’s
payoff is

U (bN ,pN ) ,
T∑

t=1

ft

(
N∑

n=1

bnX
t
n

)

+
N∑

n=1

bn (An − Cn)−
N∑

n=1

pn. (3)

Here, ft (·) , t = 1, 2, . . . , T, is an increasing and concave
function with ft (0) = 0,10 and

∑N
n=1 bnX

t
n is the MNO’s

total offloaded traffic from all the N venues during the t-
th time period. Hence, ft

(∑N
n=1 bnX

t
n

)
characterizes the

offloading benefit of the MNO during the t-th time period,
and

∑T
t=1 ft

(∑N
n=1 bnX

t
n

)
is the MNO’s total offloading

benefit of all time periods.11 Furthermore,
∑N

n=1 bnAn and∑N
n=1 bnCn describe the MNO’s total advertising profit and

total cost, respectively. Term
∑N

n=1 pn is the MNO’s total
payment to the VOs.

VO n’s payoff depends on the revenue directly brought
by Wi-Fi and the MNO’s payment as

Vn (bn, pn) , bnRn + pn. (4)

The social welfare is the aggregate payoff of the MNO and
all VOs:

Ψ (bN ) , U (bN ,pN ) +
N∑

n=1

Vn (bn, pn)

=
T∑

t=1

ft

(
N∑

n=1

bnX
t
n

)
+

N∑
n=1

bnQn, (5)

where for each VO n ∈ N , we define

Qn , Rn +An − Cn. (6)

Here Qn captures the increase in social welfare by deploy-
ing Wi-Fi at venue n, excluding the data offloading effect.
Hence, we call Qn as the net benefit of deploying Wi-Fi at
venue n without considering the data offloading benefit.
We summarize the key notations in this paper in Table 1,
including some notations to be discussed in Sections 3 and
4.

Since the payment terms are cancelled out in (5), the
social welfare only depends on the bargaining outcomes
bN = (b1, b2, . . . , bN ) between the MNO and N VOs.

10. Notice that the situation where function ft (·) is linear for all t
is a special case of our framework. In this case, there is no externality
among different steps of bargaining, and the one-to-many bargaining
problem degenerates to N independent one-to-one bargaining between
the MNO and each VO.

11. Reference [8] used a similar function to characterize the MNO’s
serving cost reduction due to the data offloading. However, [8] did not
consider the temporal heterogeneity of the offloaded traffic, while our
work defines the offloading benefit function ft (·) for each time period
t = 1, 2, . . . , T .

TABLE 1: Main Notations

n,N VO index and its feasible set
t Time period index
Xt

n Amount of offloaded traffic at venue n
during the t-th time period

Qn Net benefit of deploying Wi-Fi at venue
n without data offloading effect

ft (·) MNO’s data offloading benefit function
for the t-th time period

bn Bargaining outcomes between the MNO
and the first n VOs (Variables)

pn Payments from the MNO to the first n
VOs (Variables)

πn Payoffs of the first n VOs (Variables)
U (bN ,pN ) MNO’s payoff function
Vn (bn, pn) VO n’s payoff function
Ψ (bN ) Social welfare function
U0
n, V

0
n MNO’s and VO n’s disagreement points

at step n
U1
n, V

1
n MNO’s and VO n’s payoffs at step n

under bargaining result (bn, πn)
Bs

m (bs) Outcomes of the first m steps when the
MNO reaches bs in the first s steps

b∗k (bk−1) Outcome of step k when the MNO
reaches bk−1 in the first k − 1 steps

π∗k (bk−1) VO k’s payoff when the MNO reaches
bk−1 in the first k − 1 steps

b̂N , π̂N NBS of all the N steps
U0 MNO’s eventual payoff after bargaining

3 ONE-TO-ONE BARGAINING

We first study a special case where there is only one VO, i.e.,
|N | = 1. We analyze the one-to-one bargaining under the
Nash bargaining theory, which helps us better understand
the more general results in the later sections.

The Nash bargaining solution (NBS) [9] of the one-to-one
bargaining solves the following problem:

max (U (b1, p1)− U (0, 0)) · (V1 (b1, p1)− V1 (0, 0))

s.t. U(b1, p1)−U (0, 0)≥ 0, V1(b1, p1)−V1 (0, 0)≥ 0,

var. b1 ∈ {0, 1} , p1 ∈ R.
(7)

Here, U (0, 0) and V1 (0, 0) are the disagreement points of the
MNO and VO 1 (the only VO), which are equal to their
payoffs when no agreement is reached. Through setting
b1 = 0 and p1 = 0 in (3) and (4), we obtain U (0, 0) = 0 and
V1 (0, 0) = 0, respectively. The NBS essentially maximizes
the product of the MNO and VO 1’s payoff gains over their
disagreement points. Intuitively, with a higher disagreement
point, the MNO (or the VO) can obtain a larger payoff under
the NBS.

We further define π1 , V1 (b1, p1) as the payoff of VO
1. This enables us to rewrite problem (7) with respect to π1
and Ψ (b1):

max (Ψ (b1)− π1) · π1
s.t. Ψ (b1)− π1 ≥ 0, π1 ≥ 0,

var. b1 ∈ {0, 1} , π1 ∈ R.
(8)
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Fig. 1: Bargaining Protocol.

Problems (7) and (8) are equivalent, in the sense that given
any bargaining solution in terms of (b1, π1), we can compute
the equivalent bargaining solution in terms of (b1, p1) as
(b1, p1) = (b1, π1 − b1R1) based on (4).

We show the closed-form optimal solution to (8) in the
following proposition.12

Proposition 1. The optimal solution to problem (8) is

(b∗1, π
∗
1) =

{ (
1, 12Ψ (1)

)
, if Ψ (1) ≥ 0,

(0, 0) , otherwise,
(9)

where Ψ (1) =
∑T

t=1 ft (Xt
1) +Q1 is defined in (5).

Proposition 1 indicates that if reaching an agreement
increases the social welfare, i.e., Ψ (1) ≥ Ψ (0) = 0, the
MNO will deploy Wi-Fi at venue 1 and equally share the
generated social welfare with VO 1; otherwise no Wi-Fi will
be deployed, and both the MNO and VO 1 will obtain zero
payoff.

4 ONE-TO-MANY BARGAINING WITH
EXOGENOUS SEQUENCE

In this section, we study the case where the MNO bargains
with N VOs sequentially under a fixed sequence. We illus-
trate the bargaining protocol in Figure 1. At each step, the
MNO bargains with one VO n ∈ N on (bn, pn).

We define πn as VO n ∈ N ’s payoff. As we have dis-
cussed in Section 3, bargaining on (bn, pn) and bargaining
on (bn, πn) are equivalent. Therefore, in Sections 4 and 5,
we present the NBS in the form of (bn, πn) to simplify the
notations. Similar to bn and pn, we define

πn , (π1, π2, . . . , πn) (10)

as the payoffs of the first n VOs.
Without loss of generality, we assume that the bargaining

sequence follows 1, 2, . . . , N , i.e., the MNO bargains with
VO n at step n ∈ N . In Section 4.1, we formulate the
bargaining problem for step n. In Section 4.2, we apply
backward induction to compute the NBS for step n.

12. The detailed proofs of the propositions and theorems in this paper
are given in the appendix.

4.1 Bargaining Problem for Step n ∈ N
At step n ∈ N , the MNO bargains with VO n. We define U0

n

and V 0
n as the MNO’s and VO n’s disagreement points, re-

spectively. Furthermore, when the MNO and VO n agree on
(bn, πn), we define their payoffs by U1

n and V 1
n , respectively.

Similar as (7), we formulate the Nash bargaining prob-
lem at step n as

max
(
U1
n − U0

n

)
·
(
V 1
n − V 0

n

)
s.t. U1

n − U0
n ≥ 0, V 1

n − V 0
n ≥ 0,

var. bn ∈ {0, 1} , πn ∈ R.
(11)

Because VO n has a zero disagreement point if not reaching
an agreement with the MNO, we have V 0

n = 0. Moreover,
based on the definition of πn, we have V 1

n = πn. However,
the computation of U0

n and U1
n are challenging, as the

MNO’s payoff depends on the bargaining results of all the
N steps. In the next section, we compute U0

n and U1
n by

backward induction, and solve problem (11) to obtain the
NBS for step n.

4.2 NBS for Step n ∈ N
We use backward induction to solve problem (11) from step
n = N to step n = 1.

4.2.1 Step N
Suppose that the MNO has already bargained with VO
1, . . . , N − 1, and has reached bN−1 and πN−1. It now
bargains with VO N .

The MNO’s disagreement point is

U0
N = Ψ (bN−1, 0)−

N−1∑
m=1

πm. (12)

Here, Ψ (bN−1, 0) is the social welfare when the bargaining
outcomes of allN steps are given as (bN−1, 0), i.e., assuming
that no agreement is reached in step N . We obtain U0

N by
subtracting the first N − 1 VOs’ payoffs from the social
welfare.13

If the MNO reaches (bN , πN ) with VO N in step N , its
payoff is

U1
N = Ψ (bN−1, bN )−

N−1∑
m=1

πm − πN . (13)

Here, Ψ (bN−1, bN ) is the social welfare when the bargain-
ing outcomes are given as (bN−1, bN ). We obtain U1

N by
subtracting all VOs’ payoffs from the social welfare.

Recall that V 0
N = 0 and V 1

N = πN . Based on U0
N in (12)

and U1
N in (13), we solve problem (11) for n = N and obtain

the NBS for step N :

(b∗N (bN−1) , π∗N (bN−1)) ={ (
1, 12∆N (bN−1)

)
, if ∆N (bN−1) ≥ 0,

(0, 0) , otherwise,
(14)

where we define

∆N (bN−1) , Ψ (bN−1, 1)−Ψ (bN−1, 0) . (15)

13. Notice that when no agreement is reached in step N , we have
πN = 0. Hence, we do not need to subtract πN from the social welfare
in (12).
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Here, ∆N (bN−1) can be understood as follows: if we treat
the MNO and VO N as a coalition, ∆N (bN−1) describes
the increase in the coalition’s payoff by deploying Wi-Fi at
venue N . If and only if such a value is non-negative, the
MNO and VO N will reach an agreement and equally share
the generated revenue; otherwise no agreement is reached.
This is similar as the one-to-one bargaining in Section 3.

We can also understand ∆N (bN−1) as the increase in
social welfare by deploying Wi-Fi at venue N . This is
because VO N is the last one that the MNO bargains with.
For a general bargaining step n ∈ N , we will later show
that ∆n (bn−1) is generally not equal to the increase in social
welfare by deploying Wi-Fi at venue n.

Based on (14), (b∗N (bN−1) , π∗N (bN−1)) depends on vec-
tor bN−1 but is independent of vector πN−1. This means
that the NBS for step N only depends on the first N − 1
steps’ bargaining outcomes, and not on the VOs’ payoffs.

4.2.2 Step N − 1

Suppose that the MNO has already bargained with VO
1, . . . , N − 2, and has reached bN−2 and πN−2. It now
bargains with VO N − 1.

The MNO’s disagreement point is

U0
N−1 = Ψ (bN−2, 0, b

∗
N (bN−2, 0))

−
N−2∑
m=1

πm − π∗N (bN−2, 0) . (16)

Here, Ψ (bN−2, 0, b
∗
N (bN−2, 0)) is the social welfare when

the MNO reaches bN−2 with the first N − 2 VO, does not
reach an agreement with VON−1, and reaches b∗N (bN−2, 0)
with VO N . We obtain U0

N−1 by subtracting VOs’ pay-
offs from the social welfare. Notice that b∗N (bN−2, 0) and
π∗N (bN−2, 0) together correspond to the NBS for step N
when the bargaining outcomes of the first N − 1 steps are
(bN−2, 0), as computed by (14).

If the MNO reaches (bN−1, πN−1) with VO N −1 in step
N − 1, its payoff is

U1
N−1 = Ψ (bN−2, bN−1, b

∗
N (bN−2, bN−1))

−
N−2∑
m=1

πm − πN−1 − π∗N (bN−2, bN−1) . (17)

Here b∗N (bN−2, bN−1) and π∗N (bN−2, bN−1) are also deter-
mined by (14).

Based on U0
N−1 in (16) and U1

N−1 in (17), we solve
problem (11) for n = N − 1 and obtain the NBS for step
N − 1:(

b∗N−1 (bN−2) , π∗N−1 (bN−2)
)

={ (
1, 12∆N−1 (bN−2)

)
, if ∆N−1 (bN−2) ≥ 0,

(0, 0) , otherwise,
(18)

where we define

∆N−1 (bN−2) , Ψ (bN−2, 1, b
∗
N (bN−2, 1))− π∗N (bN−2, 1)

−Ψ (bN−2, 0, b
∗
N (bN−2, 0)) + π∗N (bN−2, 0) . (19)

If we treat the MNO and VO N − 1 as a coalition, then
∆N−1 (bN−2) describes the increase in the coalition’s payoff
by deploying Wi-Fi at venue N − 1, taking into account VO
N ’s response.

