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Abstract—Mobile crowdsensing (MCS) is a new paradigm of sensing by taking advantage of the rich embedded sensors of mobile

user devices. However, the traditional server-client MCS architecture often suffers from the high operational cost on the centralized

server (e.g., for storing and processing massive data), hence the poor scalability. Peer-to-peer (P2P) data sharing can effectively

reduce the server’s cost by leveraging the user devices’ computation and storage resources. In this work, we propose a novel

P2P-based MCS architecture, where the sensing data is saved and processed in user devices locally and shared among users in a

P2P manner. To provide necessary incentives for users in such a system, we propose a quality-aware data sharing market, where the

users who sense data can sell data to others who request data but not want to sense the data by themselves. We analyze the user

behavior dynamics from the game-theoretic perspective, and characterize the existence and uniqueness of the game equilibrium. We

further propose best response iterative algorithms to reach the equilibrium with provable convergence. Our simulations show that the

P2P data sharing can greatly improve the social welfare, especially in the model with a high transmission cost and a low trading price.

Index Terms—Mobile Crowdsensing, Peer-to-Peer Data Sharing, Incentive Mechanism Design, Game Theory

✦

1 INTRODUCTION

1.1 Background and Motivations

MOBILE Crowdsensing (MCS) has recently emerged as
a novel and fast-growing sensing paradigm, thanks

to the proliferation of mobile devices (e.g., smartphones,
tablets, and sensor-equipped vehicles) and their embedded
diverse mobile sensors. In MCS, the target sensing data are
collected by a large group of mobile users using their mobile
devices. Due to the low deploying cost and the high sensing
coverage, MCS has been implemented in a broad range of
applications such as urban dynamic mining, public safety,
and environment monitoring [2]–[4].

The existing MCS applications mainly rely on the cen-
tralized server-client architecture [5]–[8], where the partici-
pating users (clients) sense and report the data to a central
server, who further processes and distributes the data to
those users who request to access the data. However, the
centralized architecture may not be suitable for those ap-
plication scenarios with a large number of users and/or a
large number of data requests, due to the high operational
cost on the server (e.g., for data exchanging, processing, and
storage). For example, Niwa et al. in [9] have illustrated
an example based on real testbed measurements, where
25 million smartphones sense data simultaneously, each
collecting 1 Byte of data every minute and uploading to
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a storage server. In that case, the server needs to have
3Gbps of communication bandwidth and enough storage
to accommodate 1,350GB per hour (hence 12PB per year),
and needs to manage nearly 36 billion sensor data reports
in one hour. Meanwhile, mobile devices are becoming in-
creasingly powerful, and their computation and storage ca-
pabilities are often under-utilized. Furthermore, the emerg-
ing peer-to-peer sharing economy paradigms, in particular,
Clone2Clone for smartphone connection [10] and P2P Cloud
[11], enable the efficient peer-to-peer (P2P) data sharing by
leveraging the sensing and processing capabilities of mobile
devices. This motivates us to shift part of the computation
and storage burden on the server to the distributed mobile
devices, giving rise to a more scalable architecture of mobile
crowdsensing with P2P data sharing [12]–[14].

Specifically, in a P2P-based MCS system, the sensing
data may not be reported to and saved in the server;
instead, they can be saved and processed in mobile users’
devices distributedly (via some mobile apps or dedicated
middlewares as in [12]) and shared among users directly.
The functionality of the server, similar as in traditional P2P
networks, is mainly to keep track of each user’s data occu-
pancy information (e.g., which data she has) and network
connection information (e.g., IP address of each user). With
such information, the server can help users connect and
share data with each other. Moreover, data sharing among
users can be done based on the local interactions (e.g., via
WiFi or Bluetooth) when they are close enough, or directly
through the Internet when they are not locally connected.

Fig. 1 illustrates such a P2P-based MCS model, where
the blue users sense data and share the sensing data with
green users (via local WiFi or the Internet), and the server is
only responsible for the necessary control signal exchange
with users (e.g., establishing a network connection between
users). There are several commercial or demonstrative P2P-

http://arxiv.org/abs/1705.05343v1
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Fig. 1. P2P-based Mobile Crowdsensing Model. Blue users: sensing
data and sharing data with other users; Green users: requesting data
from other users who sense data; Gray users: doing nothing.

based MCS systems in practice, including MPSDataStore [9],
SmartP2P [12], [13], and LL-Net [14]. The main technical
challenges of deploying such a system include tracking the
data stored in mobile devices efficiently and conducting the
on-demand requests scheduling and sensor data transmis-
sion effectively.

Several recent works have been devoted to studying the
scalable system design for P2P-based MCS, by using the
hierarchical structure and distributed data sharing among
mobile devices [15]–[19]. The key idea is to offload some
or all of the computation and storage requirements to mo-
bile devices. However, these studies focused only on the
technical issues in P2P-based MCS such as how to store
data distributedly and how to search the distributed data
efficiently, and none of them considered the economics issues
in such a system. Due to the cost involved in data sensing
and sharing, users may not have incentives to collaborate
with each other without proper economic incentives. This
motivates our study of the economic incentive issue in the
P2P-based MCS system here.

We would like to emphasize that the incentive mecha-
nisms for traditional P2P content distribution systems (e.g.,
[21], [22]) are not directly applicable for the P2P-based MCS
system. First, traditional P2P systems usually assumed that
users (peers) are endowed with different contents exoge-
nously, and focused on the distribution of contents among
users. In our P2P-based MCS system, however, a distinctive
feature is the joint consideration of the endogenous data
generation (sensing) and distribution (sharing). This will
significantly complicate the incentive design, as users have
more than one way to obtain data, i.e., sensing themselves
and requesting from others. Second, traditional P2P systems
usually assumed that each content is associated with a fixed
quality. In our P2P-based MCS system, however, a data can
be selectively collected with different qualities. In reality, the
population of mobile devices, the type of data each can
produce, and the quality in terms of accuracy depend on
many factors such as the user mobility, the communication
channel variation, the device state (e.g., energy level), and
the user preference [23]. This heterogeneity in terms of
mobile devices and their users’ preferences leads to the
tradeoff between data quality and resource consumptions.
For example, location data can be obtained through using
GPS, WiFi, and cellular networks, with decreasing levels of
accuracy. Compared to WiFi and cellular networks, contin-
uous GPS location sampling provides the most accurate lo-
cation information, while draining the battery faster. Hence,

the consideration of data quality and the associated cost is
very important for designing good incentive mechanisms to
lead to good overall system performance [24]–[26]. The key
difference is that we consider the novel peer-to-peer data
sharing scenario to save the crowdsensing server congestion
cost, while the above works [24]–[26] require the server-
customer service interaction without data sharing among
users on the network edge. Such a model difference leads to
very different modeling, analysis, and solution.

1.2 Solutions and Contributions

In this work, we focus on the incentive design and economic
analysis for the P2P-based MCS system with the quality-
aware data sharing. To achieve this goal, we propose a
quality-aware data sharing market, where each user can
choose to be a data sensor, sensing data with a specified qual-
ity and sharing the data with others (with certain reward),
or a data requester, requesting data of the desired quality
from a data sensor (with certain payment) instead of sensing
data by herself. Obviously, data sensors are sellers and data
requesters are buyers in the data sharing market.

We aim to answer the following two important questions
in such a data sharing market:

• How to design proper market mechanisms to in-
centivize users to participate in the P2P-based MCS
system and choose the desirable behaviors?

• What is the equilibrium point of such a data market?

The former one is related to the mechanism design, i.e.,
designing the rules of the market. The latter one is related to
the game theoretical analysis, i.e., studying how the market
would evolve under the proposed rules. First, we propose a
general pricing scheme for the data sharing (trading) among
data sensors (sellers) and data requesters (buyers), which
combines both the revenue sharing scheme and the quality-
based pricing scheme. With the proposed pricing scheme, the
reward for a data sensor from selling data to a data requester
consists of (i) a portion of the total benefit that the requester
achieves (from consuming the data), and (ii) a quality-aware
data price.

Then, we perform the game-theoretic analysis for the
data sharing market under the proposed pricing scheme.
In particular, we analyze the user behaviors and strategic
interactions under the above pricing scheme systematically,
for both scenarios of the quality-unaware data sharing and
the quality-aware data sharing (capturing whether the data
can be sensed and sold in different qualities). We charac-
terize the conditions for the market equilibrium, and prove
the existence and uniqueness of the equilibrium. We further
propose a generalized best response iterative algorithm that
guarantees to converge to the market equilibrium.

Finally, we further model and analyze the cross-quality
data sharing, where a high quality data can be transformed
into a low-quality one and shared with a low-quality data
requester. This is quite often in practice, as most data (e.g.,
photo or video) can be easily transformed to a lower quality
one through down sampling. We analyze how the cross-
quality sharing in P2P-based MCS affects the user behaviors
as well as the market equilibrium.

The main results and key contributions of this paper are
summarized as follows.
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• Novel P2P-based MCS Model: To our best knowledge,
this is the first work that comprehensively analyzes
the economic incentive issue in an MCS system with
P2P-based data sharing, which is important for ad-
dressing the increasingly important scalability issue
in MCS systems.

• Market Mechanism Design and Game-theoretic Analysis:
We propose a quality-aware data sharing market,
together with a general data pricing scheme, and
analyze the user behavior and market equilibrium
systematically from the game-theoretic perspective.
Such an equilibrium analysis can help us to under-
stand how the market evolves and what is the likely
market outcome.

• Observations and Insights: Our results show that the
ratio of the equilibrium social welfare to the max-
imum social welfare benchmark increases with the
data transmission cost and decreases with the data
trading price, which implies that the P2P-based MCS
model is most effective when the transmission cost
is high and the trading price is low. We further show
that the cross-quality sharing will drive more data
sensors to sense the higher quality data, yet it does
not have a significant impact on the data requesters’
quality selections or the achieved equilibrium social
welfare, comparing with the scenario where cross-
quality data sharing is not allowed.

The rest of the paper is organized as follows. In Section 2,
we present the system model. In Section 3, we analyze
the quality-unaware game equilibrium. In Section 4, we
analyze the quality-aware game equilibrium. We present the
simulation results in Section 6 and conclude in Section 7.

2 SYSTEM MODEL

In this section, we first introduce the network, data, and user
models. Then, we provide the pricing scheme and model
the corresponding users’ payoffs. Finally, we formulate the
users’ strategic interactions as a non-cooperative game.

