
Multi-Client File Download Time Reduction from Cloud/Fog
Storage Servers

Author:
Al-habob, A; Shnaiwer, YN; Sorour, S; Aboutorab, N; Sadeghi, P

Publication details:
IEEE Trans. Mobile Computing
v. 17
Chapter No. 8
pp. 1924 - 1937
1536-1233 (ISSN); 1558-0660 (ISSN)

Publication Date:
2018-08

Publisher DOI:
https://doi.org/10.1109/TMC.2017.2779836

License:
https://creativecommons.org/licenses/by-nc-nd/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/unsworks_51065 in https://
unsworks.unsw.edu.au on 2024-04-26

http://dx.doi.org/https://doi.org/10.1109/TMC.2017.2779836
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://hdl.handle.net/1959.4/unsworks_51065
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Multi-Client File Download Time Reduction
from Cloud/Fog Storage Servers

Ahmed A. Al-Habob, Student Member, IEEE, Yousef N. Shnaiwer, Student Member, IEEE,
Sameh Sorour, Senior Member, IEEE, Neda Aboutorab, Member, IEEE, and

Parastoo Sadeghi, Senior Member, IEEE

Abstract—In this paper, we study the problem of reducing the download time of multiple files requested by multiple clients from
multiple servers of cloud/fog storage servers. Given possible previous file downloads by the clients from the cloud/fog servers, network
coding can be efficiently exploited to expedite the download process by taking advantage of this side information. Since each client can
tune to only one server at a time, the sets of clients served by the different servers must be disjoint in order to guarantee a maximum
reduction in download time. To accomplish disjoint download mechanisms, a dual conflict network coding graph is proposed. Given the
intractability of the optimal solution, we propose an online algorithm to reduce the multi-client file download time using the designed
dual conflict graph. For the special yet typical case of one file request per client per time epoch, both asymptotic lower and upper
bounds of the performance of the proposed conflict-free algorithm are derived. Simulation results show that this proposed algorithm
exhibits near optimum performance compared to the optimum solution, and a significant reduction in download time as compared to
the per-server network coding scheme. Furthermore, imperfect feedback environment scenarios are investigated (i.e., when feedback
loss event occurs). A maximum likelihood approach is employed at the server to estimate the network state, which can be then used by
our proposed algorithm to reduce the download time in such scenarios.

Index Terms—File Download Time Reduction, Could Storage, Fog Radio Access Networks, Network Coding.

F

1 INTRODUCTION

In the last decade, an exponential growth of storage systems
capacity has been witnessed as the need for storing e-
mails, photos and videos increased. This growth encouraged
the development of new data storage techniques in order
to enhance the two major performance indicators of data
storage systems, namely reliability and accessibility [2], [3].
To this end, cloud storage systems, in which files are stored
in multiple server nodes with appropriate repetition (and
possibly coding), emerged as a viable solution to improve
the availability and reliability of storage systems [2], [4].
Different distributed storage strategies were proposed in the
literature for this paradigm to improve the system reliability.
One strategy is full replication of the same data in multiple
storage units, which imposes extremely high storage over-
head. Another strategy that can provide better redundancy-
reliability trade-off is erasure/network coding designed to
protect data against partial data loss events [4], [5], [6], [2],
[3].

• A.A. Al-Habob and Y. Shnaiwer are with the Department of
Electrical Engineering, King Fahd University of Petroleum and
Minerals (KFUPM), Dhahran, Saudi Arabia (e-mail: {g201301090,
g201204420}@kfupm.edu.sa)

• S. Sorour is with the Department of Electrical and Computer Engineering,
University of Idaho, Moscow, ID, USA (e-mail: samehsorour@uidaho.edu)

• N. Aboutorab is with the School of Engineering and Information Technol-
ogy, University of New South Wales, Canberra, ACT, Australia (e-mail:
n.Aboutorab@adfa.edu.au)

• P. Sadeghi is with the Research School of Engineering, The Aus-
tralian National University, Canberra, ACT, Australia (e-mail: paras-
too.sadeghi@anu.edu.au)

• This work is an extension to our paper [1] in ICC 2015.

Unlike system reliability, the system accessibility prob-
lems (i.e. problems regarding clients of a network accessing
and downloading their requested files in an efficient man-
ner) were less studied in the literature. A connectivity model
with tree structure, consisting of a queue connected to a set
of storage servers that receives client requests and schedule
their download, was proposed in [7]. Despite the merits of
this approach, it did not consider two practical aspects of
cloud storage systems. First, the point-to-multipoint model
considered in this work limits the potentials of cloud storage
servers to operate in a multipoint-to-multipoint fashion. In-
deed, the multiple requests of different clients can be served
simultaneously from the different cloud servers. Second, it
ignores the possibility of prior file downloads by the clients
from the cloud servers. These prior downloaded files, if
exist, can be used as side information to significantly reduce
the download time of the current client requested files using
network coding.

On another note, the wide spread use of the smart phones
has resulted in a gigantic burst in heavy-traffic demand
(mainly video content) from 4G cellular base-stations. The
expected massive growth in such demands cannot be tol-
erated with the current cellular network architectures. This
challenge led to the emergence of fog radio access networks
(F-RANs), as a very potential candidate architecture for 5G
cellular networks [8], [9], [10]. F-RANs were inspired by
recent studies showing both a very high and very slow vary-
ing temporal correlation among the video traffic demanded
by end-clients. This interesting finding motivated the idea
of proactively (i.e. without user request) caching of such
“popular” files in a “fog” of storage units close to the end-
clients, which could be done with very low rates or in off-

IEEE TRANSACTIONS ON MOBILE COMPUTING 2

peak times of the macrocell base-stations. The clients can
thus access these files from these fog storage network thus
offloading this kind of heavy-load traffic from the macrocell
base-stations.

A large body of literature (e.g., [11], [12], [13], [14], [15]
and references therein) has studied different caching policies
of these popular files in the fog storage units in order to
maximize the client hit probability (i.e. the probability of
a client finding the desired files in an accessible storage
unit). However, very limited works have addressed the
scheduling problems of such file downloads when multiple
clients request a set of different files from the same set of
fog storage units. In [16], an attempt was made to optimize
the file download schedule in order to offload the traffic
drawn from the macro base-station. It also exploited the fact
that “popular” must have been downloaded extensively by
the different clients of the network to be deemed popular.
These prior file download were thus used a side information
to maximize the macrocell offloading using network coding.
However, the problem of scheduling the client requests with
the aim to minimize their download time only from the
fog storage units (without the intervention of the macrocell
base-station) was not considered. Moreover, possibilities of
file corruption or acknowledgment losses due to the wireless
channel impairments, and their effect on the scheduling
process and download time were not investigated.

In this paper, we consider a cloud or fog storage system,
in which files are be stored (or cached) in any arbitrary
manner, whether fixed or randomized. Multiple clients of
a network, with possible side information from prior file
downloads, request new file downloads from these servers
over possibly lossy wired or wireless channels. Each client
can request one or more files to download, and can tune to
only one server at time to download one full file from it.
Scenarios where files are split into chunks, each of which
stored (with or without coding) in different servers, can be
captured into the above considered model, by assuming that
each chuck in these scenarios corresponds to a full file in
our model. Thus, a client requesting all the chucks of the
same file from their storing servers corresponds to multiple
full file requests by this client in the above model. Clients
receiving corrupted files due to channel impairments will
request their retransmission from the cloud/fog storage sys-
tem. The main aim of this study is to design efficient algorithms
to minimize the download time of these multiple file requested by
the multiple network clients from the cloud or fog storage servers,
using network coding.

Network coding (NC) emerged more than a decade ago
as the concept of blending data flows at the transmitter
or intermediate nodes in order to attain uttermost infor-
mation usefulness [17]. One well-known subclass of NC,
namely opportunistic NC (ONC) [18], [19] and its further
well-investigated subclass, namely Instantly decodable NC
(IDNC) [20], [21], [22], [23], [24], exploit the diversity of side
information at the network’s clients to generate optimized
combinations of messages/packets/files that ensures their
decodability at a subset or all the clients. IDNC differs
from general ONC in that it does not buffer un-decodable
packets to both simplify the encoding/ decoding processes
and avoid adding extra buffers for the NC process [25], [22].
Furthermore, this simplification enabled the design of graph

models for IDNC, which were widely used to optimize the
coded transmissions in order to achieve different targets,
such as minimizing the completion time of delivering a
frame of packets [23], [24], minimizing the decoding delays
[26], [27], minimizing received video distortion [28], [29],
and speeding up cooperative data exchange in device-to-
device (D2D) networks [30], [31].