4.2.3 Step k, k ∈ {2, 3, . . . , N − 2}

Suppose that the MNO has bargained with VO 1, . . . , k− 1,
and has reached bk−1 and πk−1. It now bargains with VO k.

For ease of exposition, we define Bs
m (bs) ,m ≥ s,m, s ∈

N , as

Bs
m (bs) ={
bs, if m = s,(
Bs

m−1 (bs) , b
∗
m

(
Bs

m−1 (bs)
))
, if m = s+ 1, . . . , N.

(20)

Intuitively, Bs
m (bs) characterizes the bargaining outcomes

of the first m (m ≥ s) steps when the MNO reaches bs in
the first s steps.14

Based on Bs
m (bs), we can write the MNO’s disagree-

ment point at step k as

U0
k = Ψ

(
Bk

N (bk−1, 0)
)
−

k−1∑
m=1

πm

−
N∑

m=k+1

π∗m

(
Bk

m−1 (bk−1, 0)
)
. (21)

Here, Bk
N (bk−1, 0) describes the bargaining outcomes of

all the N steps when the MNO reaches (bk−1, 0) with
the first k VOs. Based on (20), this is computed in
a recursive manner. For example, from (20), we have
Bk

N (bk−1, 0) =
(
Bk

N−1 (bk−1, 0) , b∗N
(
Bk

N−1 (bk−1, 0)
))

,
where Bk

N−1 (bk−1, 0) can be further obtained by using
(20), and b∗N

(
Bk

N−1 (bk−1, 0)
)

is computed by (14). Term
Ψ
(
Bk

N (bk−1, 0)
)

is the social welfare under the bargaining
outcomes given by Bk

N (bk−1, 0). Furthermore,
∑k−1

m=1 πm
is the total payoff of the first k − 1 VOs, and term∑N

m=k+1 π
∗
m

(
Bk

m−1 (bk−1, 0)
)

is the total payoff of VOs k+
1, k+ 2, . . . , N . Notice that term π∗m

(
Bk

m−1 (bk−1, 0)
)
,m =

k+1, k+2, . . . , N, denotes VO m’s payoff, and is a function
of the bargaining outcomes of the first m − 1 steps. In (21),
we compute U0

k by subtracting all VOs’ payoffs from the
social welfare.

If the MNO reaches (bk, πk) with VO k, its payoff is

U1
k = Ψ

(
Bk

N (bk−1, bk)
)
−

k−1∑
m=1

πm − πk

−
N∑

m=k+1

π∗m

(
Bk

m−1 (bk−1, bk)
)
. (22)

Based on U0
k in (21) and U1

k in (22), we solve problem
(11) for n = k and obtain the NBS for step k:

(b∗k (bk−1) , π∗k (bk−1)) ={ (
1, 12∆k (bk−1)

)
, if ∆k (bk−1) ≥ 0,

(0, 0) , otherwise,
(23)

14. Notice that, Bs
m−1 (bs) in (20) returns a vector with a length of

m − 1, and b∗m
(
Bs

m−1 (bs)
)

is the bargaining outcome computed in
step m.
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where we define

∆k (bk−1) , Ψ
(
Bk

N (bk−1, 1)
)
−

N∑
m=k+1

π∗m

(
Bk

m−1 (bk−1, 1)
)

−Ψ
(
Bk

N (bk−1, 0)
)

+
N∑

m=k+1

π∗m

(
Bk

m−1 (bk−1, 0)
)
. (24)

If we treat the MNO and VO k as a coalition, ∆k (bk−1)
characterizes the increase of the coalition’s payoff by de-
ploying Wi-Fi at venue k, considering the responses of VOs
k + 1, . . . , N .

4.2.4 Step 1

The analysis of step 1 is similar to that of step k, k =
2, 3, . . . , N − 2, except that for step 1, there is no prior
bargaining outcome. To save space, we skip the computation
of U0

1 and U1
1 , and provide the NBS as follows:

(b∗1, π
∗
1) =

{ (
1, 12∆1

)
, if ∆1 ≥ 0,

(0, 0) , otherwise,
(25)

where we define

∆1 ,Ψ
(
B1

N (1)
)
−

N∑
m=2

π∗m
(
B1

m−1 (1)
)

−Ψ
(
B1

N (0)
)

+
N∑

m=2

π∗m
(
B1

m−1 (0)
)
. (26)

4.3 MNO’s Payoff after Bargaining
After applying backward induction to the analysis from step
N to 1, we can eventually obtain the bargaining outcomes
in all steps and all VOs’ payoffs, and we denote them by
b̂N =

(
b̂1, . . . , b̂N

)
and π̂N = (π̂1, . . . , π̂N ). Based on b̂N

and π̂N , we can easily compute the MNO’s eventual payoff
as

U0 = Ψ
(
b̂N
)
−

N∑
n=1

π̂n

=
T∑

t=1

ft

(
N∑

n=1

b̂nX
t
n

)
+

N∑
n=1

b̂nQn −
N∑

n=1

π̂n. (27)

4.4 Engineering Insights
Here we summarize the insights from the above analysis
of the one-to-many bargaining under a fixed bargaining
sequence.

First, we find that the NBS of a particular step de-
pends on the Wi-Fi deployment decisions of all the prior
bargaining steps. This is because the more Wi-Fi networks
the MNO has already deployed, the less motivation it has
to deploy a new Wi-Fi network. On the other hand, since
such a negative externality is not related to the payments
among the MNO and VOs, the NBS of a particular step
is independent of the payments of all the prior bargaining
steps.

Second, the MNO may cooperate with the VOs non-
consecutively. As we will discuss in Example 3 in Section
5.3, under a particular bargaining sequence, the MNO does
not cooperate with a VO in the middle, while reaching
agreements with VOs before and after the middle VO.

!"#$!"#$%&'()*!+#$%&'(,-.*!"/'0(,*!+/'0(,!

1)/'0()2*!3/'0(45!

1)#$%&'(6*!3#$%&'(4)-.!!

1)/'0()2*!3/'0(45!
Example 1

!"#$!"/'0()*!+/'0(,-)7.*!"#$%&'(,*!+#$%&'(,!

1)#$%&'(6*!3#$%&'(4)-.!!

8()

Example 2

%!&'()*+,$'9,(,-:;.!

%!&'()*+,$'9,()!

< < < <

< < < <

=)>?@(?
,-.!!

8()

=)>?@(?
,-.!!

Fig. 2: Influence of Bargaining Sequence on MNO’s Payoff.

5 ONE-TO-MANY BARGAINING WITH
ENDOGENOUS SEQUENCE

In this section, we study the one-to-many bargaining with
endogenous sequence, where the bargaining sequence is
selected by the MNO to maximize its payoff. In Section 5.1,
we illustrate the influence of the bargaining sequence on
the MNO’s payoff through two examples. In Section 5.2,
we formulate the MNO’s optimal bargaining sequencing
problem. In Section 5.3, we solve the problem through
an Optimal VO Bargaining Sequencing (OVBS) algorithm. In
Sections 5.4 and 5.5, we study two special cases, where we
can explicitly determine the optimal bargaining sequence
without running OVBS.

5.1 Examples on the Influence of Bargaining Sequence
Based on the analysis in Section 4, we present two examples
in Figure 2 to illustrate that the bargaining sequence can
significantly affect the bargaining solutions and the MNO’s
payoff.

Example 1. The MNO first bargains with VO red and then
bargains with VO white. We apply the backward induction and
start the analysis from step 2. We first consider the case where
the MNO reaches an agreement with VO red in step 1. By taking
N = 2 and b1 = 1 in (15), we have ∆2 (1) = Ψ (1, 1) −
Ψ (1, 0) =

√
16 + 9−

√
16−1.5 < 0. Hence, we obtain from (14)

that b∗2 (1) = 0, π∗2 (1) = 0, i.e., the MNO does not cooperate
with VO white in this case. We further consider the case where
the MNO does not reach an agreement with VO red in step 1. By
taking N = 2 and b1 = 0 in (15), we have ∆2 (0) = Ψ (0, 1)−
Ψ (0, 0) =

√
0 + 9 −

√
0 − 1.5 = 1.5 > 0. Hence, we obtain

from (14) that b∗2 (0) = 1, π∗2 (0) = 1
2∆2 (0) = 0.75, i.e., the

MNO cooperates with VO white in this case, and VO white’s
payoff is 0.75.

Next we come to the analysis of step 1, where the MNO
bargains with VO red. Based on b∗2 (1), π∗2 (1), b∗2 (0), and π∗2 (0),
we take N = 2 in (26) and compute ∆1 as

∆1 = Ψ (1, b∗2 (1))− π∗2 (1)−Ψ (0, b∗2 (0)) + π∗2 (0)

=
(√

16− 3
)
− 0−

(√
9− 1.5

)
+ 0.75

= 0.25. (28)

Since ∆1 > 0, based on (25), we have b∗1 = 1 and π∗1 = 1
2∆1 =

0.125. Therefore, the eventual bargaining outcome is b̂1 = 1,
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b̂2 = 0, π̂1 = 0.125, and π̂2 = 0. The MNO’s eventual payoff is
U0 =

√
16− 3− 0.125 = 0.875.

Example 2. The MNO first bargains with VO white and then
bargains with VO red. We start the analysis from step 2. We
first consider the case that the MNO reaches an agreement with
VO white in step 1, we have ∆2 (1) = Ψ (1, 1) − Ψ (1, 0) =√

9 + 16−
√

9− 3 < 0. Hence, we obtain b∗2 (1) = 0, π∗2 (1) =
0, i.e., the MNO does not cooperate with VO red in this case.
We further consider the case that the MNO does not reach an
agreement with VO white in step 1, we have ∆2 (0) = Ψ (0, 1)−
Ψ (0, 0) =

√
0 + 16 −

√
0 − 3 = 1 > 0. Hence, we obtain

b∗2 (0) = 1, π∗2 (0) = 1
2∆2 (0) = 0.5, i.e., the MNO cooperates

with VO red in this case, and VO red’s payoff is 0.5.
Next we come to the analysis of step 1, where the MNO

bargains with VO white. Based on b∗2 (1), π∗2 (1), b∗2 (0), and
π∗2 (0), from (26), we can compute ∆1 as

∆1 = Ψ (1, b∗2 (1))− π∗2 (1)−Ψ (0, b∗2 (0)) + π∗2 (0)

=
(√

9− 1.5
)
− 0−

(√
16− 3

)
+ 0.5

= 1. (29)

Since ∆1 > 0, we have b∗1 = 1 and π∗1 = 1
2∆1 = 0.5. Therefore,

the eventual bargaining outcome is b̂1 = 1, b̂2 = 0, π̂1 = 0.5, and
π̂2 = 0. The MNO’s eventual payoff is U0 =

√
9−1.5−0.5 = 1.

Comparing Example 1 and Example 2, we find that the
MNO obtains different payoffs under different bargaining
sequences. Through exchanging the bargaining positions of
the two VOs (red and white), the MNO’s payoff U0 improves
from 0.875 to 1. This is due to the cooperation cost and
the externality between the two bargaining steps. In our
problem, the cooperation cost is the cost of deploying and
operating Wi-Fi, which is denoted by Cn and has been
included in Qn based on (6). Because of the cooperation
cost, the MNO may not choose to cooperate with all VOs.15

Moreover, the externality couples the analysis of the two
bargaining steps, and makes the bargaining results depen-
dent on the bargaining sequence.

5.2 Optimal Sequencing Problem
We use l = (l1, l2, . . . , lN ) to denote the bargaining se-
quence, i.e., the MNO bargains with VO ln ∈ N at step
n. We further define L as the set of all possible bargaining
sequences:

L , {l : li, lj ∈N and li 6= lj ,∀i 6= j, i, j ∈ N} .

We use U l
0 to denote the MNO’s payoff in (27) under

bargaining sequence l ∈ L. The MNO’s optimal sequencing
problem is

max
l∈L

U l
0, (30)

i.e., choosing the optimal sequence l∗ to maximize its payoff.
To solve (30), we may apply the exhaustive search to

compute the MNO’s payoff for each l ∈ L and deter-
mine l∗ accordingly. Since |L| = N !, the computational

15. As we will discuss in Section 5.4, references [8] and [20] did
not consider the cooperation cost, in which case the buyer’s payoff
is independent of the bargaining sequence.

complexity of this method is high. In the next section,
we prove an important structural property for the one-to-
many bargaining, which allows us to design an Optimal VO
Bargaining Sequencing (OVBS) algorithm with a significantly
lower complexity.

