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Abstract—Mobile crowdsensing (MCS) is a promising sensing paradigm that leverages the diverse embedded sensors in massive

mobile devices. A key objective in MCS is to efficiently schedule mobile users to perform multiple sensing tasks. Prior work mainly

focused on interactions between the task-layer and the user-layer, without considering tasks’ similar data requirements and users’

heterogeneous sensing capabilities. In this work, we propose a three-layer data-centric MCS model by introducing a new data-layer

between tasks and users, enable different tasks to reuse the same data items, hence effectively leverage both task similarities and user

heterogeneities. We formulate a joint task selection and user scheduling problem based on the new framework, aiming at maximizing

social welfare. We first analyze the centralized optimization problem with the statistical information of tasks and users, and show the

bound of the social welfare gain due to data reuse. Then we consider the two-sided information asymmetry of selfish task-owners and

users, and propose a decentralized market mechanism for achieving the centralized social optimality. In particular, considering the

NP-hardness of the optimization, we propose a truthful two-sided randomized auction mechanism that ensures computational

efficiency and a close-to-optimal performance. Simulations verify the effectiveness of our proposed model and mechanism.

Index Terms—Mobile Crowdsensing, Data Reuse and Analysis, Incentive Mechanism Design, Randomized Auction.

✦

1 INTRODUCTION

1.1 Background and Motivations

THE proliferation of hand-held mobile devices with rich
embedded sensors has enabled a new sensing paradigm

known as Mobile CrowdSensing (MCS) [2], where individual
mobile users are involved in performing the sensing tasks
by using their mobile devices. Due to the low deploying cost
and the high sensing coverage, this new sensing paradigm
has attracted a broad range of applications such as urban
dynamic mining, public safety, and environment monitoring
[3]–[5]. In a general multi-task MCS system (e.g., PRISM
[6] and Medusa [7]), each sensing task is first initiated
and announced by a task planner (task owner) via a web
portal. Then the task is assigned to a pool of mobile users
(registered in the system), who will perform the sensing task
accordingly (e.g., sensing the required data and sending the
collected data to the system). While performing a sensing
task, mobile users consume their own device resources such
as battery energy and CPU time, hence incur certain costs.
Thus, users may not be willing to participate in MCS, unless
they receive proper rewards to compensate their costs.

Many prior studies (e.g., [8]–[12]) have studied the
problem of incentivizing users to participate in the MCS
system. These works focused on the interactions of tasks and
users (e.g., the assignment of tasks among users through a
proper matching), without considering the common data re-
quirements (hence the potential data reuse) among multiple
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tasks and the heterogeneous sensing capabilities of different
users. In a practical system, however, there is a high like-
lihood that multiple tasks require some common data [2].
For example, the road traffic data at a particular time and
location may be useful for Waze1, Uber, and Google Traffic
simultaneously. Therefore, it is likely to cause duplicated
data sensing and processing in a multi-task scenario, if
multiple tasks are completed separately by the same user.
Moreover, in a practical system, users may have different
sensing capabilities due to factors such as locations and
device types. For example, it is easier for a user to sense the
data close to her current location. Thus, it is more flexible
and efficient to schedule users on the data level than on the
task level.

To complete multiple tasks more efficiently, it is critical
to identify the common data requirements of these tasks
and enable the reuse of sensory data across different tasks.
Specifically, some practical MCS platforms (e.g., PRISM [6]
and Medusa [7]) have allowed task developers to specify
their data requirements in a high-level language. Then,
they identify and reuse the common data across multiple
tasks in order to reduce or avoid duplicated sensing and
processing. There are several advantages enable data reuse
in the MCS system. First, data is digital goods and can be
reused without additional cost. Second, multiple tasks can
share a large pool of mobile users collectively through the
platform. Third, by reusing data across different tasks, the
overall system efficiency can be improved. A similar MCS
architecture has been discussed in [2] as a future vision.
However, [2] did not provide any theoretical framework or
analysis about the performance gain that can be achieved
through data reuse.

1. Waze (www.waze.com) is the world’s largest community-based
traffic and navigation app.

http://arxiv.org/abs/1705.06055v1
www.waze.com
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Fig. 1. Three-layer data-centric mobile crowdsensing model. The MCS
platform acts as the social planner to maximize the total social welfare.

1.2 Novelty and Contributions

In this work, we propose a novel three-layer data-centric
MCS model, consisting of a data layer, a task layer, and
a user layer, which is different from the traditional two-
layer task-centric model in [8]–[12] (with the task layer and
the user layer only). Specifically, in our data-centric model,
tasks and users are connected through the data layer, that is,
each task is translated to a set of data items that it requires, and
each user is connected to a set of data items that she can sense.
Moreover, different tasks may require a common data item (hence
can reuse the data item reported by users), and different users
may be able to sense the same data item (hence compete with each
other for the sensing opportunity). Thus, it is able to leverage
both the task similarity (in terms of data requirements) and
the user heterogeneity (in terms of sensing capabilities). Fig. 1
illustrates such a crowdsensing model with 6 tasks, 6 users,
and 8 data items, where task 1 requires data items {1, 2},
and user 1 is able to sense data items {1, 2, 3} simultane-
ously.

In such a data-centric model, the MCS platform (social
planner) collects the data requirements of tasks and the
sensing capabilities of users, and then decides whether
and how to complete these tasks by a proper set of users
efficiently. Formally,

• Which tasks can be completed?
• Which users will be scheduled for sensing which

data?

We focus on the optimal task selection and user scheduling
that maximize the social welfare, where the social welfare is
the difference between the total values of completed tasks
and the total costs of scheduled users. We are interested
in understanding two key questions. The first question is
what is the performance gain due to data reuse? Such a
gain depends on the numbers of tasks and users as well
as their data requirements. We want to analytically derive
the performance gain for any given sets of tasks and users.
Solving this problem is very challenging, as it is NP-hard
due to the combinatorial nature. Moreover, it requires the
complete information regarding the task values and users’
sensing costs, which are often private information of task
owners and users, respectively. Hence the second related
question is how to achieve the optimal performance gain in
a practical scenario with a limited computational capability
and incomplete information? One approach is to design a
truthful incentive mechanism to elicit such private informa-
tion from both task owners and users. However, some well-
known truthful incentive mechanisms such as the standard
VCG auction [26] are not suitable for our problem due to
the high computational complexity.

To answer the above two questions, we first conduct a
statistical analysis for the bound of the performance gain
due to data reuse, and show that such a gain can be
quite significant. To reach the optimal performance bound,
a social planner needs to make a centralized decision on
behalf of all task owners and users. However, in practice,
task owners and users are selfish and unwilling to report
their private information about task values and sensing cost,
which makes the centralized implementation infeasible. To
address this issue, we will design an incentive mechanism
that satisfies the individual rationality and incentive com-
patibility for all task owners and users. Such a mechanism
also needs to have a low computational complexity and
ensures a proper budget balance. To satisfy all the above
requirements, we propose a two-sided randomized auction
that is tractable for theoretical performance analysis.

Specifically, we resort to the randomized auction frame-
work [14] for our mechanism design, with the MCS platform
acting as the auctioneer and the participating task owners
and users acting as the bidders. We propose a truthful ran-
domized auction, consisting of (i) a randomized allocation
rule, which picks up an “allocation” (i.e., a feasible solution
to the task selection and user scheduling) randomly from a
set of feasible solutions according to some probability dis-
tribution, and (ii) a payment rule, which assigns a payment
for each task owner and user under the chosen allocation.
Randomized auctions have been adopted for the resource
allocation in wireless networking [15], covering problems
[16], cloud computing [17], and electricity markets [18].
The key difference between our randomized auction and
those in [15]–[18] is that our auction is two-sided, i.e., we
need to decide both the task selection (task values) and
the user scheduling (sensing costs) under mutual information
asymmetry; while the auction models in [15]–[18] are single-
sided (i.e., considering either values or costs), hence are not
directly applied to our problem setting.

The proposed randomized auction is truthful (in expec-
tation), in the sense that task owners and users have no
incentives to misreport their private task values and sens-
ing costs, respectively. We further show that the proposed
truthful randomized auction is computationally efficient, as
both the allocation rule and payment rule can be computed
in polynomial time. In summary, we list the key results and
the corresponding section numbers in Table 1. Our main
results and key contributions are summarized as follows.

• Novel Data-Centric Crowdsensing Model: To our best
knowledge, this is the first work that analytically ex-
ploits data reuse across multiple tasks and analyzes
the performance bound due to data reuse in MCS.
We propose a novel three-layer data-centric model,
which leverages both the task similarity and the user
sensing heterogeneity.

• Performance Bound Analysis of Data Reuse: Our an-
alytical result shows that the lower bound of the
social welfare gain due to data reuse is 2 for a single
reusable data item, when the number of tasks and the
number of users are comparable to each other. That
is, the social welfare is at least doubled by exploiting
data reuse across tasks for a single reusable data
item. As the number of data items increases, the
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TABLE 1
Key Results In This Paper

Mechanism Truthfulness Efficiency Budget Balance Complexity Section no.

1: Two-sided VCG auction Truthful Optimal No NP-hard 4.2

2: Fractional VCG auction Truthful Fractional optimal No Polynomial 4.3

3: Randomized auction Truthful in expectation Close-to-optimal No Polynomial 4.3

4: Randomized auction (reserve price) Truthful in expectation Close-to-optimal Yes Polynomial 5.2

social welfare gain due to data reuse also increases.
• Randomized Auction Mechanism for Incomplete Informa-

tion and Limited Computation: To address the complex-
ity issue of the joint task selection and user schedul-
ing and elicit the two-sided private information from
both task owners and users, we propose a truthful
two-sided randomized auction mechanism, which is
computationally efficient, individually rational, and
incentive compatible (truthful) in expectation. We
further design a randomized auction mechanism
with a reserve price to achieve the budget balance,
with a slightly reduced social welfare.

• Observations and Insights: Simulations show that (i)
the social welfare gain due to data reuse increases
with the task similarity and reaches up to 1300% in
our simulations, and (ii) our proposed randomized
auction achieves at least 90% of the maximum social
welfare. Furthermore, the increase of the task simi-
larity increases the social welfare with data reuse, as
the required number of users performing the tasks
can be reduced. However, the increase of the task
similarity decreases the social welfare without data
reuse, due to the increased user competition.

The rest of the paper is organized as follows. In Section 2,
we present the system model. In Section 3, we theoreti-
cally analyze the performance bound. In Section 4, we first
propose the two-sided auction framework to address the
incomplete information problem. Then we characterize the
randomized auction mechanism. To make the randomized
auction budget-balanced, we further propose a reserve price
based randomized auction in Section 5. We present the
simulation results in Section 6, and conclude in Section 7.

2 SYSTEM MODEL

In this section, we first present the crowdsensing platform
model, task model, and user model. Then we formulate the
social welfare maximization problem.

2.1 Crowdsensing Platform Model

We consider a general multi-task MCS platform consisting
of a set J = {1, 2, · · · , J} of tasks, a set I = {1, 2, · · · , I}
of mobile users, and a set K = {1, 2, · · · ,K} of target data
items. Each data item k ∈ K is characterized by a set of
fine-grained parameters such as the data type, location, and
time.2 Each task j ∈ J is associated with a set of data
requirements Kj ⊆ K, and each user i ∈ I is able to sense

2. For example, a data item can be the temperature of a room at 11
am every day, the traffic speed of a highway at 6 pm, or a raw sensor
reading such as GPS and light sensor.

a specific set Si ⊆ K of data items. As different tasks can
reuse the same data item, there may exist two tasks j1 and
j2 with overlapping data requirements, i.e., Kj1

⋂
Kj2 6= ∅.