However, most of the studies on IDNC considered a
point-to-multipoint (PMP) model with one transmitter send-
ing to multiple nodes. Even in the D2D scenarios, one device
was elected as transmitter in each transmission. Applying
the developed PMP IDNC techniques to our cloud/fog
storage model may be inefficient. Indeed, each server can
implement its own PMP IDNC algorithm, but this may re-
sult in situations where multiple servers are simultaneously
serving the same client. This is considered not only a waste
of resources as each client can listen to only one server at a
time, especially in wireless scenarios, but a limitation on the
overall set of servers in serving more clients.

To address this problem and achieve the aforementioned
paper target (i.e. minimizing the total download time of
files requested by multiple clients from cloud/fog storage
servers), we first develop a new dual conflict IDNC graph
representation that, not only represents coding conflicts
due to side information, but also represents simultaneous
transmission conflicts from multiple servers to one client.
With this new graph representation, we formulate the file
download time minimization problem as a stochastic short-
est path (SSP) problem, which is shown to be intractable due
to its exploding state and action spaces. We thus design a
heuristic algorithm that employs the newly designed graph
and client demands in order to reduce the file download
time compared to the PMP version of IDNC. For the special
yet typical case of one file request per client per time epoch,
both asymptotic lower and upper bounds of the perfor-
mance of the proposed conflict-free algorithm are derived.
Simulation results show that this proposed algorithm ex-
hibits near optimum performance compared to the optimum
solution, and a significant reduction in download time as
compared to the per-server network coding scheme. Fur-
thermore, imperfect feedback environment scenarios (i.e.,
when file delivery acknowledgements are subject to loss) are
investigated. A maximum likelihood approach is employed
at the server to estimate the network state, which can be then
used by our proposed algorithm to reduce the download
time in such scenarios.

The remaining of this paper is organized as follows.
Section 2 illustrates the system model. Section 3illustrates
an example to motivate the need for conflict free network
coded file downloads from cloud/fog storage systems. The
novel dual conflict IDNC graph design is introduced in
Section 4. Section 5 presents the SSP formulation of the
problem and details the proposed heuristic to solve it. The
asymptotic upper and lower bounds on the performance
of our proposed algorithm are derived in section 6. The
algorithm’s extensions to imperfect feedback scenarios is
illustrated in 7. Section 8 illustrate the simulation results,
and Section 9 concludes the paper.

IEEE TRANSACTIONS ON MOBILE COMPUTING 3

2 SYSTEM MODEL AND PARAMETERS

2.1 Network and Data Model

The network model of interest consists of a set S = {si}Nsi=1

of Ns cloud or fog storage servers, a set of F = {fk}
Nf
k=1

Nf files, and a set C = {cj}Ncj=1 of Nc clients. Each server
si stores a subset Hsi of F that we will refer to as the
server Has set. Any file in F can be duplicated among the
Has sets of the different servers. It is assumed that all the
files in the library are stored in the servers collectively (i.e.,⋃Ns
i=1Hsi = F). Each client cj possibly stores some files

from prior downloads in its Has set Hcj , and requests to
download another set of files Wcj termed as the Wants set
of cj .

For simplicity of analysis, it is assumed that files are
equally sized, and that all servers have the same storage ca-
pacity S = |Hsi |. We consider two storage models, namely
the fixed and random storage models. In the former model,
S non-duplicated files are stored in fixed determinstic (pos-
sibly optimized) manner. In the latter, each server stores S
non-duplicated files uniformly from F .

The servers are assumed to transmit files with a fixed
bit rate, and thus the transmission of any one file takes a
fixed amount of time. Once a requested file is received by
a client, it send a feedback packet to the servers, which is
naturally much smaller in size compared to the file size.
The storage servers are assumed to operate on orthogonal
channels. Before the transmission of each file by the servers,
the client tunes its reception frequency to only one server.

Finally, we assume that time is slotted into download time
units (DTUs), each of which fitting the sum of the times
required for (1) the client to tune its reception frequency to
the one used by the desired server, (2) the transmission of
one file by the server, (3) the server reception of the feedback
packets sent by the clients. The overall time to download all
the files requested by all the clients will be thus measured
in DTUs.

2.2 Parameters and Definitions

Let pij be the probability of file corruption observed by
client cj on the downlink channel of server si. Also, let
qij be the probability of feedback corruption observed by
server si on the uplink channel with client cj . It is intuitive
to assume that qij < pij due to the larger size of the files on
the downlink as compared to uplink, the lower data rates
on the uplink, and the lower levels of interference affecting
the servers as compared to the clients. Note that the lossless
channel case can be represented as a special case in which
pij = qij = 0 ∀ si ∈ S and cj ∈ C. Let Hj = |Hcj |
be the number of files previously downloaded by client
cj , the average side information at a client H is given by
H = (1

Nc
)
∑Nc
j=1Hj . In addition, letDj = |Wcj | be the num-

ber of the demanded (wanted) files by client cj , the average
demand of any client D is given by D = (1

Nc
)
∑Nc
j=1Dj .

Finally, for the random storage model, the repetition index
1 ≤ R ≤ Ns is defined as the average number of file copies
stored in all servers R = NsS

Nf
. For the fixed storage mode,

R is a fixed deterministic quantity.

(a) Contents and requests of the servers and clients.

(b) Separated IDNC conflict graphs of s1, s2 and s3, respectively.

(c) Download pattern corresponding to separated IDNC solu-
tions.

(d) Conflict-free download pattern.

Fig. 1: Motivating Example

3 MOTIVATING EXAMPLE

Let us investigate the simple example shown in Fig. 1,
which includes 3 storage servers having Hs1 = {f1, f2, f5},
Hs2 = {f1, f4, f5}, Hs3 = {f2, f3, f5}, and 6 clients having
the following contents and requests:
Hc1 = {f1}, andWc1 = {f5}.
Hc2 = {f1, f5}, andWc2 = {f4}.
Hc3 = {f3, f5}, andWc3 = {f2}.
Hc4 = {f4}, andWc4 = {f1}.
Hc5 = {f1, f3}, andWc5 = {f2}.
Hc6 = {f1, f2}, andWc6 = {f3}.
Assuming no corruption occurs, the uncoded download
process requires 2 DTUs and can be performed as follows:

• DTU 1:

– s1 sends f2 to c3 AND c5.
– s2 sends f1 to c4.
– s3 sends f3 to c6.

IEEE TRANSACTIONS ON MOBILE COMPUTING 4

• DTU 2:

– s1 sends f5 to c1.
– s2 sends f4 to c2.

In the conventional PMP IDNC case (as in [23]), each
server si can utilize its knowledge of the pervious download
by the clients, and their current requests, to generate its
own IDNC conflicts graph. The IDNC graph is a graphical
model that represents all coding conflicts (i.e. all cases of file
requests that, when XORed together, won’t be decodable at
least one of its targeted clients).

The graph is first build by adding a vertex vj,k for each
requested file k ∈ Wcj by client cj ∈ C. Any two vertices
vj1,k1 and vj2,k2 are set adjacent by a coding conflict edge if
both following conditions are satisfied:

• fk1 6= fk2
• fk1 /∈ Hcj2 OR fk2 /∈ Hcj1

Clearly, if the above two conditions apply, either client cj1 or
cj2 will not have the necessary side information to decode
the combination fk1 ⊕ fk2 . On the other hand, any two
non-adjacent vertices vj3,k3 and vj4,k4 , which do not satisfy
both above conditions, will have one of two cases: (1) Either
fk3 = fk4 , which is one uncoded file that can be always
received by both clients (2) Client cj3 has fk4 and cj4 has fk3 ,
which they can re-XOR with the combination of fk3 ⊕ fk4 to
decode their desired file.

Given this configuration, each independent set (i.e. each
set of pairwise non-adjacent vertices) represent a coding
opportunity (i.e. the XOR of the files of such vertices will
be decodable at all the clients of these vertices). Each server
finds its maximum independent set (or maximum weighted
independent set given the guidelines in [23]) and transmits
the corresponding coded files to the targeted clients. Fig.
1b illustrates the separate IDNC conflict graphs built by
the 3 servers and the resultant maximum independent sets
(shown in darker colour in the figures). In this case, the
servers transmission pattern in the first DTU will be:

• s1 sends f2 to c3 AND c5.
• s2 sends f1 ⊕ f4: c2 AND c4 can both decode it.
• s3 sends f2 ⊕ f3: c3, c5 AND c6 can all decode it.

