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There and Back Again: Detecting Regularity in
Human Encounter Communities

Matthew J. Williams, Member, IEEE,

Roger M. Whitaker, Member, IEEE, and Stuart M. Allen, Member, IEEE

Abstract—Detecting communities that recur over time is a challenging problem due to the potential sparsity of encounter events at an

individual scale and inherent uncertainty in human behaviour. Existing methods for community detection in mobile human encounter

networks ignore the presence of temporal patterns that lead to periodic components in the network. Daily and weekly routine is

prevalent in human behaviour and can serve as rich context for applications that rely on person-to-person encounters, such as mobile

routing protocols and intelligent digital personal assistants. In this article, we present the design, implementation, and evaluation of an

approach to decentralised periodic community detection that is robust to uncertainty and computationally efficient. This alternative

approach has a novel periodicity detection method inspired by a neural synchrony measure used in the field of neurophysiology. We

evaluate our approach and investigate human periodic encounter patterns using empirical datasets of inferred and direct-sensed

encounters.

Index Terms—social networks, temporal community detection, periodic patterns, physical proximity, human encounter networks

✦

1 INTRODUCTION

HUMAN encounter networks are inherently time-
varying. Encounters represent instances where two

or more individuals move into proximity. The need to
understand and detect temporal encounter patterns has
been recognised across many fields, including network sci-
ence [1], epidemics on complex networks [2], [3], oppor-
tunistic network protocol design [4], [5], [6], and antici-
patory mobile computing [7]. Much of this interest has
been driven by the widespread adoption of mobile phones,
which have become important proxies for human activity
[8], providing the large-scale empirical data required to
study human encounter patterns and enabled new applica-
tions that rely on mobility patterns as context in automated
decision making. This trend is exemplified by the recent rise
of intelligent digital personal assistants such as Google Now1

and Apple Siri2.

Weekly and daily routine have a strong influence on hu-
man behaviour, but these encounter patterns have received
relatively little attention. Periodic encounter patterns have
been shown to exist not only on a pairwise basis [9], [10], but
also for communities [11] and connected components [1],
[12]. The timings of encounters, however, are not perfectly
consistent due to the time-variant uncertainty inherent in
human mobility [13]. In this article, we introduce an al-
gorithm for the detection of periodic encounter behaviour
that is tolerant to uncertainty in the timing of encounter
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events. We adapt a regularity detection method [14] that is
inspired by neural synchrony [15], [16], which allows similar
repeated events to be captured without mandating that such
events are precisely identical repetitions. Additionally the
approach does not require discretisation of time into ‘bins’
as seen in previous approaches such as PEC-D (periodic
encounter community detection) [11] and Habit [5]. Such
discretisation results in loss of temporal resolution and is
more susceptible to noise due to jitter.

The algorithm we develop also supports periodic en-
counter detection for delay tolerant and opportunistic net-
work protocols, which have exploited community structure
[17], [18] and models of temporal behaviour [4], [5], [10].
Decentralised methods are necessary in these settings due
to their lack of infrastructure and open up the opportunity
for new services that capitalise on human mobility [19],
[20]. We also note that in cellular networks, decentralised
approaches help to conserve bandwidth at the handset.
Furthermore, given the highly sensitive nature of mobility
data [21], avoiding the use of a centralised architecture can
alleviate privacy concerns.

Generalising the model of periodic encounter communities
(PECs) in [11], we refer to the communities we study in this
article as regular encounter communities (RECs). We define
a REC as a community of individuals that encounter at
similar (rather than precise) times each week. Although
we refer specifically to weekly patterns in this article, our
approach can be applied, without loss of generality, to any
other pre-defined period. The pattern detection method we
develop is based on regularity detection [14], that finds
regions of the week where the timing of the community’s
encounters are consistent. In particular, we present a novel
inter-event interval analysis approach that allows individual
nodes to extract their regular encounters with each node
they meet. Decentralised detection of the broader RECs that
these nodes may belong to then follows by an opportunistic
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sharing and incremental construction approach.
Using this technique, we explore regular encounter com-

munities through two empirical datasets. REALITY is a
dataset of Bluetooth encounters among staff and students
during the 2004-2005 Reality Mining experiment at the Mas-
sachusetts Institute of Technology (MIT) [22]. DARTMOUTH

is a dataset of encounters inferred from the WLAN access
point co-locations of staff and students at Dartmouth Col-
lege campus [23]. Our analysis considers the properties and
prevalence of regular encounter communities, as well as a
comparison of REC detection performance to PEC detection.
We also consider the role of RECs in opportunistic peer-to-
peer information spreading. As with previous work in this
area, we assume a setting where low-level implementation
details, such as lack of a global clock and asymmetric
encounter sensing, are handled by a lower layer. In practice,
the method introduced in this paper can be extended with a
low-level communication protocol.

The article is organised as follows. We begin by present-
ing a method to extract regular encounters on a pairwise
basis in Section 2. For each node, these extracted regular
encounters are required for the next step of the decentralised
regular encounter detection algorithm, which is presented
in Section 3. In this section the method by which nodes
incrementally share and construct their regular encounter
communities is described. We then detail the datasets to be
used in this article in Section 5, followed by experiments
and results in Section 6. We discuss our results with respect
to related work in Section 7 and conclude this article in
Section 8.

2 REGULAR ENCOUNTER EXTRACTION

We refer to regularity as the behaviour of two individuals in
consistently meeting one another at a particular time over a
repeated window. To extract the regular encounters occur-
ring between between a pair of individuals we introduce
the window size parameter, denoted by ω. Consequently
this parameter governs the scale at which regular patterns
are to be detected. Although human mobility follows cycles
at multiple scales [9], [11], [12] (e.g., daily, weekly, biweekly,
and yearly), we adopt weekly regularity (ω = 7) as this
captures any weekday patterns that reoccur over multiple
weeks.

A common representation of encounters is as a sequence
of instantaneous events, where each event has zero dura-
tion. This is often how encounters are collected in practice,
for example using periodic Bluetooth sensing [22]. The
event-based nature of the encounter data we consider pre-
cludes the application of methods that require continuous,
densely-sampled data, such as nonlinear time series analy-
sis, harmonic analysis, and recurrence quantification anal-
ysis. Additionally, human event-based data may be sparse
(the majority of individuals are unlikely to encounter one
another more than a few times a day) making it challenging
to capture structural properties.

These issues motivate alternative approaches and we
adopt a neural coding analysis technique [14], [15], [16]
that has originally been applied to look for patterns in
neuron firing behaviour. Although this appears an unrelated
domain, the commonality concerns event characterisation
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(a) Example trains.
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I3(u)

I4(u)

u

(b) Trains annotated to indicate I1(u), I2(u), I3(u), and I4(u)
for a particular offset u.

Fig. 1. Example encounter trains for a pair of individuals over four weeks.
Window width ω = 7 days.

and consequently work in this area is of much interest but
does not appear to have received attention. Importantly, this
technique does not require discrete intervals (also called data
binning) of data in the temporal dimension, and therefore it
avoid changing the resolution of encounters.