5.3 Structural Property and OVBS Algorithm
We categorize VOs into three types:

Definition 1. VO n ∈ N belongs to
(i) Type 1, if Qn ≥ 0;
(ii) Type 2, if Qn < 0 and

∑T
t=1 ft (Xt

n) +Qn ≥ 0;
(iii) Type 3, if

∑T
t=1 ft (Xt

n) +Qn < 0.16

Recall that Qn is the net benefit of deploying Wi-Fi at
venue n without considering the data offloading benefit.
Term

∑T
t=1 ft (Xt

n) is the offloading benefit brought by
deploying Wi-Fi at venue n when the MNO does not deploy
Wi-Fi at other venues. Since function ft (·) is concave for all
t = 1, 2, . . . , T , term

∑T
t=1 ft (Xt

n) can also be understood
as the maximum possible offloading benefit brought by
deploying Wi-Fi at venue n.

Based on the definition of the social welfare (5), the
categorization in Definition 1 can be understood as follows:

• For type 1 VO n, its cooperation with
the MNO does not decrease the social
welfare, i.e., Ψ (b1, . . . , bn−1, 1, bn+1, . . . , bN ) ≥
Ψ (b1, . . . , bn−1, 0, bn+1, . . . , bN ) for all (b1, . . . ,bn−1,
bn+1, . . . , bN );

• For type 2 VO n, its cooperation with the MNO
may or may not decrease the social welfare, which
depends on other VOs’ parameters and bargaining
positions;

• For type 3 VO n, its cooperation with
the MNO decreases the social welfare, i.e.,
Ψ (b1, . . . , bn−1, 1, bn+1, . . . , bN ) < Ψ (b1, . . . , bn−1,
0, bn+1, . . . , bN ) for all (b1, . . . , bn−1, bn+1, . . . , bN ).

We assume that the number of each type of VOs is N1, N2,
and N3, respectively, with N1 +N2 +N3 = N . We have the
following propositions.

Proposition 2. The MNO will always cooperate with a type 1
VO, regardless of such a VO’s position in the bargaining sequence.

Proposition 3. The MNO will never cooperate with a type 3 VO,
regardless of such a VO’s position in the bargaining sequence.

Proposition 4. If the bargaining sequence follows 1, 2, . . . , N ,
and VO k belongs to type 1, where k ∈ {2, 3, . . . , N}, the
MNO’s payoff does not decrease after exchanging VOs k − 1
and k’s bargaining positions.

Proposition 5. If the bargaining sequence follows 1, 2, . . . , N ,
and VO k belongs to type 3, where k ∈ {2, 3, . . . , N}, the
MNO’s payoff does not change after exchanging VOs k − 1 and
k’s bargaining positions.

Now we are ready to state our main theorem, which
describes the structural property of the optimal bargaining
sequence.

16. Notice that since
∑T

t=1 ft
(
Xt

n

)
≥ 0, condition

∑T
t=1 ft

(
Xt

n

)
+

Qn < 0 implies that Qn < 0 for type 3 VOs.
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Algorithm 1 Optimal VO Bargaining Sequencing (OVBS)

1: Phase 1: Construct the reduced set LRE

2: Order all type 1 VOs arbitrarily, and denote the sequence
by a vector h1 =

(
h11, h

1
2 . . . , h

1
N1

)
;

3: Order all type 3 VOs arbitrarily, and denote the sequence
by a vector h3 =

(
h31, h

3
2 . . . , h

3
N3

)
;

4: Denote the set of all permutations of type 2 VOs by
set H2. Each permutation is denoted by a vector h2 =(
h21, h

2
2 . . . , h

2
N2

)
∈ H2.

5: Pick every h2 ∈ H2 and construct the corresponding
total sequencing by l=

(
h1,h2,h3

)
. Denote the set of all

such ls as LRE .
6: Phase 2: Search the optimal sequence
7: Apply the backward induction and (27) in Section 4

to compute U l
0 for each l ∈ LRE and return lRE =

argmaxl∈LREU l
0.

Theorem 1. There exists a non-empty set of optimal bargaining
sequences L∗ ⊆ L, such that any l ∈ L∗ satisfies both of the
following two conditions:17

(i) VO l1, l2, . . . , lN1
are of type 1;

(ii) VO lN1+N2+1, lN1+N2+2, . . . , lN are of type 3.
For any optimal sequence l ∈ L∗,
(i) if the MNO interchanges the bargaining positions of any

two type 1 VOs, the MNO’s payoff will not change;
(ii) if the MNO interchanges the bargaining positions of any

two type 3 VOs, the MNO’s payoff will not change.

Notice that there may exist some optimal bargaining
sequences that are not in set L∗. Since our focus is to
maximize the MNO’s payoff by a properly chosen sequence,
we will focus on set L∗ in the rest of this paper.

Based on Theorem 1, we propose an Optimal VO Bargain-
ing Sequencing (OVBS) algorithm (i.e., Algorithm 1), which
solves the optimal sequencing problem (30) as follows.

Theorem 2. The sequence lRE obtained by OVBS lies in set L∗.
In other words, lRE is one of the optimal bargaining sequences for
problem (30).

The basic idea of OVBS is to utilize Theorem 1 to reduce
the searching space of l∗ from set L to a new constructed
set LRE . Since |L| = N ! and

∣∣LRE
∣∣ = N2!, the complexity of

determining l∗ is significantly reduced.
To summarize, the optimal sequence determined by

OVBS has the following features: (a) The MNO bargains
with the VOs sequentially in the order of type 1, type 2, and
type 3 (Theorem 1); (b) The MNO will cooperate with all
type 1 VOs (Proposition 2); (c) The MNO will not cooperate
with any type 3 VO (Proposition 3); (d) Interchanging any
two type 1 VOs’ positions will not change the MNO’s
payoff (Theorem 1); (e) Interchanging any two type 3 VOs’
positions will not change the MNO’s payoff (Theorem 1).

We illustrate the optimal sequence’s structure in Figure
3.

It is difficult to further reduce the searching space LRE ,
because the optimal sequencing problem involving type 2
VOs is very complicated in general. To see this, we show a

17. Naturally, VO lN1+1, lN1+2, . . . , lN1+N2 are of type 2 when these
two conditions are satisfied.
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Fig. 3: Structure of The Optimal Bargaining Sequence under OVBS.
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Fig. 4: Counter-Intuitive Sequencing for Type 2 VOs.

counter-intuitive result in the following proposition.

Proposition 6. If there are type 2 VOs, i.e., N2 > 0, the
MNO may cooperate with the VOs nonconsecutively under all
the optimal bargaining sequences.

We show Example 3 in Figure 4 to prove Proposition
6.18 In Example 3, all VOs are of type 2, and the MNO has
a unique optimal bargaining sequence, where it bargains
with VOs red, white, and yellow sequentially. We find that the
MNO only cooperates with VOs red and yellow under this
optimal bargaining sequence. In other words, it is optimal
for the MNO in this example to bargain with someone (VO
white) that it will not cooperate with ahead of someone
(VO yellow) that it will cooperate with. The reason for this
counter-intuitive result is that such strategy increases the
MNO’s disagreement point at the first bargaining step, and
hence helps the MNO earn more profit from the cooperation
with VO red.

Proposition 6 implies that besides the structural property
described in Theorem 1, it is difficult to explore other struc-
tural properties to further reduce the complexity of OVBS.

5.4 Special Case 1: Only Type 1 VOs
We next study a special case where all VOs are of type 1, i.e.,
Qn ≥ 0 for all n ∈ N . In this case, we not only know that
any bargaining sequence is optimal (based on Theorem 1),
but also can obtain the closed-form solution of the MNO’s
payoff as follows.

Theorem 3. If all VOs are of type 1, the MNO’s payoff is
independent of the bargaining sequence l and is given as:

U0 =
1

2N

∑
bN∈B

Ψ (bN ), (31)

where B , {(b1, b2, . . . , bN ) : bn ∈ {0, 1} ,∀n ∈ N}.

18. In Section 4.4, we use Example 3 to show that under a given
bargaining sequence, the MNO may cooperate with the VOs noncon-
secutively. Here, we use Example 3 to show that this can still happen
even if the bargaining sequence is the optimal one.
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Mathematically, the MNO’s payoff in (31) can be viewed
as the expected social welfare under such a scenario, where
the MNO cooperates with each VO with a probability of 0.5.
This observation is consistent with [8], [20]. In fact, [8], [20]
studied the one-to-many bargaining without cooperation
cost. Hence, the buyer would definitely cooperate with
all sellers. That corresponds to the special case that we
study in this subsection, i.e., all VOs are of type 1. In this
case, the bargaining sequence does not affect the buyer’s
payoff, so [8], [20] only studied the one-to-many bargaining
with exogenous sequence. Our work in Sections 4 and 5
considers a more general case, where the buyer (i.e., the
MNO) may not necessarily cooperate with sellers (i.e., the
VOs), and provides a deeper understanding on the one-
to-many bargaining with both exogenous and endogenous
sequences.

5.5 Special Case 2: Sortable VOs

In this subsection, we study another special case where all
VOs are sortable, which is defined in the following.

Definition 2. A set N of VOs is sortable if for any pair of
VOs i, j ∈ N , we have either (i) Qi ≥ Qj and Xt

i ≥ Xt
j

for all t = 1, 2, . . . , T , or (ii) Qi ≤ Qj and Xt
i ≤ Xt

j for all
t = 1, 2, . . . , T .

When a set of VOs are sortable, we can sort them based
on Qn and Xn. The following theorem shows that this
simple sorting generates the optimal bargaining sequence.

Theorem 4. If all the VOs are sortable, we can construct a
sequence l such that for all n ∈ {1, 2, . . . , N − 1}, we have
Qln ≥ Qln+1 and Xt

ln
≥ Xt

ln+1
for all t = 1, 2, . . . , T .

Furthermore:
(i) l is the optimal bargaining sequence of problem (30);
(ii) Under l, the MNO will and only will cooperate with the

first k VOs, i.e., VO l1, l2, . . . , lk, where k ∈ {0} ∪ N is the
unique index that satisfies both of the following inequalities:

T∑
t=1

ft

 lk−1∑
n=l1

Xt
n +Xt

lk

− T∑
t=1

ft

 lk−1∑
n=l1

Xt
n

+Qlk ≥ 0,

(32)
T∑

t=1

ft

 lk∑
n=l1

Xt
n +Xt

lk+1

− T∑
t=1

ft

 lk∑
n=l1

Xt
n

+Qlk+1
< 0.

(33)

That is to say, when all VOs are sortable, we can explic-
itly determine the optimal bargaining sequence and identify
those VOs that the MNO will cooperate with.

6 INFLUENCE OF BARGAINING SEQUENCE ON
VOS’ PAYOFFS

In this section, we study the influence of the bargaining
sequence on VOs’ payoffs. When VOs are homogenous, we
prove that it is always no worse for a particular VO to
bargain with the MNO at an earlier position. When VOs are
heterogenous, we use an example to show that such “the
earlier the better” feature is no longer true in general.
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Fig. 5: Influence of Bargaining Sequence on Heterogenous VOs’ Payoffs.

6.1 Homogenous VOs

We assume Qn = Q and Xt
n = Xt for all n ∈ N and

t = 1, 2, . . . , T , and state the following theorem.

Theorem 5. If all VOs are homogenous, then for any bargaining
sequence l ∈ L, we have π̂li ≥ π̂lj for any i < j, i, j ∈ N .

Theorem 5 shows that the payoff of a VO with an earlier
bargaining position is no smaller than the payoff of a VO
with a later bargaining position. Since all VOs are homoge-
nous, we conclude that it is always better for a particular
VO to bargain with the MNO at an earlier position.

Notice that when VOs are homogenous, they are sortable
based on Definition 2. Therefore, we can apply the conclu-
sions in Theorem 4 and obtain the following corollary.

Corollary 1. If all VOs are homogenous, then for any bargaining
sequence l ∈ L, we have (i) π̂li ≥ π̂lj ≥ 0 for any i < j ≤
k, i, j ∈ N , and (ii) π̂lm = 0 for any m > k,m ∈ N , where k ∈
{0} ∪ N is the unique index that satisfies both of the following
inequalities:

T∑
t=1

ft
(
kXt

)
−

T∑
t=1

ft
(
(k − 1)Xt

)
+Q ≥ 0, (34)

T∑
t=1

ft
(
(k + 1)Xt

)
−

T∑
t=1

ft
(
kXt

)
+Q < 0. (35)

Corollary 1 shows that the MNO only cooperates with
the first k VOs, and the remaining N − k VOs obtain zero
payoffs.

6.2 Heterogenous VOs

In Figure 5, we illustrate Examples 4 and 5, where there are
two VOs and they are heterogenous in Qn.19 We observe
that, the red VO’s payoff under the later bargaining position
is higher than that under the earlier bargaining position.
Intuitively, this can be understood as follows. The MNO
only cooperates with the red VO in both cases. However,
in the first case, the existence of the white VO serves as the

19. Similar examples where VOs are heterogenous in Xn are given
in the appendix.
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“backup plan” for the MNO and allows the MNO to obtain
a non-zero revenue even if the MNO fails to cooperate with
the red VO. This increases the MNO’s disagreement point
in the first bargaining step, and allows the MNO to extract
more revenue from its cooperation with the red VO. As a
result, compared with the second case, the red VO receives
a lower payoff in the first case.