2.1 Network Model

We consider a quality-aware P2P-based MCS model with a
set N = {1, · · · , N} of mobile users, who can sense some
data in a certain area and share the sensing data with each
other in a distributed P2P manner. Each data refers to a piece
of specific information at a particular location and time.1

Each user has the potential to sense a specific area consisting
of one or multiple data, depending on factors such as her
mobility, device type, and energy budget. We consider a set
I = {1, · · · , I} of different data, which can be used by one
or multiple sensing applications. We consider multiple data
markets corresponding to multiple locations, each of which
runs independently at the same time. Hence, we focus on

1. For example, the data can be the cellular/WiFi signal strength of
a particular region in OpenSignal [3]. Users can obtain such data by
sampling the cellular/WiFi interfaces of their mobile devices. However,
constantly sampling will incur a high battery consumption of the
mobile device. If another user has already sensed the signal strength
with a more energy-efficient device, a rational user would prefer to
request the data from the energy-efficient device rather than sense by
herself.

the operation of a single data market at a single location.
The data i ∈ I is associated with a weight wi, capturing the
importance of the data. For example, a hotspot data often
has a larger weight than a non-hotspot data.2

Each user can obtain her interested data in two ways:
(i) acting as a data sensor and sensing data directly, or (ii)
acting as a data requester and requesting data from a data
sensor. The latter case may happen when the user is not
able to sense the data by herself (e.g., due to the mobility
or device capability constraint), or when the user’s sensing
cost is very large (e.g., due to the energy budget constraint).
The data sharing among a data sensor and requester can be
based on local WiFi or Bluetooth connections or the Internet
connection.3 To facilitate such data sharing, the server needs
to keep track of each user’s network connection information
(e.g., IP address) and data occupancy information (e.g.,
which data she has) similar as in the traditional P2P system
[21], [22]. Note that the server does not need to store
and process the sensing data. All the data processing and
aggregations will be conducted by the associated apps on
the mobile devices.

2.2 Data Quality

A data can be captured by different qualities (e.g., a photo
can be captured by different resolutions). Similar as in [25],
we consider that each data has K types of discrete quality
grades, indexed by K = {1, · · · ,K}. Let qk ∈ Q , {qk :
k ∈ K} denote the k-th quality for the data. Without loss of
generality, we assume that 0 < q1 < · · · < qK . The quality
of a user’s data can be effectively inferred by using similar
methods in [24]–[26].

In general, a user needs to consume more resources
(hence incurs a higher sensing cost) for sensing a data with a
higher quality. Due to the user heterogeneity, different users
may incur different sensing costs for sensing the same data
with the same quality. Moreover, a user often prefers a data
with a higher quality than with a lower quality. Similarly,
different users may have different personal preferences for
the same data with the same quality.

2.3 User Model

When user n ∈ N obtains the data i ∈ I of quality qk
(through either sensing or purchasing the data), she obtains
a utility of uni(qk). In this work we adopt the following
linear value function:

uni(qk) = vni · f(qk), (1)

where vni is a factor evaluating the user’s preference for
different qualities, and f(·) is an increasing function of qk.

2. Here, hotspot means that some data at a particular location and
time are more critical to users, e.g., the crowdedness of a shopping mall
at weekend or a key road segment on a weekday.

3. Our model shares some similarity with the CrowdWatch model in
[15], with the key idea of leveraging on-demand data sharing among
mobile devices to alleviate the burden of the server. The key difference
is that [15] is a system paper without theoretical analysis, and only
considers local data sharing using short-range communications. Hence,
the encounter probability of users needs to be modeled if we aim to
analyze the system; Unlike [15], our theoretical analysis also allows the
remote data sharing through the Internet for common data interests,
and this feature is characterized by the transmission cost in our model.
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A user incurs a cost when sensing data. Let bni(qk)
denote user n’s sensing cost for sensing the data i ∈ I
with quality qk. In this work, we adopt the following linear
sensing cost function:

bni(qk) = cni · g(qk), (2)

where cni is a factor evaluating the user’s sensing cost for
different qualities, and g(·) is an increasing function of qk.

Furthermore, when sharing data between two users (i.e.,
a sensor and a requester), there will be some data trans-
mission cost, mainly including the data upload cost (to the
Internet) for the sensor and the data downloading cost (from
the Internet) for the requester. For convenience, we assume
that on average, all users have the same data uploading cost
cUP and downloading cost cDL for any data with any cost.
Hence, the total transmission cost for the sharing of one
data between two users is

s = cDL + cUP . (3)

This is reasonable when different data with different quali-
ties have approximately the same size, hence leads to the
same transmission cost when sharing between users. In
the future we will consider the case where quality has
a significant impact on the data size and hence the data
transmission cost.

Based on the above, we can see that each user n can be
fully characterized by the sensing cost factors {cni, ∀i ∈ I}
and the value factors {vni, ∀i ∈ I}, as all other parameters
(e.g., s, f(·), and g(·)) are identical for all users. Without
loss of generality, in the following analysis, we focus on the
operation for a particular data i ∈ I.4 Hence, each user n
can be fully characterized by a sensing cost evaluation factor
cni and a value evaluation factor vni.

2.4 Pricing Scheme

When a data sensor shares the sensing data with a requester,
the requester needs to pay the sensor. Such a compensation
can be related to the benefit that the requester achieves (from
consuming the data) or the cost that the sensor incurs (for
sensing the data). The former one corresponds to the revenue
sharing scheme, and the latter one corresponds to the quality-
based pricing scheme, both widely used in reality [27].

In this work, we adopt a general pricing scheme, which
combines both the revenue sharing scheme and the quality-
based pricing scheme. Formally,

Definition 1 (General Pricing Scheme). Suppose that a data
requester achieves a total benefit z from the data with
quality qk. Then, the requester will pay the correspond-
ing data sensor

z · (1 − η) + p · h(qk), (4)

where η ∈ [0, 1] is the revenue sharing factor, h(qk) is
an increasing function of qk, and p · h(qk) is the quality-
aware price.

4. In this work, we do not consider the correlation across different
data. This is often true for the applications with a low data correlation
(e.g., taking photos of different buildings at different locations). In a
more general case where the application requires correlated data across
different locations and times (e.g., the air quality of a city during a day),
we need to consider the sharing of different data jointly. We will leave
this analysis in our future work.

TABLE 1
Key Notations

Symbols Physical Meaning

N = {1, · · · , N} Set of mobile users

I = {1, · · · , I} Set of data

K = {1, · · · ,K} Set of data quality types

Q = {qk : k ∈ K} Set of data qualities

uni(qk) Value of user n with quality qk for data i

bni(qk) Sensing cost of user n with qk for data i

vni or v Marginal user value with respect to data quality

cni or c Marginal sensing cost with respect to data quality

s Total transmission cost of sharing one data item

η Revenue sharing factor

p · h(qk) Quality-based pricing

x ∈ {S, R, A} Users’ roles as sensor, requester, and alien

πvc(x, qk) User payoff choosing role x and quality qk
Φk Average sharing benefit of a sensor choosing quality qk

S S

k , SR

k , and SA Sets of sensors with qk , requesters with qk , and aliens

BSE

k Total sharing benefit provided by all requesters with qk
N SE

k Total number of users choosing to be sensors with qk
Λk(Φ) Functions of Φk to compute the equilibrium of Φk

It is easy to see that the above pricing scheme includes
both the pure revenue sharing scheme (with p = 0) and the
pure quality-based pricing scheme (with η = 1) as special
cases. The key notations in this paper are listed in Table 1.

2.5 User Behavior

To obtain the data (a data i ∈ I), a user can choose to be a
data sensor (who senses the data directly) or a data requester
(who requests the data from a sensor). The user can also
choose to be an alien (who neither senses nor requests data).
More specifically,

• Sensor: As a data sensor, the user senses the data
directly with a specified quality qk ∈ Q with some
sensing cost (e.g., the energy cost). Meanwhile, the
user can potentially share (sell) the sensing data with
others to obtain some reward;

• Requester: As a data requester, the user requests data
with a desirable quality qk ∈ Q from a sensor who
has sensed the data already. Such sharing introduces
some data transmission cost. The requester needs to
bear all of the transmission cost, and provide some
additional reward to the sensor.

• Alien: As an alien, the user neither senses the data
nor requests data from others. This may occur when
the user is not interested in the data or the cost of
obtaining the data is too high.

It is notable that a user can choose different roles for dif-
ferent data, e.g., be a data sensor for one data while a data
requester or alien for another data.

Without loss of generality, we consider a generic user
n ∈ N (for data i). For presentation convenience, we omit the
subscripts n and i whenever there is no confusion, hence we can
write the parameters cni and vni as c and v, respectively.
As mentioned previously, users are fully characterized by
c and v, and different users may have different c and
v. For convenience, we will use (v, c) to characterize the
user type. For simplicity, we assume that both v and c
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follow independent uniform distributions over [0, 1] across
all users, and denote the joint distribution by ζvc(v, c).

5

Let x ∈ {S, R, A} denote the role that a user chooses for
the data i ∈ I, where

• x = S: a sensor for the data;
• x = R: a requester for the data;
• x = A: an alien for the data.

Note that when the user chooses to be a sensor or requester
for the data, she needs to further select a quality qk for the
data. We denote πvc(x, qk) as the payoff of a type-(v, c) user
when choosing a role x and a quality qk. Note that users’
decisions are coupled. We keep the notation πvc(x, qk) for
simplicity and present the detailed dependence relationship
next. The objective of the user is to make the proper decision
on x and qk to maximize her payoff.

Next we provide the formal definition for the user payoff
πvc(x, qk) under different choices of x and qk.

2.5.1 Sensor

When choosing to be a sensor (i.e., x = S) with a quality qk,
the user can achieve a direct benefit from the data based on
(1) and (2), i.e.,

U S
vc(qk) = w · v · f(qk)− c · g(qk), (5)

where the first term denotes the user utility for the data, and
the second term denotes the sensing cost for the data.

Moreover, the sensor can also share the data with re-
questers to get some sharing benefit. Let Φk denote the
average sharing benefit of a sensor choosing quality qk. Then,
the payoff of a type-(v, c) sensor choosing quality qk can be
defined as:

πvc(S, qk) = U S
vc(qk) + Φk. (6)

Obviously, the payoff of a sensor greatly depends on the
average sharing benefit Φk that she can achieve. We will
provide the detailed analysis for Φk in Sections 3.1 and 4.1.

2.5.2 Requester

When choosing to be a requester (i.e., x = R) with a quality
qk, the user obtains the data from a sensor who has sensed
the data with quality qk already. The requester can achieve
a direct benefit from the data:

U R
vc(qk) = w · v · f(qk)− s, (7)

where the first term denotes the user utility for the data,
and the second term denotes the data transmission cost
(including both the uploading cost of the sensor and the
downloading cost of the requester) that the requester bears.

Moreover, the requester needs to provide some reward to
the sensor, denoted as βvc(qk). Based on the pricing scheme
in (4), we have:

βvc(qk) = U R
vc(qk) · (1− η) + p · h(qk), (8)

5. The assumption of the uniform distribution is mainly used for
deriving analytical solutions and obtaining clear insights. Our analysis
procedure is still applicable under more general distributions of v
and c, but we may not obtain closed-form solutions. Sometimes it
is possible to prove the properties under general distribution using
implicit function theorem (such as in our earlier work [28]), but more
often we need to rely on numerical methods to understand the existence
and uniqueness of the game equilibrium.

where the first term denotes the benefit that the requester
shares with the sensor, and the second term denotes the
quality-based price for the data.

Based on the above, the payoff of a type-(v, c) requester
choosing quality qk can be defined as:6

πvc(R, qk) = U R
vc(qk)− βvc(qk). (9)

It is easy to see that a requester does not care about
which sensor is sharing the data with her, due to the
assumption of the identical data transmission cost among
any pair of users. In the case that there are multiple sensors
holding the desired data of a requester, the server will pick
a sensor uniformly at random.

2.5.3 Alien

When choosing to be an alien (i.e., x = A), the user neither
senses the data nor requests the data from a sensor. Thus,
the payoff of an alien is normalized to zero, i.e.,

πvc(A) = 0. (10)

Notice that a user’s payoff depends not only on her
own choice but also on other users’ choices. Each user
optimizes her decisions on x and qk to maximize her payoff,
taking into account other users’ decisions. Such a strategic
interaction can be modeled by a non-cooperative game.
Next, we present the detailed game formulation.