The objective of regular encounter extraction is to iden-
tify the subset of encounters between a pair of individuals
according to the chosen ω parameter. To formalise this we
make the following definition:

Definition 1. Given two individuals, v and w, the chronol-
ogy of encounters between v and w is denoted by the
ordered sequence of encounter times Sv,w = {ti | i =
1, . . . , L}, where L is the number of v’s encounters with
w. We assume that the chronology for two individuals is
symmetric; i.e., we have Sv,w = Sw,v .

2.1 Instantaneous inter-event interval (IEI) irregularity

We assume that the encounter events in the chronology

Sv,w = {ti | i = 1, . . . , L} ,

are offsets from some arbitrary origin, giving values ti ∈
(0, Tmax] ∀ i = 1, . . . , L. We segment each chronology into
N continuous windows of duration ω, referring to each
such window as an encounter train. The absolute times of
encounter are considered modulo ω, thus translating the
events in each encounter train into the interval (0,ω]. We
assume Tmax and ω are chosen such that ωN = Tmax. Ln is
used to denote the number of encounters in the nth train and
the sequence of offsets for the events in train n is denoted
by

Un = {un
i | i = 1, . . . , Ln} .

An example of a four-week chronology and its corre-
sponding encounter trains are shown in Figure 1a. Four
encounter trains are present and offset from the start of
each week can be clearly seen. Every point that isn’t an
event itself in an encounter train u falls between two events,
which may not necessarily be in the same encounter train.
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To examine this further we introduce the inter-event interval
(IEI) as follows.

Definition 2. The instantaneous inter-event interval func-
tion In(u) denotes the IEI for the nth train at time offset
u ∈ (0,ω]; formally, instantaneous IEI is defined for three
cases:

In(u) = un
1 if 0 < u ≤ un

1 ,

In(u) = ω− un
Ln

if un
Ln

< u ≤ ω ,

and

In(u) = min(un
i |u

n
i ≥ u)−max(un

i |u
n
i < u)

if
un
1 < u ≤ un

Ln
.

Figure 1b shows the example train from Figure 1a annotated
with example instantaneous IEI values at a particular offset
u. We define two further instantaneous measures: for time
offset u, the instantaneous mean µ(u) is given by

µ(u) =
1

N

N
∑

n=1

In(u)

and the instantaneous standard deviation σ(u) is given by

σ(u) =

(

1

N − 1

N
∑

n=1

(In(u)− µ(u))
2

)1/2

.

Using these two instantaneous measures we can evaluate
the dispersion in IEI values at a particular time offset,
which represents the degree of dissimilarity in the timings
of events across the N trains at that offset.

Definition 3. The coefficient of variation cvar(u) provides a
measure of dispersion in the IEI values at time offset u,

cvar(u) =
σ(u)

µ(u)
.

cvar(u) is a unitless measure and normalised against the
mean, which enables comparison between the dispersion
in collections of large IEI values and collections of small IEI
values. cvar(u) = 0 indicates perfect regularity at offset u,
and higher values indicate less consistency in the encounters
between v and w at offset u. We also refer to cvar(u) as the
instantaneous IEI irregularity at offset u.

2.2 Computing instantaneous IEI irregularity

Efficient computation of instantaneous IEI irregularity is
valuable. The instantaneous inter-event interval function
In(u) is obtainable from pre-computing inter-event interval
(IEI) values. To achieve this we insert dummy event times 0
and ω into each train and compute the difference between
neighbouring events in each train n = 1, . . . , N . The arrival
of an event in a train indicates a change in the instantaneous
IEI for the period up to (but not including) the next event in
that train. In other words, given two consecutive events un

i

and un
i+1 in train n, the instantaneous inter-event interval

In(u) during u ∈ (un
i , u

n
i+1] is un

i+1 − un
i .

It is necessary to know intervals of time where there are
no intervening events in any train. These intervals therefore
represent durations where cvar(·) is constant. More formally,

U1

U2

U3

U4

U∗

Fig. 2. Four example visit trains (U1, U2, U3, and U4) and their corre-
sponding master train U∗.

given an interval (u, u′] such that no events appear between
time offsets u and u′ in any of the N trains, we need only
compute the instantaneous coefficient of variation once for
the interval (u, u′]. To support this we define a master train
to represent the event offset times taken from all trains.

Definition 4. A master train, denoted U∗, is the set of events
U∗ = U1 ∪ . . . ∪ UN . For convenience we label the mas-
ter train and its ordered events as U∗ = {u∗

1, . . . , u
∗
L}.

An example of a collection of visit trains and the corre-
sponding master train is depicted in Figure 2.

The master train conveniently describes the intervals
during which there are no intervening events; specifically,
there are no intervening events between offsets u∗

i−1 and
u∗
i for each i = 2, . . . , L. We therefore only compute a

new cvar(·) at each event in the master train. For each
i = 2, . . . , L a coefficient of variation cvar(u

∗
i ) is computed

which yields the constant coefficient of variation for the
interval (u∗

i−1, u
∗
i ]. In addition, we also calculate the coef-

ficient of variation at the first event (i.e., u∗
1) to give the

dispersion over (0, u∗
1], and at ω to give the dispersion over

(u∗
L,ω].
The approach described above has linear time complex-

ity. Computing the coefficient of variation at a given time
offset requires a look up of one instantaneous IEI value from
each train, making the time complexity linear in the number
of trains N for fixed L. To understand the reciprocal case
(i.e., fixed N and varying L) we consider the effect of adding
an event to a chronology. The result is one additional inter-
val in the master train, requiring one additional calculation
of the coefficient of variation. Therefore, assuming fixed N ,
the algorithm is linear in the number of events L.

2.3 Extracting regular encounters

To distinguish events that repeatedly occur from irregular
events we consider the dispersion in IEI values, as measured
by the instantaneous coefficient of variation cvar(·) from
Definition 3. We define a dispersion threshold θ beneath which
encounters are classified as regular: that is an event at offset
u is regular if and only if cvar(u) ≤ θ. The set of all
such events across all N trains between nodes v and w are
referred to as the regular set R(Sv,w). Figure 3 provides an
example of each stage in obtaining the regular events for a
chronology.

As noted in Section 2.2, computation of IEI measures
such as coefficient of variation are linear in complexity. The
algorithm for obtaining R(Sv,w) is therefore more compu-
tationally efficient than using PSE-Miner [24] for the extrac-
tion of local periodic communities (as shown in [11]), which



IEEE TRANSACTIONS ON MOBILE COMPUTING 4

Sv,w

(a) An example chronology Sv,w depicting encounters between
individuals v and w over 28 days.

U1

U2

U3

U4

(b) Four event trains U1, U2, U3, and U4 each of duration ω = 7
days, corresponding to chronology Sv,w.

