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Abstract—Anticipatory networking is a recent branch of
network optimization that exploits contextual information to
improve resource allocation decisions based on prediction. While
some anticipatory networking concepts have been proposed in
the literature, understanding of the potential real-world gains is
so far very limited. Future mobile networks will likely integrate
such mechanisms, and thus it is of paramount importance to
understand the actual performance improvements and in which
scenarios they can be realized. Analyzing a month-worth of LTE
control channel information collected in four urban locations,
we show how anticipatory networking can enhance current
LTE networks. First, we propose a comprehensive optimization
framework encompassing different forecasting solutions. Then,
we provide a thorough analysis of the aggregated network traffic
and the contributions of individual users. In particular, we show
that predictable traffic accounts for more than 95% of the
total traffic volume and that simple prediction and optimization
techniques allow network operators to save 50% of the resources
and/or on average more than double the offered data rate in our
data set.

Index Terms—LTE, Mobile, Sniffer.

I. INTRODUCTION

Max Planck once said: “the assumption of an absolute
determinism is the essential foundation of every scientific en-
quiry” [1]. Anticipatory Networking, a recent trend in network
optimization, relates to the Nobel prize winner’s aphorism by
assuming that the future state of a dynamic system (i.e., the
network) is, to some degree, predictable.

In fact, the fundamental principle of anticipatory networking
is that the network performance can be improved by predicting
the evolution of the system. Analyzing historical data and
contextual information, it is possible to model [2]-[4] traffic
dynamics at a cell-granularity and to profile user behavior at
different time scales [5], [6], which can be used to control and
optimize network operations.

According to the literature, anticipatory networking solu-
tions can improve both the network efficiency in terms of
spectrum utilization and enhance the Quality-of-Service (QoS)
perceived by the users (see [7] and the references therein). For
example, streaming applications can rely on buffered contents
to avoid for using network resources when the signal quality
is low and fill the buffer in the opposite situation. Knowing
in advance whether the signal quality of a given user is
going to improve or decrease allows the network to assign
her resources when it is more efficient to do so and allows
the user’s application to modulate the amount of requested
data according to the predicted achievable rate. There are

many more applications that can be improved by anticipatory
networking. In fact, the requirements of 5G communications
will push the network efficiency to its limit and anticipatory
networking is likely to become paramount to free up extra
resources that will enable new applications.

The main missing element in the whole body of work
on anticipatory networking is an in-depth evaluation of how
predictive optimization would perform in the real-world. In
this paper, we fill this gap by applying prediction-based
optimization to the resource allocation data of LTE networks
that we collected in four locations in Madrid over one month.
In particular, we identify in the whole dataset those traces (i.e.,
almost continuous data flows belonging to a single user) that
are suitable to be predicted. For these traces, we allow the data
transfers to be re-organized so that future exchanges can be
anticipated (i.e., buffered) if that improves a given objective
function.

In particular, in our evaluation we treat all traffic that
exhibits good predictability as elastic (i.e., it can be buffered
in advance) and the rest as background traffic, which translates
to a fixed and unpredictable load for the cell. This assumption
allows us to study how the network would have performed,
had it prediction capabilities. While not all predictable traffic
is elastic, this is true for much of the high volume traffic
such as video. Another important research direction (beyond
the scope of this paper) is to make application traffic more
elastic and provide means to signal delay requirements to the
network. The main contribution of this paper is providing a
thorough evaluation of anticipatory networking solutions using
real-world data. In addition, we present the tools and the
methodology we adopted to perform our evaluation and we
present the datasets as well as their characteristics. Finally,
our datasets are available on request for third parties to verify
our conclusions and/or to perform their own tests.

Our analysis shows that omniscient optimizers can improve
the average network efficiency by 35-40% in both communi-
cation directions, and more than double the data rate for down-
link communication only (uplink data rate can be increase by
circa 8% only, because of a consistently higher signal quality).
The performance obtained using realistic predictors shows that
anticipatory solutions are both feasible and effective, even
though the performance is between 5 and 10% lower than the
optimal. This confirms the preliminary results obtained in the
literature over synthetic datasets and the benefit that predictive
optimization can bring to next generation mobile networks.