Fig. 1 illustrates such a three-layer data-centric MCS model.
The crowdsensing model operates in a time-slotted man-

ner. We divide the whole time period into multiple time slots,
where each time slot can be an hour or a day, depending
on the data precisions of tasks or users. At the beginning
of each time slot, (i) each task owner registers her task on
the platform, indicating the data requirements of the task
and the potential value that she can achieve when the task
is completed; and (ii) each user reports her information
on the platform, indicating the sensing capability of the
user (i.e., the set of data items that she can sense) and the
potential cost for sensing any subset of data items within her
capability. After collecting the reported information from
all task owners and users, the platform decides the task
selection (i.e., selecting a set of tasks to be completed) and
the user scheduling (i.e., scheduling a set of users to sense
the associated data items of the selected tasks).

2.2 Task Model

Recall that each task j ∈ J is associated with a set of data
requirements Kj ⊆ K in the time slot that we focus on, and
a task value vj > 0 when it is completed. The task value vj
is the private information of task j, and cannot be observed
by the platform, users, or other tasks. This is one of the two
key challenges for optimizing a crowdsensing system with
data reuse. We assume that a task j is completed if and only
if each of its required data items in Kj has been sensed by at
least one user. Let zj ∈ {0, 1} denote whether a task j ∈ J
is completed, and yk ∈ {0, 1} denote whether a data item
k ∈ K is sensed by at least one user. Then, for each task
j ∈ J , we have the following constraint:

zj ≤ yk, ∀k ∈ Kj . (1)

Given a feasible task selection z = (zj , j ∈ J ), the total
achieved value (of all completed tasks) is:

V (z) =
∑

j∈J

vj · zj . (2)

2.3 User Model

Recall that each user i ∈ I is able to sense a set Si of data
items in the time slot that we focus on. The platform can
schedule user i to sense a subset S ⊆ Si of data items within
her sensing capability, associated with a sensing cost ci(S).
Let xi(S) ∈ {0, 1} denote whether a user i is scheduled to
sense a data set S ⊆ Si. When S = ∅, then xi(∅) = 1 denotes
that user i is not scheduled to sense any data set, hence has
a zero sensing cost, i.e., ci(∅) = 0.
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We assume that a user can only be scheduled to sense
one data set within her capability in the target time slot.
That is, for each user i ∈ I, we have the following user
scheduling constraint:

∑

S⊆Si

xi(S) = 1. (3)

If a user is scheduled to sense multiple data sets, say S1
i and

S2
i , it is equivalent to scheduling the user to sense the data

set S1
i

⋃
S2
i . Let xi = (xi(S), S ⊆ Si) denote the scheduling

vector of user i. Then, given a feasible user scheduling x =
(xi, i ∈ I), the total incurred sensing cost (of all scheduled
users) is:

C(x) =
∑

i∈I

∑

S⊆Si

ci(S) · xi(S). (4)

Let yki ∈ {0, 1} denote whether a data item k is sensed
by a user i, that is, yki =

∑
S⊆Si:k∈S xi(S). Recall that yk ∈

{0, 1} denotes whether a data item k ∈ K is sensed by at
least one user. Then, for each data item k ∈ K, we have the
following constraint:

yk ≤
∑

i∈I

yki. (5)

Moreover, we denote ci = (ci(S), S ⊆ Si) as the sensing
cost vector of user i for all possible subsets of data items that
she can sense. In practice, the sensing cost vector ci is the
private information of user i, and cannot be observed by the
platform, task owners, or other users. This is the second key
challenge for optimizing a crowdsensing system with data
reuse. Besides the task values and the user sensing costs, all
the other information (i.e., the data requirement Kj of task j
and the sensing capability Si of user i) are public information
to the MCS platform. This is because both task owners and
users need to first register with the MCS platform, and have
no incentives to misreport the information.3

2.4 Social Welfare Maximization

The social welfare W (x, z) is defined as the difference
between the total value V (z) of all completed tasks and
the total sensing cost C(x) of all scheduled users, i.e.,

W (x, z) = V (z)− C(x). (6)

The objective of the platform is to decide the best task
selection z and user scheduling x to maximize the social
welfare W (x, z). Formally, we can formulate such a joint
task selection and user scheduling problem (P1) as follows.

P1: max
x,y,z

V (z)− C(x)

s.t. (1)–(5), ∀i ∈ I, j ∈ J , k ∈ K;

var. xi(S) ∈ {0, 1}, ∀S ∈ Si, i ∈ I;

zj ∈ {0, 1}, ∀j ∈ J ;

yk ∈ {0, 1}, ∀k ∈ K.

Here y , (yk, k ∈ K) is an intermediate variable de-
noting whether each data item is sensed (by at least one

3. For task owner j ∈ J , under-reporting the data requirement Kj

means that her data will never be completed (which leads to a task
value of 0) , and over-reporting Kj causes additional cost for achieving
the same task value. For user i ∈ I , under-reporting the sensing
capability Si weakens her own competitiveness, and over-reporting Sj

can be easily detected by the MCS platform.

user), which bridges the relationship between the task
selection and the user scheduling. It is easy to see that
Problem P1 is a binary integer linear programming prob-
lem. Let {xo,yo, zo} denote the optimal solution to P1.
For presentation clarity, we will also write {xo,yo, zo} as
{xo(c,v),yo(c,v), zo(c,v)}, as all of them are functions of
the user sensing costs c = (ci, i ∈ I) and the task values
v = (vj , j ∈ J ).

There are two main issues that we are interested in inves-
tigating. First, what is the performance gain via data reuse?4

Second, how to achieve the above performance gain in a
practical scenario with a limited computational capability
and incomplete information? Solving Problem P1 is very
challenging. Problem P1 is NP-hard (as the special case of
P1 can be reduced to the set cover problem), and hence it
is important to design a low-complexity approximate algo-
rithm to find an approximate solution. Meanwhile, solving
Problem P1 requires the complete system information in-
cluding the data requirements and values of all tasks as well
as the sensing capabilities and costs of all users. However,
as we have mentioned earlier, users’ sensing costs and tasks’
values are their private information, and cannot be observed
by the MCS platform. Thus, we need to design a truthful
incentive mechanism to elicit such private information.

To this end, we will first study the performance gain of
data reuse and analyze the performance bound in Section 3,
where the social planner makes decisions for all users and
task owners. Then we will focus on incentive mechanisms
design to address the complexity and incomplete informa-
tion issues in Section 4.

3 PERFORMANCE BOUND ANALYSIS OF DATA

REUSE

In this section, we analyze the performance bound with data
reuse. We start with the simplest case of one data item, the
analysis of which provides us insights into the more general
case. We will consider multiple tasks and multiple users,
with explicitly closed results derived for the case of two
tasks and two users. Then we will consider the more general
case of multiple data items, multiple users, and multiple
tasks through numerical studies.

3.1 Order Statistics Basics

The analysis in Section 3 will rely on the tools from Order
Statistics [19], the basics of which will be reviewed in this
subsection.

Let X1, X2, · · · , Xn be n random variables sampled
from a continuous distribution with the p.d.f. f(x) and
the c.d.f. F (x). The corresponding order statistics are
the sequence arranged in the nondecreasing order. The
smallest of the sample is denoted by X1:n, i.e., X1:n =
min(X1, X2, · · · , Xn), the m-th smallest of the sample is
denoted by Xm:n, and finally the largest of the sample is
denoted by Xn:n, i.e., Xn:n = max(X1, X2, · · · , Xn). Then
we have X1:n ≤ · · · ≤ Xm:n ≤ · · · ≤ Xn:n. The p.d.f. of
Xm:n for 1 ≤ m ≤ n is

fm:n(x) = n

(
n− 1

m− 1

)
(F (x))m−1(1− F (x))n−mf(x). (7)

4. Due to the page limit, we put the problem formulation for the
social welfare maximization without data reuse to Appendix A.
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Now we derive the joint distribution of all n order statis-
tics and the joint distribution of the first s (1 ≤ s ≤ n) order
statistics, respectively. First notice that if F (x) is continuous,
then with probability 1 the order statistics of the samples
take distinct values. Hence it is reasonable to assume the re-
alizations of the n order statistics X1:n ≤ X2:n ≤ · · · ≤ Xn:n

to be x1:n < x2:n < · · · < xn:n. This means that the original
random variables X1, X2, · · · , Xn are restrained to take
on the values xm:n(m = 1, 2, · · · , n), which by symmetry
assigns the equal probability for each of the n! permutations
of (1, 2, · · · , n). Hence, we have the joint density function of
all n order statistics to be

f1,2,··· ,n:n(x1, x2, · · · , xn) = n!
n∏

m=1

f(xm), x1 < · · · < xn.

(8)
Furthermore, for the first s (1 ≤ s ≤ n) order statistics
X1:n ≤ · · · ≤ Xs:n, by symmetry we need to assign
the equal probability for each of the n! permutations of
(1, 2, · · · , n), and then take into account the first s, i.e.,
(1, 2, · · · , s). Hence, we have the joint density function of
the first s (1 ≤ s ≤ n) order statistics to be

f1,2,··· ,s:n(x1, x2, · · · , xs) = n!
s∏

m=1

f(xm), x1 < · · · < xs.

(9)
Similarly, if we define the nonincreasing order statistics as
X1:n ≥ X2:n ≥ · · · ≥ Xn:n, then the joint distribution of the
first s (1 ≤ s ≤ n) nonincreasing order statistics is

f1,2,··· ,s:n(x1, x2, · · · , xs) = n!
s∏

m=1

f(xm), x1 > · · · > xs.

(10)
Given the above preliminaries, we will conduct the per-

formance bound analysis in the following subsections.

3.2 Analysis for a Single Reusable Data Item

In the case with a single data item, each task requires the
data item to be completed, and each user can sense the same
data item. We assume that the task values (vj , j ∈ J ) follow
the i.i.d. distribution with the same p.d.f. f(v), and the user
costs (ci, i ∈ I) follow the i.i.d. distribution with the same
p.d.f. g(c).

3.2.1 Analysis without Data Reuse

In the scenario without data reuse, since all tasks require
the same data, user i has the same cost ci to complete any of
the tasks. We propose the following method to analyze this
scenario. We sort the task values by the descending order,
i.e., v1:J ≥ v2:J ≥ · · · ≥ vJ:J , and sort sensing costs by the
ascending order, i.e., c1:I ≤ c2:I ≤ · · · ≤ cI:I . Then, there is a
threshold m such that the m-th task value is no greater than
the m-th user cost. The social welfare maximization selec-
tion selects tasks with values v1:J , · · · , vm:J and users with
sensing costs c1:I , · · · , cm:I . Hence, we have min{I, J} + 1
cases in terms of the threshold m as follows.

• Case 0: v1:J < c1:I , then the task and user selection
set is T0 = {(v, c) : v1:J < c1:I};

• Case m, 1 ≤ m ≤ min{I, J} − 1: vm:J ≥ cm:I and
vm+1:J < cm+1:I , then the task and user selection set
is Tm = {(v, c) : vm:J ≥ cm:I , vm+1:J < cm+1:I};

• Case min{I, J}: vmin{I,J}:J ≥ cmin{I,J}:I , then the
task and user selection set is Tmin{I,J} = {(v, c) :
vmin{I,J}:J ≥ cmin{I,J}:I}.

For case 0, no tasks or users will be selected, and the
social welfare is 0.

For case m, 1 ≤ m ≤ min{I, J} − 1, tasks with values
v1:J , · · · , vm:J and users with costs c1:I , · · · , cm:I will be
selected. Hence, the social welfare SWn[m] is

SWn[m] =

∫

Tm

m∑

k=1

(vk:J − ck:I) f1,··· ,m+1:Jg1,··· ,m+1:Idvdc.

For case min{I, J}, tasks with values
v1:J , · · · , vmin{I,J}:J and users with costs
c1:I , · · · , cmin{I,J}:I will be selected. Hence, the social
welfare SWn[min{I, J}] is

SWn[min{I, J}] =

∫

Tmin{I,J}

min{I,J}∑

k=1

(vk:J − ck:I)×

f1,··· ,min{I,J}:Jg1,··· ,min{I,J}:Idvdc.

