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Abstract—The conflicting problems of growing mobile service
demand and underutilization of dedicated spectrum has given rise
to a paradigm where mobile network operators (MNOs) share
their infrastructure among themselves in order to lower their
operational costs, while at the same time increase the usage of
their existing network resources. We model and analyze such an
infrastructure sharing system considering a single buyer MNO
and multiple seller MNOs. Assuming that the locations of the
BSs can be modeled as a homogeneous Poisson point process, we
find the downlink signal-to-interference-plus-noise ratio (SINR)
coverage probability for a user served by the buyer MNO in
an infrastructure sharing environment. We analyze the trade-off
between increasing the transmit power of a BS and the intensity
of BSs owned by the buyer MNO required to achieve a given
quality-of-service (QoS) in terms of the SINR coverage probabil-
ity. Also, for a seller MNO, we analyze the power consumption of
the network per unit area (i.e. areal power consumption) which
is shown to be a piecewise continuous function of BS intensity,
composed of a linear and a convex function. Accordingly, the BS
intensity of the seller MNO can be optimized to minimize the
areal power consumption while achieving a minimum QoS for
the buyer MNO. We then use these results to formulate a single-
buyer multiple-seller BS infrastructure market. The buyer MNO
is concerned with finding which seller MNO to purchase from
and what fraction of BSs to purchase. On the sellers’ side, the
problem of pricing and determining the fraction of infrastructure
to be sold is formulated as a Cournot oligopoly market. We prove
that the iterative update of each seller’s best response always
converges to the Nash Equilibrium.

Index Terms—Infrastructure sharing, stochastic geometry,
SINR coverage probability, areal power, oligopoly market,
Cournot oligopoly market.

I. INTRODUCTION

A. Motivation

In recent years, the concept of network infrastructure shar-
ing has been investigated to address two kinds of concerns.
On one hand, with the growing demand for mobile services,
the underutilization of dedicated spectrum auctioned off to the
mobile network operators (MNOs) has become a bottleneck
for the future growth of the industry [1]. While on the other
hand, in areas or time periods where demand can be low – such
as in rural areas or developing countries, or during night time –
the high cost of network infrastructure forces the operators to
charge higher prices from their customers, making the mobile

T. Sanguanpuak, N. Rajatheva, and M. Latva-aho are with the Centre
for Wireless Communications (CWC), Dept. of Commun. Eng., Univer-
sity of Oulu, Finland (E-mails: {tachporn.sanguanpuak, nandana.rajathava,
matti.latva-aho}@oulu.fi); and S. Guruacharya and E. Hossain are with the
Department of Electrical and Computer Engineering, University of Manitoba,
Canada (E-mail: {Sudarshan.Guruacharya, Ekram.Hossain}@umanitoba.ca).

services unaffordable to many people, hence further driving
down the demand [2], [3]. As capacity demand is expected to
increase, MNOs are required to increase their capital (CAPEX)
and operational expenses (OPEX) accordingly. One possible
paradigm to address these issues is to allow the MNOs to
share their infrastructures in order to maximize the use of
existing network resources while simultaneously minimizing
the operational costs [1], [2], [3].

In [4], the third generation partnership project (3GPP) has
defined standards for network sharing. Accordingly, by sharing
the infrastructure among the MNOs, it also allows for a faster
deployment of network services. Such sharing of infrastructure
can be passive or active. Passive sharing refers to the sharing
of physical space, such as buildings, sites, masts, and power
supply. In active sharing, active elements of the network
such as antennas, backhaul, base stations, and elements of
core network are shared. Thus, such active sharing allows
mobile roaming, which allows an MNO to make use of another
network in a place where it has no coverage or infrastructure
of its own. According to a market survey in [5], infrastructure
sharing has been deployed by over 65% of European MNOs,
involving both active and passive radio access network (RAN)
sharing. This trend is expected to grow in the future. In recent
years, the concept of drone base stations (BSs) has been
introduced [6]. The concept of sharing can also be extended
to drone-based infrastructures.