In the rest of the paper, we discuss the following novel
contributions. Section II illustrates the comprehensive antici-
patory networking framework we use to evaluate the datasets.
The section provides details about 1) time series prediction,
2) linear programming formulations to minimize network
resources and maximize users’ data rates, and 3) the complete
optimization framework that encompasses prediction accuracy
and objective functions. It also explains how to proceed from
data collection to performance evaluation. Section III discusses
our measurement campaign providing 1) a summary of the
LTE characteristics, 2) a short description of the datasets,
and 3) a preliminary analysis on the dataset where we distin-
guish the predictable (and thus optimizable) components from
background traffic. Section IV examines the results obtained
by the different anticipatory networking techniques on the
datasets and provides further considerations about them and
anticipatory networking in general. Finally Sections V and VI
provide an analysis of the related work and our conclusions,
respectively.

II. ANTICIPATORY OPTIMIZATION FRAMEWORK

Anticipatory networking solutions include two main com-
ponents: prediction and optimization. Here, we limit ourselves
to a few selected methods that allow us to evaluate both the
maximum achievable gains due to anticipatory networking and
the improvements that realistic solutions would achieve in the
real-world. We acknowledge that, depending on contextual in-
formation used and the application objectives, other solutions
may exist that achieve different performance. However, our
methodology proved to be adequate to solve our optimization
problems in very large datasets and shed some light on the
actual performance of anticipatory networking solutions. For
a more detailed review of possible applications and variants
of these components we refer the reader to [7].

A. Optimization Problem

We use [8] as a basis for our optimization problem, which
is defined as a centralized decision making problem, where
a set N of N users share a given quantity of network
resources over a set 7 of T time slots, also referred to as
optimization window. The objective of our formulation is to
assign the available network resources so that all users obtain
the requested information while the cost for the network is
minimized. We use the following inputs for the problem:
Predicted achievable rate r; ; € [0,7)] is the prediction of
the rate a user would achieve if no other user is scheduled.
r 1s the maximum achievable data rate.

Requirement d; ; € [0, qa] is the minimum number of bytes
needed in a given slot to stream the content at the minimum
bitrate with no interruptions.

The problem is characterized by the following variables:
Resource assignment a;; € [0,1] represents the average
fraction of resources assigned to user ¢ in slot j. In each slot,
each user can be assigned at most the total available rate,
0 < a;; <1, and the sum cannot exceed the total available
resources, 0 < 3, yra;; < 1.

Buffer state b; ; € [0,bys] tracks the amount of bytes stored
in the buffer and b); is the buffer size in bytes.

Outage l; ; € [0, gps] is the missing data to fulfill the minimum
content requirement d; ;:
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where [2]® = min{max{z,a},b} is a bounding operator that

forces the undelivered quantity to be greater than zero and
smaller than the requirement in the slot.

In each slot j user i receives a; ;7; ;, which can be used
either to satisfy the requirements in the current slot or to fill the
buffer for later use. Thus we can write the following equation
that describes the next buffer state:

bij1 = bij+ aijrij —dij+lij. 2

We define b; o as the initial status of the buffer of user i.

In addition, we introduce three metrics that we will
use to build the objective function for our problem. Na-
mely, we define the amount of used resources §; =
% Zke?’ ai,, the fraction of continuous streaming time \; =

=3 per (11— li,kd;’k) and the fraction of the extra quality
obtained 0; = + >, o7 (aixrijdi; —1), where we use
dé’j = 1/d;; if d; ; > 0 and O otherwise to avoid division
by zero.

Finally, we build two objective functions: the first minimizes
the network resources spent, while the second maximizes the
overall delivered data. Both objective functions must guarantee
minimum outage before tackling the specific objective: if re-
sources are not sufficient to satisfy the minimum requirements,
both functions will give the same resulting allocation, which
minimizes the overall outage. For the resource minimization
we obtain the following LP formulation:

minimize (0 — KXg) 3)
a,b,l KeN
subject to:a; ; > 0; Z ap; <1l—ap;
keN
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lijj 2 dij = aijrij —bij

VieN;jeT

where the weight K ensures that the solver’s priority is
on outage minimization and ap ; represents the fraction of
resources used by background traffic at time j. We refer to the
resources used for real-time or inelastic traffic, which cannot
be moved and, thus, cannot be optimized as background traffic.



The data rate maximization LP is given by:

maximize Z (O + KXg) “4)
abid keN
subject to:a; ; > 0; Z ag; <1l—ap;
keN
Z air < aio; lig =05 bij <bm
keT
lij > dij—a;;rij—bij
VieN;jeT
where a; o is an upper limit to the total resources assigned to
user ¢. Formally, the two optimization problems should have
used mixed-integer formulations, because LTE resources are
only assignable in finite quantities. However, since the time
slots used for our optimization are two orders of magnitude
longer than the LTE TTI, the expected approximation error is
smaller than 1%.