R(Sv,w)

U∗

cvar(u)

(c) Master train U∗ and the instantaneous coefficient of variation
cvar(u) at each event offset u ∈ U∗. Filtering by dispersion
threshold θ = 0.2 yields regular events R(Sv,w).

Fig. 3. Pipeline for obtaining the regular events from an example chronol-
ogy.

is polynomial [24]. We note that the efficiency improvement
is a result of a single period of regularity (controlled by ω)
being set a priori.

3 THE REC DETECTION PROBLEM

A regularity set R(Sv,w) represents the regular encounters
between a given pair of nodes v, w. For example, if two
people met one another at the same time every seven days,
then this time of week would be classified as a regular
encounter. At a broader scale, the encounters among a
whole community of individuals may also share the same
regularity, giving rise to a regular encounter community (REC).
To consider the representation of encounters among all
individuals we introduce the following definition.

Definition 5. The static encounter graph G∗ = (V ∗, E∗) is
the graph representing all encounters and nodes appear-
ing within the period of time represented by the interval
(0, Tmax]. That is, {v, w} ∈ E if and only if individuals
v, w ∈ V were in proximity at least once.

The static encounter graph G∗ corresponds to the aggre-
gation of all encounters over the period time selected for
analysis. Although this is a time-naive representation, by
combination with regular encounter extraction we can iden-
tify groups of individuals that collectively share periodic
encounters.

To exclude trivial cases we consider only the pairs of
nodes that encounter each other a minimum number of
times Lmin in each window. Formally, given a window size
ω we induce the subgraph G = (V, E) of G∗ = (V ∗, E∗)
where the inclusion of each edge {v, w} ∈ E∗ in E is

determined by the chronology Sv,w meeting the follow-
ing condition: each of the N windows obtained through
partitioning Sv,w by ω is such that Ln ≥ Lmin for all
n = 1, . . . , N .

3.1 Problem definition

When comparing the regular events R(Sv,w) among the
edges of a prospective community it is prudent to permit
a small degree of uncertainty around the timing of regular
events, corresponding to jitter around the regular events
identified in R(·). This is controlled by parameter φ which
we use to map a regular event at time u to an interval
(u− φ, u+ φ].

Definition 6. Let R(Sv,w) be the set of regular events for
the chronology of encounters Sv,w between individuals
v and w, constructed with window size ω. Given a jitter
tolerance of φ, the regularity mask Rv,w is defined as
the set

⋃

u∈R(Sv,w)

(u− φ, u+ φ]

with values falling outside (0,ω] being wrapped around.

We can obtain a regularity mask for two or more edges
by obtaining the intersection of the multiple regularity
masks. This represents the regions of regularity that are
shared by the encounter patterns at all the edges involved.
For example, given three nodes v, w, and x, the regularity
mask Rx,v ∩ Rx,w ∩ Rv,w represents the subset of regu-
lar regions common to all three regularity masks between
nodes, as depicted in Figure 4.

The commutative and associative properties of the in-
tersection operator are beneficial when developing decen-
tralised solutions for REC detection, simplifying the process
of incrementally combining RECs through knowledge shar-
ing between nodes. This means that a node does not need
to know the original regularity masks from which an inter-
section was computed, and the node can apply additional
intersection operations without the order in which they are
applied affecting the result.

In terms of notation, the empty regularity mask is de-
noted by ∅ and indicates that no regular regions were shared
among the corresponding pair of individuals or collection
of edges. We write R1 ⊆ R2 to denote the relationship of
regularity mask R1 being a subset or equal to regularity
mask R2. Finally, we use |R| to denote the length of a
regularity mask R. |R| represents the overall duration of
the regular regions in R (the Lebesgue measure of R) as
follows.

Definition 7. The regularity length |R| of a regularity mask
R of window size ω is

∫

ω

0

f(u) du

where f(u) = 1 if u ∈ R and f(u) = 0 otherwise.

We now formally introduce the concept of a regular
encounter community.

Definition 8. Denoted as the pair R = 〈C,R〉, a regular
encounter community (or REC) in an encounter graph
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v

w

x
Rv,w

Rx,v

Rx,w

(a) Example pairwise regularity masks among three nodes. A regu-
larity mask for a pair of nodes is drawn alongside the edge between
those two nodes.

Rx,v \Rx,w

Rx,v \Rx,w \Rv,w

(b) Regularity mask intersections of two example edge subsets of
the masks shown in Figure 4a.

Fig. 4. Regularity mask intersections from the encounter patterns among three nodes. Green bars indicate regions of regularity represented by a
regularity mask. Figure 4a shows an example static encounter graph, annotated with the pairwise regularity masks for each pair of nodes. Figure 4b
demonstrates the regularity masks obtained by intersecting masks associated with the example static encounter graph.

G is an encounter component C = (V,E) in G along
with a non-empty regularity mask R where

R ⊆
⋂

{v,w}∈E

Rv,w .

Given a REC 〈C,R〉 with community C = (V,E)
constructed with jitter threshold φ, the regularity mask R

encodes information about the locations of regular spikes in
the chronologies corresponding to edges in E. In particular,
a window offset u, such that u ∈ R, indicates that for each
edge {v, w} ∈ E there exists at least one regular encounter
x in the regular set R(Sv,w) where |u− x| ≤ φ.

It is possible that one REC may contain another REC and
such subsumption can take two forms. A REC R = 〈C,R〉
is structurally subsumed when there exists a connected com-
munity C ′ that contains C (i.e., C ⊂ C ′) such that the
regularity mask R is still valid for community C ′. Structural
subsumption means that we could add additional edges to
encounter component C and re-computing the intersection
of the edges’ regularity mask would result in R. The coun-
terpart to structural subsumption is temporal subsumption,
which represents the case where there exists a REC with the
same community but a larger regularity mask. Specifically a
REC R = 〈C,R〉 is temporally subsumed when there exists
a regularity mask R′ that is valid for the edge set of C and
R ⊂ R′. We combine these two subsumption cases with the
following definitions.

Definition 9. Let R1 = 〈C1, R1〉 and R2 = 〈C2, R2〉 be two
RECs. We say that R1 is subsumed by R2 if and only
if R1 ⊆ R2 and C1 ⊆ C2. We denote this subsumed-or-
equal relationship by R1 � R2, and write R1 ≺ R2 to
denote the case where R1 � R2 and R1 6= R2.

Definition 10. A REC R1 is maximal if and only if there is
no REC R2 such that R1 ≺ R2.

With knowledge of the maximal RECs, all other RECs
are redundant. An algorithm or protocol for extracting RECs
should seek to obtain maximal RECs. We formulate the REC
detection problem as follows.

Definition 11. The regular encounter community detection
problem requires identifying all maximal regular en-
counter communities that exist among the chronologies
of a population of individuals.

4 DECENTRALISED REC DETECTION

In this section we present a decentralised algorithm for
the regular encounter community detection problem. This
REC detection algorithm is a variant of the opportunistic
construction approach originally introduced in [11] where
pairs of nodes share and combine their local knowledge of
the RECs they belong to while they are in communication
range. Through repeated opportunistic construction, nodes
obtain more information on the structure of the globally
maximal RECs they belong to.