Examples 4 and 5 imply that when VOs are heteroge-
nous, bargaining with the MNO at an earlier position may
decrease the VO’s payoff. This conclusion is very interesting,
since it contrasts with literature [8], which studies the one-
to-many bargaining without cooperation cost and concludes
that bargaining with the buyer earlier does not decrease the
seller’s payoff. In our problem, we show that this is not true
when considering the cooperation cost.

7 NUMERICAL RESULTS

In this section, we evaluate the performance of the optimal
sequencing and study the impact of system parameters on
the bargaining.

7.1 Performance of Optimal Sequencing
First we define the criteria for evaluating the performance
gap between different sequencing strategies. For a set N of
VOs and the corresponding set L of bargaining sequences,
we define the MNO’s maximum, minimum, and average
payoff as follows:

Umax
0 , max

l∈L
U l
0, U

min
0 , min

l∈L
U l
0, U

ave
0 ,

1

|L|
∑
l∈L

U l
0.

Hence, Umax
0 , Umin

0 , and Uave
0 measure the MNO’s payoff

under the optimal sequence, worst sequence, and random
sequence, respectively. Then we define the normalized max-
imum gap (NMG) and the normalized maximum deviation
(NMD):

NMG ,
Umax
0 − Umin

0

Umin
0

, NMD ,
Umax
0 − Uave

0

Uave
0

.

NMG and NMD capture the performance improvement
of the optimal sequence over the worst sequence and the
random sequence, respectively.

7.1.1 Distributions of NMG and NMD
We choose |N | = 5, T = 2, and ft (x) = x0.3 for t = 1, 2,
and study the probability distributions of NMG and NMD.

First, we assume that Xt
n and Qn follow the truncated

normal distributions. Specifically, we obtain the distribution
of Xt

n, n ∈ N , t = 1, 2, by truncating the normal distribu-
tion N (90, 900) to interval [60, 120]. Moreover, we obtain
the distribution of Qn, n ∈ N , by truncating the normal
distribution N (−6, 9) to interval [−9,−3]. We run the
experiment 30,000 times, and record the probability mass
functions of NMG and NMD in Figure 6. We conclude that,
(i) compared with the worst sequence, the optimal sequence
improves the MNO’s payoff by 19.8% on average and by
45.3% in the extreme case; (ii) compared with the random
sequence, the optimal sequence improves the MNO’s payoff
by 9.2% on average and by 14.8% in the extreme case.

Second, we consider the uniform distribution, and as-
sume thatXt

n ∼ U [60, 120] for all n, t, andQn ∼ U [−9,−3]

for all n. We illustrate the corresponding probability mass
functions of NMG and NMD in Figure 7. We can see that
the results are similar to those in Figure 6, which shows
that the simulation results on NMG and NMD are robust
to the assumption on probability distributions of the system
parameters. To save space, we only simulate the truncated
normal distributions for the system parameters in the rest of
this section.

We summarize the observations in Figures 6 and 7 as
follows.

Observation 1. For both the truncated normal distribution and
the uniform distribution, the optimal bargaining sequence im-
proves the MNO’s payoff over the random and worst bargaining
sequences by more than 9% and 19% on average, respectively.

7.1.2 Influences of E {Xt
n} and E {Qn}

We investigate the influences of the means of Xt
n and Qn on

the performance of the optimal sequencing. The settings of
|N |, T , and ft (x) are the same as those in Section 7.1.1.

First, we study the influence of E {Xt
n} in Figure 8. We

assume that Qn, n ∈ N , follows the same distribution as
that in Figure 6. Moreover, we generate the distribution of
Xt

n, n ∈ N , t = 1, 2, by truncating the normal distribution
N (E {Xt

n} , 900) to interval [E {Xt
n} − 30,E {Xt

n}+ 30],
where E {Xt

n} changes from 50 to 230. For each value of
E {Xt

n}, we run the experiments 10, 000 times, and compute
the expected values of NMG and NMD. We plot the ex-
pected values of NMG and NMD against E {Xt

n} in Figure
8. Since the percentage of type 3 VOs changes according
to Xt

n based on Definition 1, we also plot the expected
percentage of type 3 VOs against E {Xt

n}.
In Figure 8, we observe that both NMG and NMD

slightly increase when E {Xt
n} increases from 50 to 130.

This is because when E {Xt
n} is small, the percentage of

type 3 VOs is large. Based on Proposition 3, the MNO
never cooperates with these type 3 VOs. Hence, for a small
E {Xt

n}, the influence of the bargaining sequence on the
MNO’s payoff is small, and the benefit of the optimal
sequencing is small as well. When E {Xt

n} increases from
130 to 230, the percentage of type 3 VOs decreases to zero,
and there are no significant changes in NMG and NMD.

Second, we investigate the influence of E {Qn} in Figure
9. We assume that Xt

n, n ∈ N , t = 1, 2, follows the same
distribution as that in Figure 6. Furthermore, we obtain the
distribution of Qn, n ∈ N , by truncating the normal distri-
bution N (E {Qn} , 9) to interval [E {Qn} − 3,E {Qn}+ 3],
where E {Qn} changes from −7 to −1. For each value of
E {Qn}, we run the experiments 10, 000 times, and obtain
the expected values of NMG and NMD. We plot the ex-
pected values of NMG and NMD against E {Qn} in Figure 9.
Based on Definition 1, Qn influences the percentages of both
type 1 and type 3 VOs. Hence, we also plot the expected
percentages of type 1 and type 3 VOs against E {Qn}.

In Figure 9, we observe that both NMG and NMD first
increase and then decrease. The reason is that under a
small E {Qn}, there are many type 3 VOs, which the MNO
never cooperates with based on Proposition 3. Furthermore,
under a large E {Qn}, there are many type 1 VOs, which
the MNO always cooperates with based on Proposition 2.
Only under a medium E {Qn}, the bargaining sequence has
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Fig. 6: Distributions of NMG and NMD (Truncated Normal Distri-
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Fig. 7: Distributions of NMG and NMD (Uniform Distribution).
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Fig. 9: Influence of E {Qn} on NMG and NMD.
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a large impact on the MNO’s payoff, and both NMG and
NMD become large. Compared with E {Xt

n} in Figure 8, we
find that the change in E {Qn} results in more significant
changes of NMG and NMD.

We summarize the observations in Figures 8 and 9 as
follows.

Observation 2. The change in E {Qn} has a larger impact on
the performance of the optimal sequencing than that of E {Xt

n}.
The benefit of the optimal sequencing is most significant for a
medium E {Qn}.

We further investigate the influence of the concavity of
function ft (·) on the performance of the optimal sequencing

in Figures 10 and 11. We choose the same settings on
|N |, T , and the distributions of Xt

n and Qn as Figure 6.
Furthermore, we assume ft (x) = xct , t = 1, 2, and choose
c1 and c2 from 0.2 to 0.5, respectively. Note that a smaller
ct means a more concave function ft (·). For each pair of
(c1, c2), we run the experiment 3,000 times and compute the
expected NMG and the percentage of type 3 VOs, as shown
in Figures 10 and 11, respectively.

In Figure 10, we observe that the expected NMG reaches
its peak value for medium c1 and c2. This is because when
both c1 and c2 are small, the offloading benefit for the MNO
is small and most VOs are of type 3 as shown in Figure
11. Recall that the MNO never cooperates with these type 3
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Fig. 13: Influence of E {Qn} on Umax
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VOs. Hence, for small c1 and c2, the optimal sequencing
does not significantly improve the MNO’s payoff. When
both c1 and c2 are large, functions f1 (·) and f2 (·) become
less concave. In this case, given the same number of de-
ployed Wi-Fi networks, the MNO is more willing to deploy
new Wi-Fi networks. That is to say, the externalities among
different steps of bargaining become weaker. As a result,
different bargaining steps are less tightly coupled, and the
bargaining sequence has a smaller impact on the MNO’s
payoff. Therefore, the advantage of the optimal sequencing
reduces and the expected NMG decreases.

We summarize the following observation for Figures 10
and 11.

Observation 3. The benefit of the optimal sequencing is most sig-
nificant when the offloading benefit function ft (·) has a medium
concavity.

7.2 MNO’s Payoff

In Figures 12 and 13, we study the impact of different
parameters on the MNO’s maximum payoff, i.e., Umax

0 .

7.2.1 Influence of E {Xt
n}

We apply the same simulation settings on |N |, T , and the
distributions of Xt

n and Qn as Figure 8. We assume that
ft (x) = xc for t = 1, 2, and choose c = 0.45, 0.5, and 0.55.
For each c, we change E {Xt

n} from 30 to 2730, and illustrate
the corresponding expected Umax

0 in Figure 12. We observe
that Umax

0 concavely increases with E {Xt
n}. Based on (3),

such a concavity is due to the concave offloading benefit
function ft (·). Since a larger c corresponds to a less concave
function ft (·), we observe in Figure 12 that an increase of c
leads to a decrease of the concavity of the Umax

0 curve.

7.2.2 Influence of E {Qn}
We use the same simulation settings on |N |, T , ft (·), and
the distributions of Xt

n and Qn as Figure 9. We change
E {Qn} from −7 to 6 and illustrate the corresponding Umax

0

in Figure 13. We find that Umax
0 increases with E {Qn},

because a large E {Qn} implies a large benefit (or a small
cost) of deploying Wi-Fi network, and the MNO can earn
more profit from the cooperative Wi-Fi deployment. Fur-
thermore, we find that Umax

0 eventually linearly increases
when E {Qn} ≥ 3. To explain this, we also show the

percentage of type 1 VOs in Figure 13. As E {Qn} increases,
the percentage of type 1 VOs approaches 100%. Based on (5)
and (31), when all VOs are of type 1, we have

Umax
0 =

1

2N

∑
bN∈B

T∑
t=1

ft

(
N∑

n=1

bnX
t
n

)
+

1

2

N∑
n=1

Qn, (36)

where B is defined in Theorem 3. Hence, Umax
0 linearly

increases with E {Qn}, and the slope of the curve is N/2.
We conclude the following observations for Figures 12

and 13.

Observation 4. The MNO’s maximum payoff concavely in-
creases with E {Xt

n}, and the concavity of the curve increases with
the concavity of function ft (·). Moreover, the MNO’s maximum
payoff increases with E {Qn}. In particular, it linearly increases
with E {Qn} when all VOs are of type 1.

8 CONCLUSION

In this paper, we investigated the economic interactions
among the MNO and VOs in the cooperative Wi-Fi deploy-
ment. We analyzed the problem under the one-to-many bar-
gaining framework, with both exogenous and endogenous
sequences. For the exogenous case, we applied backward
induction to compute the bargaining results in terms of the
cooperation decisions and payments for a given bargaining
sequence. For the endogenous case, we proposed the OVBS
algorithm that searches for the optimal bargaining sequence
by leveraging the structural property. Furthermore, we stud-
ied the influence of the bargaining sequence on VOs, and
found that when VOs are homogenous, the earlier bargain-
ing positions are always no worse for the VOs. Numerical
results showed that the optimal bargaining sequence sig-
nificantly improves the MNO’s payoff as compared with
the random and worst bargaining sequences. We illustrated
that the optimal sequencing is most beneficial when the
offloading benefit functions have medium concavities.

In our future work, we will further consider the incom-
plete information scenario, where the MNO and the VO
have limited information of the remaining VOs for each step
of the bargaining. Moreover, we are interested in studying
the MNO competition, where multiple MNOs compete for
the VOs’ cooperation.
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APPENDIX A
PROOF OF PROPOSITION 1

Proof. We study Ψ (1) ≥ 0 and Ψ (1) < 0 separately.
(Case 1) Ψ (1) ≥ 0: we first consider the optimal π∗1

given b1 = 0. Based on (5), we have Ψ (0) = 0. Hence, with
b1 = 0, the constraints in problem (8) become 0 − π1 ≥ 0
and π1 ≥ 0. Therefore, the only feasible π1 is zero, and the
corresponding value of the objective function of problem (8)
is zero.

Next we consider the optimal π∗1 given b1 = 1. We obtain
π∗1 by optimizing (Ψ (1)− π1) · π1 over π1 ∈ [0,Ψ (1)]. It is
easy to find that π∗1 = 1

2Ψ (1) and the corresponding value
of the objective function of problem (8) is 1

4Ψ2 (1).
Finally, we compare the optimal values of the objective

function of problem (8) under b1 = 0 and b1 = 1. Since
Ψ (1) ≥ 0, we have 1

4Ψ2 (1) ≥ 0. Therefore, the optimal
solution to problem (8) is (b∗1, π

∗
1) =

(
1, 12Ψ (1)

)
.

(Case 2) Ψ (1) < 0: given b1 = 0, the analysis of the
optimal π∗1 is the same as that in Case 1. The only feasible
π1 is zero, and the corresponding objective function’s value
is zero. Given b1 = 1, the constraints in problem (8) become
Ψ (1) − π1 ≥ 0 and π1 ≥ 0. Since Ψ (1) < 0, there is no
feasible solution for π1. Considering the feasibilities of π1
under b1 = 0 and b1 = 1, we conclude that the optimal
solution to problem (8) is (b∗1, π

∗
1) = (0, 0).