B. Prediction Methodology

Among the many prediction techniques, we opt for time-
series analysis, because it is simple to implement, to train
and its computational complexity is sufficiently low. Here,
we make no attempt to compare different prediction schemes
and we do not claim the superiority of the methods used
here, compared to other solutions. Our objective is to show
a feasible solution that can be easily adopted in current
networks. In addition, we evaluate the impact of prediction
errors over the optimization quality.

According to previous optimization solutions [8]-[10], we
need to predict users’ achievable data rate, because by knowing
the maximum data rate all users can be assigned at any
given time allows to optimize the resource allocation process.
Achievable rate is a function of the Modulation and Coding
Scheme (MCS) obtained using standard LTE tables [11]. In
addition, MCS expresses the spectrum efficiency of the com-
munication and, thus, it is the best indicator of the cost/reward
of communications. In our measurement campaign we collect
and study MCS traces together with resources assigned to all
the users and their achieved data rate.

We adopt AutoRegressive Integrative Moving Average
(ARIMA) time-series analysis to model each of the traces
and, subsequently, we use the obtained models to evaluate the
prediction Mean Square Error (MSE). Since ARIMA models
requires the time-series to have equidistant samples in time,
before applying the model we regularize our traces: first, we
analyze the average MCS over time bins and, then, we linearly
interpolate our traces over gaps longer than one bin duration
(i.e., when a given trace contains no information over a period
longer than a bin). We fix the bin duration to 200 ms which
allows reliable achievable rate estimation [12] while preserving
the MCS variability induced by user movements. In addition,
the selected bin duration should be long enough to filter fast
MCS variation due to fast fading in most scenarios.

To verify the impact of linear interpolation over unknown
gaps we test it over very dense traces collected with Mo-

bilelnsight [13] and we create gaps to be filled by linear
interpolation. Our tests shows that the error caused by linear
interpolation is usually smaller than 5%, increasing substanti-
ally (max. 15%) only for long gaps and vehicular mobility.
An ARIMA model is characterized by three parameters: the
autoregressive order p, the moving average order ¢ and the
degree of differencing d. For each of the traces, we choose
the best orders for the ARIMA model according to the Box-
Jenkins [14] methodology. This method, first, addresses non-
stationarity by differencing the data if the autocorrelation plot
has a very slow decay and, then, evaluates the times p + 1
and ¢+ 1 when the autocorrelation and partial autocorrelation
plots, respectively, become smaller than their 95% confidence
interval. Then, we estimate the model coefficients by means of
least square regression. Note that we create a model for each
of the traces using all the information available for that trace.
This allows to evaluate the best possible prediction obtainable
with this methodology. In a real system, it might be impossible
to have separate predictors per individual users and general
models associated to user profiles might be used instead.

C. Evaluation Framework

In the previous parts of this section we defined our pre-
diction and optimization tools. The reasons for our choices
were mainly twofold: 1) test optimality (with perfect pre-
diction and LP optimization) against suboptimal and more
realistic options and 2) control the computational complexity
to evaluate them on our dataset. In particular, we define the
following features.

We include three levels of prediction accuracy:

o Perfect: the exact achievable rates are fed to the optimi-

Zer.

o Proactive: the prediction is computed by feeding the
ARIMA models defined above with all the past samples
of the trace. Since the optimizer can accurately know a
given user achievable rate only when that user is actively
using the medium, this type of prediction requires some
sort of active achievable rate measurements when the user
is not scheduled.

« Reactive: the prediction is still computed using the same
ARIMA models, however, past information is only upda-
ted when the user is scheduled. To feed the optimizer with
a continuous trace we fill the gaps by linear interpolation
and we feedback the predictor output as it past input until
a new scheduling event happens.

Note that, both the proactive and the reactive prediction types
require to recompute both prediction and optimization at each
time slot, in order to account for updated information.