Hence, the total social welfare without data reuse is the
sum of the social welfare in the min{I, J}+ 1 cases, i.e.,

SWn =

min{I,J}−1∑

m=1

SWn[m] + SWn[min{I, J}]. (11)

By transforming the domains of integration Tm(m =
1, · · · ,min{I, J}), it turns out that we can derive the social
welfare without data reuse in the following explicit form.
That is,

SWn =

min{I,J}∑

m=1

∫ 1

0

∫ v1:J

0
· · ·

∫ vm−1:J

0
· · ·

∫ vmin{I,J}−1:J

0
∫ vm:J

0

∫ v2:J

c1:I

· · ·

∫ vm:J

cm−1:I

∫ 1

cm:I

∫ 1

cm+1:I

· · ·

∫ 1

cmin{I,J}−1:I

(vm:J − cm:I)[(min{I, J})!]2
min{I,J}∏

k=1

f(vk)g(ck)

dcmin{I,J}:I · · · dc2:Idc1:Idvmin{I,J}:J · · · dv2:Jdv1:J . (12)

In particular, if (vj , j ∈ J ) and (ci, i ∈ I) follow i.i.d.
uniform distributions, the integral can be further simplified

since
∏min{I,J}

k=1 f(vk)g(ck) = 1. Under the assumption of
uniform distributions, we have the following results in
Proposition 1.

Proposition 1 (Social Welfare without Data Reuse). Under
the i.i.d. uniform distributions of (vj , j ∈ J ) and (ci, i ∈ I), the
social welfare without data reuse is J/4 when the number of users
and the number of tasks are identically and sufficiently large, i.e.,
I = J → ∞. The social welfare without data reuse is J/2 when
J is finite and I → ∞, and is I/2 when I is finite and J → ∞.

3.2.2 Analysis with Data Reuse

In the scenario with data reuse, we have two possible cases:

• Case I: If min{ci, i ∈ I} ≤
∑

j∈J vj , then the
minimum cost user will sense the data of all tasks,
and all tasks will be selected. Let c = min{ci, i ∈ I}
and v =

∑
j∈J vj , then the task and user selection set

is R = {(v, c) : min{ci} ≤
∑

j∈J vj}. Let the p.d.f.
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of min{ci, i ∈ I} be gmin{ci,i∈I}(c) and the p.d.f. of∑
j∈J vj be f∑

j∈J vj (v), then the social welfare is
∫

R
(v − c)f∑

j∈J vj (v)gmin{ci,i∈I}(c)dvdc.

• Case II: If min{ci, i ∈ I} >
∑

j∈J vj , then no task or
user will be selected. The social welfare is 0.

Hence, the total social welfare with data reuse is the sum of
the social welfare in the two cases, which is given by

SWr =

∫

R
(v − c)f∑

j∈J vj (v)gmin{ci,i∈I}(c)dvdc. (13)

By transforming the domain of integration R, it turns
out that we can derive the social welfare with data reuse in
the following explicit form. That is,

SWr =

∫ 1

0

∫ v

0
(v − c)f∑

j∈J vj (v)gmin{ci,i∈I}(c)dcdv

+
J−1∑

j=1

∫ j+1

j

∫ 1

0
(v − c)f∑

j∈J vj (v)gmin{ci,i∈I}(c)dcdv.

(14)

In particular, if (vj , j ∈ J ) and (ci, i ∈ I) follow i.i.d.
uniform distributions, then the term

∑
j∈J vj follows the

Irwin-Hall distribution with the p.d.f.

f∑
j∈J vj (v) =

1
2(J−1)!

∑J
j=0(−1)j

(
J
j

)
(v − j)n−1sgn(v − j),

where sgn(·) is the sign function, i.e., sgn(x) = −1 if x < 0,
sgn(x) = 0 if x = 0, and sgn(x) = 1 if x > 0. The term
min{ci, i ∈ I} follows a distribution with the following
p.d.f.,

gmin{ci,i∈I}(c) = I(1− c)I−1.

We have the following result with uniform distribution.

Proposition 2 (Social Welfare with Data Reuse). Under the
i.i.d. uniform distributions of (vj , j ∈ J ) and (ci, i ∈ I), the
social welfare with data reuse is given by

SWr =
J

2
− 1 +

I

I + 1
. (15)

That is, the social welfare with data reuse is J/2 when the number
of users I → ∞.

3.2.3 Performance Bound

We show the performance bound by comparing the social
welfare with and without data reuse. In particular, we define
the (relative) performance gain due to data reuse as

γ =
SWr

SWn

. (16)

Based on Propositions 1 and 2, we have the following
results on the relative performance gain γ defined in (16).

Proposition 3 (Performance Bound). Under the i.i.d. uniform
distributions of (vj , j ∈ J ) and (ci, i ∈ I),

• when the numbers of users and tasks are identical and
sufficiently large, e.g., I = J → ∞, the lower bound
of the relative performance gain is γlower bound =
(J/2)/(J/4) = 2. That is, the social welfare is at least
doubled by exploiting data reuse across tasks;

• when the number of users is sufficiently large, e.g.,
I → ∞, with a limited J , the lower bound of the relative
performance gain is γlower bound = (J/2)/(J/2) = 1.

That is, the social welfare due to data reuse is at least the
same as that without data reuse;

• when the number of tasks is sufficiently large, e.g., J →
∞, with a limited I , the lower bound of the relative per-
formance gain is γlower bound = (J/2)/(I/2) = J/I.
That is, the social welfare due to data reuse is much larger
than that without data reuse.

3.3 A Special Case of Two Tasks and Two Users

The previous results are derived for large values of I and J .
Next, we will consider finite values of I and J . As a special
case, we will consider two tasks and two users, and derive
some additional insights regarding data reuse.

We assume two tasks and two users, and the task values
and sensing costs follow i.i.d. uniform distributions on [0, 1].
We will derive the explicit expression for the gain γ.

We first consider the case without data reuse. The joint
distribution of g1,2:2(c1, c2) is

g1,2:2(c1, c2) = 2g(c1)g(c2) = 2, 0 ≤ c1 < c2 ≤ 1.

The joint distribution of f1,2:2(v1, v2) is

f1,2:2(v1, v2) = 2f(v1)f(v2) = 2, 1 ≥ v1 > v2 ≥ 0.

Hence, the social welfare without data reuse can be com-
puted by (12) as

SWn = 4

∫ 1

0

∫ v1:2

0

∫ v1:2

0

∫ 1

c1:2

(v1:2 − c1:2)dc2:2dc1:2dv2:2dv1:2

+ 4

∫ 1

0

∫ v1:2

0

∫ v2:2

0

∫ v2:2

c1:2

(v2:2−c2:2)dc2:2dc1:2dv2:2dv1:2 =
2

5
.

Now we consider the case with data reuse. We have

fv1+v2(v) = min{1, v} −max{0, v − 1}, 0 ≤ v ≤ 2,

and
fmin{c1,c2}(c) = 2(1− c), 0 ≤ c ≤ 1.

Hence, the social welfare with data reuse can be computed
explicitly by (14) as

SWr =

∫ 1

0

∫ v

0
(v − c) · v · 2(1− c)dcdv

+

∫ 2

1

∫ 1

0
(v − c) · (2− v) · 2(1− c)dcdv =

41

60
.

Hence, the relative performance gain due to data reuse
is γ = SWr/SWn = 41

60/
2
5 ≈ 1.7.

For the general case of a finite number of tasks and a
finite number of users, we will use the Monte Carlo method
[20] to compute γ numerically. Figs. 2 and 3 show the
impact of the task number and the user number on the
relative performance gain, respectively. We can see when the
number of tasks equals the number of users (both are larger
than 10), the relative performance gain is 2, which means
that the social welfare with data reuse is doubled of that
without data reuse. Furthermore, the relative performance
gain is decreasing with the number of users, and increasing
with the number of tasks. Increasing the number of users
has little impact on the social welfare with data reuse SWr ,
since the user with the minimum sensing cost completes
all tasks; while it can increase the social welfare without
data reuse SWn due to the increasing user competition.
Increasing the number of tasks can increase SWr due to
data reuse; while it can decrease SWn due to the increasing
task competition.



7

20 40 60 80 100
1

2

3

4

5

6

7

8
R

e
la

ti
v
e

 P
e

rf
o

rm
a

n
c
e

 G
a

in

Number of Users I

I=J

30 tasks

40 tasks

50 tasks

60 tasks

Fig. 2. Impact of the number of users on the
relative performance gain

20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

4.5

R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

 G
a

in

Number of Tasks J

I=J

30 users

40 users

50 users

60 users

Fig. 3. Impact of the number of tasks on the
relative performance gain

0 0.2 0.4 0.6 0.8 1
2

2.05

2.1

2.15

2.2

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e
 G

a
in

Probability of Data Demand

1 data

3 data

5 data

7 data

Fig. 4. Impact of multiple data items on the
relative performance gain

3.4 Analysis for Multiple Data Items

So far, we have considered the simplified scenario with one
data item. The analysis for the scenario with multiple data
items is quite challenging, due to the complicated coupling
of tasks’ data requirements and users’ sensing capability
across different data items. To show the key insights, we
numerically study the impact of the number of data items
on the performance gain with data reuse.

In the numerical studies, we fix both the number of
tasks J and the number users I as 50. The number of data
items increases from 1 to 7. To show the impact of the
number of data items on the relative performance gain γ,
we assume that each task requires each data item with a
fixed probability, and each user can senses each data item
with the same probability. This captures the average data
supply (users’ sensing capabilities) and data demand (tasks’
data requirements) for each data item.

Fig. 4 shows the impacts of the number of data items and
the data demand probability on the relative performance
gain. We have two observations. First, we can see that the
relative performance gain increases with the number of data
items. On one hand, increasing the number of data items
will decrease the social welfare with data reuse and that
without data reuse, due to the decreased task value per
data and the increased sensing cost per data. On the other
hand, allowing data reuse across tasks weakens the above
effect, so that the reduction of the social welfare with data
reuse is less that without data reuse. Hence, the relative
gain increases with the number of data items. Second, the
relative gain first increases and then decreases with the
data demand probability. On one hand, the social welfare
without data reuse first decreases and then increases with
the data demand probability, due to the different impacts
of task competition and user competition. When the prob-
ability is small, each task’s data requirement is small and
can be easily completed, leading to a larger social welfare.
When the probability is large, each user’s sensing capability
is large, and the user competition leads to a larger social
welfare.5 On the other hand, the social welfare with data
reuse is approximately concave increasing with the data

5. When the probability is 0, all tasks (no data needs) can be com-
pleted without decreasing the social welfare. When the probability is 1,
each task requires all data, and each user can sense all data. The above
two cases are both equivalent to the case with one data item, and hence
the gain is approximately 2, as is shown is Fig. 2.

demand probability, due to the increasing reuse of data
items. Hence, a larger relative reuse gain can be achieved
when the data demand probability is medium.

However, theoretically understanding the benefit of data
reuse is only the first step towards realizing the benefit of
data reuse. In practice, tasks owners and users are selfish,
and maybe unwilling to report their private information
about task values and sensing cost. Hence we need to
design an incentive mechanism to induce task owners and
users to truthfully report their private information, while
satisfying other properties such as achieving the maximum
social welfare and computational efficiency.

4 AUCTION-BASED INCENTIVE MECHANISMS

In this section, we study the problem of achieving the above
performance gain in the practical scenario with limited
computational capability and incomplete information. We
propose a two-sided auction-based incentive mechanism
framework for solving Problem P1. First, we propose a two-
sided VCG auction mechanism (as the benchmark) for solv-
ing Problem P1 exactly, which is feasible, socially optimal,
but computationally difficult. Then we further propose a
feasible, close-to-optimal, and low-complexity randomized
auction mechanism for solving Problem P1 approximately
in polynomial time. We aim to design an incentive mecha-
nism satisfying the following five desirable properties:

• Incentive Compatibility (IC, Truthfulness): Report-
ing the true task value (and the true sensing cost,
respectively) is the dominant strategy for each task
owner (and each user, respectively), no matter what
others report.

• Individual Rationality (IR): Each participating task
owner and user will have a non-negative utility
by reporting the true task value and sensing cost,
respectively.