Combining Case 1 and Case 2 completes the proof.

APPENDIX B
PRELIMINARY LEMMAS I

In this section, we prove a series of lemmas, which are useful
to show the propositions and theorems in the paper.

We first analyze the NBS and the MNO’s payoff under
a particular bargaining sequence. Without loss of generality,
we assume the bargaining sequence follows 1, 2, ..., N , i.e.,
at step n, the MNO bargains with VO n.

For vector bk = (b1, b2, . . . , bk), where b1, b2, . . . , bk ∈
{0, 1}, we define Wk (bk), k ∈ N , as follows:

Wk (bk) , Ψ
(
Bk

N (bk)
)
−

k∑
n=1

bnQn −
N∑

n=k+1

π∗n

(
Bk

n−1 (bk)
)
.

(37)

In particular, we define W0 as

W0 , U0 = Ψ
(
b̂N
)
−

N∑
n=1

π̂n. (38)

Next we show Wk (bk) have the following properties.

Lemma 1. For k ∈ {1,. . . , N − 1} and any bk, we have

Wk (bk) =
1

2
Wk+1 (bk, 0)

+
1

2
max {Wk+1 (bk, 0) ,Wk+1 (bk, 1) +Qk+1} . (39)

In particular, we have

W0 =
1

2
W1 (0) +

1

2
max {W1 (0) ,W1 (1) +Q1} . (40)

Proof. We first prove (39). Recall the NBS for step k + 1:(
b∗k+1 (bk) , π∗k+1 (bk)

)
= (41){ (

1, 12∆k+1 (bk)
)
, if ∆k+1 (bk) ≥ 0,

(0, 0) , otherwise,
(42)

where we define

∆k+1 (bk) ,

Ψ
(
Bk+1

N (bk, 1)
)
−

N∑
n=k+2

π∗n

(
Bk+1

n−1 (bk, 1)
)

−Ψ
(
Bk+1

N (bk, 0)
)

+
N∑

n=k+2

π∗n

(
Bk+1

n−1 (bk, 0)
)
. (43)

By checking the definition of Wk (bk), we find:

∆k+1 (bk) = Wk+1 (bk, 1)−Wk+1 (bk, 0) +Qk+1. (44)

Now we study the following two cases.
Case 1: ∆k+1 (bk) < 0.
Based on (42), we have

b∗k+1 (bk) = 0 and π∗k+1 (bk) = 0. (45)

According to the definition of Wk (bk), we obtain

Wk (bk) = Wk+1 (bk, 0) . (46)

Case 2: ∆k+1 (bk) ≥ 0.
Based on (42), we have

b∗k+1 (bk) = 1, (47)

π∗k+1 (bk) =
1

2
(Wk+1 (bk, 1)−Wk+1 (bk, 0) +Qk+1) .

(48)

According to the definition of Wk (bk), we obtain

Wk (bk) = Wk+1 (bk, 1) +Qk+1 − π∗k+1 (bk)

=
1

2
(Wk+1 (bk, 1) +Wk+1 (bk, 0) +Qk+1) . (49)

Combining Case 1 and Case 2 completes the proof of
equation (39). We can use the similar approach to prove
equation (40), and the details are omitted.

Let b1k ,
(
b11, . . . b

1
k

)
and b2k ,

(
b21, . . . b

2
k

)
for all k ∈ N .

We state the following lemmas.

Lemma 2. If for a particular k ∈ N , we have
∑k

n=1 b
1
nX

t
n =∑k

n=1 b
2
nX

t
n, for all t = 1, 2, . . . , T , then we have

Wk

(
b1k
)

= Wk

(
b2k
)
. (50)

Proof. We prove it by mathematical induction.
Part A: It’s easy to show Lemma 2 is true for k = N .
Part B: We assume that Lemma 2 holds for a partic-

ular k ∈ {2, 3, . . . , N}, i.e., if for vectors b1k and b2k, we
have

∑k
n=1 b

1
nX

t
n =

∑k
n=1 b

2
nX

t
n for all t, we can obtain

Wk

(
b1k
)

= Wk

(
b2k
)
. Now we check whether Lemma 2 also

holds for k − 1.
We assume that, for vectors b1k−1 and b2k−1, we have
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n=1 b

1
nX

t
n =

∑k−1
n=1 b

2
nX

t
n for all t. Naturally, we get:

k−1∑
n=1

b1nX
t
n + 0 ·Xt

k =
k−1∑
n=1

b2nX
t
n + 0 ·Xt

k,∀t, (51)

k−1∑
n=1

b1nX
t
n + 1 ·Xt

k =
k−1∑
n=1

b2nX
t
n + 1 ·Xt

k,∀t. (52)

Since Lemma 2 holds for k, we have:

Wk

(
b1k−1, 0

)
= Wk

(
b2k−1, 0

)
, (53)

Wk

(
b1k−1, 1

)
= Wk

(
b2k−1, 1

)
. (54)

According to (53), (54), and Lemma 1, we conclude

Wk−1
(
b1k−1

)
= Wk−1

(
b2k−1

)
. (55)

Therefore, we prove that Lemma 2 also holds for k − 1.
Combining Part A and Part B completes the proof.

Lemma 3. If for a particular k ∈ N , we have
∑k

n=1 b
1
nX

t
n ≥∑k

n=1 b
2
nX

t
n for all t = 1, 2, . . . , T , then we have

Wk

(
b1k
)
≥Wk

(
b2k
)
. (56)

Proof. We prove it by mathematical induction.
Part A: It is easy to show Lemma 3 is true for k = N .
Part B: We assume that Lemma 3 holds for a partic-

ular k ∈ {2, 3, . . . , N}, i.e., if for vectors b1k and b2k, we
have

∑k
n=1 b

1
nX

t
n ≥

∑k
n=1 b

2
nX

t
n for all t, we can obtain

Wk

(
b1k
)
≥ Wk

(
b2k
)
. Now we check whether Lemma 3 also

holds for k − 1.
We assume that, for vectors b1k−1 and b2k−1, we have∑k−1

n=1 b
1
nX

t
n ≥

∑k−1
n=1 b

2
nX

t
n for all t. Naturally, we get:

k−1∑
n=1

b1nX
t
n + 0 ·Xt

k ≥
k−1∑
n=1

b2nX
t
n + 0 ·Xt

k,∀t (57)

k−1∑
n=1

b1nX
t
n + 1 ·Xt

k ≥
k−1∑
n=1

b2nX
t
n + 1 ·Xt

k,∀t. (58)

Since Lemma 3 holds for k, we have:

Wk

(
b1k−1, 0

)
≥Wk

(
b2k−1, 0

)
, (59)

Wk

(
b1k−1, 1

)
≥Wk

(
b2k−1, 1

)
. (60)

According to (59), (60), and Lemma 1, we conclude

Wk−1
(
b1k−1

)
≥Wk−1

(
b2k−1

)
. (61)

Therefore, we prove that Lemma 3 also holds for k − 1.
Combining Part A and Part B completes the proof.

Lemma 4. If the following two inequalities hold:

Wk+1

(
b1k, 0

)
+ δ > Wk+1

(
b2k, 0

)
, (62)

Wk+1

(
b1k, 1

)
+ δ > Wk+1

(
b2k, 1

)
, (63)

where k ∈ {1, . . . , N − 1} and δ > 0, we have:

Wk

(
b1k
)

+ δ > Wk

(
b2k
)
. (64)

Proof. This is obvious by checking Lemma 1.

APPENDIX C
PROOF OF PROPOSITION 2

Proof. Without loss of generality, we assume that VO k ∈ N
is of type 1, i.e., Qk ≥ 0. Furthermore, we assume that the
MNO and the first k− 1 VOs reached bk−1 in the first k− 1
steps of bargaining. By checking the definition of ∆k (bk−1),
we have:

∆k (bk−1) = Wk (bk−1, 1)−Wk (bk−1, 0) +Qk. (65)

Since
∑k−1

n=1 bnX
t
n + Xt

k ≥
∑k−1

n=1 bnX
t
n for all t, according

to Lemma 3, we have:

Wk (bk−1, 1) ≥Wk (bk−1, 0) . (66)

Together with Qk ≥ 0, we conclude that ∆k(bk−1) ≥ 0.
Based on (23), ∆k (bk−1) ≥ 0 implies b∗k (bk−1) = 1.
Therefore, the MNO definitely cooperates with VO k.

APPENDIX D
PROOF OF PROPOSITION 3

Proof. Without loss of generality, we assume that VO k ∈
N is of type 3, i.e., Qk < 0 and

∑T
t=1 ft (Xt

k) + Qk < 0.
Furthermore, we assume that the MNO and the first k − 1
VOs reached bk−1 in the first k − 1 steps of bargaining.

First of all, we consider the following two functions:
WN (bk−1, 0,0N−k) and WN (bk−1, 1,0N−k), where we de-
fine 0N−k as the vector that has N − k zeros as its entries.
Based on the definition,

WN (bk−1, 0,0N−k) =
T∑

t=1

ft

(
k−1∑
n=1

bnX
t
n

)
, (67)

WN (bk−1, 1,0N−k) =
T∑

t=1

ft

(
k−1∑
n=1

bnX
t
n +Xt

k

)
. (68)

Due to the concavity of function ft (·) , t = 1, 2 . . . , T , we
have:

ft

(
k−1∑
n=1

bnX
t
n +Xt

k

)
− ft

(
k−1∑
n=1

bnX
t
n

)
≤ ft

(
Xt

k

)
,∀t, (69)

Since
∑T

t=1 ft (Xt
k) +Qk < 0, we conclude that

T∑
t=1

ft

(
k−1∑
n=1

bnX
t
n +Xt

k

)
−

T∑
t=1

ft

(
k−1∑
n=1

bnX
t
n

)
+Qk < 0. (70)

Based on (67), (68), and (70), we conclude

WN (bk−1, 0,0N−k)−Qk > WN (bk−1, 1,0N−k) . (71)

Similarly, we next consider the following two functions:
WN (bk−1, 0,0N−k−1, 1) and WN (bk−1, 1,0N−k−1, 1). We
can also prove

WN (bk−1, 0,0N−k−1, 1)−Qk > WN (bk−1, 1,0N−k−1, 1) .
(72)

Recall that −Qk > 0, based on (71), (72), and Lemma 4, we
conclude,

WN−1 (bk−1, 0,0N−1−k)−Qk > WN−1 (bk−1, 1,0N−1−k) .
(73)
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Repeating these processes, we can eventually conclude

Wk (bk−1, 0)−Qk > Wk (bk−1, 1) . (74)

Recall (65), where we express ∆k (bk−1) as

∆k (bk−1) = Wk (bk−1, 1)−Wk (bk−1, 0) +Qk. (75)

We conclude that ∆k(bk−1) < 0. Based on (23), b∗k (bk−1) =
0, i.e., the MNO does not cooperate with VO k.

APPENDIX E
PRELIMINARY LEMMAS II

In this section, we continue to prove lemmas, which are
useful to show the propositions and theorems in the paper.

Same as Appendix B, we first assume the bargaining
sequence follows 1, 2, . . . , N , and define Wk (bk) as (37).
Then we interchange the bargaining positions of VO k + 1
and VO k + 2, where k ∈ {0, 1, . . . , N − 2}. That is, the
MNO bargains with VO k + 2 at step k + 1, and bargains
with VO k+1 at step k+2. For the new sequence, we define

W̃k (bk) , Ψ
(
B̃k

N (bk)
)
−

k∑
n=1

bnQn −
N∑

n=k+1

π̃∗n

(
B̃k

n−1 (bk)
)
.

(76)

Here, functions B̃k
N (bk) and π̃∗n

(
B̃k

n−1 (bk)
)

are defined for
the new bargaining sequence, and are generally not equal to
Bk

N (bk) and π∗n
(
Bk

n−1 (bk)
)

in (37).
Next we state the following lemmas.

Lemma 5. If Qk+2 ≥ 0, we have W̃k (bk) ≥ Wk (bk) for any
bk.