2.6 Game Formulation

We model the interactions of users (for the data i ∈ I) as a
non-cooperative game, called the CSRS (CrowdSensing Role
Selection) game. Specifically, the CSRS game consists of

• Players: A set N = {1, · · · , N} of mobile users, each
associated with a type-(v, c);

• Strategies: A set of 2K + 1 available choices
{(S, qk), (R, qk), A, ∀k ∈ K} for each player;

• Payoffs: The user payoffs under different choices are
defined in (6), (9), and (10).

For analytical convenience, we assume that the number
of users N is very large, such that the impact of a single
user’s choice on the whole population can be ignored. This
assumption is mainly used for obtaining the closed-form
result, and is also referred to as the “non-atomic user”
assumption in the literature [29]. The non-atomic user game
provides the asymptotic result that often well approxi-
mates a practical system even with not so large number of
users. The related solution concept is often called Wardrop
equilibrium [29], which is usually easier to compute than
Nash equilibrium, yet is a good approximation for Nash
equilibrium [29]. We will henceforth focus on the concept of
Wardrop equilibrium in this paper.

In the following, we will first study the quality-unaware
CSRS game in Section 3, where each data is associated with
a single quality. Then, we will further study the general
scenario of quality-aware CSRS game in Section 4, where
each data has different versions of different qualities.

6. We have assumed that requesters cannot benefit from sharing,
due to the time involved for requesters to obtain the data. That is,
the value of the data will decrease after a requester obtains the data.
This is reasonable due to the timeliness of the sensory data, which
is very important in some mobile crowdsensing applications, e.g., the
WiFi/cellular signal strength at a hotspot at a particular time [3].
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3 GAME EQUILIBRIUM ANALYSIS

In this section, we study the equilibrium of the CSRS game
in the scenario without data quality-awareness, where each
data is associated with a fixed quality q. As a result, we
omit the quality index k in Section 3. Hence, each user has
three choices: acting as a sensor or requester (with the given
quality q), or acting as an alien.

In this case, the data value v · f(q) in (1) and the sensing
cost c · g(q) in (2) are both constants under a fixed user
type-(v, c). The quality-based price p · h(q) in (4) is also a
constant. Without loss of generality, we normalize f(q) =
g(q) = h(q) = 1. Hence, the data value is v, the sensing cost
is c, and the quality-based price is p. Furthermore, the user
payoffs defined in (6) and (9) can be rewritten as:

πvc(S) = w · v − c+Φ, (11)

πvc(R) = η · (w · v − s)− p. (12)

In addition, the reward defined in (8) can be rewritten as:

βvc = (1 − η)(w · v − s) + p. (13)

Accordingly, the user type can be equivalently defined as the
data value v and the sensing cost c, also denoted by (v, c).
Moreover, the strategy of a type-(v, c) user can be written as
x(v, c) ∈ {S, R, A}, as the quality choice is fixed at q.7

We start from analyzing the best response for each user
under a particular market state, which defines the market
shares of different user roles (i.e., sensors, requesters, and
aliens). Then, we further capture the stable market shares
that correspond to the game equilibrium.

In the following, we first provide the formal definition
for the game equilibrium with undifferentiated data quality.

Definition 2 (Game Equilibrium). A strategy profile
{x∗(v, c), ∀v, c} is an equilibrium of the game, if and
only if

πvc(x
∗(v, c)) ≥ πvc(x), ∀x ∈ {S, R, A},

for the whole user population with any type-(v, c).

Given a strategy profile {x(v, c), ∀v, c}, the market will
be partitioned into three parts, each corresponding to one
choice of role in {S, R, A}, which we call the market state. Let
market shares (SS,SR,SA) denote the set of users choosing
to be sensors, requesters, and aliens. Then, we have SS =
{(v, c) : x(v, c) = S}, SR = {(v, c) : x(v, c) = R}, and
SA = {(v, c) : x(v, c) = A}.

In what follows, we will first derive the average sharing
benefit of a sensor, i.e., Φ. Then, we will analyze the user
best response and characterize the game equilibrium.

3.1 Derivation of Average Sharing Benefit – Φ

Recall that the sharing benefit provided by a requester with
type-(v, c) is βvc(q) defined in (13). Thus, given market
shares (SS,SR,SA), the total sharing benefit provided by all
requesters in SR can be computed by

BSE =N
∫∫

SR βvc(q) · ζvc(v, c)dvdc. (14)

Furthermore, the total number of sensors in SS is

N SE = N
∫∫

S S ζvc(v, c)dvdc. (15)

7. Here, we focus on deriving the symmetric equilibrium, where the
users with the same type will always choose the strategy.

As mentioned previously, all requesters’ data requests
will be distributed among all sensors (with the desired data)
randomly and uniformly. Thus, the average sharing benefit
Φ that each sensor can achieve is

Φ = BSE

N SE =
∫∫

SR [(1−η)(w·v−s)+p]·ζvc(v,c)dvdc∫∫
SS ζvc(v,c)dvdc

. (16)

3.2 Users’ Best Responses

Now we show how users update their actions based on the
best responses, under an existing market share distribution
(SS,SR,SA). This shows how the market evolves starting
from any initial market shares. Later in Subsection 3.4,
we will propose a dynamic system that converges to the
equilibrium.

A type-(v, c) user will choose to be a sensor (i.e.,
x(v, c) = S), if her payoff as a sensor is higher than that
as a requester or alien, i.e., πvc(S) > max(πvc(A), πvc(R)).8

This leads to

v > max
(
c−Φ
w
, c−Φ−ηs−p

w(1−η)

)
.

Hence, the newly derived market share of sensors is

S̃S =
{
(v, c) : v > max

(
c−Φ
w
, c−Φ−ηs−p

w(1−η)

)}
. (17)

A type-(v, c) user will choose to be a requester (i.e.,
x(v, c) = R), if πvc(R) > max(πvc(A), πvc(S)). This leads
to

ηs+p
wη

< v < c−Φ−ηs−p
w(1−η) .

That is, the newly derived market share of requesters is

S̃R =
{
(v, c) : ηs+p

wη
< v < c−Φ−ηs−p

w(1−η)

}
. (18)

A type-(v, c) user will choose to be an alien (i.e.,
x(v, c) = A), if πvc(A) > max(πvc(S), πvc(R)). This leads
to

v < min
(
c−Φ
w
, ηs+p
wη

)
.

That is, the newly derived market share of aliens is

S̃A =
{
(v, c) : v < min

(
c−Φ
w
, ηs+p
wη

)}
. (19)

Based on the above discussion, we can see that the newly

derived market shares (S̃S, S̃R, S̃A) can be characterized by
the lines l1, l2, and l3 illustrated in Fig. 2, where

l1 : v = c−Φ
w
,

l2 : v = c−Φ−ηs−p
w(1−η) ,

l3 : v = ηs+p
wη

. (20)

Specifically, the users with types above both lines l1 and l2
will choose to be sensors (gray region), the users with types
below line l2 and above line l3 will choose to be requesters
(white region), and the remaining users below line l1 and
line l3 will choose to be aliens (black region). Furthermore,
the three lines l1, l2, l3 may intersect in two different ways,
depending on the value of average sharing benefit Φ.

Moreover, under the newly derived market shares

(S̃S, S̃R, S̃A), the new average sharing benefit Φ̃ for each
sensor can be updated using (16), that is,

Φ̃ =
∫∫

S̃R [(1−η)(w·v−s)+p]·ζvc(v,c)dvdc∫∫
S̃S ζvc(v,c)dvdc

. (21)

8. We ignore the equality case, as the probability of having equalities
is zero under the continuous distribution.
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Fig. 2. Illustrations of lines l1, l2, and l3. Gray region: Sensors; White
region: Requesters; Black region: Aliens.

Note that Φ̃ is a function of the original average sharing

benefit Φ (as the newly derived market shares (S̃S, S̃R, S̃A)
are functions of Φ), hence can be written as Φ̃ = ϕ(Φ). For
convenience, we will write the newly derived BSE and N SE

as functions of Φ as well, i.e., BSE(Φ) and N SE(Φ). Then, we

have Φ̃ = Φ̃(Φ) , BSE(Φ)
N SE(Φ) .

3.3 Game Equilibrium Analysis

If a strategy profile is an equilibrium, then none of the
users has the incentive to change her strategy, which implies
that the market shares and the average sharing benefit will
no longer change. This leads to the following necessary
condition for the equilibrium.

Proposition 1. If a strategy profile {x∗(v, c), ∀v, c} is an
equilibrium, then the average sharing benefit Φ must sat-

isfy the fixed-point condition: Φ = BSE(Φ)
N SE(Φ) . Furthermore,

if Φ satisfies the fixed-point condition, the corresponding
user decision profile {x∗(v, c)} is an equilibrium.

The proof can be found in the appendix. Proposition 1
implies that finding an equilibrium {x∗(v, c), ∀v, c} is equiv-
alent to finding an equilibrium average sharing benefit Φ∗

that satisfies Φ∗ = BSE(Φ∗)
N SE(Φ∗) .

Next, we analyze the existence and uniqueness of the
equilibrium average sharing benefit Φ∗. To solve Φ −
BSE(Φ)
N SE(Φ) = 0, we can equivalently solve

Φ ·N SE(Φ)−BSE(Φ) = 0. (22)

For convenience, we define the following function:

Λ(Φ) , Φ ·N SE(Φ)−BSE(Φ). (23)

Hence, the problem of finding the equilibrium is equivalent
to the problem of finding the roots of Λ(Φ) = 0.

As shown in Fig. 2, the three lines l1, l2, l3 may intersect
in two different ways, depending on the value of average
sharing benefit Φ. For example, in the left subfigure, line
l2 intersects with the vertical boundary line c = 1, while
in the right subfigure, line l2 intersects with the horizontal
boundary line v = 1.9 This will affect the computations of
BSE(Φ) and N SE(Φ), hence the computation of the root of
Λ(Φ) = 0. Next, we analyze these two cases sequentially.

9. It is possible that line l1 may intersect with v = 1 just like line l2.
However, this case is equivalent to the case in the right subfigure,
because they have the same partitions of S S , SR , and SA, and the two
intersection cases of line l1 do not influence the boundary of SR .

3.3.1 Case 1: High Average Sharing Benefit

When Φ is larger than a critical value Φ0 defined below

Φ0 , 1− ηs− p− w(1 − η), (24)

l2 will intersect with the vertical boundary line c = 1
(left subfigure in Fig. 2). Intuitively, when Φ = Φ0, l2 will
intersect at the cross point of lines c = 1 and v = 1 (i.e., the
right upper corner).

In this case, the newly derived market shares

(S̃S, S̃R, S̃A) can be derived according to the left subfigure
in Fig. 2). To avoid confusion with the low average sharing
benefit case (i.e., case 2), we denote the corresponding
functions Λ(Φ), N SE(Φ), BSE(Φ) by Λh(Φ), B

SE
h (Φ), N SE

h (Φ)
in this case, which can be computed by (15), (14), and (23),
respectively.10

We can show that when Φ ≥ Φ0, function Λh(Φ) is
monotonically increasing in Φ (see the appendix for details).
We further notice that Λh(Φ) > 0 when Φ is large enough.
Hence, the root of Λh(Φ) = 0 in the regime Φ ≥ Φ0 is
determined by the value of Λh(Φ0). Formally, we have the
following proposition.