We analyze two objective functions:

o Resource Minimization: we use the problem definition
of Eq. 3 to compute the minimum amount of resources
needed to provide each active user in the system with the
same total rate they obtained in the original dataset. We
enforce causality, by allowing users to use resources in
the past to satisfy requirements in the future, but not vice
versa.



o Quality Maximization: we use the problem definition
of Eq. 4 to compute the maximum data rate that could
be obtained by each active user in the system exploiting
the same total quantity of resources. The parameter a; o
is set to match the original resource quantity consumed
before the optimization.

In order to apply our evaluation framework on real data we
proceed as follows:

1) Collect LTE scheduling information: we describe the
tools we use and the locations where we perform the
measurements.

2) Identify the predictable fraction of the traffic: active
users exhibits characteristic features that help us dis-
tinguishing their trace from background/passive traffic.

3) Apply our evaluation framework on the obtained data-
sets.

III. LTE MEASUREMENTS

We performed a one month measurement campaign in
four LTE cells in Madrid. To collect the data, we used our
Online Watcher for LTE (OWL) [15], a decoder of the LTE
control channel. OWL uses a software-defined radio (SDR)
to sample the LTE downlink channel and implements the
decoding functionalities based on srsLTE [16], an open-source
LTE library.

LTE scheduling measurements are possible because of cen-
tralized communication management and unencrypted control
channel information. Centralized communications imply that
a single base station, also known as eNodeB, coordinates
the data transfers of the mobile phones, also known as user
equipments (UEs), in both downlink and uplink channels. In
particular, the eNodeB sends scheduling information to UEs
using a dedicated channel. Thanks to our sniffer we are able to
decode from the control channel the following information: 1)
temporary user ID (C-RNTI) that does not allow to uniquely
identify the user, but is sufficient to follow the scheduling of
a given user over time until she stops her communications for
longer than 10 seconds or she changes the cell, 2) assigned
MCS, 3) allocated number of resource blocks, 4) transport
block size. For space constraints, we refer the interested reader
to [15] for further details.

A. Campaign description

Our measurement campaign consists of the data collected
by OWL during one month in four different locations. We
selected the four locations in order to analyze how optimiza-
tion methods would performs in areas with different uses (e.g.
residential, commercial, offices, education, etc.). In particular,
we have been able to monitor two locations in Madrid and
two in Leganes, a smaller town nearby. In the following, we
will refer to them as Callao, Rastro, Leganes and IMDEA.
Overall, we collected more than 100 GB of LTE scheduling
information, corresponding to a total amount of 8860 terabytes
of transferred data in the four locations.

The city locations in Madrid are close to the city center and
they are characterized by a high density of commercial activity,

TABLE I
DATASET STATISTICS
Callao Rastro IMDEA Leganes
Operator Movistar Vodafone Vodafone Yoigo
Bandwidth 15 MHz 10 MHz 10 MHz 10 MHz
Frequency 1.8 GHz 800 MHz 800 MHz 1.8 GHz
Compressed Size 60 GB 19 GB 24 GB 4 GB
Total Time 35.5 days 37.5 days 21.3 days 18.7 days
Total Download 4.5 PB 0.86 PB 1.1 PB 0.15 PB
Total Upload 1.5 PB 0.3 PB 0.43 PB 0.02 PB
Total Traces 10.8 M 1M 1.45 M 0.16 M
Active Traces 3.7M 04 M 0.52 M 0.08 M
Med. D. Load 5 % 1 % 25 % 0.1 %
Med. D. Rate 1.13 Mbps 0.04 Mbps 0.24 Mbps 0.01 Mbps
Max D. Rate 21.3 Mbps 19.5 Mbps 22.2 Mbps 6 Mbps
A. Med. D. Rate 12.2 Mbps 12 Mbps 9.6 Mbps 14.1 Mbps
A. Max D. Rate 110 Mbps 75 Mbps 75 Mbps 75 Mbps
Med. U. Load 2.5 % 1 % 3% 0.05 %
Med. U. Rate 0.36 Mbps 0.06 Mbps 0.16 Mbps 5 Kbps
Max U. Rate 18 Mbps 12 Mbps 12.3 Mbps 4.9 Mbps
A. Med. U. Rate 4.8 Mbps 2.7 Mbps 2.7 Mbps 2.3 Mbps
A. Max U. Rate 55 Mbps 37 Mbps 37 Mbps 37 Mbps
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Fig. 1. CDF of the trace duration mapped to the sorted CDF of load and data
rate in Callao.

while the locations in Leganes are more residential. Although
all four locations include both pedestrian and vehicular users,
their average speed in the city center is expected to be slower
than that in Leganes. In all locations eNodeBs are placed on
top of buildings of about four floors of height, but in Callao
where the buildings are taller.