• Feasibility and Economic Efficiency: The outcome
of the mechanism can be implemented in practice
(i.e., through an integer allocation) and maximizes
the social welfare.

• Computational Efficiency: The outcome of the mech-
anism can be computed in polynomial time.

• Budget Balance: The total payment obtained from
the selected task owners should be no less than the
total payment paid to the scheduled users.
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4.1 Two-sided Auction Framework

To solve Problem P1 with two-sided private information, we
propose a two-sided auction-based incentive mechanism,
where the platform acts as an auctioneer purchasing data
from mobile users (bidders on one side) and selling data
to task owners (bidders on the other side). In this auction
framework, the platform first announces an allocation rule
(for task selection and user scheduling) and a payment rule
(for payments to the scheduled users and prices charged to
the selected task owners). Then, each task owner submits
a bid (indicating her task value) and each user submits
a bid (indicating her sensing cost) to the platform, which
can be different from the true task value and the true user
sensing cost, respectively. Finally, the platform computes the
allocations and payments, based on the reported bids of
all task owners and users, together with other public in-
formation (e.g., tasks’ data requirements and users’ sensing
capabilities). In this work, we are interested in designing the
truthful auction, where task owners and users submit their
private information truthfully.

Next, we provide the key notations. Let uj denote the
reported value (bid) of task j. Let bi = (bi(S), S ⊆ Si)
denote the reported sensing cost vector (bid) of user i, where
bi(S) denotes the user reported sensing cost for a data set
S ⊆ Si. Let u , (uj , j ∈ J ) denote the bids of all tasks and
b , (bi, i ∈ I) denote the bids of all users. If an auction
is truthful, we will have b = c and u = v at the equilib-
rium. With a little abuse of notation, we denote {x(·), z(·)}
as the allocation rule, where x(·) , (xi(·), i ∈ I) is
the user scheduling vector and z(·) , (zj(·), j ∈ J ) is
the task selection vector. We further denote {p(·), q(·)}
as the payment rule, where p(·) , (pi(·), i ∈ I) is the
user payment vector and q(·) , (qj(·), j ∈ J ) is the
task charge vector. Note that x(·), z(·), p(·), and q(·) can
also be written as x(b,u), z(b,u), p(b,u), and q(b,u),
as they are all functions of the user bid vector b and
the task bid vector u. For convenience, we write such
an auction mechanism as Ω , {x(·), z(·);p(·), q(·)} or
Ω , {x(b,u), z(b,u);p(b,u), q(b,u)}.

4.2 Two-sided VCG Auction (Benchmark)

We first propose a two-sided VCG auction, which is a
nontrivial extension of the classic VCG auction [26], due
to the two-sided information asymmetry. In our two-sided
VCG auction, the allocation rule aims to maximize the social
welfare defined on the reported sensing costs and task values, and
the payment rule aims to pay each scheduled user the social
benefit that she generates and to charge each selected task
owner the social damage that she imposes. Formally,

Mechanism 1 (Two-sided VCG Auction Mechanism – Ωo).

• Allocation Rule {x(b,u), z(b,u)}:

x(b,u) = xo(b,u) and z(b,u) = zo(b,u),

where {xo(b,u), zo(b,u)} is the optimal solution to
Problem P1, by replacing c with the reported cost b and v

with the reported value u in Problem P1;
• Payment Rule {p(b,u), q(b,u)}:

p(b,u) = po(b,u) , (poi (b,u))i∈I ,

q(b,u) = qo(b,u) , (qoj (b,u))j∈J ,

where

poi (b,u),
∑
j∈J

ujz
o
j (b,u)−

∑
n∈I\{i}

∑
S⊆Sn

bn(S)xo
n(S)−W

o
−i,

qoj (b,u),W
o
−j−

∑
j∈J\{j}

ujz
o
j (b,u)+

∑
n∈I

∑
S⊆Sn

bn(S)xo
n(S),

where W o
−i is the maximum social welfare (defined on bids

b,u) excluding user i’s bid; W o
−j is the maximum social

welfare (defined on bids b,u) excluding task j’s bid.6

In Mechanism 1, task owner j ∈ J chooses the bid
uo
j such that uo

j = argmaxuj
(vj − qoj (b,u)); user i ∈ I

chooses the bid b
o
i such that b

o
i = argmaxbi

(poi (b,u) −∑
S⊆Si

ci(S)). The bid (bo,uo) is a Nash equilibrium, if
each user and each task owner have no incentives to uni-
laterally change her bid, respectively. For convenience, we
write Mechanism 1 as Ωo = {xo(·), zo(·);po(·), qo(·)} or
Ωo = {xo(b,u), zo(b,u);po(b,u), qo(b,u)}. By extending
the analysis of the standard VCG auction [26] to our two-
sided scenario, we can show that truthful reporting is a dom-
inant strategy for both users and task owners, i.e., bo = c

and uo = v constitute the unique Nash equilibrium. This
further implies that Mechanism 1 is efficient, as its allocation
maximizes the social welfare defined in (6).

Proposition 4 (Truthfulness and Efficiency). Mechanism 1 is
individually rational, incentive compatible (truthful), and maxi-
mizes the social welfare (efficient).

Although Mechanism 1 exhibits several desirable prop-
erties, computing the two-sided VCG auction outcome
needs to solve the NP-hard Problem P1, which is compu-
tationally intractable. To this end, we will propose a low-
complexity auction mechanisms next.

4.3 Two-sided Randomized Auction

Inspired by the randomized auction in [14], [15], we now
propose a low-complexity two-sided randomized auction
mechanism, which operates in polynomial time. Due to
the two-sided structure of mutual information asymmetry,
our auction is different from the traditional single-sided
auctions [14], [15].

In the following, we start from the linear programming
relaxation of Problem P1, obtain an associated linear pro-
gramming Problem P2 in the fractional domain, from which
we further derive the fractional VCG auction (which may
not be implementable in practice). Then, through proper
decompositions, we transform the fractional VCG auction to
a two-sided randomized auction (which is implementable).

4.3.1 Linear Programming Relaxation

We first relax the joint task selection and user scheduling
Problem P1 to the fractional domain (i.e., relax every bi-
nary variable in {0, 1} to the domain [0, 1]), and denote
the associated linear programming problem as Problem P2.
Note that Problem P2 can be solved to its optimality in
polynomial time, as it is a standard linear programming
problem [27]. We refer to the optimal solution of Problem
P2 as the fractional optimal solution, denoted by {x∗,y∗, z∗}

6. Specifically, W o
−i

is the maximizer of Problem P1, by replacing c

with b and v with u, and excluding user i’s bid bi, before solving
Problem P1. Similarly, W o

−j
is obtained by excluding task j’s bid uj .
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or {x∗(c,v),y∗(c,v), z∗(c,v)}. It is notable that the max-
imum objective value of Problem P2 provides an upper-
bound for the optimal objective function value of Problem
P1, and the gap is usually called the integrality gap [27].
Intuitively, a fractional solution can be viewed as the fraction
of the time that users are scheduled or tasks are selected.

Next, we present the fractional VCG auction Ω∗, where
the allocation rule aims to maximize the social welfare
(based on user bids b and task bids u) in the fractional domain,
and the payment rule aims to pay each scheduled user her
social benefit and charge each selected task her social dam-
age. The detailed mechanism is similar to Ωo, except that
we replace the integer solution {xo(b,u), zo(b,u)} by the
fractional optimal solution {x∗(b,u), z∗(b,u)}, and solving
Problem P2 rather than P1 when deciding the payments. We
formally show the mechanism as follows.

Mechanism 2 (Fractional VCG Auction Mechanism – Ω∗).

• Allocation Rule {x(b,u), z(b,u)}:

x(b,u) = x∗(b,u) and z(b,u) = z∗(b,u),

where {x∗(b,u), z∗(b,u)} is the optimal solution to
Problem P2, by replacing c with the reported cost b and v

with the reported value u in Problem P2;
• Payment Rule {p(b,u), q(b,u)}:

p(b,u) = p∗(b,u) , (p∗i (b,u))i∈I ,

q(b,u) = q∗(b,u) , (q∗j (b,u))j∈J ,

where

p∗i (b,u),
∑
j∈J

ujz
∗
j (b,u)−

∑
n∈I\{i}

∑
S⊆Sn

bn(S)x∗
n(S)−W

∗
−i,

q∗j (b,u),W
∗
−j−

∑
j∈J\{j}

ujz
∗
j (b,u)+

∑
n∈I

∑
S⊆Sn

bn(S)x∗
n(S),

where W ∗
−i is the maximum social welfare (defined on bids

b,u) excluding user i’s bid in the fractional domain, and
W o

−j is the maximum social welfare (defined on bids b,u)
excluding task j’s bid in the fractional domain.

We summarize the properties of Mechanism 2 as follows.

Proposition 5 (Truthfulness and Efficiency). Mechanism 2 is
individually rational, incentive compatible (truthful), and maxi-
mizes the social welfare (efficient) in the fractional domain.

Note that the optimal solution to Problem P2 (i.e., the
outcome of Mechanism 2) may not be feasible to Prob-
lem P1. This implies that Mechanism 2 may not be imple-
mentable. To see this, consider an example with 3 data items
D = {1, 2, 3}, 3 users I = {1, 2, 3} with sensing capabilities
S1 = {1, 2}, S2 = {1, 3}, and S3 = {2, 3}, and 1 task
requiring all of 3 data items. Suppose that the user’s sensing
capability is single-minded, i.e., each user i either senses all
the data items in Si or does not sense any data item. Then,
the fractional optimal solution is to schedule each user half
of the time, i.e., x∗

1(S1) = x∗
2(S2) = x∗

3(S3) = 0.5, and to
complete the task all the time, i.e., z∗1 = 1. However, such a
fractional solution cannot be implemented in practice, since
each user should be either selected or not selected. In the fol-
lowing, we will transform Mechanism 2, i.e., the fractional
VCG auction Ω∗, to a randomized auction, which always
generates a feasible solution to Problem P1 randomly ac-
cording to certain probability, hence is implementable.

4.3.2 Randomized Mechanism Definition

We first provide the definition of a randomized mecha-
nism and the associated concept of truthfulness in expec-
tation [14].

Recall that a two-sided deterministic mechanism Ω =
{x(·), z(·);p(·), q(·)} consists of a deterministic allocation
rule {x(·), z(·)} and a payment rule {p(·), q(·)}, and returns
a deterministic outcome {x(b,u), z(b,u);p(b,u), q(b,u)}
given any bids b and u. Note that both Mechanism 1 and
Mechanism 2 introduced before are deterministic mecha-
nisms.

A mechanism Ω̃ , {x̃(·), z̃(·); p̃(·), q̃(·)} can also be
randomized, in which the allocation and payment determi-
nations involve randomizations. In other words, given any
bids b and u, the outcomes x̃i(b,u), z̃j(b,u), p̃i(b,u) and
q̃j(b,u) are all random variables. As the result, each task
owner’s utility (i.e., value minus charge) and each user’s
utility (i.e., payment minus sensing cost) are also random
variables. Intuitively, such a randomized mechanism can be
viewed as a set of randomizations over the deterministic
mechanism. For randomized mechanisms, the concept of
truthfulness is defined in the expected sense. That is, if a

randomized mechanism Ω̃ is truthful in expectation, then
the expected utilities of each user and each task owner are
maximized when reporting the true sensing cost and value,
respectively.

4.3.3 Randomized Mechanism Design Criterion

We now provide our design criterion of a truthful random-
ized mechanism. The key idea is to find a randomized mech-
anism that generates the equivalent outcome of a truthful
deterministic mechanism.

We first introduce an (α, β)-scaled fractional mechanism
for the deterministic mechanism Ω = {x(·), z(·);p(·), q(·)},
inspired by the α-scaled fractional mechanism defined in
[14], [15]. Comparing with the one-sided mechanisms in
[14], [15], our mechanism considers the scaling of both sides.