To facilitate this, we assume each node v maintains a
knowledge base of Kv of RECs it detects over time. When a
node v encounters a node w, it receives Kw. It is the task
of v to update its own knowledge base Kv by pairwise
combining the RECs in Kv with those in Kw. This requires
compatibility and combination rules to compare and aggregate
RECs from two knowledge bases, and a local REC mining
algorithm to initially populate a knowledge base with a
node’s local RECs.

The local REC miner extracts all maximal local RECs at a
given node. The locality of a node is the set of chronologies
that are incident at the node which corresponds to the
encounter data that a node can directly observe.

4.1 Compatibility and combination rules

Compatibility and combination rules are required for oppor-
tunistic reconstruction, allowing a node to compare a local
REC to a REC held by an adjacent node and, if they are
compatible, to form a single new REC.

Definition 12. Two RECs 〈C1, R1〉 and 〈C2, R2〉 with en-
counter communities C1 = (V1, E1) and C2 = (V2, E2)
are compatible for node v if all of the following hold:

1) Relevance to v: v ∈ V1 and v ∈ V2;
2) Structural overlap: E1 ∩ E2 6= ∅;
3) Intersection of regular regions: R1 ∩R2 6= ∅ .
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Given two compatible RECs 〈C1, R1〉 and 〈C2, R2〉, we
construct a new REC 〈C ′, R′〉 where C ′ = C1 ∪ C2 and
R′ = R1 ∩ R2. The intersection of the two RECs’ regularity
masks is the only regularity that both the RECs share, and
therefore the only maximal (i.e., non-subsumed) regularity
mask valid for the combined encounter community. We note
that in the case R1 = R2, both RECs will be subsumed by
the new REC, and therefore the knowledge base will require
pruning.

4.2 Mining local RECs

We consider the task of mining all maximal local RECs for
a node v. If we let Nv denote the set of nodes which v has
encountered a minimum number of times, our task is to
find all maximal RECs in the tree graph rooted at v and
consisting of nodes {v} ∪ Nv .

There are 2 |Nv|−1 connected subgraphs within this tree.
For comparison, if we were to use a brute-force approach to
mining local RECs the algorithm would need to construct
each of these communities and check if each is a valid REC.
The task of checking whether a local connected subgraph
at v is a valid REC is straightforward. Let W be a subset
of neighbours W ⊆ Nv . By inducing a subgraph from the
set of nodes {v} ∪W we obtain an encounter community
C = (V,E). The regularity mask intersection for C is given
by

R =
⋂

{v,w}∈E

Rv,w .

We can therefore obtain a REC 〈C,R〉 if the condition R 6= ∅
is met.

This brute-force approach requires checking of each non-
empty subset of Nv and is computationally expensive. Fur-
thermore, this approach requires an additional step to check
whether each REC it generates is subsumed by RECs it has
previously generated. However there are features of RECs
that allow us to build a local miner that is more efficient
than the brute-force approach.

Algorithm 1 presents a more-efficient approach, which
exploits the properties of RECs to avoid unnecessary or
redundant computation. Firstly, this algorithm avoids re-
checking re-orderings of the same subset of neighbour
nodes. Through the commutative property of regularity
mask intersection we know that once a subset of neighbours
has been checked, any re-orderings of that same subset will
yield the same result. Secondly, improvement is made by
using the property that if a particular neighbour subset
W ⊂ Nv results in an empty regularity mask intersection,
then any neighbour subset W ′ where W ⊂ W ′ ⊂ Nv

will also result in an empty regularity mask intersection,
allowing us to prune the search space.

Given a set of neighbours S0, a particular call to
REC-Generator constructs |S0| neighbour sets, generates
a local connected subgraph rooted at v from each one, and
checks if each forms a valid REC. The function also recur-
sively checks each neighbour set, with another neighbour
node being introduced at each recursive call, until no more
unused neighbour nodes remain. After the algorithm adds
a node from S0 to W0 to produce W1, if the neighbour
set W1 results in an empty regularity mask we know that
any subsequent recursive calls adding another node to W1

will also result in empty mask, and therefore no further
recursion involving W1 is necessary.

Finally, the algorithm prunes subsumed RECs during
each recursive call to the function REC-Generator. Given
that the algorithm begins with the largest possible regularity
mask intersections (i.e., the regularity masks between v and
each of its neighbours) and incrementally intersects these
with other masks, the only subsumption the algorithm must
check for is structural subsumption; that is, subsumption of
REC 〈C1, R1〉 by REC 〈C2, R2〉 due to C1 ⊂ C2.

Algorithm 1 REC-LOCAL-MINER

Input: Node v whose maximal local RECs will be extracted
Input: The set Nv of all nodes neighbouring v

Output: The set L of all maximal RECs local to v

1: for all w ∈ Nv do
2: Precompute Rv,w

3: end for
4: L← REC-GENERATOR( v, {}, Nv )

Algorithm 2 EXTEND

function EXTEND(L0, L1)
Input: Two lists of RECs, L0 and L1

Output: List L0 extended with RECs in L1

1: for all R0 ∈ L0 do
2: DiscardR0 from L0 if ∃R1 ∈ L1 such thatR0 � R1

3: end for
4: for all R1 ∈ L1 do
5: DiscardR1 from L1 if ∃R0 ∈ L0 such thatR1 ≺ R0

6: end for
7: Add all RECs in L1 to L0

5 DATASETS

We explore the presence of RECs in real-world encounter
networks through two datasets. In both datasets we regard
encounter histories as streams of zero-duration encounter
events. A summary of the base datasets is given in Ta-
ble 1. We note that these benchmark datasets have emerged
from an era where smartphone adoption in economically
developed countries was less ubiquitous than it is today.
The continued paradigm-shift in mobile device ubiquity
highlights the potential for the proof-of-concept method
demonstrated in this paper to be deployed in widespread
real-world mobile encounter community detection.

5.1 REALITY: Bluetooth encounters in the MIT Reality

Mining project

The 2004-2005 Reality Mining project carried out at the Mas-
sachusetts Institute of Technology (MIT) followed 100 sub-
jects (staff and students) equipped with Bluetooth-enabled
mobile phones and recorded information about their be-
haviour over a nine-month academic period [22]. These
subjects were staff and students at MIT.