B. Related Work and Contribution

In [7], the neutral host network deployment was proposed
where the MNOs deploy cells in the best positions with
optimal tuning to satisfy the quality-of-experience (QoE). The
technical and the financial impact of infrastructure sharing
was investigated in [8]. In [9], a mathematical framework
was proposed to model and analyze the infrastructure sharing
problem for multiple MNOs. A cost sharing model for shared
small cells among multiple MNOs was proposed in [10]
and a cost model for shared HetNets was proposed in [11]
when a part of the network can be switched off to save
energy. In [12], RAN sharing was considered based on BS
virtualization, which allows multiple entities to share the
same spectrum. In [13], the benefit of inter-operator spectrum
sharing was demonstrated. Resource sharing in the context of
heterogeneous network and cloud RAN concepts was proposed
in [14]. In [15], a service-oriented framework for RAN sharing
which decouples MNOs from radio resource by providing
application-level differentiated services was studied. In [16],



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2822291, IEEE
Transactions on Mobile Computing

2

the authors studied infrastructure sharing along with BS switch
off mechanism. In [17], game theory was applied to study
multi-operator infrastructure sharing for BS de-activation. The
work in [8]–[17] considered deterministic network models.

In [18], stochastic geometry was used to investigate in-
frastructure sharing, spectrum sharing, and the combination
of two in large-scale cellular networks. When both types of
sharing are allowed, the authors showed that a trade-off exists
between coverage and data rate performance. In [19], the point
processes that model the spatial characteristics of the BSs
belonging to multiple MNOs were empirically studied, using
the data from field surveys. In [20], the authors also exploited
stochastic geometry to study the trade-off involved in spectrum
sharing and infrastructure sharing.

In this paper, we model and analyze the infrastructure
sharing problem in a large-scale cellular network by exploiting
tools and results from stochastic geometry. The tradeoff be-
tween transmit power and the intensity of the BS deployment
for a buyer MNO and that between the areal power consump-
tion and the BS intensity for the seller MNO are analyzed
in an infrastructure sharing scenario. Also, the market com-
petition among MNOs for selling and buying infrastructure is
modeled and analyzed. Although the problem of spectrum and
infrastructure sharing was considered in [18], the tradeoffs as
well as the market were not analyzed. Note that in [21], we
modeled and analyzed the problem of spectrum sharing among
network operators using a stochastic geometry approach.

We consider multiple co-located deployment of network
infrastructures by different MNOs, where the MNOs are
assumed to operate over orthogonal frequency bands. In the
infrastructure sharing deployment, each BS can be utilized by
the users subscribed to more than one MNO. The MNOs that
install the BS are considered as potential sellers of the BS
infrastructure (i.e. incumbent MNOs). The entrant MNO that
use the BS of the incumbent MNOs to serve their users is
considered as the buyer. In the presence of multiple seller
MNOs, it is assumed that they compete with each other to sell
their infrastructure to a potential buyer. Note that our study
in this paper focuses only on infrastructure sharing among
the MNOs. We consider that BSs are randomly scattered in
a two dimensional (2D) plane. First, we study the strategy
of a buyer MNO, that decides which MNOs to buy the
infrastructure from, and how much infrastructure to buy from
them. We propose a cost minimization problem for the buyer
MNO, while guaranteeing the quality-of-service (QoS) to
its users, in terms of the SINR coverage probability, as an
optimization problem. Next, we propose the market from the
point of view of the sellers, which compete with each other
to sell the infrastructure. We model the competition among
the seller MNOs as a Cournot-Nash game. The seller MNOs
compete with each other in terms of their supply (a fraction
of infrastructure to be shared), the associated cost (e.g. due
to power consumption at the BSs), and the selling price, with
the objective of gaining the highest profit. As such we find the
Cournot-Nash equilibrium and obtain the equilibrium price.
We use results from stochastic geometric analysis of large-
scale networks to evaluate SINR outage probability and power
consumption to model such a market.

The major contributions of the paper can be summarized as
follows:

• The paper presents an infrastructure sharing model with
multiple seller MNOs and a single buyer MNO. The
downlink SINR coverage probability, which is considered
to be the QoS metric for the buyer MNO, is analyzed
using stochastic geometry.

• Subsequently, the trade-off between increasing the trans-
mit power of a BS versus increasing the BS deployment
density for the buyer MNO is analyzed. It is shown that
there is an upper bound beyond which increasing the
transmit power cannot improve the coverage probability.
Infrastructure sharing is beneficial when the QoS is
above this bound. Infrastructure sharing can improve the
cellular coverage as long as the BS interference and BS
association are decoupled.

• For a seller MNO, since its profit depends on its cost
of network operation, the areal power consumption (i.e.
power consumption per unit area) at the BSs is analyzed.