This download pattern is shown in Fig. 1c. The figure
depicts several cases where the same client are served by
two different servers. For instance, servers s1 and s3 both
delivers f2 to client c3 which can only receive from one of
them. This event will be called a transmission conflict, and
is obviously undesirable as it is a clear waste of resources.
At the same time, c1 is not served by any server in the first
DTU, will consequently be served in the second DTU, thus
making the overall download time equals to 2 DTUs. As a
result, the no coding scenario and the conventional IDNC
have the same performance.
This example raises the question of whether a better down-
load pattern can be found to reduce the download time.
By careful examination of all options, the files download
process can be achieved in only 1 DTU if the servers adopt
the following download pattern and coded transmissions:

• s1 sends f5 to c1.
• s2 sends f1 ⊕ f4: c2 AND c4 can decode it.

• s3 sends f2 ⊕ f3: c3, c5 AND c6 can decode it.

This preferable transmission pattern is shown in Fig. 1d,
which clearly shows that all client requests are served in 1
DTU. Thus, a better solution can be obtained when transmis-
sion conflicts are avoided, although that may result in sub-
optimal coding from each server’s perspective. The question
is how to find such a solution in a systematic manner for an
arbitrary number of clients, files and servers. This motivate
the introduction of the novel dual-conflict graph model in
the next section, which will be shown to systematically
identify the above conflict-free download pattern and coded
transmissions.

4 DUAL-CONFLICT IDNC GRAPH

To avoid transmission conflicts, the dual conflict IDNC graph
model is proposed to represent, in one augmented graph,
both transmission and coding conflicts. The proposed dual
conflict IDNC graph Gis constructed as follows as follows:

Vertex Set: The vertex set is constructed by adding a
vertex vi,j,k for each fike fk ∈ Hsi ∩ Wcj ∀ cj ∈ C and
∀ si ∈ S . In other words, we add a vertex for each file fk
that is required by each client cj and stored in each server si.

Coding Conflict Edges: Any two vertices vi1,j1,k1 and
vi2,j2,k2 in G are set adjacent by a coding conflict edge if all
three conditions below are satisfied:

1) i1 = i2
2) fk1 6= fk2
3) fk1 /∈ Hcj2 OR fk2 /∈ Hcj1 .

Clearly, Conditions 2 and 3 are the exact same coding
conflict conditions in the conventional IDNC conflict graph,
explained in Section 3. The only difference lies in Condition
1, where it is imposed that the two vertices must represent a
transmission from the same server. This is trivial conditions
as coding is done at each server separately, and no coding
conflict can occur between two different combinations sent
by two different servers.

Transmission Conflict Edges: Any two of vertices vi1,j1,k1
and vi2,j2,k2 in G are set adjacent by a transmission conflict
edge if both below conditions are satisfied:

1) j1 = j2
2) i1 6= i2

In other words, any pair of vertices symbolizing the simulta-
neous transmission to the same client (Condition 1) by two
different servers (Condition 2) will be set adjacent. Indeed,
the simultaneous service of these two vertices represents
a clear transmission conflict case as the ones illustrated in
Section 3, and must thus be avoided.

Given this new configuration of the conflicts, any max-
imal independent set in this graph will represent a set of
coded transmissions for all the servers without any trans-
mission nor coding conflicts. Fig. 2 shows the dual-conflict
graph of the motivating example in Section 3, and the
maximum independent set (represented by darker colour
in the figures). Obviously, the resulting download pattern
from this maximum independent set is identical to that in
Fig. 1d.

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

Fig. 2: Dual-conflict IDNC graph of the example in Section 3.
Dark colored vertices represents the maximum independent set
that result in the download pattern in Fig. 1d.

5 MINIMUM DOWNLOAD TIME PROBLEM

5.1 SSP Formulation for Perfect Feedback Environment
The download time minimization problem has the same
problem structure as an SSP problem, where the possible
state space, action space, transition probabilities and the
state-action costs can be defined as follows.

• State Space:
Due to the fact that the client can tune to a single
server at each time epoch, the states space can be
considered as possible subgraphs of the dual con-
flict graph, and their corresponding edge evaluations
(i.e., possible removal of coding conflicts due to
progressive client file receptions) until all its vertices
vanish (i.e., until the download of all requested files
is completed).

• Action Space:
The action space for each state can be defined as the
set of all independent sets of the state’s correspond-
ing dual-conflict IDNC graph.

• State-Action Transition Probabilities:
The system will stay at the same state or transit to
another state based on the action (i.e., transmission
pattern for a given DTU) taken at each state. For each
action in a given state, the transition probability from
this state to each potential next state will correspond
to the product of the file reception and corruption
probabilities of the targeted clients by this action (i.e.,
transmissions) from their targeting servers, which
results in ending up at this specific state.

• State-Action Cost:
One DTU is the cost of each action taken by the
servers towards download completion.

It is clear that this SSP formulation suffers from the
well-known curse of dimensionality, due to the exponential
size of both its state space O

(
2NcNf

)
and action space

O
(

3
NsNcNf

3

)
. Accordingly, solving this problem optimally

is intractable even for relatively small number of servers
(Ns), clients (Nc) and files (Nf). Consequently, an efficient
online heuristic algorithm is required to solve it, specially in
real time.

5.2 Maximum weighted Vertex Search Algorithm
The online approach aims to select one download pattern
for only one DTU, collect the feedback, and then select the

Algorithm 1 Maximum Weighted Vertex Search Algorithm

1: Initialization:

• Set Graph Gs ← G.
• ∀ vertices in G, compute the raw weights as in (1).
• Set the Selected Independent set Γ = φ.

2: repeat
3: ∀ vertex vijk ∈ Gs: Calculate w′ijk(Gs) as in (3)
4: v∗ijk ← maxvijk∈Gs{w′ijk(Gs)}
5: Γ = Γ ∪ v∗ijk
6: Gs ← Gs \

(
v∗ijk ∪NGs(v∗ijk)

)
7: until Gs = φ, end repeat.
8: Return the Selected independent set Γ

download pattern for the next DTU on so on. To select a
download pattern for each DTU, a maximum (or maximum
weight) independent set must be selected. Though finding
the maximum weight independent set in a graph is an
NP-hard problem, many well-known solvers can be used
to find it with high level of accuracy, such as the Bron-
Kerbosh algorithm [32]. However, we will design an even
simpler online heuristic algorithm that can find a maximal
independent set in real time through a maximum weight
vertex search approach. From IDNC’s properties shown in
[23], the overall download time is lower bounded by the
want set size of the client that needs the greatest number
of files. Consequently, we need to address the maximum
number of clients with large want sets in each transmission.
Furthermore, in imperfect environment, the client needs to
tune to the server with the best channel from among the
ones that store its requested files. To achieve these two
targets, we first assign a raw weight wijk to each vertex
vi,j,k in G. This weight reflects the file reception probability
at client cj from server si, and also the size of the wants set
of cj . This raw weight is defined as follows:

wijk = (1− pij)|Wj |. (1)

These raw weights in (1) can be used for one or multiple file
request (in the former case, |Wj | = 1), and for corruption-
free and corrupted environments (in the former environ-
ment, pij = 0). To refine the greedy vertex selection process,
we define the non-adjacency indicator of vertices vi1,j1,k1
and vi2,j2,k2 (ai1j1k1,i2j2k2) as follows

ai1j1k1,i2j2k2 =

{
1, vi1,j1,k1 is not adjacent to vi2,j2,k2
0, vi1,j1,k1 is adjacent to vi2,j2,k2 .

(2)

Finally, the vertex modified weight w′ijk is defined as

w′ijk(G) = wijk
∑

∀vxyz∈G
wxyz · aijk,xyz. (3)

Hence, a vertex with the highest modified weight has two
attractive aspects. The first aspect is that it has a large raw
weight. The second aspect is that it is non-adjacent to a
large number of vertices induced by clients with high raw
weight w′ijk. Using this definition of the modified weights,
Algorithm 1 executes iteratively a greedy weighted vertex
search procedure to build a maximal independent set, with a
possibly high weight. Each iteration will be implemented as

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

follows: First, the algorithm computes the modified weights
of all the vertices in the graph Gs, initially set to G before the
first iteration. Second, the maximum weighted vertex v∗ijk
will be picked out and added to Γ. Finally, the graph Gs is
updated by eliminating the chosen vertex v∗ijk and all the
vertices that are adjacent it (symbolized in the algorithm by
NG(vijk)) from the previous iteration graph. This elimina-
tion is done to guarantee that the next picked vertex is not
in coding nor transmission conflict with the already selected
ones in Γ. The algorithm continues until no more vertices
exist in Gs.