Among the data collected are Bluetooth sightings be-
tween subjects, with Bluetooth scanning carried out at five-
minute intervals. The dataset also includes sightings with
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Algorithm 3 REC-GENERATOR

function REC-GENERATOR(v, W0, S0)
Input: Node v

Input: A set W0 of neighbour nodes
Input: A set S0 of neighbour nodes not yet added to W0

1: if S0 = ∅ then
2: return {}
3: end if
4: Create empty list L0 to hold candidate RECs
5: Create set of neighbours S1 as a copy of S0

6: for all s ∈ S0 do
7: Remove s from S1

8: W1 ←W0 ∪ {s}
9: R1 ←

⋂

w∈W1
Rv,w

10: if R1 6= ∅ then
11: Generate a REC from neighbour set W1:
12: E1 ← {{v, w} |w ∈W1}
13: V1 ←W1 ∪ {v}
14: C1 ← (V1, E1)
15: R1 ← 〈C1, R1〉
16: L1 ← {R1}
17: EXTEND(L0, L1)
18: Generate RECs with nodes remaining in S1:
19: L2 ← REC-GENERATOR(v, W1, S1)
20: EXTEND(L0, L2)
21: end if
22: end for
23: return L0

end function

devices outside of the experiment. We ignore these en-
counter chronologies as we cannot guarantee whether the
external device is a device that is reliably carried by another
individual. 531,703 encounter events were recorded during
the dataset’s nine-month duration, giving an average of
19.7 encounters per subject per day. These encounters are
distributed over 2,675 chronologies.

5.2 DARTMOUTH: access point co-location on Dart-

mouth College campus

Visits in the DARTMOUTH dataset are drawn from the
use of wireless access points (APs) by staff and students
at Dartmouth College campus in the United States [23].
Over 450 APs placed across the 800km2 of campus provide
wireless coverage for most of the area, serving roughly
5,000 undergraduates and 1,200 faculty. When staff and
students with wireless-enabled electronic devices (such as
laptops and mobile phones) access the campus network
the AP used to do so is logged at a central server, thus
providing a partial record of the users’ movements across
the campus. The dataset providers estimate that at least 75%
of undergraduates owned portable laptops in the collection
period.

From the four years of wireless traces available in the
Dartmouth movement dataset we selected visits from a
more-recent year (2003) for our experiments, as recent years
are likely to feature more mobile devices (such as wireless-
enabled smartphones or personal digital assistants), and

TABLE 1
Summary of base encounter datasets. M denotes the number of

chronologies and 〈L〉 denotes the mean number of encounters per
chronology. A chronology Sv,u is only included in a dataset if v

encountered u at least once in the duration of the dataset. Only active
individuals are counted; that is, an individual is only counted if he/she

was involved in at least one chronology.

DARTMOUTH REALITY

Area(s) Dartmouth MIT
Duration 365 days 270 days

Encounter type
Access point
co-location

Bluetooth
proximity

Encounter range ≤ 40m ≤ 10m
Individuals 7,173 100
Encounters 6,800,755 531,703
Encounters per day 18,632.2 1,969.3
Encounters per in-
dividual per day

2.6 19.7

M 897,996 2,675
〈L〉 7.6 198.8

thus provide a richer record of user mobility. Such devices
did not become very common until recently, however.

To prepare this dataset for our experiments we carried
out a number of sanitisation and filtering steps. In particular,
we found many cases where a user repeatedly visited with
the same AP at a short interval (typically less than 15
minutes). These are artefacts of the WLAN AP protocol and
are caused by the same device periodically re-associating
with the same AP. When these re-associations are separated
by less than 15 minutes we assume that the user has not
moved and therefore we discard the repeat events. In ad-
dition to this, we also acknowledge that some devices may
be stationary throughout their stay on campus. Although
many devices are carried with the students and staff (such
as laptops or smartphones), some individuals may have un-
portable devices (such as desktop computers) accessing the
campus WLAN. Since our aim is to study human mobility,
we wish to focus on the devices often carried by the user.
To mitigate the effect of stationary devices we only included
devices that visited at least five different APs.

Encounters were inferred from device co-location at the
same access point. To generate an encounter event we iden-
tify occurrences of pairs of individuals visiting the same AP
within 10 minutes of each other. An occurrence of a pair of
individuals visiting the same location within 10 minutes of
each other translates to one encounter event between those
two individuals, with the time of the encounter taken as
the midpoint between the two individuals’ respective visit
times. The resulting encounter dataset contains 6,800,755
encounters, 7,173 active individuals and 897,996 chronolo-
gies. A user in this dataset is on average involved in 2.6
encounters per day.

6 EXPERIMENTS AND RESULTS

Our first aim is to characterise the existence of RECs in
the well-known REALITY and DARTMOUTH datasets. This
is not previously known and offers a useful case study. Our
second aim is to evaluate the information sharing potential
of RECs, which is significant for emerging decentralised
delay-tolerant communication architectures. To do so, we
adapt the token sharing scenario introduced in [11] to RECs.
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Fig. 5. Occurrences of periodic encounter communities (PECs) found
in the REALITY dataset that have a period of seven days. The height
of the curve at date t corresponds to |{ 〈C, S(i,p,n)〉 ∈ P∗ | i ≤ t ≤
i+ (n− 1)p ∧ p = 7 days }| where P∗ is the set of all PECs extracted
from REALITY with granularity Q = 24 hrs.

These results inform us on the speed with which nodes can
discover their REC, and the speed of content sharing within
the REC.

To assess the REALITY dataset we select a four-week
period when students and faculty were in session (27th
September to 25th October 2004) with window size ω = 7
and N = 4. Similarly the duration selected for the DART-
MOUTH is 7th April to 5th May 2003. Using techniques
from [11], Figure 5 shows the variation in the number
of seven-day-period PECs in the REALITY dataset. Trivial
chronologies with fewer than two encounters each week are
removed from both data sets, resulting in 33,484 REALITY

encounters and 30, 127 DARTMOUTH encounters. A disper-
sion threshold θ = 0.2 is applied for REC detection, with a
jitter tolerance of φ = 30 minutes.

The choice of θ and φ depends on a variety of factors.
Dispersion threshold controls the point at which a time
offset (e.g., hour of week) is considered regular for a pair
of users. This depends on the underlying human behaviour
among users, and also noise introduced by the encounter
sensing technology (e.g., a particular implementation of
Bluetooth hardware and software). With our datasets we
found a range of θ = 0.15 to 0.25 to give adequate results,
although in practice a higher threshold can be selected for
more-recent and reliable sensing technology. The choice of φ
is application-driven: a narrower tolerance should be chosen
for applications that rely on the precise timing of encounter
events.

Five illustrative examples of RECs from the REALITY

dataset are presented in Figure 6.R1 is a simple REC of two
nodes that is regular at many points during the week. R2

consists of one node that regularly meets three other nodes
on Mondays at 12:00 and 21:30. R3 is a Friday 20:00 REC
whose community is a path graph and has diameter four.
Finally, R4 and R5 are an interesting example of mutual
non-subsumption. The triad of subjects in R4 is the same
triad in R5 and both RECs have Wednesday 21:30 among
their regular times. Given that R5 has an additional node
we may incorrectly regard R4 as being subsumed by R5.
However, R4 is regular at a second time of week that R5 is
not (i.e., Thursday 11:00). Interestingly the result is that R4

does not subsumeR5 (due toR5 having an additional edge
and node) and R5 does not subsume R4 (due to R4 having
additional region of regularity).