Proof. First, we study Wk (bk). We define:

A ,Wk+2 (bk, 0, 0) , (77)

B ,Wk+2 (bk, 0, 1) , (78)

C ,Wk+2 (bk, 1, 0) , (79)

D ,Wk+2 (bk, 1, 1) . (80)

According to Lemma 1,

Wk+1 (bk, 0) =
1

2
A+

1

2
max {A,B +Qk+2} , (81)

Wk+1 (bk, 1) =
1

2
C +

1

2
max {C,D +Qk+2} , (82)

Wk (bk) =
1

2
Wk+1 (bk, 0) +

1

2
max {Wk+1 (bk, 0) ,Wk+1 (bk, 1) +Qk+1} . (83)

Based on Lemma 3, we conclude

B ≥ A and D ≥ C. (84)

Since Qk+2 ≥ 0, we further have

B +Qk+2 ≥ A and D +Qk+2 ≥ C. (85)

Therefore, we rewrite (81)-(83) as:

Wk+1 (bk, 0) =
1

2
A+

1

2
B +

1

2
Qk+2, (86)

Wk+1 (bk, 1) =
1

2
C +

1

2
D +

1

2
Qk+2, (87)

Wk (bk) =
1

4
A+

1

4
B +

1

4
Qk+2

+ max

{
1

4
A+

1

4
B +

1

4
Qk+2,

1

4
C +

1

4
D +

1

4
Qk+2 +

1

2
Qk+1

}
. (88)

Next we study W̃k (bk). We define:

Ã , W̃k+2 (bk, 0, 0) , (89)

B̃ , W̃k+2 (bk, 0, 1) , (90)

C̃ , W̃k+2 (bk, 1, 0) , (91)

D̃ , W̃k+2 (bk, 1, 1) . (92)

According to Lemma 1,

W̃k+1 (bk, 0) =
1

2
Ã+

1

2
max

{
Ã, B̃ +Qk+1

}
, (93)

W̃k+1 (bk, 1) =
1

2
C̃ +

1

2
max

{
C̃, D̃ +Qk+1

}
, (94)

W̃k (bk) =
1

2
W̃k+1 (bk, 0) +

1

2
max

{
W̃k+1 (bk, 0) , W̃k+1 (bk, 1) +Qk+2

}
. (95)

Based on Lemma 3, we conclude

W̃k+1 (bk, 1) ≥ W̃k+1 (bk, 0) . (96)

Since Qk+2 ≥ 0, we further have

W̃k+1 (bk, 1) +Qk+2 ≥ W̃k+1 (bk, 0) . (97)

Therefore, we have

W̃k (bk) =
1

4
Ã+

1

4
max

{
Ã, B̃ +Qk+1

}
+

1

4
C̃ +

1

4
max

{
C̃, D̃ +Qk+1

}
+

1

2
Qk+2. (98)

Next we compare Wk (bk) and W̃k (bk). Based on
Lemma 2, we have:

A = Ã and D = D̃, (99)
B = C̃ and C = B̃. (100)

Based on (99) and (100), we rewrite (98) as

W̃k (bk) =
1

4
A+

1

4
max {A,C +Qk+1}

+
1

4
B +

1

4
max {B,D +Qk+1}+

1

2
Qk+2. (101)

By (88) and (101), we obtain

W̃k (bk)−Wk (bk) =

1

4
max {A,C +Qk+1}+

1

4
max {B,D +Qk+1}

−max

{
1

4
A+

1

4
B,

1

4
C +

1

4
D +

1

2
Qk+1

}
. (102)

It is easy to check that W̃k (bk) − Wk (bk) ≥ 0. Here we
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complete the proof.

Lemma 6. If VO k+2 is of type 3, we have W̃k (bk) = Wk (bk)
for any bk.

Proof. First, we study Wk (bk). We define:

A ,Wk+2 (bk, 0, 0) , (103)

B ,Wk+2 (bk, 0, 1) , (104)

C ,Wk+2 (bk, 1, 0) , (105)

D ,Wk+2 (bk, 1, 1) . (106)

According to Lemma 1,

Wk+1 (bk, 0) =
1

2
A+

1

2
max {A,B +Qk+2} , (107)

Wk+1 (bk, 1) =
1

2
C +

1

2
max {C,D +Qk+2} , (108)

Wk (bk) =
1

2
Wk+1 (bk, 0) +

1

2
max {Wk+1 (bk, 0) ,Wk+1 (bk, 1) +Qk+1} . (109)

Based on the proof of Proposition 3, since VO k+2 is of type
3, we have

A > B +Qk+2 and C > D +Qk+2. (110)

Therefore, we rewrite (107)-(109) as:

Wk+1 (bk, 0) = A, (111)
Wk+1 (bk, 1) = C, (112)

Wk (bk) =
1

2
A+

1

2
max {A,C +Qk+1} . (113)

Next we study W̃k (bk). We define:

Ã , W̃k+2 (bk, 0, 0) , (114)

B̃ , W̃k+2 (bk, 0, 1) , (115)

C̃ , W̃k+2 (bk, 1, 0) , (116)

D̃ , W̃k+2 (bk, 1, 1) . (117)

According to Lemma 1,

W̃k+1 (bk, 0) =
1

2
Ã+

1

2
max

{
Ã, B̃ +Qk+1

}
, (118)

W̃k+1 (bk, 1) =
1

2
C̃ +

1

2
max

{
C̃, D̃ +Qk+1

}
, (119)

W̃k (bk) =
1

2
W̃k+1 (bk, 0) +

1

2
max

{
W̃k+1 (bk, 0) , W̃k+1 (bk, 1) +Qk+2

}
. (120)

Based on the proof of Proposition 3, since VO k+2 is of type
3, we have

W̃k+1 (bk, 0) > W̃k+1 (bk, 1) +Qk+2. (121)

Therefore, we have

W̃k (bk) =
1

2
Ã+

1

2
max

{
Ã, B̃ +Qk+1

}
. (122)

Next we compare Wk (bk) and W̃k (bk). Based on
Lemma 2, we have:

A = Ã and D = D̃, (123)
B = C̃ and C = B̃. (124)

Based on (113) and (122), we obtain that W̃k (bk) = Wk (bk),
where we complete the proof.

Lemma 7. If W̃k (bk) ≥Wk (bk) for any bk, the MNO’s payoff
does not decrease after exchanging VO k + 1 and VO k + 2’s
bargaining positions.

Proof. Similar as W̃k (bk), we define W̃k−1 (bk−1) for the
new sequence after the position exchange. Based on Lemma
1, we have the following equalities for the sequences before
and after the position exchange.

Wk−1 (bk−1) =
1

2
Wk (bk−1, 0)

+
1

2
max {Wk (bk−1, 0) ,Wk (bk−1, 1) +Qk} , (125)

W̃k−1 (bk−1) =
1

2
W̃k (bk−1, 0)

+
1

2
max

{
W̃k (bk−1, 0) , W̃k (bk−1, 1) +Qk

}
. (126)

Since W̃k (bk) ≥ Wk (bk) for any bk, from (125) and (126),
we conclude that W̃k−1 (bk−1) ≥Wk−1 (bk−1) for any bk−1.

Similarly, we define W̃k−2 (bk−2) for the new sequence
and conclude that W̃k−2 (bk−2) ≥ Wk−2 (bk−2) for any
bk−2.

Repeating the process, we can eventually conclude that
W̃0 ≥ W0. According to the definitions of W and W̃ ,
we have W0 = U0 and W̃0 = Ũ0, where U0 and Ũ0 are
the MNO’s payoffs before and after the position exchange.
Hence, we conclude that

Ũ0 ≥ U0. (127)

In other words, if W̃k (bk) ≥Wk (bk) for any bk, the MNO’s
payoff does not decrease after exchanging VO k+ 1 and VO
k + 2’s positions. Here we complete the proof.

APPENDIX F
PROOF OF PROPOSITION 4
It is easy to prove Proposition 4 by directly combing Lemma
5 and Lemma 7 introduced in the last section.

APPENDIX G
PROOF OF PROPOSITION 5
From Lemma 6, we know that if VO k + 2 is of type 3, we
have W̃k (bk) = Wk (bk) for any bk. From Lemma 7, we
conclude that if W̃k (bk) = Wk (bk) for any bk, the MNO’s
payoff does not change after exchanging VO k + 1 and
VO k + 2’s bargaining positions. By combining these two
statements, we can easily prove Proposition 5.

APPENDIX H
PROOF OF THEOREM 1
Proof. We first prove the existence of set L∗. We assume
that l1 =

(
l11, l

1
2, . . . , l

1
N

)
is one of the optimal bargaining

sequences. Next we show that we can rearrange the VOs’
bargaining positions in sequence l1 and obtain a new opti-
mal bargaining sequence that lies in set L∗.

We first find out the type 1 VO with the earliest bargain-
ing position in sequence l1. We assume that the index of this
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type 1 VO is l1n, i.e., its bargaining position is n. If n 6= 1,
we move VO l1n to the first bargaining position, and obtain
a new sequence l2 =

(
l21, l

2
2, . . . , l

2
N

)
. Mathematically,

l21 = l1n, (128)

l2i = l1i−1,∀i ∈ {2, 3, . . . , n} , (129)

l2i = l1i ,∀i ∈ {n+ 1, n+ 2, . . . , N} . (130)

For sequence l2, we find the type 1 VO with the 2nd
earliest bargaining position, move it to the 2nd bargaining
position, and generate a new sequence l3. Repeating the
process N1 times (recall that N1 is the number of type 1
VOs), we obtain a sequence lN1 . Apparently, the first N1

VOs in sequence lN1 are of type 1. Based on Proposition 4
and the optimality of l1, it is easy to conclude that sequences
l1, l2, . . . , lN1 generate the same MNO’s payoff and all of
them are optimal sequences.

Then we apply the similar rule to move all type 3 VOs in
sequence lN1 to the last N3 bargaining positions. We denote
the resulting sequences as lN1+1, lN1+2, . . . , lN1+N3 . Based
on Proposition 5, sequences lN1 , lN1+1, . . . , lN1+N3 generate
the same MNO’s payoff. In other words, lN1+N3 is also one
of the optimal bargaining sequences.

The first N1 VOs in sequence lN1+N3 are of type 1, and
the last N3 VOs in sequence lN1+N3 are of type 3. This
means that the optimal bargaining sequence lN1+N3 lies in
set L∗, which shows the existence of the non-empty set L∗.

For any l ∈ L∗, there are only type 1 VOs between any
two non-adjacent type 1 VOs. Based on Proposition 4, it is
easy to show that if the MNO interchanges the bargaining
positions of any two type 1 VOs in l ∈ L∗, the MNO’s
payoff will not change. Similarly, for any l ∈ L∗, there
are only type 3 VOs between any two non-adjacent type
3 VOs. Based on Proposition 5, it is easy to show that if the
MNO interchanges the bargaining positions of any two type
3 VOs in l ∈ L∗, the MNO’s payoff will not change. Here
we complete the proof.

APPENDIX I
PROOF OF THEOREM 2
Proof. Based on Algorithm 1, the first N1 and last N3 VOs in
sequence lRE =

(
lRE
1 , lRE

2 , . . . , lRE
N

)
are of type 1 and type

3, respectively. Therefore, to show that lRE lies in set L∗, we
only need to prove that bargaining sequence lRE optimizes
the MNO’s payoff.

We first show that there exists at least one optimal
bargaining sequence in set LRE . Based on Theorem 1, L∗
is non-empty and we pick a sequence lA =

(
lA1 , l

A
2 , . . . , l

A
N

)
from set ∈ L∗. For sequence lA, the first N1 VOs are of
type 1, the last N3 VOs are of type 3, and the remaining
N2 VOs in the middle are of type 2. Based on Theorem
1, if we interchange the bargaining positions of any two
type 1 VOs or any two type 3 VOs in lA, the MNO’s payoff
will not change. Therefore, by interchanging the bargaining
positions of type 1 or type 3 VOs in lA, we can obtain a new
optimal bargaining sequence lB =

(
lB1 , l

B
2 , . . . , l

B
N

)
, where

lBi = lRE
i ,∀i ∈ {1, 2, . . . , N1} , (131)

lBi = lAi ,∀i ∈ {N1 + 1, N1 + 2, . . . , N1 +N2} , (132)

lBi = lRE
i ,∀i ∈ {N1 +N2 + 1, N1 +N2 + 2, . . . , N} .

(133)

In other words, the first N1 VOs and the last N3 VOs in
sequence lB are the same as those in sequence lRE , and
the remaining N2 VOs in the middle of sequence lB are
the same as those in sequence lA. Apparently, lB lies in set
LRE . Since sequence lB is optimal, there exists at least one
optimal bargaining sequence in set LRE .

From Algorithm 1, we have lRE = argmaxl∈LRE U l
0.

Hence, it is easy to conclude that lRE is also an optimal
bargaining sequence for the MNO, and it lies in set L∗. Here
we complete the proof.

APPENDIX J
PROOF OF THEOREM 3
Proof. Based on Theorem 1, when all VOs are of type 1,
all bargaining sequences generate the same MNO’s pay-
off. Without loss of generality, we consider sequence l =
(1, 2, . . . , N), i.e., the MNO bargains with VO n at step
n ∈ N .