5.3 Implementation Issues
We can implement the proposed conflict-free IDNC algo-
rithm in either centralized or decentralized (distributed)
approach. In the former approach, a cloud/fog storage
controller, which knows the side information of all clients
(from the prior download log files) and the stored content
at the servers, can build the dual-conflict graph and use
Algorithm 1 to schedule the conflict-free IDNC download
pattern for each DTU. In the latter scenario, each server can
build the dual-conflict graph separately, by exchanging their
knowledge of content and the clients sub-channels parame-
ters with each other using their backbone connections. Each
server runs Algorithm 1 separately and finds the conflict-
free IDNC combination that it is required to transmit in each
DTU. Since the content update rate of cloud/fog storage
systems is orders of magnitude lower compared to DTUs,
the decentralized approach can be maintained and work
appropriately at each server without frequently exchanging
information regarding stored files. The only parameters that
will require frequent exchange are the corruption probabil-
ities, which can be easily managed through the very high
speed (usually fibre-optical) backbone.

6 ASYMPTOTIC BOUNDS FOR THE FIXED STOR-
AGE MODEL

In this section, we aim to derive asymptotic bounds on
the download time performance of our proposed online
solution for the following scenario:

• Lossless channels
• Fixed storage model
• One file request per client

Asymptotically speaking, the sever and clients will go
through all possibilities of file storage and requests. Thus,
the file identities can be ignored in this analysis. Only
the number of files stored at the the servers and clients
will be used to transform the dual-conflict graph into
an asymptotically-equivalent random graph Gν,π with the
same number of vertices ν and vertex adjacency probability
π [33]. Once these random graph parameters are computed,
we can use the result derived by Bollobas in [33], stating that
every random graph Gν,π has a chromatic number χ (Gν,π)
that can be approximated as:

χ (Gν,π) =

(
1

2
+ o(1)

)
log

(
1

1− π

)
ν

log ν
. (4)

We will thus start by deriving the parameter ν and π of
the asymptotically equivalent random graph corresponding

to the proposed dual-conflict IDNC graph, then use it to
introduce the upper and lower bounds on the performance
of our proposed online solution.
Theorem 1. For the considered scenario, the dual-conflict

IDNC graph G can be asymptotically modelled by a
random graph Gν,π , such that:

ν = NcR (5)

and

π =

(
Nc − 1

NcNs − 1

)(
1− Nc − 1

NcS − 1

)
(1− ψ) +

R (R− 1)

ν (ν − 1)
.

(6)

where ψ is expressed as shown in (7).

Proof: The proof is in Appendix A.
Theorem 2. For the considered scenario, the performance of

the dual-conflict IDNC algorithm is asymptotically upper
bounded by χ (Gν,π), where ν and π are as defined in
Theorem 1.

Proof: For graph G, the chromatic number is the smallest
required number of colors to color the vertices of G such that
any two adjacent vertices do not share the same color [34].
Thus, the chromatic number represents the number of inde-
pendent sets in that graph. In the case of one requested file
per client, the transmission of an IDNC file will not generate
any new coding opportunities since each client wants only
one file and it will leave the competition once it receives
the file. However, the dual conflict IDNC graph consists
of NcR vertices. Nc of these vertices represent the actual
number of the wanted files. The remaining Nc (R− 1) ver-
tices represent repeated copies of the wanted files due to
the file repetition among the servers. Since, after a request
is being served, all the vertices representing this request
will be removed from the graph after applying the conflict
free IDNC algorithm. On the other hand, the chromatic
number of the graph is calculated with presence of these
repeated vertices and also the conflict edges connect them.
Consequently, the actual number of transmissions should
be smaller than the dual-conflict graph chromatic number.
Hence, the performance of the conflict free IDNC algorithm
is upper bounded by the chromatic number of the dual-
conflict graph.
Corollary 1. For the considered scenario, the performance of

the dual-conflict IDNC algorithm is asymptotically lower
bounded by χ(Gν,π)

R , where ν and π are as defined in
Theorem 1.

Proof: Let N IDNC be the actual minimum number
of the dual-conflict graph maximal independent sets after
removing the copies. We need to prove the following

N IDNCR ≥ χ (Gν,π) . (8)

To do so, we need to use the original graph Gν,π to generate
a new graph with a chromatic number N IDNCR. This can
be easily done by taking the graph containing the actual
solution (the one with the minimum number of maximal
independent sets) after removing all the copies, and repeat-
ing this graph R times. The last step is to connect all the R
copies of that graph (i.e., every vertex in a copy of the graph
should be connected to every vertex in another copy) to

IEEE TRANSACTIONS ON MOBILE COMPUTING 7

ψ =

H∑
y=0

(
H
y

)(Nf−H

H−y

)(Nf
H

) min(H−y,S)∑
e1=max(0,H−(Nf−S))

(
S

e1

)(
Nf − S

H − y − e1

)(
Nf

H − y

)−1

e1
S

×
min(H−y,(S−e1))∑

e2=max(0,H−(Nf−(S−e1)))

(
S − e1
e2

)(
Nf − (S − e1)
H − y − e1

)(
Nf

H − y

)−1

e2
S − 1

. (7)

make sure that the chromatic number of the whole resultant
graph is equal to the sum of the chromatic numbers of all
copies.
The resultant graph will have a greater number of edges
than the original one, because we do not connect a copy of
a request to all the other copies of another request in Gν,π .
Since increasing the number of edges in a graph means it
has a greater or equal chromatic number, the new graph
chromatic number is greater than or equal to that of Gν,π ,
and hence inequality in (13) is hold [33]. The theorem
follows from dividing both sides in (13) by R.

7 IMPERFECT FEEDBACK ENVIRONMENT

In perfect feedback environment, the servers get perfectly
updated on the reception status of their transmitted files
from each of the receivers. This allows the proposed online
algorithm to determine the next download pattern given
perfect knowledge of the side information at the clients.
On the other hand, the reception feedback sent by the
clients are subject to loss/corruption. Consequently, the
online algorithm has to perform the subsequent download
pattern decision based on uncertainties resulting from such
missing information. In this section, we will investigate
the imperfect feedback consequences in this multipoint-to-
multipoint system and its effect on the overall download
time problem.

7.1 Feedback Model

At the first time epoch, each server has full knowledge
about the clients side information and the Wants set of
each client. The feedback from clients assist the servers to
update the graph based on the updated clients’ Want and
Has sets after each DTU. Each targeted client cj broadcasts
a feedback packet to all servers after each download of one
of its requested files, using a common control channel. If cj
is not targeted in any download pattern, it does not issue
any feedback packets at all. Thus, the event of an unheard
feedback in the perfect feedback environment makes the
server certain that the transmitted file was lost and the
targeted client has not received it.

However, these packets are in general subject to loss on
the uplink channels. The file with lost feedback from a
certain client will be called an uncertain file for that client.
In this situation, an unheard feedback from a targeted client
can be due to either the corruption of its received file on
the downlink or the loss of its issued feedback when it
successfully received it. In this case, the server will not be
able to tell which case occurred and must thus select the
subsequent download patterns given these uncertainties.

In the centralized implementation approach, the
cloud/fog controller of all servers (i.e., the component that
execute the proposed algorithm) will be uncertain about file
reception status at its targeted client if all the servers in the
system lose the feedback. Indeed, the cloud/fog controller
needs only at least one server to receive each client feedback,
in order to have the exact status of the network. Moreover,
the uncertainties are identified by a unified entity (i.e. the
cloud/fog controller), thus guaranteeing the conflict-free
property of subsequent download patten from all servers
despite uncertainties.

In the distributed approach, each server si will be uncer-
tain about a file reception status at a targeted client cj if
server si loses the feedback sent by cj . Due to the different
channel qualities from each targeted client to each of the
servers, the feedback issued by this client may be heard
by some servers and unheard by others. Clearly, if such
discrepancies in the set of uncertain files perceived by each
server are unresolved, this may result in different ML deci-
sions and thus different subsequent dual-conflict graphs at
the different servers. Since the distributed implementation
requires each server to perform its own decision based on
its own built dual-conflict graph, such discrepancies may
result in both transmission conflicts and wrong assumptions
at each server about the transmissions of other server. This
may clearly lead to a great increase in the download time.

To avoid this perturbed situation, we will assume that
the distributed approach will employ the backbone high
speed connectivity to exchange the collected feedback by
all servers. This ends up with the server having the same
knowledge about uncertain files as in the centralized ap-
proach and thus can achieve the exact same performance.

7.2 Imperfect Feedback Implications on the Problem

Since unheard feedback events hide the exact state of the
system from the server, they thus convert the SSP problem
formulation to a partially observable SSP (POSSP) problem
[35]. Clearly, this POSSP problem will be more complicated
and thus intractable to solve optimally. Nonetheless, the
solution that was proposed in section 5 can still be used
to sub-optimally solve this problem using an estimation of
the actual state of uncertain file. In such partially observable
scenario, the best estimation of an uncertain file state is the
one representing the maximum likelihood (ML), and will
thus be investigated in the next section.