Table I provides statistics information of the four datasets.
Although all the locations show a low median load (< 5 %), in
all of them the load averaged over 5 minutes reached peaks as
high as 70 % of the available resources. The load is computed
as the fraction of used resources over the available resources
of the LTE channel.

B. Dataset Analysis

Since a user maintains her RNTI as long as she is active
with no pause longer than 10 seconds, we split the traces
accordingly: whenever a gap of 10 seconds or longer is present
in a trace, it is split in two parts. Thus, we can analyze each
trace in isolation and collect statistics about users network
usage. In particular, each trace is a list of scheduling events
concerning a particular user a containing:

o absolute time in milliseconds (LTE TTI)
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« communication direction (downlink or uplink)

e MCS € [0,31] (related to channel quality)

e Npp (the number of resource blocks)

« transport block size (number of bits transferred)

For each collected trace we compute a set of compound
metrics. The first three of them are trace duration, downlink
trace size and uplink trace size. We first note that more than
60% of the collected traces are shorter than 10 seconds and
are smaller than 10 kbit in terms of transferred data. This
means that the majority of the collected traces carries little or
no information. We assume that these (small) traces belong to
background traffic performed by mobile phones without any
active intervention from the user or it is related to automatic
network management operations.

We analyze this in more details by computing the con-
tribution to the total load of the traces longer than a given
threshold or traces that transferred more than a given size of
information. Figure 1 shows the trace duration CDF as a black
solid line and maps the CDFs of the users’ downlink load and
total transferred size to their trace duration as dashed blue and
dash-dotted red lines, respectively, for the Callao dataset.

The two CDFs represent the total load and data rate for all
those users whose trace is longer than the value on the x-axis
or, in other words, for a given duration on the x-axis, the three
curves represent the fraction of traces shorter than that and
the corresponding fractions of the total load and the total data
transferred, respectively. Thus, traces shorter than 20s (dotted
vertical line), which account for about 80% of the total traces
(black line) constitute less than 20% of the total traffic (blue
dashed line). A similar behavior can be found when analyzing
the transferred size compared to the total load and it is valid
for both downlink and uplink and for all the datasets.

Our next consideration is that short or small traces are not
relevant to the objectives of anticipatory networking optimi-
zation. They are unlikely to provide Quality-of-Service (QoS)
improvements, because they introduce little traffic and they
are difficult to predict due to their short length and, thus,
are difficult to be modeled. Additional evidence for this is
obtained from the statistics of the average MCS measured over
the traces.

Figure 2(a) shows the CDF of downlink (black) and uplink
(blue) average MCS for all (dashed) and active (solid) users.

Here we define a user to be active if its trace is either longer
than 20 seconds or the transferred data size (either downlink or
uplink) is larger than 100 Kbit. Note that this size corresponds
to the size of a thumbnail image or that of a messaging
application.

Both downlink and uplink CDF show that active users have
higher average MCS, but also that downlink and uplink MCS
distributions are quite different. The higher average MCS
of active users is relevant for our analysis and shows that
it is more likely for a user to be scheduled if she has a
better signal quality, in case a larger volume of traffic is
transmitted. However, the difference between downlink and
uplink distributions, even though interesting, it is not directly
relevant to the evaluation of anticipatory optimization. In fact,
we believe they are mainly due to the specific cell topology
and users’ behavior in the area.

Now that we defined active users/traces and their contri-
butions, we address cell aggregated results computed for all
users compared to the contribution of active users only. A
user’s achievable rate is a function of the assigned MCS,
which is, in turn, a function of the path loss (i.e., Channel
Quality Indicator (CQI)) and the error probability. Before
evaluating the performance of prediction techniques on the
collected traces, we analyze the MCS statistics and their
variation over time. In particular, we evaluate for each active
user, the following metrics: average MCS, median MCS, MCS
standard deviation, MCS range, standard deviation of the
binned average MCS, average binned standard deviation of
the MCS, average absolute variation of the binned MCS.