Definition 1 (Scaled Fractional Mechanism). An (α, β)-
scaled fractional mechanism of Ω = {x(·), z(·);p(·), q(·)},
denoted by Ω(α,β) = {xα(·), zβ(·);pα(·), qβ(·)}, is defined as:

xα(·) = α · x(·), pα(·) = α · p(·), (17)

zβ(·) = β · z(·), qβ(·) = β · q(·), (18)

where α, β > 0 are the scaling factors such that every element of
α · x(·) belongs to [0, 1] and every element of β · z(·) belongs to
[0, 1], respectively.

Intuitively, in an (α, β)-scaled fractional mechanism, the
incurred cost and payment of each user are scaled with α,
and the achieved value and charge of each task owner
are scaled with β, compared with those in the original
mechanism Ω. This implies that both the users’ and the task
owners’ optimal bidding strategies in these two mechanisms
are equivalent, which leads to the equivalence of the truth-
fulness property of both mechanisms.

Proposition 6. If a mechanism Ω is truthful, then its (α, β)-
scaled fractional mechanism Ω(α,β) is also truthful.

Based on the Proposition 6, we propose the following
two-sided randomized mechanism design criterion. That is,
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design a two-sided randomized mechanism Ω̃ that provides
the equivalent outcome (in terms of task selection, user
scheduling, and payment) as an (α, β)-scaled fractional
mechanism Ω∗

(α,β) of the fractional VCG auction Ω∗ in
Mechanism 2.

As the fractional VCG auction mechanism Ω∗ in Mech-
anism 2 is truthful, we can obtain the truthfulness of its
(α, β)-scaled fractional mechanism by Proposition 6. More-

over, as the randomized mechanism Ω̃ generates the same
task selection, user scheduling, and payment as Ω∗

(α,β), we

can further obtain the truthfulness (in expectation) of Ω̃.

4.3.4 Two-sided Randomized Mechanism Design

Now we provide the details about our two-sided random-
ized mechanism design.

For convenience, we express a randomized mechanism

Ω̃ = {x̃(·), z̃(·); p̃(·), q̃(·)} as a set of allocation probabilities
λ = (λl)l∈A and a set of payment rules {pl(·), ql(·)}l∈A

under all possible allocations, where A is the set of all
feasible integer allocations (regarding x and z) and λl ≥ 0 is
the probability of picking up a particular allocation {xl, zl}
and the corresponding payment {pl, ql}. Then, designing a

randomized mechanism Ω̃ is equivalent to finding a set of
allocation probabilities λ = (λl)l∈A and a set of payment
rules {pl(·), ql(·)}l∈A.

Next, we propose the two-sided randomized auction Ω̃†,
which aims to maximize the two-sided scaled social welfare
subject to the exact decomposition of the fractional optimal
solution into the weighted sum of integer solutions. Due to

the two-sided social welfare maximization, Ω̃† nontrivially
extends those with one-sided utility maximization or cost
minimization in [14], [15].

Mechanism 3 (Randomized Auction Mechanism – Ω̃†).
Starting from the fractional VCG auction Ω∗ = {x∗(b,u),

z∗(b,u);p∗(b,u), q∗(b,u)} in Mechanism 2, we define the

randomized auction mechanism Ω̃† as:

• Allocation Rule λ̃ = (λl)l∈A:

λ̃ =arg max
λ,0<α,β≤1

β · V ∗ − α · C∗ (19)

s.t.
∑

l∈A λl · xl
i = α · x∗

i (b,u), ∀i ∈ I, (20)
∑

l∈A λl · zlj = β · z∗j (b,u), ∀j ∈ J , (21)

where V ∗ and C∗ are the optimal total task values and
user costs w.r.t. z∗(b,u) and x∗(b,u), respectively.

• Payment Rule {pl(b,u), ql(b,u)}l∈A:

pli(b,u) = α · p∗i (b,u) ·
Ci(x

l
i)∑

l′∈A λl′ ·Ci(xl′
i )
, ∀i ∈ I,

qlj(b,u) = β · q∗j (b,u) ·
Vj(z

l
j)

∑
l′∈A λl′ ·Vj(zl′

j )
, ∀j ∈ J ,

where Ci(x
l
i) is user i’s cost under the allocation xl

i, and
Vj(z

l
j) is task j’s value under the allocation zlj .

We can see that in Mechanism 3, both the expected
payment and sensing cost of each user and the expected
charge and value of each task are equivalent to those in the
fractional VCG auction Ω∗ in Mechanism 2, which implies
that Mechanism 3 is truthful in expectation.

Proposition 7 (Incentive Compatibility in Expectation).
Mechanism 3 is incentive compatible in expectation, in the sense

that each user and task owner can maximize her expected utility
when reporting the true sensing cost and value, respectively.

We can further check that under Mechanism 3, each
user and task owner can always achieve a non-negative
utility under any possible realization of allocations. This implies
that Mechanism 3 is individually rational in the strict sense.
Formally,

Proposition 8 (Individual Rationality). Mechanism 3 is indi-
vidually rational in the strict sense, as each user and task owner
can achieve a non-negative expected utility.

Furthermore, we can see that in Mechanism 3, each
user’s sensing cost equals α∗ times the sensing cost incurred
in Mechanism 2, while each task’s value equals β∗ times the
value achieved in Mechanism 2 (where α∗ and β∗ are the op-
timal solutions to the allocation problem in Mechanism 3).
Hence, the efficiency of Mechanism 3 is guaranteed in this
sense.

Proposition 9 (Efficiency of Mechanism Ω̃†). Mechanism 3
guarantees to achieve a β∗-fraction of the total task value in
Mechanism 2 with an α∗-fraction of the total sensing cost in
Mechanism 2.

So far we have proposed the randomized auction mech-
anism and proved several desirable economic properties.
There are many possible ways to implement the randomized
auction, depending on how we obtain the set of probability
distribution for the allocation problem and the parameter
α and β for the payment in Mechanism 3. Next, we will
propose one easy-to-implement solution method.

4.3.5 Implementation of the Randomized Auction

As we have mentioned, one key step of designing Mecha-
nism 3 is the two exact decompositions of the scaled frac-
tional solutions into the weighted sum of integer solutions
in (20) and (21), to obtain the two scaling factors α and β.
Next, we will show that it may sacrifice some social welfare
in order to achieve the exact decompositions efficiently,
which is a key difference of our approach here and the
approach proposed in [15]. In [15], the authors proposed a
decomposition method to ensure system efficiency, but with
a very complicated procedure that may not be practical.7

Next, we exploit our two-sided problem structure to obtain
a tailored easy-to-implement decomposition.8

The key idea of the our solution approach is a two-step
DEcomposition-MOdification (DEMO) procedure, which is
shown as follows.

• Step I: Decomposition. We start from the fractional
optimal solution (x∗, z∗). Given the fractional user
scheduling solution x∗, we treat the fractional x∗

as the probability of scheduling the corresponding
user. More specifically, we propose the following
approach to compute λl. First recall that a feasible
integer user scheduling is xl = {xl

i(S), ∀S ⊆ Si, ∀i ∈
I} and the fractional optimal user scheduling is

7. For example, the ellipsoid method used in [15] is quite compli-
cated, and incurs a high time complexity in practical systems.

8. This is just one of the many possible solutions, which may differ
in computational complexity and system efficiency loss.
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x∗ = {x∗
i (S), ∀S ⊆ Si, ∀i ∈ I}. Then we define the

probability distribution λl as

λl =
∏

i∈I

∏

S⊆Si

φ(x∗
i (S), x

l
i(S)), ∀l ∈ A, (22)

where φ(x∗
i (S), x

l
i(S)) = x∗

i (S) if xl
i(S) = 1, and

φ(x∗
i (S), x

l
i(S)) = 1 − x∗

i (S) if xl
i(S) = 0. The func-

tion φ(x∗
i (S), x

l
i(S)) characterizes the probability of

scheduling user i with the set S, and the probability
is given by the corresponding fractional solution.

• Step II: Modification. Each integer solution xl corre-
sponds to a maximum set of task selection zl. Given
the probability distribution λl, ∀l ∈ A, we compute

βj =

(∑
l∈A λl · zlj

)

z∗j
, ∀j ∈ J . (23)

In order to ensure that all z∗j are scaled by the same
factor β, we choose the smallest value of (βj , j ∈ J )
as the target β. Then we modify (zlj , j ∈ J ) such that
βj = β, ∀j ∈ J . The detailed modification approach
is as follows. First notice that each user scheduling xl

corresponds to the maximum set of the task selection
zl = (zlj , j ∈ J ). Then for a particular zl = 1,

we can modify zl = 1 as zl = 0 without violating
the feasibility of the task selection. We iteratively
conduct the above modification procedure until we
have βj = β, ∀j ∈ J .

We can show the probability distribution λl in (22) satisfies
x∗ =

∑
l∈A λlxl with α = 1. Then, we can choose β

according to the modification procedure in Step II such that∑
l∈A λl · zlj = β · z∗j , ∀j ∈ J .
Through the above proposed DEMO scheme, we derive

the target λl, α∗, and β∗. That is, we obtain the exact decom-
positions of the scaled fractional solutions into the weighted
sum of integer solutions as in (20) and (21). According to
Propositions 6 and 7, we have ensured the truthfulness of
the mechanism at the cost of a reduced system efficiency.

Proposition 10 (Truthfulness and Efficiency Bound). The
DEMO procedure implements Mechanism 3, and guarantees to
achieve the same total sensing cost (i.e., α∗ = 1) in Mechanism 2
with a β∗-fraction of the total task value in Mechanism 2, where

β∗ = min
j∈J

(∑
l∈A λl·zl

j

z∗
j

)
. (24)

We have proved several desirable properties of our de-
signed auction mechanisms. Due to the two-sided structure
of the auction mechanisms, the platform may lose money
if the total payment obtained from task owners is less than
the total payment paid to users. In other words, Mechanism
3 may not be budget-balanced, which can be a practical
concern. In fact, it is a well known result in the literature that
truthful efficient mechanisms may not be budget-balanced
[21], [22]. Next, we further focus on the budget-balanced
auction mechanism design.

5 BUDGET-BALANCED RANDOMIZED AUCTION

In this section, we focus on the budget-balance property of
Mechanism 3, i.e., the expected total payment paid to users
should be no large than the expected total payment obtained

from task owners. This means that the MCS platform will
not lose money, which is quite important for the realistic
operation of the MCS platform. Since the expected payments
in Mechanism 3 for all users and task owners are scaled from
Mechanism 2 by the same factors α and β, we first focus on
the budget balance of Mechanism 2, and then extend the
results to Mechanism 3.

5.1 Budget Balance

In our model, we say that a mechanism is budget-balanced,
if the MCS platform can achieve a non-negative profit,
where the MCS platform’s profit is defined as the difference
between the total payments obtained from task owners and
the total payment paid to users. Based on our above discus-
sion, the budget balance of the two-sided auction cannot by
guaranteed in general. In particular, with the increase of the
task similarity, the positive network effect among tasks also
increases, and the total payments from task owners to the
platform become smaller and smaller (even zero). In such
cases, the budget-balance property is not satisfied.

We use an illustrative example to show the budget
imbalance. Suppose we have four tasks (tasks 1-4) with
task values 0.5, 0.6, 0.7, and 0.8, respectively. Each task only
requires the same one data item. Two users (users 1-2) can
sense the data item, with sensing costs 0.1 and 0.2, respec-
tively. The social welfare maximizer would require user 1 to
sense the data item with the cost 0.1, and allow all four tasks
to reuse the data item. Hence, the maximum social welfare
is 0.5+0.6+0.7+0.8-0.1=2.5. Now we consider Mechanism 2.
The VCG auction would schedule user 1 to sense the data
item with a payment 0.2, and all tasks would be selected.
The payment of task 1 would be (0.5+0.6+0.7+0.8−0.1−
0.2+0.2−0.5)−(0.6+0.7+0.8−0.1−0.2+0.2) = 0, where
the first term is the total social welfare except task 1 (when
task 1 is considered in the auction), and the second term
is the total social welfare when excluding task 1 from the
auction. Similarly, we can show that the payments of tasks 2-
4 are all zero. Hence, the total payment from task owners to
the platform is 0, while the total payment from the platform
to the sensing user is 0.2. This shows that Mechanism 2 may
not be budget-balanced. Due to the scaled payments from
Mechanism 2, Mechanism 3 is not guaranteed to be budget-
balanced either.