The maximum likelihood state estimation step can be
implemented after each DTU to assist the cloud/fog con-
troller (in the centralized approach) or each server (in the
distributed approach) to estimate the most likely reception
state of all uncertain files. The resulting decision on each file
can be thus used to efficiently create a most likely version

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

of the actual dual-conflict graph before the start of the new
DTU. Errors in estimating the state of any file can be easily
resolved as transmissions evolve. In the next two section, the
ML rule in the considered network and feedback model will
be derived, and the corresponding graph update procedures
and recovery from estimation errors will be then detailed.

7.3 ML Estimation Rule
for each instance of unheard feedback at the cloud/fog
storage system when a file fk is sent to client cj from server
si, one of two cases may have occurred:

• cj did not receive the file and thus did not issue a
feedback packet. This case occurs with a probability
pij .

• cj received the file, and sent a feedback with was
lost on the uplink channel by all servers. This event

occurs with probability (1− pij)
Ns∏
i=1

qij .

Clearly, these two cases are mutually exclusive.
Now at any DTU, the storage servers may have attempted

the transmission of file fk to client cj n times without
hearing feedback for any of them. Note that each of these
attempts of fk to cj may have been performed by different
servers. Consequently, define nijk as the number of attempts
(out of the n attempts) in which client cj is targeted by
server si with file fk without hearing a feedback from any
of them. Clearly, n =

∑Ns
i=1 nijk. We can use these facts and

definitions to derive the ML rule as follows.
Theorem 3. For any client cj , if any file fk is attempted nijk

times by server si ∀ si ∈ S , this file is most likely to be
not received at that client (and thus needs to be further
re-attempted) if:

Ns∏
i=1

p
nijk
ij

Ns∏
i=1

p
nijk
ij + P

(⋃Ns
i=1Ei

) ≥ 1

2
(9)

where Ei is the event of file fk being received by client
cj from any of the nijk attempts of server si while still
deemed uncertain by all servers, whose probability of
occurrence is equal to:

P (Ei) =

nijk∑
m=1

(
nijk
m

)
(1− pij)mp

(nijk−m)
ij

Ns∏
i=1

qmij . (10)

Note that events Ei are mutually non-exclusive yet in-
dependent events, and thus the knowledge of P (Ei)

∀ si ∈ S is all what is required to compute P
(⋃Ns

i=1Ei
)

.

Proof: To prove this theorem, we define PRjk as the
probability that an uncertain file fk of client cj has been
received, and PLjk as the probability that an uncertain file fk
of client cj has not been received. To derive the ML rule, we
first need to derive expressions for PLjk and PRjk. Given the
definitions of nijk, the probability that file fk is actually not
received at client cj and deemed uncertain at the servers is
equal to the probability that this file was corrupted on the
downlink channels for each of the n attempts. This occurs

with probability
Ns∏
i=1

p
nijk
ij .

On the other hand, a file fk is actually received client
cj and deemed uncertain at the servers if this client has
successfully decoded it in any of the nijk attempts of each
server si but the feedback(s) of all such instances were lost
by all servers. Denoting the occurrence of such event for
server si by Ei, the probability of such event is equal to:

P (Ei) =

nijk∑
m=1

(
nijk
m

)
(1− pij)mp

(nijk−m)
ij

Ns∏
i=1

qmij . (11)

The overall probability of occurrence of this event from all
servers combined is thus P

(⋃Ns
i=1Ei

)
. Note that events Ei

are both independent and mutually non-exclusive. Thus, the
knowledge of P (Ei) ∀ si ∈ S is all what is required to com-
pute P

(⋃Ns
i=1Ei

)
using the conventional union probabil-

ity expression for Ns independent, mutually non-exclusive
events.

Therefore, given n attempts to transmit file fk to client
cj with no feedback on any of them, PLjk and PRjk can be
expressed as shown in (12).

PLjk =

Ns∏
i=1

p
nijk
ij

Ns∏
i=1

p
nijk
ij + P

(⋃Ns
i=1Ei

) ,

PRjk =
P
(⋃Ns

i=1Ei
)

Ns∏
i=1

p
nijk
ij + P

(⋃Ns
i=1Ei

) = 1− PLjk. (12)

Consequently, file fk is most likely not received at cj after
all nijk attempts from each server si,∀ si ∈ S , and thus
needs to be re-attempted, if

PLjk ≥ PRjk ⇒ PLjk ≥ 1− PLjk ⇒ PLjk ≥
1

2
(13)

The theorem follows from substituting the first term of (12)
in (13).

7.4 Partially Blind Graph Update Algorithm Based on
ML

Based on the ML decision rule, we adopt the partially blind
graph update algorithm proposed in [36] to solve the down-
load time minimization problem with imperfect feedback
environment. When the cloud/fog controller or indepen-
dent servers have uncertain files, the ML state estimation
rule, described in the previous section, can be employed
to update the conflict-free IDNC graph as follows. When
the file fk is most likely received at client cj (according
to the ML rule), the set of vertices vi,j,k ∀ si storing fk
will be considered as a hidden vertices within the dual-
conflict IDNC graph. This means that the client cj will not be
targeted by the file fk temporarily. Otherwise, these vertices
will be kept in the graph as ordinary vertices induced by
a wanted file. Consequently, it could be considered for the
possible subsequent transmission.

The hidden vertices of any given client will be treated
according to what happens later as follows:

• The server will know the actual state of the transmit-
ted file once it receives a feedback from the targeted

IEEE TRANSACTIONS ON MOBILE COMPUTING 9

client. Accordingly, it will update the status of the
hidden vertex.

• If the client has only hidden vertices in the dual-
conflict IDNC graph, all these vertices induced by
the client will be brought back as ordinary vertices
and will be considered in the subsequent conflict-
free IDNC files transmission until a corruption-free
feedback is received from this client.

8 SIMULATION RESULTS

In this section, we compare, through extensive simulations,
the performance of our proposed dual conflict IDNC algo-
rithm to that of the conventional IDNC solution designed
to minimize the completion time in PMP systems in which
each server utilizes separately the algorithm in [23] to min-
imize the download time without considering the requests
served by the other servers. We consider two cases for the
feedback channels (the channels between the servers and
the clients) namely, perfect feedback and imperfect feedback
channels.

8.1 Comparison with Optimal Online Performance and
Bounds

This section provides a comparison between the perfor-
mances of the heuristic algorithm described in Section 5.2
with both the optimal online algorithm based on Bron-
Kerbosh approach [32], and the upper and the lower bounds
derived in Section 6. The two file storage models (i.e., fixed
and random) are considered in the simulation of the optimal
and heuristic online scenarios. Fig. 3 depicts the average
download completion time performances of the algorithms
and the bounds versus the number of clients (with fixed
number of files Nf = 100) and the numbers of files (for a
fixed number of clients Nc = 20). The number of servers
is Ns = 4, the size of each server is Nf

2 , and the size of
the client side information is dNf3 e files. For fair comparison
with the bounds, we assume corruption-free channels and
one file request per client (i.e., |Wcj | = 1 ∀ cj ∈ C). We
note that the performance of our heuristic algorithm is
very close to the optimal online solution. The effect of the
file placement at the servers is notable as the performance
of the random file storage model achieves about 0.2 less
DTUs compared to the fixed placement model. Despite
the derivation of the bounds for the fixed storage model
only, the figure clearly shows that they indeed bound the
performance of both storage models.

8.2 Perfect Feedback (PF) Scenarios
In this section, we introduce the simulation results of
the dual-conflict IDNC algorithm and compare it to the
conventional separate IDNC solution, both applied to a
cloud/fog storage system with Ns = 10 servers. In each
simulated scenario, each client has previously downloaded
and wants to download a random number of files, both with
an average of dNf3 e files. We assume that the probability
of file corruption at the downlink channel between any
server-client pair is uniformly distributed in the interval
[0.01, 0.3]. The corruption probability of each server-client
pair does not change during the entire process of requested

10 15 20 25 30

 Number of Clients

1

2

3

4

5

6

7

8

9

A
vg

. D
ow

nl
oa

d
C

om
pl

et
io

n
T

im
e Our Algorithm Fixed File Placement

Our Algorithm Random File Placement

Expression Upper Bound
Expression Lower Bound

40 60 80 100

 Number of Files

1

2

3

4

5

6

7

8

9

A
vg

. D
ow

nl
oa

d
C

om
pl

et
io

n
T

im
e Our Algorithm Fixed File Placement

Our Algorithm Random File Placement

Expression Upper Bound
Expression Lower Bound

Fig. 3: Performance comparison versus the number of the
clients Nc and the number of files.

file download. The uplink channel between any arbitrary
client and server is assumed to be corruption-free.
Fig. 4 shows the average download completion time versus
the number of clients Nc, with Nf = 100 files and each
server stores 50 files, which are taken randomly from the
files library that consists of 100 files. The figure depicts a
reduction of 7 to 10 DTUs in the average download com-
pletion time when the conflict-free algorithm is compared
with the conventional PMP scheme. We can also observe
that the gap in performance between the conventional and
conflic-free algorithms slightly decreases as the total number
of clients increases. This can be explained by the fact that an
increasing number of clients results in fewer transmission
conflicts the conventional IDNC approach is utilized, given
fixed server sizes. This slightly enhances the performance of
the conventional IDCN approach.