Proposition 2. If Λh(Φ0) < 0, the quality-unaware CSRS
game has a unique equilibrium with respect to Φ in the
regime [Φ0,+∞); otherwise, it has no equilibrium in the
regime [Φ0,+∞).

3.3.2 Case 2: Low Average Sharing Benefit

When Φ is smaller than the critical value Φ0, l2 will intersect
with the horizontal boundary line v = 1 (right subfigure
in Fig. 2). In this case, the newly derived market shares

(S̃S, S̃R, S̃A) can be derived according to the right subfigure
in Fig. 2. To avoid confusion with case 1, we denote the
corresponding functions Λ(Φ), N SE(Φ), BSE(Φ) by Λl(Φ),
BSE
l (Φ), N SE

l (Φ) in this case, which can similarly be com-
puted by (14), (15), and (23), respectively.

We can show that when Φ ≤ Φ0, the function Λl(Φ) is
either monotonically increasing with Φ, or first decreasing
with Φ and then increasing with Φ (hence unimodal). We
further notice that Λl(0) < 0. Hence, the root of Λl(Φ) = 0
in the regime Φ ≤ Φ0 is determined by the value of Λl(Φ0).
Formally, we have the following proposition.

Proposition 3. If Λl(Φ0) > 0, the quality-unaware CSRS
game has a unique equilibrium with respect to Φ in the
regime [0,Φ0]; otherwise, it has no equilibrium in the
regime [0,Φ0].

3.3.3 Game Equilibrium

Combining Propositions 2 and 3 in both cases, and notice
that Λh(Φ0) = Λl(Φ0), we have the following theorem for
the existence and uniqueness of the equilibrium.

Theorem 1 (Existence and Uniqueness). The quality-unaware
CSRS game has a unique equilibrium given by Λ(Φ) = 0,
and

• if Λ(Φ0) < 0, the equilibrium is located in (Φ0,+∞);
• if Λ(Φ0) > 0, the equilibrium is located in (0,Φ0);
• if Λ(Φ0) = 0, the equilibrium is Φ0.

In the next subsection, we will further study how to
reach the equilibrium dynamically.

10. Detailed derivations and proofs can be referred to the appendix,
unless otherwise mentioned.
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Algorithm 1: Distributed Best Response Iteration I

Input: Initial market shares (SS,SR,SA)
Output: Φ∗

Compute Φ(1) by (25), and set λ according to (28)

Set t = 1 and Φ(0) ≤ Φ(1) − ε

while
∣∣∣Φ(t) − Φ(t−1)

∣∣∣ ≥ ε do

t = t+ 1
Update Φ(t) according to (26)

end

Φ∗ ← Φ(t)

return Game equilibrium Φ∗

3.4 Best Response Iterative Algorithm

In this subsection, we propose a best response iterative
algorithm to reach the above game equilibrium.

To describe the best response iteration, we first define a
virtual time-slotted system with slots t = 1, 2, · · · (each with
a sufficiently small time period), and allow users to change
their decisions in every time slot based on the newly derived
market shares. Let Φ(t) be the average sharing benefit
at time slot t, and denote the corresponding BSE(Φ) and
N SE(Φ) asBSE(Φ(t)) andN SE(Φ(t)), respectively. According
to the analysis in Section 3.3, we have

Φ(t+ 1) =
BSE(Φ(t))

N SE(Φ(t))
=





BSE

h (Φ(t))
N SE

h
(Φ(t)) , if Φ(t) ≤ Φ0,

BSE

l (Φ(t))
N SE

l
(Φ(t)) , if Φ(t) ≥ Φ0.

(25)

However, under the pure best response iteration men-
tioned above, the system may not converge. To this end,
we propose a generalized distributed best response iterative
algorithm, i.e., Algorithm 1, where each user updates her
own decision with probability 1 − λ in each time slot in a
distributed manner. Then, the dynamics of Φ is given by

Φ(t+ 1) = λ · Φ(t) + (1 − λ) · B
SE(Φ(t))

N SE(Φ(t)) . (26)

Clearly, λ = 0 corresponds to the pure best response dy-
namics, while λ = 1 corresponds to a fixed network without
dynamics.

Next, we show the convergence of the above generalized
best response iteration. For convenience, we define

ψl(Φ) =
d

BSE
l

(Φ)

N SE
l

(Φ)

dΦ and ψh(Φ) =
d

BSE
h

(Φ)

N SE
h

(Φ)

dΦ . (27)

Then, we have the following proposition for convergence.

Proposition 4. The generalized best response iteration in
(26) converges to the unique equilibrium Φ given in
Theorem 1, if λ is larger than a threshold λ0, where

λ0 =





max
(
ψh(Φ0)−1
ψh(Φ0)+1 , 0

)
, if Λ(Φ0) < 0,

max
(
ψl(0)−1
ψl(0)+1 , 0

)
, if Λ(Φ0) > 0.

(28)

Intuitively, a smooth enough iteration (by setting a large
λ) will guarantee that the iteration (26) converges to the
unique equilibrium, at the cost of a slower convergence.

4 QUALITY-AWARE GAME EQUILIBRIUM ANALY-

SIS

In this section, we will study the quality-aware CSRS game
equilibrium, where each data is associated with a set of
discrete qualities Q , {qk : k ∈ K}. Hence, each user can
choose different qualities when acting as a data sensor or
requester. Here we focus on the case where a requester with
a quality can only obtain data from a sensor with the same
quality. Later in Section 5, we will consider the more general
cross-quality data sharing, where a requester can obtain data
from a sensor who has the data of a higher quality than the
requester needs.

To facilitate the analysis, we adopt a simple pricing
scheme with η = 1, which corresponds to a pure quality-
based pricing scheme, i.e., p · h(qk) for quality qk. Let
x(v, c) ∈ {S, R, A} denote the role choice of a type-(v, c)
user, and q(v, c) ∈ Q denote the quality choice of a type-
(v, c) user. Then, the quality-aware game equilibrium can
be formally defined as follows.

Definition 3 (Quality-aware Game Equilibrium). A strategy
profile {(x∗(v, c), q∗(v, c)), ∀v, c} is an equilibrium of
the quality-aware CSRS game, if and only if

πvc(x
∗(v, c), q∗(v, c)) ≥ πvc(x, q), ∀x ∈ {S, R, A}, ∀q ∈ Q,

for the whole user population with any type-(v, c).

Given a strategy profile {(x(v, c), q(v, c)), ∀v, c}, the
market will be partitioned into 2K + 1 parts, each corre-
sponding to a choice of role and quality, which we call the
market state. Let SS

k, SR
k , and SA denote the set of users choos-

ing to be sensors with quality qk, requesters with quality qk,
and aliens, called the market shares of sensors with quality qk,
requesters with quality qk, and aliens, respectively. Then, we
have SS

k = {(v, c) : x(v, c) = S, q(v, c) = qk}, SR
k = {(v, c) :

x(v, c) = R, q(v, c) = qk} and SA = {(v, c) : x(v, c) = A}.
In what follows, we will first derive the average sharing

benefit of a sensor, i.e., Φk. Then, we will analyze the user
best response and characterize the game equilibrium.

4.1 Derivation of Average Sharing Benefit – Φk

We now derive the average sharing benefit Φk. Similar
as (14), given market shares (SS

k,S
R
k ,S

A), the total sharing
benefit provided by all requesters with quality qk is

BSE
k = N

∫∫
SR
k
p · h(qk) · ζvc(v, c)dvdc. (29)

Furthermore, the total number of sensors with quality qk is

N SE
k = N

∫∫
S S
k
ζvc(v, c)dvdc. (30)

Thus, the average sharing benefit Φk that each sensor
with quality qk can achieve is

Φk =
BSE
k

N SE
k

=

∫∫
SR
k
p·h(qk)·ζvc(v,c)dvdc
∫∫

SS
k
ζvc(v,c)dvdc

= p · h(qk) ·
|SR

k|
|S S

k
| , (31)

where |SS
k| =

∫∫
S S
k
ζvc(v, c)dvdc is the percentage of sensors

with quality qk, and |SR
k | =

∫∫
SR
k
ζvc(v, c)dvdc is the percent-

age of requesters with quality qk. Intuitively, |SR
k |/|S

S
k| is the

average number of data requests assigned to each sensor,
and p · h(qk) is the average sharing benefit from each data
request (sharing). Obviously, Φk decreases with the number
of sensors with quality qk, and increases with the number of
requesters with quality qk. For notational convenience, we
denote Φ , (Φk, ∀k ∈ K) as the average sharing benefit
vector for all k ∈ K.
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4.2 Users’ Best Choices

Now we show how users update their actions based on the
best responses, under an existing market share distribution
(SS
k,S

R
k ,S

A).
A type-(v, c) user will choose to be a sensor with quality

qk (i.e., x(v, c) = S and q(v, c) = qk), if and only if her payoff
as a sensor with quality qk is higher than that in another role
with any other quality, i.e.,

πvc(S, qk) ≥ max
(
πvc(S, qj), πvc(R, qj), πvc(A), ∀j ∈ K

)
.

(32)
Similarly, a type-(v, c) user will choose to be a requester

with quality qk (i.e., x(v, c) = R and q(v, c) = qk), if and
only if

πvc(R, qk) ≥ max
(
πvc(R, qj), πvc(S, qj), πvc(A), ∀j ∈ K

)
,

(33)
and choose to be an alien (i.e., x(v, c) = A), if and only if

πvc(A) > max
(
πvc(S, qj), πvc(R, qj), ∀j ∈ K

)
. (34)

According to the above conditions, we can obtain the
best choice of any user with any type-(v, c), hence derive

the newly derived market shares (S̃S
k, S̃

R
k , S̃

A) accordingly.
Based on which, we can further derive the new average

sharing benefit Φ̃k, ∀k ∈ K as follows:

Φ̃k = p · h(qk) ·
|S̃R

k
|

|S̃ S

k
|
. (35)

Note that Φ̃k is a function of the original average sharing

benefit vector Φ (as both S̃S
k and S̃R

k are functions of Φ),

hence can be written as Φ̃k = Φ̃k(Φ).

4.3 Quality-aware Game Equilibrium Analysis

Now we analyze the (possible) existence and uniqueness of
the quality-aware game equilibrium.

We first notice that if a strategy profile is an equilibrium,
then none of the users has the incentive to unilaterally
change her strategy. This implies that the market shares will
no longer change, and hence the average sharing benefits
will no longer change. This leads to the following necessary
conditions for the quality-aware game equilibrium.

Proposition 5. If a strategy profile {(x∗(v, c), q∗(v, c)), ∀v, c}
is a quality-aware game equilibrium, then the average
sharing benefits satisfy the fixed-point conditions:

Φk = p · h(qk) ·
|S̃R

k
(Φ)|

|S̃ S

k
(Φ)|

, ∀k ∈ K. (36)

Furthermore, if (36) holds, the corresponding use deci-
sion profile {(x∗(v, c), q∗(v, c))} is an equilibrium.