To facilitate the proof, we define W0 as

W0 , U0 = Ψ
(
b̂N
)
−

N∑
n=1

π̂n, (134)

and define function Wk (bk), k ∈ N , as

Wk (bk) ,Ψ
(
Bk

N (bk)
)
−

k∑
n=1

bnQn

−
N∑

n=k+1

π∗n

(
Bk

n−1 (bk)
)
. (135)

From Proposition 2, the MNO cooperates with all VOs.
Hence, we have b̂1 = 1, and we can rewrite W0 in (134) as

W0 = Ψ
(
B1

N (1)
)
− π∗1 −

N∑
n=2

π∗n
(
B1

n−1 (1)
)
. (136)

From (135), we have

W1 (1) =Ψ
(
B1

N (1)
)
−Q1 −

N∑
n=2

π∗n
(
B1

n−1 (1)
)
. (137)

Hence, we can further rewrite W0 in (136) as

W0 = W1 (1) +Q1 − π∗1 . (138)

According to (25) and the fact that the MNO cooperates
with VO 1, we have π∗1 = 1

2∆1. Furthermore, based on the
definition of ∆1 in (26), and the definitions of W1 (0) and
W1 (1) in (135), we have

∆1 = W1 (1)−W1 (0) +Q1. (139)

Therefore, we can rewrite W0 in (138) as

W0 = W1 (1) +Q1 −
1

2
(W1 (1)−W1 (0) +Q1)

=
1

2
W1 (0) +

1

2
W1 (1) +

1

2
Q1. (140)

Based on the similar approach, we can show that for
k ∈ {1,. . . , N − 1} and any bk, we have

Wk (bk) =
1

2
Wk+1 (bk, 0) +

1

2
Wk+1 (bk, 1) +

1

2
Qk+1.

(141)
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By choosing k = 1 and b1 = 0 or b1 = 1 in (141) to
further expand W1 (0) and W1 (1) in (140), we obtain

W0 =
1

4
W2 (0, 0) +

1

4
W2 (0, 1) +

1

2
Q2

+
1

4
W2 (1, 0) +

1

4
W2 (1, 1) +

1

2
Q1. (142)

Repeating the process above, we eventually obtain the fol-
lowing equality:

W0 =
1

2N

∑
bN∈B

WN (bN ) +
1

2

∑
n∈N

Qn

=
1

2N

∑
bN∈B

Ψ (bN ), (143)

where B , {(b1, b2, . . . , bN ) : bn ∈ {0, 1} ,∀n ∈ N}. Since
W0 = U0, and U0 is the MNO’s payoff, we complete the
proof.

APPENDIX K
PRELIMINARY LEMMAS III

In this section, we introduce a lemma that helps us prove
Theorem 4.

Same as Appendix B and Appendix E, we first assume
that the bargaining sequence follows 1, 2, . . . , N . Then we
define Wk (bk) as (37). Next we interchange the positions of
VO k + 1 and VO k + 2, where k ∈ {0, 1, . . . , N − 2}, and
define W̃k (bk) for the new sequence as (76). We introduce
the following lemma.

Lemma 8. If Qk+2 ≥ Qk+1 and Xt
k+2 ≥ Xt

k+1 for all t =

1, 2, . . . , T , we have W̃k (bk) ≥Wk (bk) for any bk.

Proof. The proof is similar to the proof of Lemma 5.
First, we study Wk (bk). We define:

A ,Wk+2 (bk, 0, 0) , (144)

B ,Wk+2 (bk, 0, 1) , (145)

C ,Wk+2 (bk, 1, 0) , (146)

D ,Wk+2 (bk, 1, 1) . (147)

According to Lemma 1,

Wk+1 (bk, 0) =
1

2
A+

1

2
max {A,B +Qk+2} , (148)

Wk+1 (bk, 1) =
1

2
C +

1

2
max {C,D +Qk+2} , (149)

Wk (bk) =
1

2
Wk+1 (bk, 0) +

1

2
max {Wk+1 (bk, 0) ,Wk+1 (bk, 1) +Qk+1} . (150)

Then, we study W̃k (bk). We define:

Ã , W̃k+2 (bk, 0, 0) , (151)

B̃ , W̃k+2 (bk, 0, 1) , (152)

C̃ , W̃k+2 (bk, 1, 0) , (153)

D̃ , W̃k+2 (bk, 1, 1) . (154)

According to Lemma 1,

W̃k+1 (bk, 0) =
1

2
Ã+

1

2
max

{
Ã, B̃ +Qk+1

}
, (155)

W̃k+1 (bk, 1) =
1

2
C̃ +

1

2
max

{
C̃, D̃ +Qk+1

}
, (156)

W̃k (bk) =
1

2
W̃k+1 (bk, 0) +

1

2
max

{
W̃k+1 (bk, 0) , W̃k+1 (bk, 1) +Qk+2

}
. (157)

Now we compare Wk (bk) and W̃k (bk).
Based on Lemma 2, we have

A = Ã, C = B̃, B = C̃,D = D̃. (158)

Based on Qk+2 ≥ Qk+1, Xk+2 ≥ Xk+1, and Lemma 3,
we have

B ≥ C. (159)

We compare Wk (bk) and W̃k (bk) under the following
nine cases:
• Case 1:B+Qk+2 ≥ C+Qk+1 ≥ A,D ≥ B−Qk+1 ≥

C −Qk+2;
• Case 2: B + Qk+2 ≥ C + Qk+1 ≥ A, B − Qk+1 ≥

D ≥ C −Qk+2;
• Case 3: B + Qk+2 ≥ C + Qk+1 ≥ A , B − Qk+1 ≥

C −Qk+2 ≥ D;
• Case 4:B+Qk+2 ≥ A ≥ C+Qk+1 ,D ≥ B−Qk+1 ≥

C −Qk+2;
• Case 5: B + Qk+2 ≥ A ≥ C + Qk+1 , B − Qk+1 ≥

D ≥ C −Qk+2;
• Case 6: B + Qk+2 ≥ A ≥ C + Qk+1 , B − Qk+1 ≥

C −Qk+2 ≥ D;
• Case 7:A ≥ B+Qk+2 ≥ C+Qk+1 ,D ≥ B−Qk+1 ≥

C −Qk+2;
• Case 8: A ≥ B + Qk+2 ≥ C + Qk+1 , B − Qk+1 ≥

D ≥ C −Qk+2;
• Case 9: A ≥ B + Qk+2 ≥ C + Qk+1 , B − Qk+1 ≥

C −Qk+2 ≥ D.
Here, we only provide the analysis of Case 1. Under this

case, we can rewrite (150) and (157) as

Wk (bk) =
1

4
A+

1

4
B +

1

2
Qk+2+

max

{
1

4
A+

1

4
B,

1

4
C +

1

4
D +

1

2
Qk+1

}
, (160)

W̃k (bk) =
1

4
A+

1

4
C +

1

2
Qk+1+

max

{
1

4
A+

1

4
C,

1

4
B +

1

4
D +

1

2
Qk+2

}
, (161)

where we use (158). We further rewrite equalities (160) and
(161) as

Wk (bk) =
1

4
A+ max

{
1

4
A+

1

2
B +

1

2
Qk+2,

1

4
B +

1

4
C +

1

4
D +

1

2
Qk+1 +

1

2
Qk+2

}
, (162)

W̃k (bk) =
1

4
A+ max

{
1

4
A+

1

2
C +

1

2
Qk+1,

1

4
B +

1

4
C +

1

4
D +

1

2
Qk+1 +

1

2
Qk+2

}
. (163)
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Using (159) and Qk+2 ≥ Qk+1, we can easily conclude
W̃k (bk) ≥ Wk (bk). We skip the analysis for the other eight
cases. For all cases, we would obtain W̃k (bk) ≥ Wk (bk),
which completes the proof.

APPENDIX L
PROOF OF THEOREM 4

Proof. Part A: We first prove that bargaining sequence l =
(l1, l2, . . . , lN ) with Qln ≥ Qln+1 and Xt

ln
≥ Xt

ln+1
for all

n = 1, 2, . . . , N − 1, t = 1, 2, . . . , T , is optimal.
We assume that sequence l′ = (l′1, l

′
2, . . . , l

′
N ) is one of

the optimal bargaining sequences, and consider the follow-
ing two cases.

Case 1: l′ satisfies Ql′n
≥ Ql′n+1

and Xt
l′n
≥ Xt

l′n+1
for all

n = 1, 2, . . . , N − 1, t = 1, 2, . . . , T .
It is easy to prove that Qln = Ql′n

and Xt
ln

= Xt
l′n

for
all n ∈ N , t = 1, 2, . . . , T . Therefore, l should generate the
same bargaining solution and the MNO’s payoff as l′. In
other words, l is also optimal.

Case 2: l′ doesn’t satisfy Ql′n
≥ Ql′n+1

and Xt
l′n
≥ Xt

l′n+1

for all n = 1, 2, . . . , N − 1, t = 1, 2, . . . , T .
Based on Lemma 7 and Lemma 8, we conclude that, for

any bargaining sequence, if we exchange the bargaining
positions of VO k + 1 and VO k + 2, and they satisfy
Qk+2 ≥ Qk+1 and Xt

k+2 ≥ Xt
k+1 for all t, the MNO’s

payoff does not decrease. According to this and the fact that
all VOs are sortable, we can rearrange sequence l′ into a
sequence l′′ that satisfies Ql′′n

≥ Ql′′n+1
and Xt

l′′n
≥ Xt

l′′n+1
for

all n = 1, 2, . . . , N − 1, t = 1, 2, . . . , T , and has U l′′

0 ≥ U l′

0 .
Since sequence l′ is one of the optimal bargaining sequences,
we conclude that sequence l′′ is also optimal.

Since for sequence l, we have Qln ≥ Qln+1
and Xt

ln
≥

Xt
ln+1

for all n = 1, 2, . . . , N − 1, t = 1, 2, . . . , T . For
sequence l′′, we also haveQl′′n ≥ Ql′′n+1

andXt
l′′n
≥ Xt

l′′n+1
for

all n = 1, 2, . . . , N−1, t = 1, 2, . . . , T . It is easy to show that
Qln = Ql′′n

and Xt
ln

= Xt
l′′n

for all n ∈ N , t = 1, 2, . . . , T .
Therefore, l should generate the same bargaining solution
and the MNO’s payoff as l′′. In other words, l is also
optimal.

Combining Case 1 and Case 2 completes the proof of
Part A.

Part B: We next prove the existence of the cooperation
threshold, i.e., under sequence l, if the MNO does not
cooperate with a particular VO ln, n = 1, 2, . . . , N − 1, it
won’t cooperate with VO ln+1, ln+2, . . . , LN .

To prove the existence of the cooperation threshold, we
only need to prove that, under sequence l, if the MNO does
not cooperate with a particular VO ln, n = 1, 2, . . . , N − 1,
it won’t cooperate with VO ln+1. We next show this by con-
tradiction. We suppose that, the MNO does not cooperate
with VO ln, but cooperates with VO ln+1.

We assume that the MNO reached bn−1 with the first
n − 1 VOs. Because the MNO does not cooperate with VO
ln, but cooperates with VO ln+1, we have

∆n (bn−1) < 0, (164)
∆n+1 (bn−1, 0) ≥ 0. (165)

By (44), we can express ∆n (bn−1) and ∆n+1 (bn−1, 0) as

∆n (bn−1) = Wn (bn−1, 1)−Wn (bn−1, 0) +Qln , (166)
∆n+1 (bn−1, 0) = Wn+1 (bn−1, 0, 1)

−Wn+1 (bn−1, 0, 0) +Qln+1 . (167)

We define

A ,Wn+1 (bn−1, 0, 0), (168)

B ,Wn+1 (bn−1, 0, 1), (169)

C ,Wn+1 (bn−1, 1, 0), (170)

D ,Wn+1 (bn−1, 1, 1). (171)

Recall that, under sequence l, we have Xt
ln
≥ Xt

ln+1
for all

t. Together with Lemma 3, we obtain

B ≤ C. (172)

Based on Lemma 1, we have

Wn (bn−1, 0) =
1

2
A+

1

2
max

{
A,B +Qln+1

}
, (173)

Wn (bn−1, 1) =
1

2
C +

1

2
max

{
C,D +Qln+1

}
. (174)

Now we rewrite (166) and (167) as

∆n (bn−1) =
1

2
C +

1

2
max

{
C,D +Qln+1

}
− 1

2
A− 1

2
max

{
A,B +Qln+1

}
+Qln , (175)

∆n+1 (bn−1, 0) = B −A+Qln+1 . (176)

According to (165), we have

B +Qln+1
≥ A. (177)

Hence, we can rewrite (175) as

∆n (bn−1) =
1

2
C +

1

2
max

{
C,D +Qln+1

}
− 1

2
A− 1

2
B − 1

2
Qln+1 +Qln . (178)

By checking the two cases D+Qln+1
≥ C and D+Qln+1

<
C separately, it is easy to conclude that ∆n (bn−1) ≥ 0.
However, this contradicts with (164).

Therefore, we have shown that, if the MNO does not
cooperate with a particular VO ln, n = 1, 2, . . . , N − 1,
it won’t cooperate with VO ln+1. By applying such a fact
consecutively, we prove that, if the MNO does not coop-
erate with a particular VO ln, it won’t cooperate with VO
ln+1, ln+2, . . . , LN .