Fig. 5 illustrates a similar comparison versus the total
number of files Nf , with Nc = 60 clients and each server
stores Nf

2 files. We can notice the increasing gain in perfor-
mance when utilizing the conflict-free IDNC approach as
the tested values of Nf increases.

Fig. 6 illustrates the effect of the server storage capacity
on the performance of both conflict-free IDNC and conven-
tional approaches with fixed library size of Nf = 100 files
and Nc = 60 clients. It can be observed from the figure
that the performance of the conventional IDNC scheme
degrades as the server storage capacity increases, while the
conflict-free IDNC scheme performance is enhanced. This
can be interpreted as follows. For the conventional IDNC
scheme, more files per server means more clients served per
server per DTU, thus increasing the chances of transmission
conflicts (as no pre-cautions are taken to prevent them) and

IEEE TRANSACTIONS ON MOBILE COMPUTING 10

20 30 40 50 60 70 80 90 100

 Number of Clients

45

50

55

60

65

70

75
A

vg
. D

ow
nl

oa
d

C
om

pl
et

io
n

T
im

e
Perfect Feedback Conflict Free IDNC
Perfect Feedback Conventional IDNC

Fig. 4: The average download completion time versus the
number of clients Nc.

20 30 40 50 60 70 80 90 100

 Number of Files

10

20

30

40

50

60

70

A
vg

. D
ow

nl
oa

d
C

om
pl

et
io

n
T

im
e

Perfect Feedback Conflict Free IDNC
Perfect Feedback Conventional IDNC

Fig. 5: The average download completion time versus the
number of files Nf .

degrading the performance. On the other hand, the serves
in the conflict-free IDNC scheme still serve more clients
as their size increases but with strictly no transmission
conflicts, which results in a lower download completion
time.

8.3 Imperfect Feedback Scenarios

In this section, we consider the system described in the
previous section with imperfect feedback channels. Feed-
back loss would result in different download patterns for
the centralized and the distributed scenarios described in
Section 5.3.
In each simulation, we consider the conventional PMP
IDNC and the dual-conflict IDNC algorithm implemented
in the centralized and the distributed scenarios with im-
perfect feedback environment. We assume that qij = 1

2pij
and pij is uniformly distributed over the interval [0.01, 0.3]
uniformly. The ML rule and graph update policy in (??) are
applied in the conventional PMP IDNC. In addition to the
partially blind algorithm based on ML described in section

20 30 40 50 60 70

 Server Size (Files)

56

58

60

62

64

66

68

70

72

A
vg

. D
ow

nl
oa

d
C

om
pl

et
io

n
T

im
e

Perfect Feedback Conflict Free IDNC
Perfect Feedback Conventional IDNC

Fig. 6: The average completion time versus the server size.

7.3, two other partially blind graph update approaches are
simulated for comparison:

• Full Vertex Elimination (FVE): The vertices induced
by all uncertain files at their corresponding clients
will be all made temporary from hidden in the
graph, without any decision criteria. They will be
brought back to the graph when the same conditions
described in Section 7.4 occur.

• Client Block (CB): Each attempted file delivery to a
given client with unheard feedback causes all the
vertices representing the requested files by that client
client will be hidden in the graph and are temporar-
ily not considered for transmission.
Again, the hidden vertices in this CB approach are
treated as described in in Section 7.4.

Figs. 7-9 depict the performance of the different graph
update approaches implemented for the conventional and
conflict-free IDNC schemes verses Nc (with Nf = 100,
server size of 50 files), Nf (Nc = 60, server size of 1

2Nf)
and the server size S (Ns = 10, Nf = 100), respectively.
The same performance versus the ratio qij

pij
(with Nc = 60,

Nf = 100 and server size of 50)is illustrated in Fig. 10.
For this latter figure, pij is constant and qij is varying from
0.2pij up to the worst case qij = pij .

From these figures, we can perceive the superiority in
performance of the ML approach over the CB and the FVE
approaches in minimizing the average download comple-
tion time. The performance of the ML is slightly degraded
to that of the perfect feedback. Indeed, the chance of lost
feedback from all servers is quite low. This makes the ML
rule decision more accurate. We can also notice that FVE
outperforms CB. This can be deduced from the character-
istics of the two approaches. FVE hides the vertices that
represent unheard feedback only. However, the server si
is still able to target the client cj with its other requested
files. On the other hand, CB hides the vertex vijk and all
the vertices induced by client cj . Consequently, the server
si will temporarily block client cj completely. Finally, we
can also observe that the difference in performance between
the dual conflict IDNC and the conventional IDNC are still
noticeable in imperfect feedback environment.

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

20 30 40 50 60 70 80 90 100

 Number of Clients

40

50

60

70

80

90

100
A

vg
. D

ow
nl

oa
d

C
om

pl
et

io
n

T
im

e
Conflict Free IDNC - PF
Conflict Free IDNC FVE
Conflict Free IDNC ML
Conflict Free IDNC CB
Conventional IDNC - PF
Conventional IDNC - ML
Conventional IDNC - CB
Conventional IDNC - FVE

Fig. 7: The average completion time versus the number of the
clients Nc.

20 30 40 50 60 70 80 90 100

 Number of Files

10

20

30

40

50

60

70

80

A
vg

. D
ow

nl
oa

d
C

om
pl

et
io

n
T

im
e

Conflict Free IDNC - PF
Conflict Free IDNC FVE
Conflict Free IDNC ML
Conflict Free IDNC CB
Conventional IDNC - PF
Conventional IDNC - ML
Conventional IDNC - CB
Conventional IDNC - FVE

Fig. 8: The average completion time versus the number of the
files Nf .

20 30 40 50 60 70

 Server Size (Files)

50

55

60

65

70

75

80

85

90

95

100

A
vg

. D
ow

nl
oa

d
C

om
pl

et
io

n
T

im
e

Conflict Free IDNC - PF
Conflict Free IDNC FVE
Conflict Free IDNC ML
Conflict Free IDNC CB
Conventional IDNC - PF
Conventional IDNC - ML
Conventional IDNC - CB
Conventional IDNC - FVE

Fig. 9: Perfect and imperfect feedback performance comparison
over a range of the server size S.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 q
ij
/p

ij

50

55

60

65

70

75

80

85

90

95

100

A
vg

. D
ow

nl
oa

d
C

om
pl

et
io

n
T

im
e

Conflict Free IDNC - PF
Conflict Free IDNC FVE
Conflict Free IDNC ML
Conflict Free IDNC CB
Conventional IDNC - PF
Conventional IDNC - ML
Conventional IDNC - CB
Conventional IDNC - FVE

Fig. 10: Perfect and imperfect feedback performance compari-
son over a range of the ratio qij

pij
.

9 CONCLUSIONS

In this paper, the multi-client download time reduction
problem from cloud/fog storage servers was investigated in
perfect and imperfect feedback environments. Applying the
conventional PMP IDNC algorithm at each server separately
was shown to result in transmissions conflicts, which reduce
the download efficiency. Consequently, we proposed a novel
dual-conflict graph model that avoids such conflicts and
guaranteed conflict-free transmissions. The download time
reduction problem was first formulated as an SSP problem
and shown to be intractable. We thus designed an online
heuristic algorithm that applies maximum weight vertex
search over the dual-conflict graph to find the most suit-
able file download pattern at DTU. For the special case of
lossless-channels, fixed storage model, and one file request
per client, an upper and lower bounds of the conflict-
free IDNC algorithm performance were derived. The sim-
ulation results show that this bounds are valid for both
fixed and random storage models. The proposed heuristic
algorithm was also shown to achieve near-optimal online
performance, and a significant improvement compared to
the conventional PMP IDNC scheme.