6.1 Characterization of RECs in the REALITY dataset

210 REALITY RECs were detected in the four week period.
Of the 50 nodes that remained in the dataset after removing
those that did not have at least two encounters each week,
38 appear in one or more RECs. This indicates that RECs are
prevalent in the REALITY dataset, with only 24% of nodes
not exhibiting regular encounter behaviour.

To investigate the structural size of RECs a number of
community properties are presented in Figure 7. Unsurpris-
ingly, RECs containing a large number of nodes and edges
are less likely. Most-common are RECs containing two or
three individuals, which accounts for 64% of the RECs.

The diameters of RECs are also relatively small, but
typically larger than the diameters of the PECs extracted
from the same dataset. 63% of RECs were found to have a
diameter of 2 or greater, whereas only between 28% and 16%
(depending on granularity Q) of PECs had diameters in this
range. We suspect that the reason for the larger diameter
is that the RECs tend to occur as path and tree structures.
Indeed, we found that only 4% of RECs contained one or
more simple cycles, indicating that the large majority are
tree graphs.

To investigate the structure of the communities further
we consider the distribution of graph density in Figure 8.
76 of the RECs consist of two nodes. These two-node com-
munities are omitted from the distribution since they are
by definition complete graphs and therefore always have
a density of 1. We see that complete graphs among RECs
with three nodes or more are rare. 44% of communities
have density between 0.6 and 0.7, many of which are triad
communities missing one edge. Intuitively, we would expect
that if a node v meets two nodes w and p at roughly the
same time each week, then w is also likely to have met p

at the same time. We therefore might expect triad RECs to
tend to form cliques and therefore support transitivity [25].
However, our analysis finds that only three of the 59 triad
RECs are transitive.

A number of factors may contribute to intransitivity in
RECs. The range of Bluetooth allows for an individual to
detect two other devices that are not in range of one another.
This may occur even in the case where all three individuals
are stationary; however, intransitivity is more likely when
one or more devices are moving. A highly mobile central
node may encounter two or more individuals in succession
without simultaneously being in contact with all at the same
time.

RECs such as these are interesting because they either
represent an individual periodically repeating the same
route that brings him/her into proximity with the same
individuals, or an individual who periodically acts as a
bridge between two nearly proximate nodes. This finding
also indicates that RECs are not necessarily cliques, high-
lighting a difference between our definition and that of a
meeting group [26].

Regularity masks represent the temporal structure of
RECs. As noted in Section 3.1, the regularity mask for a REC
asserts that all edges in the community have at least one
regular event within φ = 30 minutes of all times covered
by the regularity mask. The longer the length |R| of a
mask R, the more points during the week the community
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R1 = 〈C1, R1〉 R2 = 〈C2, R2〉 R3 = 〈C3, R3〉 R4 = 〈C4, R4〉 R5 = 〈C5, R5〉

Fig. 6. Example RECs from the REALITY dataset. A regularity mask is depicted as a rectangle containing green bars. Each rectangle is separated
into seven chunks, each representing a day of week beginning with Monday and ending with Sunday. Ticks denote midnight. Green bars indicate
the time-of-week during which the REC is regular.
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Fig. 7. Distributions of the number of nodes (denoted |V |), number of edges (denoted |E|), and diameters (denoted d(C)) of regular encounter
communities (RECs) and periodic encounter communities (PECs) (with Q = 4 hrs) in the REALITY dataset.
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Fig. 8. Distribution of community density for REALITY RECs consisting of
at least three nodes. For a REC with community C = (V,E), community

density is given by
2 |E|
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.

is regular for. Figure 9 shows the distribution of regularity
mask lengths among the RECs extracted from REALITY. The
average regularity mask length is 1.48 hours and the largest
is 10.1 hours. Longer regularity mask lengths are associated
with smaller diameters and, for the largest lengths, with
two-node RECs. Regularity masks for RECs with more than
three nodes are built from the intersection of the constituent
edges, and are therefore almost always shorter in length
than the two-node RECS that they subsume.

Although the distribution of regularity mask lengths
tells us the overall durations which a REC is regular during
the week, it does not describe the times of week where
RECs are regular. We explore this further in Figure 10 which
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Fig. 9. Cumulative distribution of regularity mask durations in the RE-
ALITY (left) and DARTMOUTH (right) dataset. |R| denotes the overall
duration of a regularity mask R.

plots the times of week that are typically covered by a
REC’s regularity mask. The tallest peak is at 16:45 Friday,
indicating that many RECs were regular at this time (in
addition to any other times they may be regular). Smaller
peaks also appear on each weekday at 11:00 and 16:45. These
are significant times in the context of the REALITY dataset
as they lie at the boundaries between MIT classes3. Exact
class start and end times vary by day of week, but 11:00 is
a common class start time and 16:30 is a common class end
time. It is therefore likely that the 11:00 peaks correspond
to subjects arriving at the same class each week, and that
the 16:30 peaks correspond to subjects encountering one

3. MIT Fall 2004-2005 Class Schedule, via the Internet
Archive: http://web.archive.org/web/20040917051038/http:
//web.mit.edu/registrar/www/schedules/csbindex.shtml
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Fig. 10. Distribution of regularity masks belonging to REALITY (top) and
DARTMOUTH (bottom) RECs throughout the week. Letting R∗ denote
the set of all RECs, the number of regularity masks that include the time
of week u is given by |{〈C,R〉 ∈ R∗ |u ∈ R}|.

another during their commute from class or on arriving at
their residences.

Figure 10 also shows that RECs are much less likely to
form on weekends. The likelihood is that many students
may choose to spend their weekends off campus, and
therefore there is less encounter activity among participants.
Also, when compared to weekdays, weekends have more
erratic behaviour due to the lack of routine tasks such as
timetabled lectures.

6.2 Comparison to REALITY and DARTMOUTH periodic

encounter communities

RECs can be viewed as a noise-tolerant counterpart to
periodic encounter communities (PECs) introduced in [11].
Although PECs and RECs are different definitions of com-
munity, it is interesting to consider whether there is any
correspondence between the two.

To carry out our comparison we choose a four-week
observation duration in each of the two datasets, as de-
scribed in Table 2. The duration for REALITY is the same as
discussed in Section 6. We select 7/Apr to 5/May 2003 for
DARTMOUTH as this spans a period of uninterrupted term
time for the students. Throughout this paper we consider
RECs based on weekly regularity (i.e., we set ω = 7 days).
These are comparable to PECs that have a recurrence period
of 7 days. Thus, we investigate whether the RECs in each
dataset resemble any PECs that have a period of seven days.
To do this, we check each PEC to see if its nodes appear
in one or more REC. If the nodes of a particular seven-
day-period PEC are a subset of the nodes of a REC, then
we regard these two communities as being similar. For this
analysis we set the PEC algorithm’s temporal granularity
parameter to Q = 24 hours, and thus each encounter
snapshot represents one day.