While the first four metrics are standard statistics obtained
on the whole trace, the last three metrics are obtained by
evaluating the traces over bins of equal duration: for each bin
of a trace we computed the average MCS and its standard
deviation. The overall idea is that the average MCS should be
linked to the average path loss/signal quality experienced by
the user, while the standard deviation should be linked to fast
signal quality variation (i.e., fading). Thus, evaluating these
metrics over the whole trace and over bins, we characterize
traces in terms of signal quality, noisiness and their variation
over time. Ideally, for a trace to be easily predictable, it should
have a low noisiness and low quality variation. Figure 2 shows
the CDF of the MCS standard deviation in the four datasets,



o

H O ON W D
o o

Active users
o

downlink traces

Downlink
Load
© o o
A O 0O
T

<
[N}
I

I I
—Average Total Load -Average Passive Load

Fig. 3. A 35-second portion of the downlink channel of the Callao dataset. Each row of the top chart shows the MCS evolutions of an active user. The lower

chart provide aggregated information of the cell traffic.

in the center, and the CDF of the average absolute variation of
the binned MCS, on the right. In particular, Figure 2(b) shows
that trace noise has a standard deviation usually smaller than 6
which means the range of MCS variation is small compared to
the maximum range of 28. Also, the Callao dataset shows the
highest noise, which can be a consequence of the particular
topology of the area. Figure 2(c), which measures how fast
the MCS varies in subsequent bins, tells us that the traces in
the dataset have a slow to medium dynamic with successive
MCS changes around 2-3 (max. range 28), which means that
rapid large variations in MCS are not common.

IV. EVALUATION AND DISCUSSION

In this section we investigate the performance of the
different optimization approaches and degrees of prediction
accuracy. To evaluate our framework, we proceed by selecting
small portion of the datasets. Figure 3 provides an example of
a 35-second analysis of the downlink channel, containing 45
active users. The top chart shows the evolution of the MCS
for all the active users in the time frame, where each users
is represented by a separate row and the color varies from
white (no communication), to black (bad channel quality, few
Kbps) fading into red (good channel quality, tens of Mbps).
The bottom chart, instead shows aggregate information about
the cell traffic: the average total load is shown as a solid black
line and the contribution to the load generated by background
traffic as a dashed red line.
Each portion of the dataset is generated as follows:
o select a subset of the dataset of length 7" and starting at
time T

o identify all N active users in the subset and retrieve their
MCS traces

« create the ground truth elements 7; ; from the MCS traces
using the tables in the standard [11] to compute the
transport block size for the maximum number of resource
blocks. The ground truth is created for ¢ € [1, N| and
j €[r—Ap, T+ Ar], where Ar is a margin to remove
boundary effects from the evaluation.

o create ARIMA models and proactive predictions for all

N users

e create minimum requirements d; ; and used resources a; o
as the amount of exchanged traffic and used resources,
respectively

o create the background load ap ; for j € [T — Ap, 7+
T + Ar] summing the load of all non-active users

o run all the optimization schemes and compute their
performance on the central time span j € [r,7 + T]. We
refer to the resource allocation computed by the optimizer
as aj ;.

Thus, for each analyzed time span we obtain the resource

saving percentage as

N T+T
100 N
A, = W 1-— Z ai’j/ai,o s (5)
i=1 j=7
the data rate increase percentage as
N T+T
100 N
A, = N Z a; jrij/dio — 1 (6)
i=1 \ j=T
and the total outage as
N 74T
L=> > L ™
i=1 j=r

In addition, in order to apply anticipatory networking op-
timization we assume that each active user’s traffic can be
re-organized and future data transfers can be buffered as soon
as the trace starts, up to the maximum buffer size. According
to a Cisco forecast [17] this assumption holds for 74% of the
traffic in 2017 and is expected to grow in the next few years.
When not specified otherwise, the buffer is assumed to be
infinite.

After the initialization of one portion of the dataset and once
all traces are organized in matrix form (one row per user, one
column per time slot) we can solve the ideal optimization
problems (Eqns. 3 and 4) using an LP solver, such as IBM
CPLEX [18], to evaluate the optimal amount of resources
needed (or the optimal quality of service level) together with
their related outage. In order to account for the realistic
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predictors we proceed iteratively over the trace matrix. At any
given slot j we feed the solver with a smaller trace matrix
obtained from the predictions computed with the data available
up to time j. The proactive predictor computes the forecast
using all the past samples of the traces, while the reactive
predictor is fed with only those samples when resources are
used and linearly interpolates between them. The results of the
solver are considered as valid only for slot j and the process
is repeated for the following slots until the end of the data set
portion.