5.2 Reserve Price based Randomized Auction

In the following, we will first focus on making Mecha-
nism 2 budget-balanced, and then extend the results to the
budget-balanced randomized auction design by scaling the
payments in Mechanism 2 according to the scaling rule
proposed in Mechanism 3.

To this end, we introduce a reserve price for each data
item in the proposed Mechanism 2, which denotes the
minimal payment that a task owner has to pay for each
data item. Let σk ≥ 0 denote the reserve price for each data
item k ∈ K. Then, for each task owner j ∈ J , the minimum
payment (if task j is completed) is

qσ
j
=
∑

k∈Kj
σk. (25)

Given the above minimum payments (qσ
j
, j ∈ J ) due to

the reserve price σk , to ensure truthfulness, we propose the
following bids reduction and payment rule for task owners.
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Definition 2 (Bids Reduction and Payment Rule). Given
users’ bids b, task owners’ bids u, and the minimum payments
(qσ

j
, j ∈ J ), the reduced bid of task owner j is u′

j = uj − qσ
j
.

With the new reduced bids u′ = (u′
j, j ∈ J ), Mechanism 2

leads to the allocation (xσ(b,u′), zσ(b,u′)) and the payment
(pσ(b,u′), qσ(b,u′)). Then the payment of task owner j ∈ J is

qσj (b,u) = qσj (b,u
′) + qσ

j
. (26)

The key idea of proposing the above bids reduction and
payment rule is to reduce the mechanism design problem to
a setting with no minimum payments. In particular, we first
subtract the minimum payment of each task owner from her
bid, run Mechanism 2, and then add the minimum payment
of each task owner to her resulting payment.

Next, we propose the two-sided randomized auction

mechanism Ω̃σ in Mechanism 4, i.e., the two-sided random-
ized auction mechanism with the reserve price.

Mechanism 4 (Randomized Auction Mechanism with the
Reserve Price – Ω̃σ).

• Allocation Rule λ̃ = (λl)l∈A:

λ̃ =arg max
λ,0<α,β≤1

β · V σ − α · Cσ

s.t.
∑

l∈A λl · xl
i = α · xσ

i (b,u), ∀i ∈ I,
∑

l∈A λl · zlj = β · zσj (b,u), ∀j ∈ J ,

• Payment Rule {pl(b,u), ql(b,u)}:

pli(b,u) = α · pσi (b,u) ·
Ci(x

l
i)∑

l′∈A λl′ ·Ci(xl′
i
)
, ∀i ∈ I,

qlj(b,u) = β · qσj (b,u) ·
Vj(z

l
j)

∑
l′∈A λl′ ·Vj(zl′

j
)
, ∀j ∈ J ,

where qσj (b,u) is given in (26). The derivations of
xσ(b,u), zσ(b,u), and pσi (b,u) are the same as those
in Mechanism 2, and V σ, Cσ , Ci(x

l
i), and Vj(z

l
j) are the

same as those in Mechanism 3.

Next, we show that Mechanism 4 with the reserve price
is truthful in expectation, but may be not optimal in terms
of maximizing the total social welfare.

Proposition 11 (Truthfulness and Efficiency Loss). Mecha-
nism 4 is truthful in expectation, but is not optimal in terms of
maximizing the total social welfare.

We show the impact of the reserve price on the social
efficiency as follows. Given the reserve price, some task
owners, i.e., those with task values lower than the minimum
payments given in (25), will decide not to join the auction.
Hence, the maximum social welfare may be reduced. There-
fore, there is a tradeoff between the social efficiency and the
budget balance. A larger reserve price may lead to a better
budget balance and a worse social efficiency. We will show
the impact of the reserve price on the budget balance and
the social efficiency via simulations in Section 6.

6 SIMULATION RESULTS

In this section, we provide simulation results to evaluate the
performances of our proposed mechanisms. In particular,
we first illustrate the performance of our proposed Mecha-
nism 3. Then, we evaluate the performance gain due to data
reuse. Finally, we show the impact of the reserve price on
the achieved social welfare and the budget balance.

6.1 Simulation Setup

In the simulations, we fix the number of tasks to J = 50
and the number of data items to K = 30, while varying the
number of users from I = 10 to 100 with an increment of 10.
Each data item is location-based (such as the temperature
at a particular location), and randomly and uniformly dis-
tributed in an area of 1000m×1000m. Each user randomly
moves to a particular location in a time slot, and can sense
all the data items within a distance of 100m to her location.
The unit cost ρc of each user for sensing one data item is
chosen randomly from [1, 5], hence the cost for sensing a set
S of data items is ρc · |S|. The unit value ρv of each task for
one data item is also chosen randomly from [1, 5], hence the
value of a task requiring a set S of data items is ρv · |S|.

We characterize the task similarity (in terms of data
requirements) in the following way. First, we define the
popularity of a data item as the probability that a task
requires this particular data item, and denote Pw as the w-
th highest popularity of all data items. As demonstrated in
[23], [24], the popularity of data, i.e., {Pw, w ∈ K}, follows
a Zipf distribution [25] with the p.m.f.

Pw =
(1/w)µ

∑K
t=1(1/t)

µ
, ∀w ∈ K, (27)

where µ ≥ 0 is the parameter of Zipf distribution. Obvi-
ously, with a larger µ, tasks are more likely to require a
small set of high popularity data items (hence with a higher
task similarity). In our simulations, we vary µ from 0 to 3
with an increment of 0.3.

In each simulation, we choose a particular user number I
and parameter µ, and randomly generate 1000 systems (in
terms of tasks’ data requirements and unit values as well as
users’ sensing capabilities and unit costs) and compute the
average outcome of all systems as the simulation result.

6.2 Social Welfare Gap

We first compare the social welfare achieved in Mechanisms
1, 2, and 3. This can help us understand the performance
gap of our proposed Mechanism 3 to the maximum social
welfare (achieved in Mechanism 1) or the fractional maxi-
mum social welfare (achieved in Mechanism 2).

Fig. 5 illustrates the average social welfare achieved in
different auction mechanisms, under different numbers of
users, where the parameter of Zipf distribution is fixed at
µ = 1. The red curve (with marker ◦) denotes the social
welfare achieved in Mechanism 1, which is equivalent to the
maximum social welfare benchmark. The blue curve (with
marker ∗) denotes the social welfare achieved in Mecha-
nism 2, which is equivalent to the fractional maximum social
welfare. The green curve (with marker �) denotes the social
welfare achieved in Mechanism 3.

From Fig. 5, we can see that the difference between the
maximum social welfare and the fractional maximum social
welfare is negligible. Moreover, the achieved social welfare
in all three auction mechanisms increase with the number
of users. The performance gap of the randomized auction in
Mechanism 3 to the maximum social welfare (benchmark)
increases with the number of users, and the maximal gap in
our simulations (when there are 100 users) is less than 10%.
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Fig. 5. Social Welfare vs. Number of Users in
Different Auctions. The number of tasks is 50,
the number of data is 30, and the parameter
µ = 1 in Zipf distribution.

0 20 40 60 80 100
0

20

40

60

80

100

120

A
v
e
ra

g
e
 S

o
c
ia

l 
W

e
lf
a
re

Number of Users

 

 

Fractional VCG Auction with Data Reuse

Randomized Auction with Data Reuse

Fractional VCG Auction without Data Reuse

Randomized Auction without Data Reuse

Fig. 6. Social Welfare vs. Number of Users
With/Without Data Reuse. The number of tasks
is 50, the number of data is 30, and the param-
eter µ = 1 in Zipf distribution.
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Fig. 7. Social Welfare vs. Task Similarity
With/Without Data Reuse. The number of tasks
is 50, the number of data is 30, and the number
of users is 60.
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Fig. 8. Relative Social Welfare Gain vs. Num-
ber of Users. The number of tasks is 50, the
number of data is 30, and the parameter µ = 1

in Zipf distribution.
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Fig. 9. Relative Social Welfare Gain vs. Task
Similarity. The number of tasks is 50, the num-
ber of data is 30, and the number of users is
60.
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Reserve Price. The number of tasks is 50, the
number of data is 30, the number of users is 60,
and the parameter µ = 1 in Zipf distribution.

6.3 Performance Gain of Data Reuse

We now evaluate the performance gain achieved by the data
reuse across tasks, by comparing the social welfare achieved
in the systems with data reuse and without data reuse.

Next, we will implement the randomized auction (Mech-
anism 3) and the fractional VCG auction (Mechanism 2),
by solving Problem P1 and the problem without data reuse
(see Appendix A), respectively. We will compare the perfor-
mance gain due to data reuse in the two mechanisms.

6.3.1 Impact of the Number of Users

We first show the impact of the number of users on the per-
formance gain. Fig. 6 illustrates the achieved social welfare
with and without data reuse, under different numbers of
users, where the parameter of Zipf distribution is fixed at
µ = 1. The blue curve (with marker ∗) denotes the social
welfare achieved in Mechanism 2 with data reuse, which
represents the maximum social welfare with data reuse
based on the observation from Fig. 5. The green curve (with
marker �) denotes the social welfare achieved in Mechanism
3 with data reuse. The red curve (with marker ◦) and
the cyan curve (with marker ♦) denote the corresponding
results without data reuse.

From Fig. 6, we can see that the achieved social welfare
with and without data reuse both increase with the number
of users; and the increase rate is higher with data reuse,
especially when the number of users is small. Furthermore,
with data reuse, the maximum social welfare (benchmark)

can increase up to 350%, and the social welfare achieved by
the randomized auction (Mechanism 3) can increase up to
300%, comparing with those without data reuse.

6.3.2 Impact of the Task Similarity

We next show the impact of the task similarity on the
performance gain. Recall that µ of Zipf reflects the task
similarity: a larger µ implies a higher task similarity. Fig. 7
illustrates the achieved social welfare with and without
data reuse, under different values of µ, where the user
number is fixed at I = 60. The blue curve (with marker
∗) denotes the social welfare achieved in Mechanism 2 with
data reuse, which represents the maximum social welfare
with data reuse based on the observation from Fig. 5. The
green curve (with marker �) denotes the social welfare
achieved in Mechanism 3 with data reuse. The red curve
(with marker ◦) and the cyan curve (with marker ♦) denote
the corresponding results without data reuse.

From Fig. 7, we can see that the achieved social welfare
increases with the task similarity parameter µ with data
reuse, while decreases with the parameter µ without data
reuse. The reason is as follows. With a higher task similar-
ity µ, most of the tasks’ data requirements will concentrate
on a smaller set of high popularity data. Hence, with data
reuse, a smaller set of users (covering the high popularity
data) are needed to cover all the required data requirements,
leading to a higher social welfare; while without data reuse,
a larger set of users are needed to cover all the required data
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multiple times, leading to a lower social welfare. Intuitively,
without data reuse, the number of “effective” users in the
high task similarity (i.e., those can sense high popularity
data only) is fewer than that in the low task similarity (i.e.,
those who can sense any data item), hence the social welfare
becomes smaller with a high task similarity.

From Fig. 7, we can further see that with data reuse, the
social welfare (both the maximum social welfare benchmark
and the social welfare achieved by the randomized auction
in Mechanism 3) can increase from 300% to 1300% when
the task similarity increases from µ = 0 to µ = 3, comparing
with those without data reuse.

Furthermore, Fig. 8 shows the relative social welfare gain
vs. the number of users for Mechanisms 2 and 3, and Fig. 9
shows the relative social welfare gain vs. the task similarity
for Mechanisms 2 and 3. We can see that Fig. 8 is similar to
the green dash line in Fig. 2. The relative social welfare gain
decreases with the number of users, and increases with the
task similarity. In both Figs. 8 and 9, the randomized auction
in Mechanism 3 leads to a relative performance gain very
close to that of the social optimality (i.e., the fractional VCG
auction in Mechanism 2). This verifies the effectiveness of
the proposed randomized auction in Mechanism 3.