Proposition 5 implies that finding a quality-aware game
equilibrium {(x∗(v, c), q∗(v, c)), ∀v, c} is equivalent to find-
ing a set of equilibrium average sharing benefits Φ∗

k, ∀k ∈ K,

that satisfy Φ∗
k = p · h(qk) ·

|S̃R
k
(Φ)|

|S̃ S
k
(Φ)|

for all k ∈ K. This can be

formally characterized by the following function set:




Φ1

Φ2

...
ΦK


 =




p · h(q1) ·
|S̃R

1|

|S̃ S
1|

p · h(q2) ·
|S̃R

2|

|S̃ S
2|

...

p · h(qK) ·
|S̃R

K
|

|S̃ S
K
|




, (37)

where S̃R
k and S̃S

k, ∀k ∈ K, are all functions of Φ = (Φk, ∀k ∈
K), and can be derived according to the user best response
analysis given in Section 4.2.

Next, we discuss the existence and uniqueness of the
equilibrium average sharing benefits Φ∗

k, ∀k ∈ K. Based on
the above discussion, we can derive the equilibrium average
sharing benefits Φ∗

k, ∀k ∈ K by solving (37), or equivalently,

Φk · |S̃S
k| − p · h(qk) · |S̃

R
k | = 0. (38)

For convenience, we define the following functions:

Λk(Φ) , Φk · |S̃S
k| − p · h(qk) · |S̃

R
k |, ∀k ∈ K. (39)

Then, the problem of finding the equilibrium is equivalent
to finding the roots of Λk(Φ) = 0, ∀k ∈ K.

Note that in the previous quality-unaware CSRS game,
we only need to find a single variable Φ to solve (22), which
can be analytically derived and efficiently solved by many
classic methods such as the dichotomizing search. When
considering the quality-aware CSRS game here, however,
we need to compute K variables (Φk, ∀k ∈ K) jointly to
solve the function set (37), and it is difficult to compute
the fixed-point solutions (Φ∗

k, ∀k ∈ K) analytically due
to the complicated coupling of (Φk, ∀k ∈ K), e.g., in the

derivations of S̃R
k(Φ) and S̃S

k(Φ).
In the next subsection, we will show that the best

response iterative algorithm converges to the equilibrium
dynamically, which implies the existence of equilibrium.

4.4 Best Response Iterative Algorithm

In this subsection, we design a distributed iterative algo-
rithm based on the best response update to compute the
quality-aware game equilibrium. Algorithm 2 shows the de-
tailed procedure of the proposed algorithm. Specifically, in
each round t, given the market shares (SS

k,S
R
k ,S

A, ∀k ∈ K)
in the previous round t−1, the algorithm first computes the
newly derived market shares by (32)-(34). Then, it updates

the average sharing benefits (Φ
(t)
k , ∀k ∈ K) according to

(40), where each user updates her own decision with prob-
ability 1 − λ in each time slot in a distributed manner. The
above procedure repeats until the average sharing benefits
do not change.

It is easy to see that if Algorithm 2 converges, its con-
verged state must be an equilibrium. This implies that if
we can prove the convergence of Algorithm 2, then the
existence of equilibrium can be guaranteed. The following
proposition shows the convergence of Algorithm 2.

Proposition 6 (Existence). Algorithm 2 converges to an
equilibrium of the quality-aware CSRS game.

Note that it is difficult to prove the uniqueness of the
quality-aware CSRS game equilibrium analytically, which
is equivalent to the problem of determining the unique
solution of (37). Nevertheless, we can show that whenever
the initial market shares (SS

k,S
R
k ,S

A, ∀k ∈ K) are given,
Algorithm 2 will converge to a unique equilibrium. We are
not able to rule out the possibility that different choices
of initial market shares lead to different equilibria. Fur-
thermore, the observation from simulations in Section 6
confirms the uniqueness of the equilibrium under a broad
choice of the initial market shares.
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Algorithm 2: Distributed Best Response Iteration II

Input: Initial market shares (SS
k,S

R
k ,S

A : k ∈ K)
Output: (Φ∗

k, ∀k ∈ K)

Compute (Φ
(1)
k , ∀k ∈ K) by (31) based on the Input

Set t = 1 and Φ
(0)
k ≤ Φ

(1)
k −

ε
K
, ∀k ∈ K

while
K∑
k=1

∣∣∣Φ(t)
k − Φ

(t−1)
k

∣∣∣ ≥ ε do

t = t+ 1
SS
k ← {(v, c) : satisfying (32)}, ∀k ∈ K
SR
k ← {(v, c) : satisfying (33)}, ∀k ∈ K
SA ← {(v, c) : satisfying (34)}

Compute (Φ†
k, ∀k ∈ K) by (31)

Update (Φ
(t)
k , ∀k ∈ K) according to:

Φ
(t)
k = λΦ

(t−1)
k + (1− λ)Φ†

k, ∀k ∈ K (40)

end

Φ∗
k ← Φ

(t)
k , ∀k ∈ K

return Quality-aware game equilibrium (Φ∗
k, ∀k ∈ K)

5 GAME EQUILIBRIUM ANALYSIS WITH CROSS-

QUALITY DATA SHARING

In Section 4, we have considered the scenario where a data
sensor can only share her data to the requesters with the
same quality requirement. In this section, we consider a
more general cross-quality data sharing scenario, where a
sensor can also share her data with the requesters who have the
lower quality requirements. This can be very useful in practice,
as a high-quality data can often be transformed into a low-
quality one (e.g., a high-resolution photo or video can be
transformed into a low-resolution one through down sam-
pling). We will analyze how the cross-quality data sharing
affects the user behaviors as well as the market equilibrium.

Specifically, when a high-quality data sensor shares her
data with a low-quality data requester, the sensor will first
transform the data into a low-quality one as requested,
and then shares the transformed low-quality data with the
requester. Such a process is transparent to the requester, who
does not need to pay additional fees because of such data
transformation.

For the data sensors, however, the above cross-quality
data sharing can have a significant impact. Specifically, for
a sensor with quality qk, her data can be potentially shared
with more requesters, i.e., those with a quality requirement
lower than qk. Let Φk,i denote the average sharing benefit
that each sensor with quality qk can achieve from requesters
with quality qi, where i ≤ k. Note that each requester with
quality qi can obtain data from any sensor with a quality no
smaller than qi, with a fixed payment p ·h(qi). Thus, we can
derive Φk,i as follows:

Φk,i = p · h(qi) ·
|SR

i |∑
K
j=i |S

S
j
|
, (41)

where |SR
i | is the percentage of requesters with quality qi,

and
∑K
j=i |S

S
j | is the total percentage of sensors with quality

no smaller than qi. Thus, the overall average sharing benefit
Φk that each sensor with quality qk can achieve (from all
requesters with quality qi ≤ qk) is

Φk =
k∑
i=1

Φk,i =
k∑
i=1

p·h(qi)·|S
R

i |∑
K
j=i |S

S
j
|
. (42)

By comparing (42) with (31), we can see two different
impacts: (i) a sensor can potentially share data with more
requesters (i.e., those requesters with a lower quality); (ii)
a sensor will face more severe competition (i.e., from those
sensors with a higher quality) for each request.

Similar to Proposition 5, we have the following necessary
conditions for the equilibrium with cross-quality sharing.

Proposition 7. A strategy profile {(x∗(v, c), q∗(v, c)), ∀v, c}
is an equilibrium with cross-quality data sharing, if and
only if the average sharing benefits (Φk, k ∈ K) satisfy:

Φk = Φ̃k(Φ) ,
k∑
i=1

p·h(qi)·|S̃R
i
(Φ)|

∑
K
j=i |S̃

S
j
(Φ)|

, ∀k ∈ K, (43)

where (S̃S
j(Φ), ∀j ∈ {i, · · · ,K}) and (S̃R

i (Φ), ∀i ∈
{1, · · · , k}) are the newly derived market shares by (32)-

(34); Φ̃k(Φ) is the according new average sharing benefit.

We skip the detailed analysis for this scenario, as it is
similar as that in Section 4, except that we use the new
formulation (42) to compute the average sharing benefit.
We can design a similar best response iterative algorithm
to reach the equilibrium, as shown in Algorithm 3.

Algorithm 3: Distributed Best Response Iteration III

Input: Initial market shares (SS
k,S

R
k ,S

A : k ∈ K)
Output: (Φ∗

k, ∀k ∈ K)

Compute (Φ
(1)
k , ∀k ∈ K) by (42) based on the Input

Set t = 1 and Φ
(0)
k ≤ Φ

(1)
k −

ε
K
, ∀k ∈ K

while
K∑
k=1

∣∣∣Φ(t)
k − Φ

(t−1)
k

∣∣∣ ≥ ε do

t = t+ 1
SS
k ← {(v, c) : satisfying (32)}, ∀k ∈ K
SR
k ← {(v, c) : satisfying (33)}, ∀k ∈ K
SA ← {(v, c) : satisfying (34)}

Compute (Φ†
k, ∀k ∈ K) by (42)

Update (Φ
(t)
k , ∀k ∈ K) according to (40).

end

Φ∗
k ← Φ

(t)
k , ∀k ∈ K

return Cross-quality game equilibrium (Φ∗
k, ∀k ∈ K)

6 SIMULATION AND EVALUATION

In this section, we provide the simulation results for the
quality-unaware (CSRS) game and the quality-aware (CSRS)
game, respectively. In both scenarios, we will show the
efficiency of the game equilibrium and the market shares
under the game equilibrium.

6.1 Simulation Setup

We fix the number of users/devices as 1000, and randomly
generate the (marginal) data value v and the (marginal)
sensing cost c, both of which follow the uniform distribution
on [0, 1]. In each simulation, we randomly generate 1000
systems (in terms of realizations of v and c) and compute
the average outcome of all systems as the simulation result.

In the quality-unaware game, there are two parameters,
i.e., the revenue sharing factor η and the (fixed) price p. To
show the impacts on the equilibrium social welfare, we vary
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Fig. 3. Social welfare under different revenue
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Fig. 5. Ratio of the welfare to the optimal social
welfare under different factors η (price p = 0).

η from η = 0.5 to η = 1 with an increment of 0.1, and vary
p from p = 0 to p = 0.5 with an increment of 0.1. We further
vary the transmission cost s from 0.1 to 0.5. Furthermore,
to show the impacts on the equilibrium market shares, we
choose three scenarios in terms of η, i.e., η = 0.4 for small η,
η = 0.8 for large η, and η = 1 to fully remove the revenue
sharing effect to the data sensors. In all three scenarios, we
vary the transmission cost s from 0 to 1.

In the quality-aware game, to characterize the impact of
the quality-aware prices on the equilibrium social welfare,
we choose two quality types (K = 2), i.e., q1 = 1 as the low
quality and q2 = 2 as the high quality. The quality-aware
data value from consuming the data is 0.4 + v log(1 + qk).
The quality-aware sensing cost due to physical resources
consumption is 0.1+ cq0.5k . The transmission cost s varies in
the range of [0.1, 0.5]. We choose the quality-aware pricing
scheme p = 0.1 + {0.2, 0.5, 0.8} · qk, which correspond to
“small”, “medium”, and “large” prices, respectively. Fur-
thermore, to show the impact of the quality-aware prices on
the equilibrium market shares, we choose the two quality
types, the quality-aware data value, and the quality-aware
sensing cost similarly as those in the simulation of the equi-
librium social welfare. We randomly generate the marginal
data value v and the marginal sensing cost c with the
uniform distributions on [0, 1]. We choose the transmission
cost s = 0.2 and the pricing scheme p = 0.1 + 0.35qk.