We start the result description with the performance of
the ideal resource minimization optimizer with perfect future
knowledge over a whole day. Figure 4 illustrates as a solid
black line the average resource percentage saved over 30-
minute moving windows. Grey dots represents single results
computed over time spans of 7' = 10 and Ap = 5 seconds.
The blue dashed line illustrates the cell load variation averaged
over 30-minute moving windows. The figure is obtained for
the downlink channel of the Callao dataset.

First of all, the average performance of the resource mini-
mization solution is very good. In fact, the solution is able
to maintain an average saving almost always higher than
30% and up to 45%. However, the instantaneous performance
of the solution is much more variable and spans the whole
possible range from 0% (no improvement) to about 65%.
These extreme conditions happen more frequently when the
load of the cell is very low and, thus, they are symptoms of
critical conditions in the analyzed portion of the dataset: such
as a single active user whose trace is either already optimal
(for 0%) or it allows for very high saving (> 55%). For
what concerns the impact of the cell load on the optimization
performance, we cannot determine any strong correlation by
visual inspection. We stress that a similar level of resource
saving could not be achieved by aggressively filling the buffer
as soon as possible: as shown in [9], the greedy strategy
indiscriminately exploits time slots regardless of their quality
(MCS). However, the range of individual results is wider for
low load, while it gets smaller when the load is higher. When
the cell load is higher, there are also more active users in
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Fig. 5. CDFs of the resource saving obtained by anticipatory networking
solutions for different prediction accuracies.

the cell and, thus, the overall characteristic tends towards the
average condition of the cell, while when the load is low,
the individual behavior of each user dominates the aggregate
characteristic of the cell traffic and determines the system
performance.

Figure 5 shows the CDFs of the resource saving per-
formance obtained by the three prediction accuracy levels
(perfect, proactive and reactive).! The strongest impact on
the system optimization is caused by replacing the perfect
knowledge by more realistic approaches. Also, the chosen
realistic approach does not strongly affect the amount of saved
resource. A close inspection (see the zooms in the lower right
part of the figures) allows to see the difference between the
reactive and proactive predictions. Although they fare very
similarly, the figures show that some higher resource savings
are obtained by the reactive approach. This result might seem
counter-intuitive, but is justified examining the other KPI: the
outage time. In fact, while the proactive scheme never suffers
from any outage, the average service outage of the reactive
scheme is not zero in 3% of the cases only and never larger
than 0.5 seconds. This is enough for the scheme to save some
resources.

Overall the performance degradation due to realistic pre-
diction methods ranges from 5-10% for high savings (> 40%),
to 10-15% for moderate savings (20-40%) to more than 15%
for low savings. Even though this last condition happens in
fewer than 15% of the analyzed cases, these are the cases
where anticipatory networking is more likely to be useless or
detrimental to the users’ QoS: in fact, while some resources
are still saved, they might be saved at the expenses of some
outage, which will impact the users’ experience.

Figure 6 shows the CDF of the quality maximization
performance and is equivalent to the previous in all aspects,
but for the magnitude of the improvements. In fact, the quality
maximization solutions are able to more than double the
data rate for the downlink channel. Conversely, in the uplink
(not shown because of space constraints) the improvements

1Uplink charts are omitted, because they are very similar to the downlink.
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Fig. 6. CDFs of the data rate increase obtained by anticipatory networking
solutions for different prediction accuracies.

barely reach 40%. This disparity of performance is justified
by the different MCS statistics of the downlink and uplink
channels, of which the second is consistently higher. In turn,
this translate into a smaller margin of optimization for the
uplink data rates, see Figure 2(c) for a comparison of the
MCS CDF and Figure 3 for a detailed representation of MCS
traces of the downlink channel. Overall, we measured data rate
improvements between 20% and 100% with a median value
of 656% for downlink communications and between 3% and
13% (median 6.5%) for the uplink.

We also compared the results of each location separately:
the performance of our optimization framework does not differ
by more than 5-10%, but for the Leganes dataset, which is due
to the low load of this dataset. This means that anticipatory
gains should be achievable regardless of the particular location.

To conclude this evaluation, we show in Figure 7 the impact
of the prediction horizon. Basically, the prediction horizon
represent the number of time slots optimized at the same time.
Thus, a shorter horizon makes the optimizer less effective as it
can only rely of short term information. In the figure we show
normalized average results in order to be able to compare
solutions with different performance. The chosen examples
consider a maximum prediction horizon of one minute and
analyze the same by giving the optimizer a fraction of the
whole available information. Although the best performance
is reached asymptotically, substantial improvements can be
obtained with just a few seconds of prediction.