• The optimal strategy for the buyer MNO, in order to
minimize the cost of purchase, is obtained by using the
Lagrange multiplier method. We use greedy algorithm to
find which seller MNO and how much infrastructure to
purchase from.

• The optimal strategy for the seller MNOs, in terms
of the fraction of infrastructure to be shared and the
pricing for the infrastructure, is obtained by computing
the equilibrium of a Cournot-Nash market/game.

C. Organization
The rest of the paper is organized as follows. Section

II describes the system model of the infrastructure sharing
system and the assumptions. Section III gives the stochastic
geometrical analysis of the downlink SINR coverage prob-
ability of a typical user based on two scenarios: (i) all the
BSs of the seller MNOs serve UEs subscribing to the buyer
MNO (i.e. interference is caused at the reference user from
downlink transmissions of all BSs of all of the seller MNOs
as well those from the buyer MNO’s) and (ii) some of the
BSs of the seller MNOs serve UEs subscribing to the buyer
MNO (i.e. interference is caused at the reference UE from a
fraction of all the BSs of the MNOs including those from
the buyer MNO’s). The trade-off between transmit power and
infrastructure (i.e. intensity of BSs) is analyzed in Section IV.
Section V models the strategic behavior of a buyer MNO
to buy infrastructure from multiple seller MNOs. Section
VI analyzes the competition among multiple sellers using a
Cournot-Nash game. The numerical results are presented in
Section VII before the paper is concluded in Section VIII.

II. SYSTEM MODEL AND ASSUMPTIONS

Consider a system with K + 1 MNOs given by the set
K = {0, 1, . . . ,K} that serves a common geographical area.
We consider a multiple-seller single-buyer market for infras-
tructure sharing. We assume that an MNO cannot be both
buyer and seller at the same time. Let MNO-0 denote our buyer
MNO. Let the set of BSs owned by MNO-k be given by F

k

,
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where k 2 K, and they all use the same radio spectrum (i.e.
the frequency reuse factor is 1). Each of the BSs and UEs are
assumed to be equipped with a single antenna. The maximum
transmit power of each BS is p

max

. Also, a UE subscribed to
an MNO associates to the nearest BS belonging to that MNO.
The BSs owned by different MNOs are spatially distributed
according to homogeneous Poisson point processes (PPPs). Let
the spatial intensity of BSs per unit area of MNO-k be denoted
by �

k

, where k 2 K. Furthermore, each MNO-k, is assumed
to operate on orthogonal spectrum. Thus, there is no inter-
operator interference among the MNOs. However, since the
all the BSs belonging to an MNO utilize a common spectrum,
intra-operator interference is present. During the sharing of
infrastructure, the following assumptions hold:

Assumption 1. When the buyer MNO-0 is allowed to use
the infrastructure of a seller MNO-k, where k 2 K\{0}, the
typical UE of MNO-0 associates with the nearest available
BSs owned by MNO-0 or the seller MNO-k.

If the buyer MNO-0 shares infrastructure with N ✓ K\{0}
seller MNOs, then a UE subscribed to MNO-0 can effectively
associate to any one of the enlarged set of BSs given by F =

F
0

[ ([
k2NF

k

). This implies that the net intensity of the BSs
that a typical UE of MNO-0 can associate itself with is

�
A

= �
0

+

X

k2N
�
k

, (1)

due to the superposition property of PPP. In places where it
is not ambiguous, we can denote the overall net intensity of
the BSs of all MNOs as sum of all �

k

by,

� = �
0

+

X

k2N
�
k

.

Assumption 2. The buyer MNO-0 is assumed to use the
infrastructure, but not the spectrum, belonging to a seller
MNO-k, where k 2 K\{0}. As such a UE of MNO-0 served
by the shared BS of a seller MNO-k has to operate on the
spectrum belonging to the MNO-0 itself. We will consider two
possible cases for the interference experienced by the typical
UE of MNO-0:

1) When every shared BS of the seller MNOs serves a user
from MNO-0, we have the intensity of interfering BSs as

�
I

= �
0

+

X

k2N
�
k

= �
A

(2)

2) When only some of the BSs of the seller MNOs serve
users from MNO-0, the intensity of interfering BSs is
given by

�
I

=

X

k2N[{0}

w
k

�
k

(3)

where w
k

denotes the level of activity of UE of MNO-0
using infrastructure of seller MNO-k, such that k 2 N ,
and

P
k2N[{0} wk

= 1. In this case, �
A

is given by (1).