In REALITY we find 82 PECs and 210 RECs. Our results
find that 58.5% of PECs had a node set that also appeared in
at least one REC. Reciprocally, we found that only 14.2% of

RECs had a node set that appeared in at least one PEC. From
these results we draw two conclusions. First, there is not a
one-to-one correspondence between the RECs and PECs in
the REALITY dataset. Second, the majority of RECs (85.8%)
have no corresponding PEC, and therefore RECs capture
more weekly encounter behaviour than PECs.

We find similar behaviour in DARTMOUTH, although
PECs are rarer due to there being more noise in AP co-
location data. In particular, we found only 12 PECs among
the 428 nodes in the dataset, which contrasts with the
dataset’s 773 RECs. 50% of the PECs had a node set that
also appeared in at least one REC, whereas 0.26% of RECs
had a node set that appeared in at least one PEC.

6.3 Token broadcast in RECs

Token broadcast is used to measure the time required for a
global maximal REC to be discovered by all its constituent
nodes through decentralised opportunistic sharing and con-
struction. This scenario is analogous to each node in a REC
attempting to broadcast a token to each other, and therefore
also represents the speed of information propagation.

6.3.1 Selecting encounters relevant to a REC

Each encounter between two nodes represents a token-
sharing opportunity. When evaluating token broadcast for
a particular REC, only encounters described by that REC’s
information are used for token sharing. Assuming the win-
dow size is one week, these are the encounters whose time-
of-week offset lies within the REC’s regularity mask (or
close enough, according to the jitter tolerance parameter)
and correspond to one of the edges in the REC’s community.

More formally, consider a REC R = 〈C,R〉, where
C = (V,E), constructed from chronologies of duration
Tmax, with window size ω and jitter tolerance φ. To deter-
mine the set of edges where token exchanges will occur at
time t ∈ (0, Tmax] we consider whether the window offset
t mod ω is within φ of any value in R. If so, an encounter at
t that corresponds to an edge in E can be used for token ex-
change. The following function f(t) formalises this concept
and represents the mapping of the time t ∈ (0, Tmax] to the
set of exchanges occurring at time t:

f(t) =
{

{v, w} | {v, w} ∈ E ∧

∃ t ∈ Sv,w, u ∈ R s.t.

|u− (t mod ω)| ≤ φ
}

.

To evaluate R we apply token exchanges described by f(t)
for each t ∈ (0, Tmax] in ascending order.

6.3.2 Broadcast time in REALITY and DARTMOUTH

Table 2 summarises the REALITY and DARTMOUTH datasets
used in the following token broadcast experiments. We
observe that RECs were less prevalent among nodes in
DARTMOUTH than REALITY; in particular, 76% of REALITY

nodes belonged to at least one REC, compared to 58% of
DARTMOUTH nodes. This is likely due to the Reality Mining
dataset being a closer representation of human encounters
than the inferred Dartmouth WLAN encounters. REALITY’s
superior fidelity is due to it being direct-sensed data from
subjects who are consciously participating in a study.
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TABLE 2
Summary of datasets used in REC token broadcast experiments. Only

nodes and edges that met the minimum number of encounters are
included. Window width ω = 7 days.

REALITY DARTMOUTH

Duration
27/Sept to

25/Oct 2004
7/Apr to

5/May 2003
Total nodes 50 428
Total edges 166 863
Total encounters 33,484 30,127
RECs 210 773
Nodes appearing in 1+ REC 38 247
Successful broadcasts 142 485
Average diameter 1.98 1.91
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Fig. 11. Percentage of RECs that have reached full coverage (i.e.,
successful broadcast) at the end of each week. 32% of REALITY RECs
did not reach full coverage. 37% of DARTMOUTH RECs did not reach full
coverage.

There are a number of RECs which failed to reach full
token coverage after four weeks. This contrasts with the
token broadcast analysis of REALITY PECs, where each PEC
successfully broadcast all its tokens by the last timestep of
its periodic support set. Figure 11 depicts the number of
RECs that reached full coverage by the end of each week.
This reveals how many RECs are able to successfully broad-
cast after applying each week of exchanges corresponding
to a regularity mask. Over the first three weeks the two
datasets are almost identical in the increases in successful
broadcast. By the end of week four, however, broadcast in
68% of REALITY RECs was successful, compared to 63% of
DARTMOUTH RECs.

It was shown in [11] that community diameter has a
strong influence on the speed of broadcast within PECs. We
therefore investigate the extent to which diameter accounts
for the higher failed broadcast rate in DARTMOUTH. In
particular, the diameter and period of a PEC serve to limit
the worst-case spreading behaviour.

RECs permit a degree of variation in the timing of the
regular encounters and are tolerant to occasional missing
encounters, and therefore the same strict limit does not
apply; however, we do find that community diameter in-
fluences the speed of token propagation, as demonstrated
in Figure 12.

We observe that all RECs with diameter one reached full
coverage within 28 days and were the quickest to do so.
Figure 12 shows that 68% of one-diameter REALITY RECs

reached full coverage within seven days and all were at
full coverage within 19 days. One-diameter RECs in the
DARTMOUTH dataset have a similar full-coverage rate, with
65% reaching full coverage within seven days. These RECs
are cliques and, as mentioned earlier, only require one
exchange per edge to reach full coverage. This statistic also
indicates that in 31% (REALITY) and 35% (DARTMOUTH) of
the one-diameter RECs there was at least one pair of nodes
that did not have an encounter within the REC’s regularity
mask in the first week.

For large diameters we see a significant reduction in both
the number of successful broadcasts and the rate at which
RECs reach full coverage.

Despite no longer acting as a strict limit on broadcast
behaviour, diameter is nevertheless important as large di-
ameters indicate the presence of two nodes separated by
a large number of hops. Rapid propagation across multi-
hop paths such as these requires frequent and interleaved
encounters among the intermediate nodes, which is rare
among the RECs we have extracted. On the other hand,
low-diameter RECs allow for rapid token broadcast. For
example, if we consider a REC R = 〈C,R〉 that is a
clique, it has diameter d(C) = 1 and in the worst-case only
requires one encounter at each edge in C before reaching
full coverage.

7 RELATED WORK

Many different fields of research have modelled real-world
human mobility, from universal rules [27], [28] through to
models incorporating dynamic behaviour [4], [10]. Often
static (non-dynamic) analysis is extended to incorporate
temporal features [29]. Regularity of human encounters
has particular relevance for opportunistic networks [30],
where occasional short-range connections between devices
are the basis for routing and content sharing. Wide ranging
context have been utilised, including local network metrics
(e.g., rate-of-change of connectivity in the CAR protocol
[4]) and personal and location-based meta-data (e.g., HiBOp
protocol [31]). The important distinction between frequency
and regularity is addressed in [32], where it is found that
transport network users tend to think of travel regularity as
being related to destinations and time of travel, rather than
amount of travel.