This last graph helps understanding why the realistic pre-
dictors performs so closely. In fact, reducing the prediction
horizon of the omniscient predictor makes it similar to a
realistic one which is more effective in the first time slots
only. As such we can compare a realistic (either proactive or
reactive) predictor to an omniscient one with an horizon of
about 10 seconds.

A few final considerations about the overall approach are
in order. The first concerns our datasets: optimizing network
resource allocation starting from real traces makes it im-
possible for the optimizer to run into infeasible conditions,
because the starting point was already feasible. The second
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Fig. 7. Impact of the prediction horizon length.

consideration concerns whether the anticipatory gains can be
estimated from the trace characteristics without solving the
optimization problem. Studying the correlation between our
final results and the compound metrics computed above for
active users we found they are almost independent. This is
due to the fact that the degree of improvement does not
depend on the characteristics of individual users, but on their
combination. Determining whether combining different users
results in a good mix and provides high gains is a problem
just as complex as the resource allocation problem itself.

V. RELATED WORKS

In this section we discuss a few alternative approaches to
our evaluation framework, alternative tools to record mobile
network traffic and measurement-driven analysis of mobile
networks. Yin et al. [19], [20] propose a throughput prediction
solution based on clustering and hidden Markov models.
Their predictor is subsequently used to control video bitrate
selection in a multimedia streaming application. Finally, they
evaluate their approach on a proprietary large dataset provided
by a Chinese commercial video provider. Muppirisetty et
al. [21] investigate the spatial prediction of wireless channels
using Gaussian processes. Atawia et al. [22] focus on energy
savings obtained thanks to predictive resource allocation and
uncertainty management. Finally, Du at al. [23] design a pre-
dictive backpressure algorithm to solve the resource allocation
problem for multimedia streaming.

These are just a few of the many papers adopting anticipa-
tory networking and we encourage the interested reader to read
further on the topic [7], where we provide a thorough review of
the state of the art. The framework described here is not meant
to provide yet another variation on the topic, but allowed us
to test the performance of many realistic approaches against
theoretical bounds on a big dataset.

If mobile operators disclose their datasets, very interesting
and insightful papers originate. For instance, the recent works
of Furno et al. [24], [25] study the influence of human acti-
vities on mobile communications and identify several traffic
patterns that can be used to enhance anticipatory networking.
In a similar fashion, Wang et al. [26] analyze the traffic in



Shangai and conclude that there are five main traffic profiles
that represent most of the activity in the 9000+ studied cells.
The same dataset is also analyzed by Ding et al [27] to model
the network capability.

Differently from all these studies, we built our dataset using
our LTE sniffer [15] and we plan to make our dataset available
to the community to allow for comparative studies and the
development of practical solutions. Our dataset, which is
intrinsically anonymous due to the use of temporary identifiers
instead of unique user IDs, is also the only one to provide
scheduling information at millisecond granularity. Thus, to
the best of our knowledge, our dataset is the only archive
of mobile network traffic obtained independently of mobile
operators.

VI. CONCLUSIONS

In this paper we conducted a performance evaluation of
anticipatory networking solutions based on real-world traffic
measurements. In particular, we provided three main con-
tributions: a large dataset providing fine-grained scheduling
information of four cells around Madrid, a comprehensive
framework to study realistic anticipatory networking solutions
against their theoretical bounds and a thorough evaluation of
these techniques on our dataset.

In particular we found that anticipatory optimization provi-
des substantial resource savings and data rate enhancements.
In the dataset, more than 80% of the total traffic is produced
by less than 30% of the users, which also exhibit the more pre-
dictable behaviors. Thus, by analyzing this predictable traffic
component and considering the rest as inelastic background
traffic, we obtained about 35% resource saving and 65% higher
data rate in the downlink channel, while in the uplink channel
lower gains are obtained due to the higher average MCS that
is usually assigned in these communications.

We found that moving from an omniscient predictor to
more realistic ones has a substantial impact on performance,
while both proactive and reactive predictors achieved very
similar performance. Finally, we conclude that anticipatory
networking is both a viable and effective solution that merits
is place in 5G networks. On top of the performance im-
provement, it provides a new perspective about dealing with
context information that the network can provide to mobile
operators and application developers to enable the services of
the future.
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