We extended the formulation of the download time min-
imization problem to a POSSP problem in the imperfect
feedback environment. Being also intractable, we derived
an ML state estimation rule for all uncertain files at their
corresponding clients, and employed it to update the dual-
conflict graph after each DTU to compute the subsequent
download patterns. Simulation results show that the pro-
posed ML based conflict-free IDNC scheme achieves a very
slight degradation compared to the perfect feedback scenar-
ios.

APPENDIX A
PROOF OF THEOREM 1

Based on the log matrix L(si), we create a vertex vi,j,k ∀ cj ∈
C and fk ∈ Hsi ∩ Wcj . Thus, the total number of vertices

IEEE TRANSACTIONS ON MOBILE COMPUTING 12

ν in the dual conflict graph in the case of one requested file
per client is written as

ν = NcR. (14)

To derive π in (4), we need to define the conditions
needed for two vertices to be connected in the dual conflict
graph as events:

• E1: Any two vertices vi,j1,k1 and vi,j2,k2 , both of
which are induced by the same server, will be set
adjacent by an undirected edge represents a coding
conflict if

– C1: fk1 6= fk2 .
– C2: fk1 /∈ Hcj2 OR fk2 /∈ Hcj1 .

• E2: Any two vertices vi1,j1,k1 and vi2,j2,k2 will be set
adjacent by an undirected edge represents transmis-
sion conflict if cj1 = cj2 AND si1 6= si2 .

Any two vertices will be set adjacent if E1 is satisfied or
if E2 is satisfied. It is clear that E1 and E2 are mutually
exclusive events (E1 implies si1 = si2 while E2 implies
si1 6= si2), so the connectivity probability in the dual conflict
graph is expressed as

π = P(E1) + P(E2) (15)

The probability that E1 occurs can be written as

P (E1) = P (1s ∩ C1 ∩ C2) = P (1s)P (C1|1s)P (C2|1s,C1) .
(16)

where 1s is the event that the two vertices are induced by the
same server. To find P (1s), let Xi be the number of vertices
induced by server si. Since the files are distributed among
the servers with fixed placement R will be integer and the
total files will be stored in a block of servers, the number
of blocks in the system is B = Ns

R . Consequently, Xi can
be modeled as a binomial random variable Bin

(
Nc,

1
B

)
.

The total number of the vertices in G can be expressed
as ν =

∑Ns
i=1Xi, and without loss of generality, we can

consider that XNs = ν −
∑Ns−1
i=1 Xi. Based on these facts,

the probability P
(
x = x′|

∑Ns
i=1Xi = ν

)
can be found as

follows

P

(
x = x′|

Ns∑
i=1

Xi = ν

)
=

P
(
x = x′,

∑Ns
i=1Xi = ν

)
P
(∑Ns

i=1Xi = ν
)

=
P
(
X1 = x1, ...XNs−1 = xNs−1, XNs = ν −

∑Ns−1
i=1 Xi

)
P
(∑Ns

i=1Xi = ν
)

=
Ns−1∏
u=1

(
Nc
xu

)(
1

B

)xu (
1− 1

B

)Nc−xu (Nc
ν −

∑Ns−1
i=1 xi

)

×
(

1

B

)ν−∑Ns−1
i=1 xi (

1− 1

B

)Nc−ν+∑Ns−1
i=1 xi

×
((

NcNs
ν

)(
1

B

)ν (
1− 1

B

)NcNs−ν)−1

=
Ns−1∏
u=1

(
Nc
xu

)(
Nc

ν −
∑Ns−1
i=1 xi

)(
NcNs
ν

)−1
.

(17)

So given ν, X is following multivariate hypergeometric
distribution. Now, the probability P(1s|ν,x = x′) can be
written as

P(1s|ν,x = x′) =
Ns∑
m=1

xm (xm − 1)

ν (ν − 1)
, (18)

from which we can find P(1s|ν) as follows

P (1s|ν) = Ex|ν

(
Ns∑
m=1

xm (xm − 1)

ν (ν − 1)

)

=
Ns∑
m=1

Ex|ν

(
xm (xm − 1)

ν (ν − 1)

)

=
Ns∑
m=1

Nc∑
xu=0

xm (xm − 1)

ν (ν − 1)
×

Ns−1∏
u=1

(
Nc
xu

)(
Nc

ν −
∑Ns−1
i=1 xi

)(
NcNs
ν

)−1

=
Ns∑
m=1

Nc − 1

Ns (NcNs − 1)
=

Nc − 1

(NcNs − 1)
.

(19)
Next, we need to find P

(
C1|1s

)
= 1 − P (C1|1s) where,

C1 = {fk1 = fk2} given the two vertices are induced by the
same server.
Let Zk be a random vector representing the number of
clients requesting file fk from the same server; Zk ∼
Bin (Nc, PsPw), where Ps = S

Nf
is the probability that a

given file is stored at a given server, and Pw = 1
Nf

is the
probability that a given file is wanted by a given client (each
client wants only one file). The total number of vertices
induced by server si can be expressed as Xi =

∑S
k=1 zk.

By following the same steps in (17) we get

P

(
z = z′|

S∑
k=1

Zk = Xi

)
=

S−1∏
u=1

(
Nc
zu

)(
Nc

Xi −
∑S−1
v=1 zv

)
(
NcS

Xi

) ,

(20)

P
(
C1|z = z′,x = x′, 1s

)
=

Ns∑
i=1

S∑
k=1

zk (zk − 1)

xi (xi − 1)
,

⇒ P
(
C1|1s

)
=

Ns∑
i=1

S∑
k=1

Ex|ν

(
Ez|xi

(
zk (zk − 1)

xi (xi − 1)

))
,

Ez|xi

(
zk (zk − 1)

xi (xi − 1)

)
=

Nc∑
zu=0

zk (zk − 1)

xi (xi − 1)
×

S−1∏
u=1

(
Nc
zu

)(
Nc

Xi −
∑S−1
v=1 zv

)
(
NcS

Xi

)

=
Nc − 1

S (NcS − 1)
.

Since the resulting term does not depend on x, averaging
over its distribution would result in the same term. There-

IEEE TRANSACTIONS ON MOBILE COMPUTING 13

fore

P
(
C1|1s

)
=

S∑
k=1

Nc − 1

S (NcS − 1)
=

Nc − 1

NcS − 1
,

⇒ P (C1|1s) = 1− Nc − 1

NcS − 1
. (21)

The next step is to find P (C2|1s, C1) = 1−P
(
C2|1s, C1

)
,

where C2 = {fk1 ∈ Hcj2 AND fk2 ∈ Hcj1 }. Based on the
definition of the conflict-free IDNC graph, it is intuitive to
say that fk1 /∈ Hcj1 AND fk2 /∈ Hcj2 . Thus,

P
(
C2|1s, C1

)
= P

(
fk1 ∈

(
Hcj2

∩Hsi

)
∩ fk2 ∈

(
Hcj1

∩Hsi

))
= P

(
fk1 ∈

(
Hcj2

∩Hsi

))
×

P
(
fk2 ∈

(
Hcj1

∩Hsi

)
|fk1 ∈

(
Hcj2

∩Hsi

))
.

(22)

To find P
(
C2|1s, C1

)
, we need to find the intersection

between the has set of si and the has set of each client after
removing the intersection between them. Let Y be a random
variable denoting the number of files in the set Hcj1 ∩Hcj2 ,
which can be modelled as follows

P (Y = y) =

(
H

y

)(
Nf −H
H − y

)(
Nf
H

)−1
. (23)

Let e be the number of the files in the set {
(
Hcj1 −Hcj2

)
∩

Hsi}, which is modelled as

P (e = e1) =

(
S

e1

)(
Nf − S

H − y − e1

)(
Nf

H − y

)−1
. (24)

Let e′ be the number of files in the set {Hsi −
{
(
Hcj1 −Hcj2

)
∩Hsi}}∩

(
Hcj2 −Hcj1

)
, which is modelled

as

P (e′ = e2) =

(
S − e1
e2

)(
Nf − (S − e1)

H − y − e2

)(
Nf

H − y

)−1
.

(25)

Using the three variables defined above, ψ =
P
(
C2|1s, C1

)
can be expressed as

ψ = P
(
C2|1s, C1

)
=

H∑
y=0

(H
y

)(Nf−H
H−y

)(Nf
H

) ×

min(H−y,S)∑
e1=max(0,H−(Nf−S))

(S
e1

)(Nf−S
H−y−e1

)(Nf
H−y

) e1
S
×

min(H−y,(S−e1))∑
e2=max(0,H−(Nf−(S−e1)))

(S−e1
e2

)(Nf−(S−e1)
H−y−e1

)(Nf
H−y

) e2
S − 1

.