Our key targets are to show the behaviors of users from
the system level and the market partition due to users’
choices. In particular, we want to understand the social
benefit that can be achieved from the strategic data sensing
and sharing among users. We consider that the system has a
good performance if the equilibrium social welfare is close
to the optimal social welfare benchmark.

6.2 Simulations of the Quality-unaware Game

Now we provide simulation results to illustrate the effi-
ciency of the quality-unaware game equilibrium, i.e., the
ratio of the equilibrium social welfare to the maximum
social welfare benchmark (in a centralized optimization).
Here, social welfare is the sum of all users’ payoffs. We
will illustrate the absolute and relative equilibrium social
welfares under different system parameters. Moreover, we
will also illustrate the equilibrium market shares under
different system parameters.

6.2.1 Maximum Social Welfare Benchmark

The social welfare is defined as the sum of all users’ payoffs.
Hence, given a particular market partition (SS,SR,SA), the
social welfare is

W =
∫∫

S S(v − c)dvdc+
∫∫

SR(v − s)dvdc. (44)

where the social welfare generated by a sensor is v − c, and
the social welfare generated by a requester is v − s.

From a centralized optimization perspective (to maxi-
mize the social welfare), those users with type-(v, c) that
satisfies v > c and c < s should choose to be sensors, those
users with type-(v, c) that satisfies v > s and c > s should
choose to be requesters, and all other users will choose to be
aliens. Accordingly, we can compute the maximum social
welfare benchmark. For more details, please refer to the
appendix.

6.2.2 Efficiency of Equilibrium

In this subsection, we compare the social welfare of the
equilibrium with the optimal social welfare. Figs. 3, 4, and
5 show the social welfare of the equilibrium under different
system parameters η, p, and s. We have three observations.

1). Figs. 3 and 4 show that the social welfare decreases in
the transmission cost. This is because the generated sharing
benefit is reduced when increasing the transmission cost.

2). Given the transmission cost s, Figs. 3 and 4 show that
the social welfare increases in η and decreases in p. This
is because a large η or a small p will decrease the revenue
sharing for the sensing users, thus weakens the competition
of the sensing users. In the extreme case η = 1 and p = 0,
the social welfare will achieve the maximum value.

3). Fig. 5 shows that the ratio of the equilibrium social
welfare to the optimal social welfare is increasing in the
transmission cost. It demonstrates that a large transmission
cost weakens the sharing effect among users.

6.2.3 Equilibrium Market Shares

Next, we numerically show the equilibrium market shares.
Figs. 6, 7, and 8 show the results.

1). With the increase of the transmission cost, all three
figures show that aliens’ market share increases and re-
questers’ market share decreases. The reason is that re-
questers need to pay for the transmission cost. Hence,
increasing the transmission cost will change those with high
sensing cost to aliens.
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Fig. 6. Market shares under the revenue shar-
ing factor η = 0.4 and the price p = 0.
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Fig. 7. Market shares under the revenue shar-
ing factor η = 0.8 and the price p = 0.
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ing factor η = 1 and the price p = 0.
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Fig. 9. Social welfare comparison under different prices and transmission costs.

2). How the sensors’ market share changes in cost is more
complicated. With a small η in Fig. 6, the sensor’s market
share decreases first and then increases to 50%; when η
becomes large enough as in Figs. 7 and 8, the sensors’
market share monotonically increases to 50%. The reason
is that, as the transmission cost increases, some requesters
will not choose to request data and thus become sensors or
aliens. However, when η is small as in Fig. 6, the decrease of
requesters will greatly reduce the sharing benefit of sensors
who will obtain 1−η percentage of the total sharing benefit.
Therefore, some sensors with high sensing cost will also
become aliens and thus sensors’ market shares decreases,
and eventually increases to 50% in Fig. 6. The above effect
will not play a leading role when η is large (1 − η is small).
Therefore, both sensors and aliens monotonically increase
as requesters decrease in Figs. 7 and 8.

3). With a very large transmission cost, requesters dis-
appear since there is no point in sharing data. Some autar-
kic users become sensors and the remaining users become
aliens. Thus, sensors and aliens will divide the whole market
evenly in Figs. 6-8. The value of 50% is due to our assump-
tion of the joint uniform distribution of value v and cost c in
[0, 1], which can be verified through (44).

6.3 Simulations of the Quality-aware Game

Now we illustrate the efficiency of the quality-aware game
equilibrium and the corresponding equilibrium market
shares. In comparison with the cross-quality data sharing
in Section 5, we term the quality-aware data sharing in
Section 4 as the matching-quality data sharing.

6.3.1 Quality-aware Maximum Social Welfare Benchmark

In this subsection, we consider the social welfare maximiza-
tion problem, where users work together to maximize the
sum of all users’ payoffs. First, if there is no data sharing, it
follows that the social optimality requires those users with
vf(q) ≥ cg(q) to sense with the quality that

qS
k(v, c) = argmax

q∈Q
(vf(q)− cg(q)), (45)

and those with vf(q) < cg(q) not to sense, due to the
requirement of non-negative payoffs. Now we consider
incorporating data sharing into the system, with the trans-
mission cost s. Those with vf(q) ≥ cg(q) ≥ s will not
sense but acquire data from the sensed users and those with
s < vf(q) < cg(q) will also acquire data from the sensed
users, due to the payoff vf(q) − s > vf(q) − cg(q). The
quality is determined by

qR
k(v, c) = argmax

q∈Q
(vf(q) − s). (46)

Thus, the maximum social welfare is given by

Wq =
K∑
k=1

∫∫
S S

k
(vf(qS

k(v, c))− cg(q
S
k(v, c)))dvdc

+
K∑
k=1

∫∫
SR
k
(vf(qR

k(v, c))− s)dvdc. (47)

6.3.2 Efficiency of the Quality-aware Equilibrium

In this subsection, we compare the equilibrium social wel-
fare with the optimal social welfare benchmark, under the
matching-quality and the cross-quality sharing, respectively.
Fig. 9 shows the impacts of the transmission cost and the
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trading price on the equilibrium social welfare, as well as
the equilibrium social welfare comparison results.

First, we can see that the social welfare decreases in
the transmission cost in Figs. 9(a)-9(c). This is because the
generated sharing benefit is reduced when the transmission
cost increases. Second, given the transmission cost, the social
welfare decreases in the price p in Figs. 9(a)-9(c). This is
because a small price p decreases the revenue sharing for
the sensing users, thus weakens the competition among
the sensing users. Third, the cross-quality sharing has lit-
tle impact on the equilibrium social welfare in Fig. 9(c).
This is because the cross-quality sharing will not impact
requesters’ quality selections, which is the determinant part
of the social welfare. Furthermore, the cross-quality sharing
plays a negative role in the social welfare when the price
is small, while it plays a positive role when the price is
medium and large in Fig. 9(c). The reason is that the high-
quality sensor will first transform the high-quality data into
the low-quality data and then transmit to the low-quality
data requester with the low-quality price. Hence, the cross-
quality data sharing will only be incentivized when the
trading price is high, i.e., in the medium and large price
scenarios. Furthermore, when the price is sufficiently large,
it will discourage the requesters’ data requesting decisions.
Hence, the social welfare gap is larger in the medium price
scenario, while it is quite small in the large price scenario.
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6.3.3 Quality-aware Equilibrium Market Shares

In this subsection, we implement Algorithms 2 and 3 in the
quality-aware scenario under the “matching-quality shar-
ing” and the “cross-quality sharing” settings, respectively.

Figs. 10 and 12 show the users’ partitions under the two
settings, respectively. In Figs. 10 and 12, “Sensor L” denotes
sensors obtaining low quality data and “Sensor H” denotes

sensors obtaining high quality data, while “Requester L” de-
notes requesters obtaining low quality data and “Requester
H” denotes requesters obtaining high quality data.

We have two observations. First, we can see that they fol-
low similar structures as those in Subsection 6.2, i.e., users’
partitions are dependent on the data value and sensing cost
distributions. Second, by comparing the dark blue and light
blue regions in Figs. 10 and 12, we can see that the cross-
quality sharing will have a great impact on sensors’ quality
selection, i.e., more sensors choose to sense the high-quality
data (Sensor H). However, the cross-quality sharing has little
impact on the requesters’ quality selection (Requester L and
Requester H), due to the fact that a low-quality requesters
will receive the requested low quality data.

We further show the the impact of the transmission cost
on the equilibrium market shares. Figs. 11 and 13 show the
results under matching-quality sharing and cross-quality
sharing, respectively, where “Sensor L” denotes sensors
obtaining low quality data and “Sensor H” denotes sensors
obtaining high quality data. From Figs. 11 and 13, we can
see that i) sensors’ market share (the summation of Sensor
L and Sensor H) first increases with the transmission cost
and then decreases with the transmission cost; ii) requesters’
market share (the summation of Requester L and Requester
H) always decreases with the transmission cost; iii) aliens’
market share (Alien) always increases with the transmission
cost. The non-monotonic change of sensors’ market share
is due to the interplay of sensors and requesters. When the
transmission cost is small and increases, some requesters
will become sensors or aliens due to the increase of to-
tal cost. Hence, sensors’ market share increases. However,
when the transmission cost is large and increases, the signif-
icant reduction of requesters will reduce the sharing benefit
of sensors. Hence, some sensors will become aliens and the
market share decreases.

7 CONCLUSION

In this work, we present a novel quality-aware P2P-based
MCS architecture, which can effectively reduce the manage-
ment and operational cost on the server. We study the user
behavior dynamics and the market equilibrium of such a
system by modeling a data quality-aware non-cooperative
game. In particular, we study the quality-unaware game
under a general pricing scheme, and prove the existence
and uniqueness of the equilibrium. Furthermore, we study
the quality-aware game under the quality-based pricing
scheme, and prove the existence of the equilibrium. We also
propose iterative algorithms that are guaranteed to converge
to the game equilibrium under both quality scenarios. Our
numerical results demonstrate the existence and uniqueness
of the equilibrium, quantify the efficiency loss, and show the
equilibrium market shares under different system parame-
ters and pricing parameters.

There are several possible extensions of the model in this
work. For example, it is important to study the coupling
of different data when conducting the sensing and sharing
decisions. In this case, the interdependence of different data
will complicate users’ decisions, because each user’s utility
depends collectively on the correlated data. Moreover, it is
also meaningful to consider a dynamic system in a long
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period of time, considering that the data quality of some
applications may decay over time (e.g., the measurement
of the air conditions at a time may not be accurate at later
times). Hence, it is challenging to analyze users’ decisions
due to the time domain coupling.
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APPENDIX A

PROOF OF PROPOSITION 1

Proof: Notice that there is a one-to-one mapping
between a strategy profile {x(v, c), ∀v, c} and an average
sharing benefit Φ. The reason is that, given any strategy

profile {x(v, c), ∀v, c}, the market shares S̃S, S̃R , and S̃A will
be uniquely determined. Then we can determine the new

average sharing benefit Φ̃ according to Eq. (17). Therefore,
if the strategy profile {x∗(v, c), ∀v, c} is a stable point, it

follows that the average sharing benefit Φ = BSE(Φ)
N SE(Φ) . Other-

wise, the average sharing benefit Φ will deviate from BSE(Φ)
N SE(Φ) ,

and the corresponding strategy profile {x(v, c), ∀v, c} will
also change. This completes the proof.