6.4 Impact of the Reserve Price on the Budget Balance

Fig. 10 illustrates the impact of the reserve price on the
social welfare and the budget balance of Mechanism 4.
We can see that the social welfare always decreases with
the reserve price, as a larger reserve price will drive more
task owners out of the auction. The MCS platform can
achieve the budget balance and gain a positive profit by
setting a proper medium value reserve price. Moreover, the
platform’s profit first increases with the reserve price, due
to the increase of the payments from task owners. When the
reserve price is high enough, the platform’s profit decreases
with the reserve price until reaching zero. This is because
a high reserve price may drive many task owners out of
the auction, leading to a small social welfare and a small
platform’s profit.

7 CONCLUSION

In this work, we proposed a novel three-layer data-centric
mobile crowdsensing model, which enables data reuse and
leverages both the task similarity and the user heterogeneity.
We focused on the joint task selection and user scheduling
problem, aiming at maximizing the social welfare. This
problem is NP-hard and is challenging to solve due to the
two-sided information asymmetry of selfish task owners
and users. To understand the performance gain due to data
reuse, we theoretically analyzed the social welfare gain with
known statistical information, and proved the bound of the
relative performance gain. To address both the limited com-
putation and incomplete information issues, we proposed a
two-sided randomized auction mechanism, which is com-
putationally efficient, individually rational, and incentive
compatible (truthful) in expectation. We further proposed a
budget-balanced randomized auction mechanism to ensure
the profitability of the platform in realistic settings. Simula-
tions show that the performance gain of data reuse in the

randomized auction increases from 300% to 1300% with the
increasing of the task similarity. The proposed randomized
auction can achieve at least 90% of the maximum social
welfare. Furthermore, by choosing proper reserve prices,
the randomized auction mechanism can achieve the budget
balance without compromise on the truthfulness, individual
rationality, and computational efficiency.
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APPENDIX A

SOCIAL WELFARE MAXIMIZATION WITHOUT DATA

REUSE

We now formulate the social welfare maximization problem
of the joint task selection and user scheduling without
data reuse. In a system without data reuse, one data item
provided by a user can only be used by one task. Hence,
the total times of the data item k that is required by all
selected tasks should be at least sensed by all selected users
that contain the data item k. In particular, for each data item
k ∈ K, if it is required by M tasks, then it should be sensed
by at least M users, i.e.,
∑

j∈J

1(k∈Kj) · zj ≤
∑

i∈I

∑

S⊆Si

1(k∈S) · xi(S), ∀k ∈ K, (28)

where the indicator 1(x) = 1 if x is true, and 0 otherwise.
The left-hand side of (28) denotes the number of selected
tasks requiring data item k, and the right-hand side of (28)
denotes the number of users scheduled for sensing data
item k.

Formally, we formulate the social welfare maximization
problem of the joint task selection and user scheduling
without data reuse as follows.

max
x,z

V (z)− C(x)

s.t. (2), (3), (4), (28), ∀i ∈ I, j ∈ J , k ∈ K;

var. xi(S) ∈ {0, 1}, ∀S ⊆ Si, i ∈ I;

zj ∈ {0, 1}, ∀j ∈ J .

Let the optimal solution to the above problem be
(x̄o, z̄o), and the optimal solution to Problem P1 be (xo, zo).
Then the relative social welfare (performance) gain is

γ =
V (zo)− C(xo)

V (z̄o)− C(x̄o)
.

APPENDIX B

PROOF OF PROPOSITION 1

Proof. By transforming the domains of integration Tm(m =
1, · · · ,min{I, J}), we can derive the social welfare without
data reuse as:

SWn =

min{I,J}−1∑

m=1

SWn[m] + SWn[min{I, J}]

=

min{I,J}∑

m=1

∫

vm:J≥cm:I

(vm:J − cm:I)[(min{I, J})!]2
min{I,J}∏

k=1

f(vk)g(ck)dcdv

=

min{I,J}∑

m=1

∫ 1

0

∫ v1:J

0
· · ·

∫ vm−1:J

0
· · ·

∫ vmin{I,J}−1:J

0
∫ vm:J

0

∫ v2:J

c1:I

· · ·

∫ vm:J

cm−1:I

∫ 1

cm:I

∫ 1

cm+1:I

· · ·

∫ 1

cmin{I,J}−1:I

(vm:J − cm:I)[(min{I, J})!]2
min{I,J}∏

k=1

f(vk)g(ck)

dcmin{I,J}:I · · · dc2:Idc1:Idvmin{I,J}:J · · · dv2:Jdv1:J .

In particular, if (vj , j ∈ J ) and (ci, i ∈ I) follow i.i.d.
uniform distributions, the integral can be further simplified

since
∏min{I,J}

k=1 f(vk)g(ck) = 1. We can obtain the limiting
values of SWn under different numbers of tasks and users,
respectively. Recall that, without data reuse, we sort the
task values in the descending order, i.e., v1:J ≥ v2:J ≥
· · · ≥ vJ:J , and sort sensing costs in the ascending order,
i.e., c1:I ≤ c2:I ≤ · · · ≤ cI:I . Then, there is a threshold
m, 1 ≤ m ≤ min{I, J}, such that the m-th task value is
no greater than the m-th user cost. The social welfare max-
imization selection selects tasks with values v1:J , · · · , vm:J

and users with sensing costs c1:I , · · · , cm:I . In particular, we
have the following results.

• If the number of users I and the number of tasks
J are identical and sufficiently large, i.e., I = J →
∞, then this equivalently means that half of the J
tasks with the task values uniformly distributed in
[0.5, 1] and half of the I users with the sensing costs
uniformly distributed in [0, 0.5] are matched. That
is, the threshold m = J/2 = I/2. Furthermore, the
mean task value of the selected tasks is 0.75, and the
the mean sensing cost of the selected users is 0.25.
In this case, the social welfare without data reuse is
SWn = 0.75 · J/2− 0.25 · I/2 = J/4.

• If the number of users I is sufficiently large, i.e., I →
∞ with a limited J of tasks, then the threshold m =
J . That is, all J tasks with the task values uniformly
distributed in [0, 1] and J users with negligible costs
are matched and selected. The social welfare without
data reuse is SWn = 0.5 · J − 0 · J = J/2.

• If the number of tasks J is sufficiently large, i.e., J →
∞ with a limited I of users, then the threshold m =
I . That is, I tasks with the task values 1 and all I
users with the sensing costs uniformly distributed in
[0, 1] are matched and selected. The social welfare
without data reuse is SWn = 1 · I − 0.5 · I = I/2.

The three limiting results thus provide the upperbounds
of the social welfare without data reuse, respectively. This
completes the proof.

APPENDIX C

PROOFS OF PROPOSITION 2 AND 3

Proof. By transforming the domain of integration R, we can
derive the social welfare with data reuse as:

SWr =

∫

R
(v − c)f∑J

j=1
vj
(v)gmin{ci,i∈I}(c)dcdv

=

∫ 1

0

∫ v

0
(v − c)f∑

j∈J vj (v)gmin{ci,i∈I}(c)dcdv

+
J−1∑

j=1

∫ j+1

j

∫ 1

0
(v − c)f∑

j∈J vj (v)gmin{ci,i∈I}(c)dcdv.

In particular, if (vj , j ∈ J ) and (ci, i ∈ I) follow i.i.d.
uniform distributions, then the term

∑
j∈J vj follows the

Irwin-Hall distribution. It turns out that the Irwin-Hall
distribution is complicated. To simplify the analysis, we
can use the Normal Distribution to approximate the Irwin-
Hall distribution. The approximation is increasingly better
when J increases. In particular, the term

∑
j∈J vj follows

a normal distribution with the mean J/2 and the standard

deviation
√

J
12 .
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Furthermore, it is easy to show that the term min{ci, i ∈
I} follows a distribution with the p.d.f.

gmin{ci,i∈I}(c) = I(1− c)I−1.

Based on the above distributions, we can compute the
social welfare with data reuse as

SWr =

∫ 1

c=0

∫ ∞

v=c

(v − c)f∑
j∈J vj (v)gmin{ci,i∈I}(c)dvdc

=

∫ 1

c=0

∫ ∞

v=c

(v − c)I(1 − c)I−1f∑
j∈J vj (v)dvdc

≥

∫ 1

c=0
I(1− c)I−1

∫ ∞

−∞
(v − c)f∑

j∈J vj (v)dvdc

=

∫ 1

c=0
I(1− c)I−1

(
J

2
− c

)
dc

=
J

2
− 1 +

I

I + 1
.

We have obtained the lower bound of the social welfare
with data reuse. We can see that the social welfare with
data reuse is J/2 when the number of users I is large
enough. Intuitively, in this case, all J tasks are selected with
a negligible sensing cost.

Furthermore, together with Proposition 1, we have
the following results. First, the lower bound of γ is
(J/2)/(J/4) = 2, when I = J → ∞. Second, the lower
bound of γ is (J/2)/(J/2) = 1, when I → ∞, with a limited
J . Finally, the lower bound of γ is (J/2)/(I/2) = J/I, when
J → ∞, with a limited I . This completes the proofs.

APPENDIX D

PROOFS OF PROPOSITIONS 4 AND 5

Proof. The two-sided VCG auction mechanism Ωo in Mech-
anism 1 is designed based on the classic VCG mechanism.
The classic VCG mechanism is the well-known mechanism
that maximizes the social welfare (efficient), while keeping
incentive compatibility (truthfulness). Moreover, the classic
VCG mechanism is also individually rational, as it ensures a
non-negative payoff for each winning bidder. We prove the
detailed results for Ωo in the following.

(i). Social Welfare Maximization (SWM). This follows
immediately from the fact that task owners and users bid
their costs truthfully in the mechanism Ωo, and that it im-
plements an efficient outcome with respect to these bids. The
truthful bidding will be proved in the following incentive-
compatible property.

(ii). Incentive Compatibility (IC). Let W o(b,u) be the
optimal social welfare achieved in Ωo with users’ bids b

and task owners’ bids u. Consider an arbitrary user i with
the bid bi. We fix the bids of the other users to be b−i and
fix the bids of task owners to be u. Let W o

−i(∅, b−i,u) be
the optimal social welfare among bidders {I \ {i}} ∪ J
with respect to b−i and u. Then the utility of user i is the

difference between the obtained payment and the sensing
cost of user i, i.e.,

Ui(bi, b−i,u) = poi (bi, b−i,u)−
∑

S⊆Si

bi(S) · x
o
i (S)

=
∑

j∈J

uj · z
o
j (b,u)−

∑

n∈I\{i}

∑

S⊆Sn

bn(S) · x
o
n(S)

−W o
−i(∅, b−i,u)−

∑

S⊆Si

bi(S) · x
o
i (S)

=
∑

j∈J

uj · z
o
j (b,u)−

∑

n∈I

∑

S⊆Sn

bn(S) · x
o
n(S)

−W o
−i(∅, b−i,u)

= W o(bi, b−i,u)−W o
−i(∅, b−i,u).

Similarly, the utility of user i with the bid b′i is

Ui(b
′
i, b−i,u) = W o(b′i, b−i,u)−W o

−i(∅, b−i,u).

By reporting the true cost bi = ci, we have

Ui(ci, b−i,u)− Ui(b
′
i, b−i,u)

= W o(ci, b−i,u)−W o(b′i, b−i,u) ≥ 0. (29)

The inequality here follows because W o(ci, b−i,u) is the
optimal social welfare with respect to the true profile of costs
(ci, i ∈ I). From (29), we can see that reporting the true
sensing cost is a dominant strategy for each user i ∈ I.