(26)

Hence, P (C2|1s, C1) is written as

P (C2|1s, C1) = 1− ψ. (27)

By substituting (19),(21) and (27) in (16) we get

P (E1) =

(
Nc − 1

(NcNs − 1)

)(
1− (Nc − 1)

NcS − 1

)
(1− ψ) (28)

To find P (E2) = {cj1 = cj2 AND si1 6= si2}, we need to
recall that this event happens if a given client wants a file

stored in two different servers. Therefore

P (E2) = P
(
fk ∈ Hsi1 AND fk ∈ Hsi2

)
=
R

ν

R− 1

ν − 1
.

(29)

From (28), (29) and (15) we get

π =

(
Nc − 1

(NcNs − 1)

)(
1− (Nc − 1)

NcS − 1

)
(1− ψ) +

R (R− 1)

ν (ν − 1)

REFERENCES

[1] A. A. Al-Habob, S. Sorour, N. Aboutorab, and P. Sadeghi, “Conflict
free network coding for distributed storage networks,” in 2015
IEEE Int. Conf. on Commun. (ICC), June 2015, pp. 5517–5522.

[2] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A Survey on
Network Codes for Distributed Storage,” Proc. of the IEEE, vol. 99,
no. 3, pp. 476–489, March 2011.

[3] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, and J. Li,
“Simple regenerating codes: Network coding for cloud storage,”
in 2012 Proc. IEEE INFOCOM, March 2012, pp. 2801–2805.

[4] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs.
replication: A quantitative comparison,” in Peer-to-Peer Systems.
Springer, 2002, pp. 328–337.

[5] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decentral-
ized erasure codes for distributed networked storage,” IEEE Trans.
on Inf. Theory, vol. 52, no. 6, pp. 2809–2816, June 2006.

[6] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth
codes: Maximizing sensor network data persistence,” in ACM
SIGCOMM Comp. Commun. Review, vol. 36, no. 4. ACM, 2006,
pp. 255–266.

[7] U. J. Ferner, P. Sadeghi, N. Aboutorab, and M. Mdard, “Schedul-
ing advantages of network coded storage in point-to-multipoint
networks,” in 2014 Int. Symp. on Net. Coding (NetCod), June 2014,
pp. 1–6.

[8] R. Tandon and O. Simeone, “Harnessing cloud and edge synergies:
toward an information theory of fog radio access networks,” IEEE
Commun. Mag., vol. 54, no. 8, pp. 44–50, August 2016.

[9] S. H. Park, O. Simeone, and S. Shamai, “Joint optimization of cloud
and edge processing for fog radio access networks,” in 2016 IEEE
Int. Symp. on Inf. Theory (ISIT), July 2016, pp. 315–319.

[10] R. Tandon and O. Simeone, “Cloud-aided wireless networks with
edge caching: Fundamental latency trade-offs in fog Radio Access
Networks,” in 2016 IEEE Int. Symp. on Inf. Theory (ISIT), July 2016,
pp. 2029–2033.

[11] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless video content delivery through
distributed caching helpers,” in 2012 Proc. IEEE INFOCOM, March
2012, pp. 1107–1115.

[12] F. Pantisano, M. Bennis, W. Saad, and M. Debbah, “Cache-aware
user association in backhaul-constrained small cell networks,” in
2014 12th Int. Symp. on Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks (WiOpt), May 2014, pp. 37–42.

[13] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching
in cellular networks,” in 2015 IEEE Int. Conf. on Commun. (ICC),
June 2015, pp. 3358–3363.

[14] S. Krishnan and H. S. Dhillon, “Distributed caching in device-to-
device networks: A stochastic geometry perspective,” in 2015 49th
Asilomar Conf. on Signals, Systems and Computers, Nov. 2015, pp.
1280–1284.

[15] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device
caching networks: Basic principles and system performance,”
IEEE J. on Select. Areas in Commun., vol. 34, no. 1, pp. 176–189,
Jan. 2016.

[16] Y. N. Shnaiwer, S. Sorour, N. Aboutorab, P. Sadeghi, and T. Y.
Al-Naffouri, “Network-coded content delivery in femtocaching-
assisted cellular networks,” in 2015 IEEE Global Commun. Conf.
(GLOBECOM), Dec 2015, pp. 1–6.

[17] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Trans. on Info. Theory, vol. 46, no. 4, pp.
1204–1216, Jul 2000.

[18] S. K. D. K. W. Hu and H. R. M. Médard, “The importance of
being opportunistic: Practical network coding for wireless envi-
ronments,” Newsletter ACM SIGCOMM Comp. Commun. Review,
vol. 36, no. 4, 2006.

IEEE TRANSACTIONS ON MOBILE COMPUTING 14

[19] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the Air: Practical Wireless Network Coding,” IEEE/ACM
Trans. on Net., vol. 16, no. 3, pp. 497–510, June 2008.

[20] P. Sadeghi, D. Traskov, and R. Koetter, “Adaptive network coding
for broadcast channels,” in 2009 Workshop on Network Coding,
Theory, and Applications, June 2009, pp. 80–85.

[21] P. Sadeghi, R. Shams, and D. Traskov, “An optimal adaptive net-
work coding scheme for minimizing decoding delay in broadcast
erasure channels,” EURASIP J. on Wireless Commun. and Network-
ing, vol. 2010, p. 4, 2010.

[22] D. Nguyen, T. Tran, T. Nguyen, and B. Bose, “Wireless broadcast
using network coding,” IEEE Trans. on Veh. Technol., vol. 58, no. 2,
pp. 914–925, Feb 2009.

[23] S. Sorour and S. Valaee, “Completion delay minimization for
instantly decodable network codes,” IEEE/ACM Trans. on Net.,
vol. 23, no. 5, pp. 1553–1567, Oct 2015.

[24] ——, “On minimizing broadcast completion delay for instantly
decodable network coding,” in 2010 IEEE Int. Conf. on Commun.,
May 2010, pp. 1–5.

[25] A. Le, A. S. Tehrani, A. G. Dimakis, and A. Markopoulou, “In-
stantly decodable network codes for real-time applications,” in
2013 Int. Symp. on Net. Coding (NetCod), June 2013, pp. 1–6.

[26] S. Sorour and S. Valaee, “Minimum broadcast decoding delay for
generalized instantly decodable network coding,” in 2010 IEEE
Global Telecommunications Conf. GLOBECOM 2010, Dec. 2010, pp.
1–5.

[27] A. Douik, S. Sorour, T. Y. Al-Naffouri, and M. S. Alouini, “Delay
Reduction for Instantly Decodable Network Coding in Persistent
Channels With Feedback Imperfections,” IEEE Trans. on Wireless
Commun., vol. 14, no. 11, pp. 5956–5970, Nov. 2015.

[28] M. S. Karim, P. Sadeghi, S. Sorour, and N. Aboutorab, “Instantly
decodable network coding for real-time scalable video broadcast
over wireless networks,” EURASIP J. on Advances in Signal Process-
ing, vol. 2016, no. 1, p. 1, 2016.

[29] M. Karim, S. Sorour, and P. Sadeghi, “Network Coding for Video
Distortion Reduction in Device-to-Device Communications,” IEEE
Trans, on Veh. Technol., vol. PP, no. 99, pp. 1–1, Oct. 2016.

[30] A. Douik, S. Sorour, H. Tembine, T. Y. Al-Naffouri, and M. S.
Alouini, “A Game-theoretic Framework for Network Coding
Based Device-to-Device Communications,” IEEE Trans. on Mobile
Computing, vol. PP, no. 99, pp. 1–1, June 2016.

[31] A. Douik, S. Sorour, T. Y. Al-Naffouri, H. C. Yang, and M. S.
Alouini, “Delay reduction in multi-hop device-to-device commu-
nication using network coding,” in 2015 Int. Symp. on Network
Coding (NetCod), June 2015.

[32] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an
undirected graph,” Commun. of the ACM, vol. 16, no. 9, pp. 575–
577, 1973.

[33] B. Bollobás, “The chromatic number of random graphs,” Combina-
torica, vol. 8, no. 1, pp. 49–55, 1988.

[34] D. B. West et al., Introduction to graph theory. Prentice hall Upper
Saddle River, 2001, vol. 2.

[35] S. D. Patek, “On partially observed stochastic shortest path prob-
lems,” in Proc. of the 40th IEEE Conf. on Decision and Control (Cat.
No.01CH37228), vol. 5, Dec 2001, pp. 5050–5055 vol.5.

[36] S. Sorour, A. Douik, S. Valaee, T. Y. Al-Naffouri, and M. S. Alouini,
“Partially blind instantly decodable network codes for lossy feed-
back environment,” IEEE Trans. on Wireless Commun., vol. 13, no. 9,
pp. 4871–4883, Sept 2014.