APPENDIX B

PROOF OF PROPOSITION 2

Case 1. High Average Sharing Benefit. In this case Φ ≥
Φ0. We calculate N SE

h (Φ) and BSE
h (Φ) by integrating the two

integrals BSE(Φ) and N SE(Φ), respectively. That is,

BSE
h (Φ)

= N

[
1

6w(1−ρ)

(
1− s− p

ρ
− Φ

)3
+ p

(1−s− p
ρ
−Φ)(1−Φ−ρs−p)

2w(1−ρ)

]
.

N SE
h (Φ) = N

[
1− (1−Φ−ρs−p)2

2w(1−ρ) −
ρ(s+ p

ρ
)2

2w

]
.

First notice that w is just a scalar in Fig. 2. Hence, the
analysis results will not change if we normalize w as 1.
The parameter N will not impact the equilibrium, since
N is canceled according to Proposition 1. We will omit N
when deriving the equilibrium Φ. Hence, the function Λ(Φ)
is given by

Λ(Φ) = Λh(Φ) = ΦN SE
h (Φ)−BSE

h (Φ)

= Φ

[
1−

(1− Φ− ρs− p)2

2(1− ρ)
−
ρ(s+ p

ρ
)2

2

]

−
1

6(1− ρ)
(1 − s−

p

ρ
− Φ)3

− p
(1− s− p

ρ
− Φ)(1− Φ− ρs− p)

2(1− ρ)
.

Lemma 1. The function Λh(Φ) is monotonically increasing
in Φ when Φ ≥ Φ0.

Proof: We derive the first-order derivative of Λh(Φ)
with respect to Φ, i.e.,

Λ′
h(Φ) =

[
1−

(1 − Φ− ρs− p)2

2(1− ρ)
−
ρ(s+ p

ρ
)2

2

]

+Φ
2(1− Φ− ρs− p)

2(1− ρ)
+

3(1− Φ− s− p
ρ
)2

6(1− ρ)

+
p

2(1− ρ)

(
2− 2Φ− (1 + ρ)(s+

p

ρ
)

)

= 1−
ρ(s+ p

ρ
)2

2
+ Φ

1− Φ− ρs− p

1− ρ

−
(s+ p

ρ
)(2 − 2Φ− (1 + ρ)(s+ p

ρ
))

2

+
p

2(1− ρ)

(
2− 2Φ− (1 + ρ)(s+

p

ρ
)

)
.
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First, we can see that Λ′
h(Φ) is a parabola going down-

wards with

Λ′
h(0) =

(1 − s− p
ρ
)2

2
+

p

2(1− ρ)

(
2− (1 + ρ)(s+

p

ρ
)

)
≥ 0.

The inequality follows from p
2(1−ρ)

(
2− (1 + ρ)(s+ p

ρ
)
)
≥

p
2(1−ρ)

(
2(1− s− p

ρ
)
)
≥ 0, since 1+ρ ≤ 2 and 1−s− p

ρ
≥ 0.

Moreover, we have

Λ′
h(1− s−

p

ρ
)

=

(
s+

p

ρ

)(
1− s−

p

ρ

)
+

2− (s+ p
ρ
)2

2
+
p

2

(
s+

p

ρ

)
≥ 0.

Hence, we have Λ′
h(Φ) > 0 for all Φ ≥ Φ0. This completes

the proof.
Based on the above, we now prove Proposition 2.

Proof: Fist, we claim that Λh(1−s−
p
ρ
) > 0. To see this,

we substitute 1−s− p
ρ

into Λh(Φ), we have Λh(1−s−
p
ρ
) =

(1 − s − p
ρ
)(1 −

(s+ p
ρ
)2

2 ) > 0. Second, according to Sec. 2.1,

the function Λh(Φ) is monotonically increasing, hence, the
equation Λh(Φ) = 0 has a unique solution on (Φ0, 1−s−

p
ρ
)

if and only if Λh(Φ0) < 0, and has no solution if and only if
Λh(Φ0) ≥ 0. By substituting Φ0 into Λh(Φ), we have

Λh(Φ0)

=
(1− s− p

ρ
)3ρ(1 + ρ− ρ(s+ p

ρ
)2)

6

−
(1− s− p

ρ
)3(1− ρ)2

6

−
p

2
(1− ρ)(1 − s−

p

ρ
).

Thus, Λh(Φ0) < 0 if and only if 3ρ(1 + ρ − ρ(s + p
ρ
)2) <

(1− s− p
ρ
)2(1− ρ)2+3p(1− ρ) and Λh(Φ0) ≥ 0 if and only

if 3ρ(1 + ρ− ρ(s+ p
ρ
)2) ≥ (1− s− p

ρ
)2(1− ρ)2 +3p(1− ρ).

This completes the proof.

APPENDIX C

PROOF OF PROPOSITION 3

Case 2. Low Average Sharing Benefit. In this case 0 ≤ Φ ≤
Φ0. We calculate BSE(Φ) and N SE(Φ) as BSE

l (Φ) and N SE
l (Φ)

similarly. That is,

BSE
l (Φ)

= N

∫∫

SR(v,c)
(1− ρ)(w · v · −s)fvc(v, c)dvdc

+Np

∫∫

SR(v,c)
fvc(v, c)dvdc

= N

[
(1 − ρ)2(w − s− p

ρ
)3

6w

+(1− ρ)
(w − s− p

ρ
)2

2w
(1 − w(1 − ρ)− Φ− ρs− p)

]

+Np
w − s− p

ρ

2w

(
1− w(1 − ρ)− Φ− ρs− p+ 1− 2s−

p

ρ

)
.

N SE
l (Φ) = N

[
Φ+ ρs+ p+

w(1 − ρ)

2
−
ρ(s+ p

ρ
)2

2w

]
.

Similarly, we normalize w as 1 and omit N . Hence, the
function Λl(Φ) is given by

Λl(Φ)

= Φ

[
Φ + ρs+ p+ (1−ρ)

2 −
ρ(s+ p

ρ
)2

2

]
−

(1−ρ)2(1−s− p
ρ
)3

6

− (1 − ρ)
(1− s− p

ρ
)2

2
(1 − (1− ρ)− Φ− ρs− p)

− p
1− s− p

ρ

2

(
1− (1− ρ)− Φ− ρs− p+ 1− 2s−

p

ρ

)

= (Φ)2 +

(
(1 + p

2 )(1 − s−
p
ρ
) +

(s+ p
ρ
)2

2 − ρ(1− s− p
ρ
)2
)
Φ

−
1

6
(1− ρ)(1 + 2ρ)(1− s−

p

ρ
)3

−
p(1− s− p

ρ
)

2

(
(1 + ρ)(1− s−

p

ρ
)− s

)
.

Lemma 2. The function Λl(Φ) is either monotonically in-
creasing with Φ ∈ [0,Φ0], or first decreasing with Φ and
then increasing with Φ ∈ [0,Φ0].

Proof: We first check the first-order derivative of
Λl(Φ) with respect to Φ, i.e.,

Λ′
l(Φ) = 2Φ+(1+

p

2
)(1−s−

p

ρ
)+

(s+ p
ρ
)2

2
−ρ(1−s−

p

ρ
)2.

When Φ = Φ0, we have

Λ′
l(Φ0) = 2ρ(1− s−

p

ρ
) + (1 +

p

2
)(1 − s−

p

ρ
) +

(s+ p
ρ
)2

2

− ρ(1− s−
p

ρ
)2

= ρ(1 − s−
p

ρ
)(1 + s+

p

ρ
) +

1 + (1 − s− p
ρ
)2

2

+
p

2
(1− s−

p

ρ
) > 0.

When Φ = 0, we have

Λ′
l(0) = (1 +

p

2
)(1− s−

p

ρ
) +

(s+ p
ρ
)2

2
− ρ(1− s−

p

ρ
)2

= (
1

2
− ρ)(1− s−

p

ρ
)2 +

1

2
+
p

2
(1− s−

p

ρ
).

Hence, Λ′
l(0) ≥ 0 if and only if (12 − ρ)(1 − s −

p
ρ
)2 + 1

2 +
p
2 (1 − s − p

ρ
) ≥ 0, which completes the first part. When

(12 − ρ)(1− s−
p
ρ
)2 + 1

2 + p
2 (1− s−

p
ρ
) < 0, the unique so-

lution to Λ′
l(Φ) = 0 is −

( 1
2−ρ)(1−s−

p
ρ
)2+ 1

2+
p
2 (1−s−

p
ρ
)

2 , which

shows that Λ′
l(Φ) ≤ 0 on [0,−

( 1
2−ρ)(1−s−

p
ρ
)2+ 1

2+
p
2 (1−s−

p
ρ
)

2 ]

and Λ′
l(Φ) ≥ 0 on [−

( 1
2−ρ)(1−s−

p
ρ
)2+ 1

2+
p
2 (1−s−

p
ρ
)

2 ,Φ0]. This
completes the proof.

Based on the above, we now prove Proposition 2.

Proof: When Φ = 0, we have

Λl(0) = −
1

6
(1 − ρ)(1 + 2ρ)(1− s−

p

ρ
)3

−
p(1− s− p

ρ
)

2

(
(1 + ρ)(1− s−

p

ρ
)− s

)
≤ 0.
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Then there exist at least one equilibrium Φ∗ such that
Λl(Φ

∗) = 0 if and only if Λl(Φ0) > 0, which yields

Λl(Φ0) =
1− s− p

ρ

6

[
2(1− s−

p

ρ
)(1 + 2(s+

p

ρ
))ρ2

+(2(1− s−
p

ρ
)2 + 3)ρ− (1 − s−

p

ρ
)2
]

−
p(1− s− p

ρ
)

2

(
(1 + ρ)(1 − s−

p

ρ
)− s

)
> 0.

Furthermore, the condition Λl(Φ0) > 0 will guarantee
that the equilibrium solution is unique. The reason is that
the function Λl(Φ) is either monotonically increasing or
monotonically decreasing first then monotonically increas-
ing, taking into account Λl(0) ≤ 0 and Λl(Φ0) > 0. This
completes the proof.

APPENDIX D

PROOF OF THEOREM 1

Proof: By combining the results in Propositions 2 and
3, we conclude that the existence can be readily guaranteed,
which is either in [0,Φ0] or in [Φ0,+∞). The corresponding
conditions that guarantee the existence and uniqueness are
mutually exclusive and exhaustive to each other in Propositions
2 and 3, which shows that Theorem 1 immediately holds.
This completes the proof.

APPENDIX E

PROOF OF PROPOSITION 4

Proof: We consider the Banach Fixed Point Theorem
for contraction mapping. The function f(Φ) is defined as

f(Φ) =





λΦ + (1− λ)
BSE
l (Φ)

N SE
l (Φ)

, if 0 ≤ Φ ≤ Φ0,

λΦ + (1− λ)
BSE
h (Φ)

N SE
h (Φ)

, if Φ ≥ Φ0.

We next show that the function f(Φ) is a contraction map-
ping.

1). We first consider the interval [0,Φ0], where the func-
tion f is given by

f(Φ) = λΦ

+ (1 − λ)
(1−ρ)2(1−s−

p
ρ
)3

6 +(1−ρ)
(1−s−

p
ρ
)2

2 (1−(1−ρ)−Φ−ρs−p)

Φ+ρs+p+ (1−ρ)
2 −

ρ(s+
p
ρ
)2

2

+ (1 − λ)
p

1−s−
p
ρ

2 (1−(1−ρ)−Φ−ρs−p+1−2s− p
ρ )

Φ+ρs+p+ (1−ρ)
2 −

ρ(s+
p
ρ
)2

2

.