Part C: We then prove that there exists an unique k ∈
{0} ∪ N satisfying the following two inequalities:

T∑
t=1

ft

 lk−1∑
n=l1

Xt
n +Xt

lk

− T∑
t=1

ft

 lk−1∑
n=l1

Xt
n

+Qlk ≥ 0,

(179)
T∑

t=1

ft

 lk∑
n=l1

Xt
n +Xt

lk+1

− T∑
t=1

ft

 lk∑
n=l1

Xt
n

+Qlk+1
< 0.

(180)

To prove this, we only need to use the following two
facts: (i) function ft (·) , t = 1, 2, . . . , T, is an increasing and
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concave function; (ii) under sequence l, we have Qln ≥
Qln+1

and Xt
ln
≥ Xt

ln+1
for all n and t. We omit the proof

here.

Part D: We next prove that, if k is the cooperation
threshold, it satisfies both (179) and (180). In other words,
(179) and (180) are the necessary conditions for k to be the
cooperation threshold.

We first show that the cooperation threshold satisfies
(179).

If k is the cooperation threshold, the MNO only co-
operates with the first k VOs. Therefore, for the MNO’s
bargaining with VO lk, we have

∆k (1k−1) ≥ 0. (181)

According to (44), we can express ∆k (1k−1) as

∆k (1k−1) = Wk (1k−1, 1)−Wk (1k−1, 0) +Qlk . (182)

For Wk (1k−1, 1), since the MNO does not cooperate with
the last N − k VOs, we have

b∗m

(
Bk

m−1 (1k−1, 1)
)

= 0,∀m = k + 1, k + 2, . . . , N,

(183)

π∗m

(
Bk

m−1 (1k−1, 1)
)

= 0,∀m = k + 1, k + 2, . . . , N.

(184)

Therefore, by the definition of Wk (1k−1, 1), we obtain

Wk (1k−1, 1) = Ψ (1k−1, 1,0N−k)−
lk∑

n=l1

Qn. (185)

For Wk (1k−1, 0), based on Lemma 1, we have

Wk (1k−1, 0) ≥Wk+1 (1k−1, 0, 0)

≥ . . .
≥WN (1k−1, 0,0N−k)

= Ψ (1k−1, 0,0N−k)−
lk−1∑
n=l1

Qn. (186)

Based on (182), (185), and (186), we conclude

Ψ (1k−1, 1,0N−k) ≥ Ψ (1k−1, 0,0N−k) . (187)

Based on the definition of the social welfare, we have

T∑
t=1

ft

 lk−1∑
n=l1

Xt
n +Xt

lk

− T∑
t=1

ft

 lk−1∑
n=l1

Xt
n

+Qlk ≥ 0,(188)

which is exactly (179).

Then we show that the cooperation threshold satisfies
(180).

If k is the cooperation threshold, the MNO does not co-
operate with VO lk+1. Therefore, for the MNO’s bargaining
with VO lk+1, we have

∆k+1 (1k) < 0. (189)

According to (44), we can express ∆k+1 (1k) as

∆k+1 (1k) = Wk+1 (1k, 1)−Wk+1 (1k, 0) +Qlk+1
. (190)

For Wk+1 (1k, 0), since the MNO does not cooperate with

all remaining VOs, we have

b∗m

(
Bk+1

m−1 (1k, 0)
)

= 0,∀m = k + 2, k + 3, . . . , N, (191)

π∗m

(
Bk+1

m−1 (1k, 0)
)

= 0,∀m = k + 2, k + 3, . . . , N. (192)

Therefore, by the definition of Wk+1 (1k, 0), we obtain

Wk+1 (1k, 0) = Ψ (1k, 0,0N−k−1)−
lk∑

n=l1

Qn. (193)

For Wk+1 (1k, 1), based on Lemma 1, we have

Wk+1 (1k, 1) ≥Wk+2 (1k, 1, 0)

≥ . . .
≥WN (1k, 1,0N−k−1)

= Ψ (1k, 1,0N−k−1)−
lk+1∑
n=l1

Qn. (194)

Based on (190), (193), and (194), we conclude

Ψ (1k, 1,0N−k−1) < Ψ (1k, 0,0N−k−1) . (195)

Based on the definition of the social welfare, we have

T∑
t=1

ft

 lk∑
n=l1

Xt
n +Xt

lk+1

− T∑
t=1

ft

 lk∑
n=l1

Xt
n

+Qlk+1
< 0,

(196)

which is exactly (180).
Therefore, we complete the proof of this part.
Part E: Now we summarize part B, part C, and part D.
In part B, we have proved the existence of the co-

operation threshold. In part D, we have proved that the
cooperation threshold should satisfy (179) and (180). In part
C, we have proved that (179) and (180) together admit
an unique k. Hence, we conclude that (179) and (180) are
also the sufficient conditions for k to be the cooperation
threshold. Here we complete the whole proof.

APPENDIX M
PRELIMINARY LEMMAS IV
In this section, we introduce a lemma that helps us prove
Theorem 5. Same as Appendix B, we first assume that the
bargaining sequence follows 1, 2, . . . , N . We introduce the
following lemma.

Lemma 9. If VOs are homogenous, for any vector bn−2, n =
2, 3, . . . , N , we have the following relation:

Wn (bn−2, 0, 1)−Wn (bn−2, 0, 0) ≥
Wn (bn−2, 1, 1)−Wn (bn−2, 1, 0) . (197)

Proof. We prove it by mathematical induction.
Part A: It is easy to show that (197) holds for n = N .
Part B: We assume that (197) holds for n = k, and verify

it for n = k − 1. We define

A ,Wk (bk−3, 0, 0, 0) , B ,Wk (bk−3, 0, 0, 1) ,

C ,Wk (bk−3, 0, 1, 0) , D ,Wk (bk−3, 0, 1, 1) ,

E ,Wk (bk−3, 1, 0, 0) , F ,Wk (bk−3, 1, 0, 1) ,

G ,Wk (bk−3, 1, 1, 0) , H ,Wk (bk−3, 1, 1, 1) .
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According to Lemma 1, we have the following relations:

Wk−1 (bk−3, 0, 0) =
1

2
A+

1

2
max {A,B +Q} , (198)

Wk−1 (bk−3, 0, 1) =
1

2
C +

1

2
max {C,D +Q} , (199)

Wk−1 (bk−3, 1, 0) =
1

2
E +

1

2
max {E,F +Q} , (200)

Wk−1 (bk−3, 1, 1) =
1

2
G+

1

2
max {G,H +Q} . (201)

From Lemma 2, we have B = C = E and D = F = G.
Furthermore, based on our assumption, we have B − A ≥
D − C and F − E ≥ H − G. Therefore, we only need to
consider the following four cases:

• Case 1: B + Q ≥ A, D + Q ≥ C (i.e., F + Q ≥ E),
and H +Q ≥ G;

• Case 2: B + Q ≥ A, D + Q ≥ C (i.e., F + Q ≥ E),
and H +Q < G;

• Case 3: B + Q ≥ A, D + Q < C (i.e., F + Q < E),
and H +Q < G;

• Case 4: B + Q < A, D + Q < C (i.e., F + Q < E),
and H +Q < G.

We need to verify the following relation for the four cases:

Wk−1 (bk−3, 0, 1)−Wk−1 (bk−3, 0, 0) ≥
Wk−1 (bk−3, 1, 1)−Wk−1 (bk−3, 1, 0) . (202)

Here, we only show the analysis for Case 1. In this case,
we have

Wk−1 (bk−3, 0, 1)−Wk−1 (bk−3, 0, 0)

−Wk−1 (bk−3, 1, 1) +Wk−1 (bk−3, 1, 0)

=
1

2
C +

1

2
D − 1

2
A− 1

2
B − 1

2
G− 1

2
H +

1

2
E +

1

2
F

=
1

2
D − 1

2
A− 1

2
H +

1

2
E

=
1

2
B − 1

2
A− 1

2
H +

1

2
D

≥ 1

2
D − 1

2
C − 1

2
H +

1

2
D

=
1

2
F − 1

2
E − 1

2
H +

1

2
G

≥ 0. (203)

We can use the similar approach to prove (202) for the three
remaining cases.

Combining Part A and Part B completes the proof.

APPENDIX N
PROOF OF THEOREM 5

Proof. Since VOs are homogenous, without loss of general-
ity, we consider the bargaining sequence where the MNO
bargains with VO n at step n, n ∈ N . Because VOs
are sortable, based on Theorem 4, we have a threshold
k = 0, 1, . . . , N, such that the MNO only cooperates with
the first k VOs and π̂n = 0 for n = k + 1, . . . , N . Next we
show that for VO n− 1 and VO n, n = 2, 3, . . . , k, we have
∆n−1 (bn−2) ≥ ∆n (bn−2, 1) for any bn−2.

First, we define

A ,Wn (bn−2, 0, 0) , B ,Wn (bn−2, 0, 1) ,

C ,Wn (bn−2, 1, 0) , D ,Wn (bn−2, 1, 1) .

For ∆n−1 (bn−2), we have

∆n−1 (bn−2) = Wn−1 (bn−2, 1)−Wn−1 (bn−2, 0) +Q

=
1

2
C +

1

2
D +

1

2
Q− 1

2
A− 1

2
B − 1

2
Q+Q

=
1

2
C +

1

2
D − 1

2
A− 1

2
B +Q. (204)

For ∆n (bn−2, 1), we have

∆n (bn−2, 1) = D − C +Q. (205)

Therefore, we obtain

∆n−1 (bn−2)−∆n (bn−2, 1)

=
1

2
C − 1

2
D − 1

2
A+

1

2
B ≥ 0. (206)

According to equation (23), we have π∗n−1 (bn−2) =
1
2∆n−1 (bn−2) and π∗n (bn−2, 1) = 1

2∆n (bn−2, 1). Since
∆n−1 (bn−2) ≥ ∆n (bn−2, 1) for any bn−2, we conclude
that π∗n−1 (bn−2) ≥ π∗n (bn−2, 1) for any bn−2. Therefore,
we have π̂n−1 ≥ π̂n for n = 2, . . . , k. Together with π̂n = 0
for n = k + 1, . . . , N , we complete the proof.

APPENDIX O
PROOF OF COROLLARY 1
Corollary 1 can be easily proved by combining Theorem 4
and Theorem 5. The details are omitted here.

APPENDIX P
EXAMPLES ON HETEROGENOUS VOS

We show examples where two VOs are homogenous in Qn

but heterogenous in Xn in Figure 14. We find that, the red
VO obtains a payoff of 1.25 under an earlier bargaining po-
sition and a payoff of 1.5 under a later bargaining position.
That is to say, it has a higher payoff when it bargains with
the MNO in the later position.
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Fig. 14: Influence of Bargaining Sequence on Heterogenous VOs’ Pay-
offs (Heterogenous Xn).


	1 Introduction
	1.1 Motivation
	1.2 Our Work
	1.3 Literature Review
	1.3.1 Deployment of MNO's Wi-Fi Networks
	1.3.2 Economics of VOs' Wi-Fi Networks
	1.3.3 One-to-Many Bargaining


	2 System Model
	2.1 Basic Settings
	2.2 MNO's Payoff, VO's Payoff, and Social Welfare

	3 One-To-One Bargaining
	4 One-to-Many Bargaining with Exogenous Sequence
	4.1 Bargaining Problem for Step nN
	4.2 NBS for Step nN
	4.2.1 Step N
	4.2.2 Step N-1
	4.2.3 Step k, k{2,3,…,N-2}
	4.2.4 Step 1

	4.3 MNO's Payoff after Bargaining
	4.4 Engineering Insights

	5 One-to-Many Bargaining with Endogenous Sequence
	5.1 Examples on the Influence of Bargaining Sequence
	5.2 Optimal Sequencing Problem
	5.3 Structural Property and OVBS Algorithm
	5.4 Special Case 1: Only Type 1 VOs
	5.5 Special Case 2: Sortable VOs

	6 Influence of Bargaining Sequence on VOs' Payoffs
	6.1 Homogenous VOs
	6.2 Heterogenous VOs

	7 Numerical Results
	7.1 Performance of Optimal Sequencing
	7.1.1 Distributions of NMG and NMD
	7.1.2 Influences of E{Xnt} and E{Qn}

	7.2 MNO's Payoff
	7.2.1 Influence of E{Xnt}
	7.2.2 Influence of E{Qn}


	8 Conclusion
	References
	Biographies
	Haoran Yu
	Man Hon Cheung
	Jianwei Huang

	Appendix A: Proof of Proposition ??
	Appendix B: Preliminary Lemmas I
	Appendix C: Proof of Proposition ??
	Appendix D: Proof of Proposition ??
	Appendix E: Preliminary Lemmas II
	Appendix F: Proof of Proposition ??
	Appendix G: Proof of Proposition ??
	Appendix H: Proof of Theorem ??
	Appendix I: Proof of Theorem ??
	Appendix J: Proof of Theorem ??
	Appendix K: Preliminary Lemmas III
	Appendix L: Proof of Theorem ??
	Appendix M: Preliminary Lemmas IV
	Appendix N: Proof of Theorem ??
	Appendix O: Proof of Corollary ??
	Appendix P: Examples on Heterogenous VOs