Collective periodic behaviour is often assessed by tem-
poral changes to quantifiable metrics [33], [34]. These can be
aggregated by time-of-day or time-of-week to analyse the
daily or weekly profile of the measure [28], [34]. Work has
highlighted periodic aggregate behaviour at this scale; for
example, in [12] a wavelet decomposition of various time
series of collective statistics shows strong daily and weekly
periodicities in human encounter behaviour.

Link prediction has also been investigated. The Content
Source Selection (CSS) algorithm in [10] is such an example,
estimating the fraction of in-contact duration per hour as
a way to model the time-of-day dependency of human
encounter behaviour. The Habit protocol [5] uses a similar
model, in which a regularity weight is computed as the
frequency of encounters between two nodes at a given time-
of-week. Moghaddam et al. [35] extend this concept further
to develop a decentralised architecture for interest-based
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Fig. 12. Percentage of RECs that have reached full coverage over time. RECs have been grouped to allow comparison of broadcast by diameter.

multicast communication between groups via opportunis-
tic messaging. Knowledge-sharing over opportunistic net-
works has also been studied from an information-theoretic
perspective [36], indicating the limits of information gain via
interest-based communication. A number of methods have
also been developed to assess predictability of visits [28],
[37], [38] and encounters [39], and specifically predictability
of WLAN traces [40].

Regularity in human encounters also relates to com-
munity detection. Most community detection methods are
intended for offline analysis as surveyed in [41]. In relation
to this paper, the most-relevant work concerns distributed
community detection from Hui et al. [17], however the al-
gorithm proposed considers aggregated graphs rather than
any temporal or periodic trend in the encounter patterns.
There is little prior research into periodic community be-
haviour, however. The closest example is the Habit commu-
nication protocol [5], which attempts to merge both multi-
node encounter behaviour and periodicity.

Time-varying graphs have been a useful representation
for temporal properties of networks, which represent a
sequence of graphs capturing the time-varying nature of
the network [42], [43]. This approach introduces discrete
timesteps, which results in the loss of some information
on the ordering of events within a particular timestep. In
[44], [45] temporal analysis related to path length, network
efficiency, and connected component size are presented and
related to the spread of information within encounter net-
works. The concept of small-world networks [45] has also
been applied in the context of dynamic graphs [46]. These
analyses focus on temporal, but not periodic, encounter
behaviour. This also applies to [1], which is nevertheless
of interest as it considers temporal multi-nodal community
behaviour. Other recent advances in the temporal modelling
of communication networks has focused on the relationship
between topology and pairwise dynamics [47]. Rather than
a snapshot approach, these analyses consider patterns in the
underlying event sequences, as we do in this work.

A unique example of encounter periodicity analysis is
periodic subgraph mining, introduced in [24]. Rather than
extending static networks, this approach adopts a data
mining perspective, introducing PSE-Miner, a single-pass

algorithm for extracting all periodic subgraphs embedded in
a dynamic graph. Automatic detection of the recurrence pe-
riod is particularly noteworthy. Dynamic graph approaches
have been successfully applied in animal encounter net-
works [24], biological networks [46], and virtual networks
[48]).

There have been wide-ranging work that has looked
periodicity using hybrid methods and considering different
scales. At the individual scale the data are more sparse
and different methods are used. Methods include Markov
models [49], [50], frequent sequence mining [51], and pat-
tern matching (compression-based prediction, prediction by
partial matching, and sampled pattern matching) [50]. These
approaches do not model periodic temporal context, but a
minority of sequence-based methods have been extended
to incorporate periodic characteristics (e.g., [52]). Clauset
and Eagle [33] have adapted the clustering coefficient and
the node degree for a dynamic network. Analysis of the
variation in encounters is also carried out in [53], where
instead of looking at consecutive snapshots, the differences
between encounters at the same time-of-day over different
days is considered. Also at the individual scale is the life en-
tropy metric, presented in [37] which measures the strength
of the patterns in a user’s high-level daily activities and
hourly encounter rates. [22] provides insight into periodic
encounter behaviour of friends and non-friends. At the
collective scale, the evolution of the volume of interactions
per unit time has been studied [53]. In [37] the same metric
is examined, but at a finer granularity using hourly buckets
instead of whole days. The temporal and periodic behaviour
of other collective scale properties have been studied by
Scellato et al. [12]. Wavelet decomposition reveals daily
and weekly encounter cycles; i.e., multi-scale periodicity of
human encounter patterns.

Signal processing techniques for modelling periodicity
have also been applied, such as a Kalman filter for predict-
ing pairwise encounters [4]. Other related literature includes
methods for automatically detecting periodicities in location
and encounter data. Periodica [54] does so by selecting the
strongest frequency in the discrete Fourier transform in the
binary sequence of visits of an individual to a location. PSE-
Miner [24], on the other hand, is able to detect multiple peri-
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odicities in a stream of individual-to-individual encounters
at the cost of extra computation time.

8 CONCLUSIONS

In this article we overcome disadvantages of a discrete-time
representation for periodic encounter community (PEC)
detection by defining communities in terms of inter-event
interval patterns. The concept of a regular encounter com-
munity (REC) has been introduced, being tolerant to small
variations in periodic encounter patterns and retaining the
time-resolution of encounters. This generalises previous
work [14] and overcomes the loss of temporal resolution
and sensitivity to minor variations in the timing of periodic
encounters. The decentralised construction approach intro-
duced in [11] has been extended to allow nodes to self-detect
their RECs in a distributed manner. Interestingly, this has
been developed from an assessment approach for neuron
synchronicity.

We have examined important benchmark data sets using
our new analysis. Our results show that many individuals
belong to one or more REC, making these an interesting
feature for use in encounter-aware opportunistic forwarding
protocols. Token broadcast analysis shows that diameter is
an important factor in the propagation of information, a
factor that is also important for periodic encounter com-
munities. The requirement that the community’s encounters
must strictly repeat according to the identified period means
that diameter acts as a hard limit on the PEC’s broadcast
time. This contrasts with RECs, whose tolerance to minor
variations in weekly patterns permits occasional missing
encounters. We found that due to this, and also due to the
limited (four week) duration we allowed for propagation,
not all REC will reach full token coverage.

In practice, REC construction would be faster and have
a higher success rate by allowing communities to also
use their irregular encounters for opportunistic REC con-
struction; however, for our experiments we restricted our
evaluation to encounters intrinsic to each REC so that we
could investigate the propagation characteristics specific to
the community.

When directly comparing PECs and RECs of the same
periodicity (i.e., weekly), we found that REC detection iden-
tified over 2.5 times the number of encounter communities
than PEC detection. Given that human mobility is not a
strictly timed behaviour, it is not surprising that permitting
an amount of uncertainty in encounter patterns allows us
to capture more periodic communities, and result in more
RECs being detected. Indeed, RECs were able to account for
58.5% of the communities extracted by PEC detection, and
also were able to identify an additional 180 communities
(of 210 overall RECs) that did not appear as PECs. These
results provide insight and proof of concept for community
detection in human encounter networks, where the presence
of temporal patterns that lead to periodic components in the
network are explicitly included.
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