The derivative with respect to Φ is

f ′(Φ) = λ+ (1− λ)
−

(1−ρ)(1−s−
p
ρ
)2

2

(
1+ρ−ρ(s+

p
ρ
)2

2 +
(1−ρ)(1−s−

p
ρ
)

3

)

(
Φ+ρs+p+ (1−ρ)

2 −
ρ(s+

p
ρ
)2

2

)2

+ (1− λ)
−p

1−s−
p
ρ

2

(
2− (1−ρ)

2 −
ρ(s+

p
ρ
)2

2 −2s− p
ρ

)

(
Φ+ρs+p+ (1−ρ)

2 −
ρ(s+

p
ρ
)2

2

)2 .

Since the function f ′(Φ) is an increasing function of Φ, we
have f ′(0) ≤ f ′(Φ) ≤ f ′(Φ0), moreover, we have

|f ′(Φ)| ≤ max (|f ′(0)|, |f ′(Φ0)|) .

Plugging 0 and Φ0 into f ′(Φ), we have

|f ′(0)| =

∣∣∣∣λ+ (1− λ)
−P1

P2

∣∣∣∣ ,

and

|f ′(Φ0)| =

∣∣∣∣λ+ (1− λ)
−P1

P3

∣∣∣∣ ,

where we define

P1 =
(1−ρ)(1−s− p

ρ
)2

2

(
1+ρ−ρ(s+ p

ρ
)2

2 +
(1−ρ)(1−s− p

ρ
)

3

)

+ p
1−s− p

ρ

2

(
1+ρ−ρ(s+ p

ρ
)2

2 + 1− 2s− p
ρ

)
,

P2 =

(
ρs+ p+

(1− ρ)

2
−
ρ(s+ p

ρ
)2

2

)2

,

and

P3 =

(
1 + ρ− ρ(s+ p

ρ
)2

2

)2

.

Since 0 ≤ ρs + (1−ρ)
2 −

ρ(s+ p
ρ
)2

2 ≤
1+ρ−ρ(s+ p

ρ
)2

2 , we have

P2 ≤ P3. Hence, P1

P2
≥ P1

P3
.

Hence, |f ′(Φ)| < 1 ⇔ max(|f ′(0)|, |f ′(Φ0)|) < 1, which
means that

−1 < λ− (1 − λ)
P1

P2
< 1,

−1 < λ− (1 − λ)
P1

P3
< 1.

We have
1 + λ

1− λ
>
P1

P2
.

Hence, if P1 < P2, we can just set λ = 0; if P1 ≥ P2, we can
set λ = P1−P2

P1+P2
+ ǫ for a sufficiently small positive ǫ.

For any Φ1,Φ2 ∈ [0,Φ0], where without loss of gen-
erality Φ1 < Φ2, we have by the mean value theorem
that there exists ξ ∈ (Φ1,Φ2) such that f(Φ1) − f(Φ2) =
f ′(ξ)(Φ1 − Φ2) ⇒ |f(Φ1) − f(Φ2)| = |f ′(ξ)||(Φ1 − Φ2)|.
This shows that the function f is a contraction mapping
with factor bounded by |f ′(ξ)| if we choose λ according to
the above rule, i.e., λ = 0 for P1 < P2 and λ = P1−P2

P1+P2
+ ǫ

for P1 ≥ P2.
Hence, in this case the threshold λ0 is given by

λ0 = max

(
−ψl(0)− 1

−ψl(0) + 1
, 0

)
,

where ψl(0) = −P1/P2 < 1.
2). Now we consider the other interval, i.e., [Φ0, 1−s−

p
ρ
],

where the function f is given by

f(Φ) = λΦ+(1−λ)
(1−s−p

ρ
−Φ)3+3p(1−s− p

ρ
−Φ)(1−Φ−ρ(s+ p

ρ
))

3(1−ρ)(2−ρ(s+ p
ρ
)2)−3(1−Φ−ρ(s+ p

ρ
))2 .

The derivative with respect to Φ is

f ′(Φ) = λ+ (1 − λ)
−3(1−s− p

ρ
−Φ)2

[3(1−ρ)(2−ρs2)−3(1−Φ−ρs)2]2

×
[
3(1− ρ)(2− ρ(s+ p

ρ
)2)

−(1− Φ− ρs− p)(1− Φ+ (2 − 3ρ)(s+ p
ρ
))
]

+ (1− λ)
9p(1−ρ)[(2−ρs2)(2Φ+(1+ρ)(s)−2)+s((1−Φ−ρs)2)]

[3(1−ρ)(2−ρs2)−3(1−Φ−ρs)2]2
.
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Since the function f ′(Φ) is an increasing function of Φ, we
have f ′(Φ0) ≤ f ′(Φ) ≤ f ′(1− s− p

ρ
), moreover, we have

|f ′(Φ)| ≤ max

(
|f ′(Φ0)|, |f

′(1− s−
p

ρ
)|

)
.

Plugging Φ0 and 1− s− p
ρ

into f ′(Φ), we have

|f ′(Φ0)| =
∣∣∣λ+ (1− λ) 1

3(1+ρ−ρs2)2

×
[
−(1− s)2(1− ρ)(5 − 2s+ ρ(1− s)(1 + 3s))

−3p[(2− ρs2)(2− s)− (1− ρ)s]
∣∣ .

|f ′(1− s−
p

ρ
)| =

∣∣∣∣∣λ+ (1− λ)
−p(s+ p

ρ
)

2 − (s+ p
ρ
)2

∣∣∣∣∣ .

We define

Q1 = (1− s−
p

ρ
)2(1− ρ)

× [5− 2(s+
p

ρ
) + ρ(1− s−

p

ρ
)(1 + 3s+

3p

ρ
)]

+ 3p[(2− ρ(s+
p

ρ
)2)(2− s−

p

ρ
)− (1− ρ)(s+

p

ρ
)],

and

Q2 = 3

(
1 + ρ− ρ(s+

p

ρ
)2
)2

.

Hence, |f ′(Φ)| < 1⇔ max(|f ′(Φ0)|, |f ′(1−s− p
ρ
)|) < 1,

which means that

− 1 < λ− (1 − λ)
Q1

Q2
< 1,

− 1 < λ− (1 − λ)
p(s+ p

ρ
)

2− (s+ p
ρ
)2
< 1.

We have

1 + λ

1− λ
>
Q1

Q2
and

1 + λ

1− λ
>

p(s+ p
ρ
)

2− (s+ p
ρ
)2
.

Note that the latter inequality always holds due to
p(s+ p

ρ
)

2−(s+ p
ρ
)2 ≤ 1. Hence, if Q1 < Q2, we can just set λ = 0;

if Q1 ≥ Q2, we can set λ = Q1−Q2

Q1+Q2
+ ǫ for a sufficiently

small positive ǫ.

For any Φ1,Φ2 ∈ [Φ0, 1 − s −
p
ρ
], where without loss of

generality Φ1 < Φ2, we have by the mean value theorem
that there exists ξ ∈ (Φ1,Φ2) such that f(Φ1) − f(Φ2) =
f ′(ξ)(Φ1 − Φ2) ⇒ |f(Φ1) − f(Φ2)| = |f ′(ξ)||(Φ1 − Φ2)|.
This shows that the function f is a contraction mapping
with factor bounded by |f ′(ξ)| if we choose λ according to
the above rule, i.e., λ = 0 for Q1 < Q2 and λ = Q1−Q2

Q1+Q2
+ ǫ

for Q1 ≥ Q2. Hence, in this case the threshold λ0 is given
by

λ0 = max

(
−ψh(Φ0)− 1

−ψh(Φ0) + 1
, 0

)
,

where ψh(Φ0) = −Q1/Q2 < 1.

3). According to Banach fixed point theorem for contrac-
tion mapping, there exists a unique Φ such that f(Φ) = Φ,
which completes the convergence proof.

APPENDIX F

PROOF OF PROPOSITION 5

Proof: Notice that there is a one-to-one mapping
between a strategy profile {(x(v, c), q(v, c)), ∀v, c} and an
average sharing benefit Φk. The reason is that, given
any strategy profile {(x(v, c), q(v, c)), ∀v, c}, the market

shares S̃S
k, S̃R

k , and S̃A will be uniquely determined. Then

we can determine the new average sharing benefit Φ̃k
according to Eq. (36). Therefore, if the strategy profile
{(x∗(v, c), q∗(v, c)), ∀v, c} is a stable point, it follows that

the average sharing benefit Φk = p · h(qk) ·
|S̃R

k
(Φ)|

|S̃ S
k
(Φ)|

. Oth-

erwise, the average sharing benefit Φk will deviate from

p · h(qk) ·
|S̃R

k
(Φ)|

|S̃ S
k
(Φ)|

, and the corresponding strategy profile

{(x(v, c), q(v, c)), ∀v, c} will also change. This completes the
proof.

APPENDIX G

PROOF OF PROPOSITION 6

Proof: The idea is similar to the proof of Proposition 4.
We consider the Banach Fixed Point Theorem for contraction
mapping. The function f(Φk) is defined as

f(Φk) = λΦk + (1 − λ)p · h(qk) ·
|S̃R
k(Φ)|

|S̃S
k(Φ)|

.

We next show that the function f(Φk) is a contraction
mapping. Since the user partitions in the two-dimensional
plane are all line segments, according to the analysis in
the scenario with undifferentiated quality. Hence, the areas

S̃R
k(Φ) and S̃S

k(Φ) are both polygons, and the areas are
polynomial in terms of Φk. We take the first-order derivative
of f ′(Φk), i.e., f ′(Φk). By setting a large enough step size λ,
we can always have |f ′(Φk)| ≤ 1, since the terms in |f ′(Φk)|
containing Φk can be as small as possible when increasing
λ. The difference compared with the proof of Proposition
4 is that we do not have a closed-form expression for the
step size λ. Yet, we can always set a large enough λ to
obtain a contraction mapping at the cost of having more
iterations. Given the initial market shares, the contraction
mapping implies that the iterative process will converge to
a unique stable point. This completes the proof.

APPENDIX H

PROOF OF PROPOSITION 7

Proof: Notice that there is a one-to-one mapping
between a strategy profile {(x(v, c), q(v, c)), ∀v, c} and an
average sharing benefit Φk. The reason is that, given
any strategy profile {(x(v, c), q(v, c)), ∀v, c}, the market

shares S̃S
k, S̃R

k , and S̃A will be uniquely determined.
Then we can determine the new average sharing benefit

Φ̃k(Φ) according to Eq. (44). Therefore, if the strategy
profile {(x∗(v, c), q∗(v, c)), ∀v, c} is a stable point, it fol-

lows that the average sharing benefit Φk = Φ̃k(Φ) =
∑k
i=1

p·h(qi)·|S̃R
i
(Φ)|

∑
K
j=i |S̃

S
j(Φ)|

. Otherwise, the average sharing benefit

Φk will deviate from
∑k
i=1

p·h(qi)·|S̃R
i
(Φ)|

∑
K
j=i |S̃

S
j
(Φ)|

, and the corre-

sponding strategy profile {(x(v, c), q(v, c)), ∀v, c} will also
change. This completes the proof.
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