Similarly, we can show that the utility of task owner j is

Uj(b, vj ,u−j)− Uj(b, u
′
j,u−j)

= W o(b, vj ,u−j)−W o(b, u′
j ,u−j) ≥ 0,

The inequality follows because W o(b, vj ,u−j) is the opti-
mal social welfare with respect to the true profile of task
values (vj , j ∈ J ). Furthermore, truthful reporting is a
dominant strategy for each task owner j ∈ J .

This completes the proof of (IC), because the utilities of
user i and task owner j do not depend on her own reported
cost and task value, respectively.

(iii). Individual Rationality (IR). Given the other users’
bids b−i and task owners’ bids u, the utility of user i with
the bid bi = ci is

Ui(ci, b−i,u) = W o(ci, b−i,u)−W o
−i(∅, b−i,u).

We next show that Ui(ci, b−i,u) is non-negative. Recall that
W o

−i(∅, b−i,u) is the optimal social welfare of an efficient
allocation (x′(b,u), z′(b,u)) under the case where we give
∅ to user i. By definition, the total social welfare W o of
the efficient allocation (xo(b,u), zo(b,u)) under the profiles
bi = ci and uj = vj is at least that of any other feasible
allocation, in particular, the one (x′(b,u), z′(b,u)) with ∅
to user i. Thus we have

W o(ci, b−i,u) ≥ W o(∅, b−i,u) = W o
−i(∅, b−i,u).

Similarly, for task owner j, let W o
−j(b, ∅,u−j) be the optimal

social welfare among bidders I ∪ {J \ {j}} with respect to
b and u−j , we have

Uj(b, vj ,u−j) = W o(b, vj ,u−j)−W o
−j(b, ∅,u−j) ≥ 0.

This completes the proof of (IR). Furthermore, the proof of
Proposition 5 is similarly to that of Proposition 4, except that
the allocation rules in terms of x and z are in the fractional
domain. We thus skip the detailed proof.
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APPENDIX E

PROOF OF PROPOSITION 6

Proof. Let W ∗(b,u) be the optimal social welfare achieved
in the fractional VCG auction mechanism Ω∗ with users’
bids b and task owners’ bids u. Let W ∗

−i(∅, b−i,u) be the
optimal social welfare among bidders {I \ {i}} ∪ J with
respect to b−i and u. Given Ω∗, the utility of user i is

Ui(bi, b−i,u) = p∗i (b,u)−
∑

S⊆Si

bi(S) · x
∗
i (S)

=
∑

j∈J

uj · z
∗
j (b,u)−

∑

n∈I\{i}

∑

S⊆Sn

bn(S) · x
∗
n(S)

−W ∗
−i(∅, b−i,u)−

∑

S⊆Si

bi(S) · x
∗
i (S)

=
∑

j∈J

uj · z
∗
j (b,u)−

∑

n∈I

∑

S⊆Sn

bn(S) · x
∗
n(S)

−W ∗
−i(∅, b−i,u)

= W ∗(bi, b−i,u)−W ∗
−i(∅, b−i,u).

The utility of task owner j is the difference between the task
value and the payment of task owner j. That is,

Uj(b, uj,u−j) = uj · z
∗
j (b,u)− q∗j (b,u)

= uj · z
∗
j (b,u)−W ∗

−j(b, ∅,u−j)

+
∑

j∈J\{j}

ujz
∗
j (b,u)−

∑

n∈I

∑

S⊆Sn

bn(S)x
∗
n(S)

=
∑

j∈J

uj · z
∗
j (b,u)−

∑

n∈I

∑

S⊆Sn

bn(S) · x
∗
n(S)

−W ∗
−j(b, ∅,u−j)

= W ∗(b, uj ,u−j)−W ∗
−j(b, ∅,u−j).

We can clearly see that, given the (α, β)-scaled frac-
tional allocation and payment {x∗

α(·), z
∗
β(·);p

∗
α(·), q

∗
β(·)},

the above utilities Ui(bi, b−i,u) and Uj(b, uj ,u−j) will be
scaled by α and β, respectively. More intuitively, we can
also show that the (α, β)-scaled fractional mechanism is
incentive-compatible because the utility of user i and the
utility of task owner j still do not depend on her own
reported cost and task value, respectively. This equivalently
shows that the incentive-compatible (truthful) property still
holds for the (α, β)-scaled fractional mechanism.

APPENDIX F

PROOF OF PROPOSITION 7

Proof. We now prove the incentive compatibility in expecta-

tion for the randomized auction mechanism Ω̃†. According

to the randomized auction mechanism Ω̃† in Mechanism 3,
the payment obtained by user i is

pli(b,u) = α · p∗i (b,u) ·
Ci(x

l
i)∑

l′∈A λl′ · Ci(xl′

i )
.

Let Xi(S) be a binary random variable that takes value 1 if
and only if Si = S. Given the users’ bids b = c, the random
payment obtained by user i is

PUi =
∑

S⊆Si

ci(S)Xi(S)∑
l′∈A λl′ · Ci(xl′

i )
· α · p∗i (b,u)

=
∑

S⊆Si

ci(S)Xi(S)

αci(x∗
i )

αp∗i (b,u)

First notice that the expectation E[Xi(S)] = Pr[Si = S] =∑
l∈A λl · xl

i = α · x∗
i (b,u). Then the expected payment

obtained by user i is

E[PUi] = E



∑

S⊆Si

ci(S)Xi(S)

αci(x∗
i )

αp∗i (b,u)




=
∑

S⊆Si

ci(S)E[Xi(S)]

αci(x∗
i )

αp∗i (b,u)

=
∑

S⊆Si

ci(S)αx∗
i (S)

αci(x∗
i )

αp∗i (b,u)

= αp∗i (b,u).

Furthermore, the random utility of user i is Ui(b,u) =
PUi −

∑
S⊆Si

bi(S)Xi(S). Then we derive the expected
utility of user i as

E[Ui(b,u)] = E


PUi −

∑

S⊆Si

bi(S)Xi(S)




= E[PUi]−
∑

S⊆Si

bi(S)E[Xi(S)]

= αp∗i (b,u)− α
∑

S⊆Si

bi(S)x
∗
i (S)

= αU∗
i (b,u).

Similarly, we can show that the expected payment charged
to task owner j is E[PTj ] = βq∗j (b,u). The expected utility
of task owner j is

E[Uj(b,u)] = βU∗
j (b,u).

We can see that the expected utilities and the expected
payments of users and task owners are scaled by α and
β, respectively. According to Proposition 6, the incentive-
compatible property still holds for the (α, β)-scaled frac-
tional mechanism. This shows that the randomized auc-
tion mechanism Ω̃† in Mechanism 3 is incentive-compatible
(truthful) in expectation. This completes the proof.

APPENDIX G

PROOF OF PROPOSITION 8

Proof. Suppose the realization of the randomized auction

mechanism Ω̃† is (xl, zl;pl, ql). Then, the user scheduling
is (Sl

1, · · · ,S
l
I) for all users in I. By truth telling, the utility

of user i ∈ I in the randomized auction mechanism Ω̃† is

Ui(ci, b−i,u) = pli(b,u)− ci(S
l
i)

=
ci(Sl

i)

αci(x∗
i )

· α · p∗i (b,u)− ci(S
l
i)

=
ci(Sl

i)

ci(x∗
i )
p∗i (b,u)− ci(S

l
i)

=
ci(Sl

i)

ci(x∗
i )
(p∗i (b,u)− ci(x

∗
i )) ≥ 0.

The inequality follows from the individual rationality of the
fractional VCG auction Ω∗, i.e., p∗i (b,u)− ci(x

∗
i ) ≥ 0.
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Similarly, by truth telling, the utility of task owner j ∈ J
in the randomized auction mechanism Ω̃† is

Uj(b, vj ,u−j) = vjz
l
j − qlj(b,u)

= vjz
l
j −

vjz
l
j

βvj(z∗
j )

· β · q∗j (b,u),

= vjz
l
j −

vjz
l
j

vj(z∗
j )
q∗j (b,u),

=
vjz

l
j

vj(z∗
j )
(vj(z

∗
j )− q∗j (b,u)) ≥ 0.

The inequality follows from the individual rationality of the
fractional VCG auction Ω∗, i.e., vj(z

∗
j )− q∗j (b,u) ≥ 0.

The above results show that the randomized auction
mechanism Ω̃† satisfies the individual rationality, given any
realizations of the randomized auction mechanism. This
further shows that the randomized auction mechanism Ω̃†

is individually rational, which completes the proof.

APPENDIX H

PROOFS OF PROPOSITION 9 AND 10

Proof. First, recall that the randomized auction mechanism

Ω̃† in Mechanism 3 requires the task selections to satisfy
∑

j∈J

∑

l∈A

λl · zlj · vj = β ·
∑

j∈J

z∗j (b,u) · vj .

Then it immediately follows that the expected total task

value achieved in the randomized auction Ω̃† equals a β∗-
fraction of the total task value achieved in the fractional
VCG auction Ω∗, where β∗ is obtained by optimizing β. We
next show the total sensing cost of users. Similarly, let Xi(S)
be a binary random variable that takes value 1 if and only if
Si = S, then the expected total sensing cost is given by

E

[
∑

i∈I

bi(S
l
i)

]
= E




∑

i∈I

∑

S⊆Si

bi(S)Xi(S)





=
∑

i∈I

∑

S⊆Si

bi(S)E[Xi(S)]

=
∑

i∈I

∑

S⊆Si

bi(S) · α · x∗
i (S)

= α
∑

i∈I

∑

S⊆Si

bi(S)x
∗
i (S)

This shows that the expected total sensing cost in the

randomized auction Ω̃† equals an α∗-fraction of the total
sensing cost in the fractional VCG auction Ω∗, where α∗ is
obtained by optimizing α.

Furthermore, given the DEMO scheme in (22) and (23),
we know that the probability distribution λl satisfies x∗ =∑

l∈A λlxl with α = 1, and all z∗j are scaled by the same
factor β, where

β = min
j∈J

(∑
l∈A λl · zlj

z∗j

)
.

This shows that Mechanism 3 with the DEMO scheme can
achieve an α∗-fraction of total sensing cost in Mechanism 2
with a β∗-fraction of the total task value in Mechanism 2.

Meanwhile, we have α∗ = 1 and β∗ = min
j∈J

(∑
l∈A λl·zl

j

z∗
j

)
.

This completes the proof.

APPENDIX I

PROOF OF PROPOSITION 11

Proof. First notice that the allocation and payment rule in
Mechanism 4 have the same structures as those in Mech-
anism 3. According to Proposition 7, the truthfulness in
expectation of Mechanism 4 can be readily derived from
the truthfulness of the underlying fractional VCG auction
mechanism with the reserve price. Hence, it suffices to show
that the fractional VCG auction with the reserve price is
truthful.

Since the payment rule of users does not change, com-
pared with the fractional VCG auction mechanism Ω∗, users
will still truthfully report their sensing costs according to
Proposition 5. We only need to prove the truthful reporting
of task owners.

To show the truthful reporting of task owners, we first
notice an important observation. That is, for any task owner
j ∈ J , her utility with task value vj as well as the bid
reduction and payment rule in Definition 2 is identical to
her utility in Mechanism 2 when she has task value vj − qσ

j
.

In particular, given the task value vj and the minimum
payment qσ

j
, the utility of task owner j from being selected

(i.e., zσj = 1) is vj − qσj (b,u
′) − qσ

j
. Therefore the truthful

reporting of task owners in Mechanism 2 with the bids
reduction and payment rule in Definition 2 follows from
the truthfulness of Mechanism 2.

We note that Mechanism 2 with the bids reduction and
payment rule in Definition 2 is efficient with respect to the
social welfare V (zσ) − C(xσ) −

∑
j∈J qσ

j
, which can be

different from the original social welfare V (z) − C(x) in
Mechanism 2. Intuitively, we can see that task owners whose
task values are less than the minimum payments due to the
reserve price, i.e., uj · zσj (b,u) < qσ

j
, will not participate

in the auction. Hence, the total social welfare is reduced by
introducing the reserve price. This completes the proof.
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