Note that despite the sharing of BSs among MNOs, there
is no inter-operator interference among MNOs in our system
model, since each MNO operates over a different spectrum.

Due to Assumption 2, the buyer will purchase only the infras-
tructure of the seller MNOs and not the spectrum. Assumption
2.1 is a worst-case assumption, while Assumption 2.2 is a
more realistic assumption. While in Assumption 2.1 �

I

= �
A

,
in Assumption 2.2 �

I

and �
A

are de-coupled.
Fig. 1 illustrates the scenarios when the MNO-0 buys

infrastructure from two seller MNOs, namely, MNO-1 (with 1
BS) and MNO-2 (with 2 BSs). In Fig. 1(a), all of the BSs of
MNO-1 and MNO-2 serve users (e.g. user equipment; UE-1,
UE-2, and UE-3) subscribing to MNO-0 (which is described
by Assumption 2.1), while in Fig. 1(b), only some shared BSs
of seller MNOs (e.g. BS-2 of MNO-2) serve at least one UE
of MNO-0 (which is described by Assumption 2.2).

III. ANALYSIS OF DOWNLINK SINR COVERAGE
PROBABILITY FOR THE INFRASTRUCTURE SHARING

SYSTEM

Without loss of generality, we consider a typical UE of
MNO-0 located at the origin, which associates with the nearest
BS in the enlarged set of BSs given by F . We will denote the
nearest BS from F to the typical UE as BS-0. We assume that
the message signal undergoes Rayleigh fading with the channel
power gain given by g

0

. Furthermore, let ↵ > 2 denote the
path-loss exponent for the path-loss model r�↵

0

, where r
0

is
the distance between the typical UE and BS-0. Finally, let �2

denote the noise variance, and p denote the transmit power of
all the BSs in MNO-0, including BS-0. The downlink SINR at
the typical UE is SINR =

g

0

r

�↵
0

p

I+�

2

, where I is the interference
experienced by a typical UE from the BSs that operate on the
spectrum of MNO-0. These are the BSs that belong to MNO-
k, where k 2 N[{0}. Thus, I =

P
i2F\{0} ⇠igir

�↵

i

p. Here g
i

is the co-channel gain between the typical UE and interfering
BS-i, and r

i

is the distance between the typical UE and the
interfering BS-i, where i 2 F\{0}. The transmit power of
each BS is 0 < p  p

max

. Lastly, ⇠
i

2 {0, 1} is a binary
variable indicating whether the BS-i is active (if ⇠

i

= 1) or
inactive (if ⇠

i

= 0) in the spectrum of MNO-0.
For a given threshold T , the SINR coverage probability for

the typical UE of MNO-0’s cellular network is defined as:
P
c

= Pr(SINR > T ). While the case when �
A

= �
I

has
been explored in [23], similar method can be used to find
a more general formula for the coverage probability when
�
A

6= �
I

. Following [23, Theorem 1], we first condition on the
nearest BS at the distance r

0

from a typical UE. The coverage
probability averaged over r

0

is

P
c

=

Z

r>0

Pr(SINR > T | r
0

)f
r

0

(r)dr, (4)

where the probability density function of r
0

is given by,
f
r

0

(r) = e�⇡�Ar

2

0

2⇡�
A

r
0

. We have

P
c

=

Z

r>0

Pr

✓
g
0

r�↵

0

p

I + �2

> T | r
0

◆
e�⇡�Ar

2

2⇡�
A

r
0

dr
0

. (5)
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(a) (b)

Fig. 1: The buyer MNO-0 buys infrastructure from seller MNOs.

Using the fact that the distribution of the Rayleigh fading chan-
nel power gain follows an exponential distribution exp

⇣
1

p

⌘
,

the coverage probability can be expressed as

Pr[g
0

> Tr↵
0

(�2

+ I) | r
0

] = E
I

[e�
Tr↵

0

p (�

2

+I) | r
0

]

= e�
T�2r↵

0

p L
I

✓
Tr↵

0

p

◆
,

where E
I

[.] is expectation taken with respect to the interfer-
ence power, L

I

(s) is the Laplace transform of the random
variable I evaluated at s =

Tr

↵
0

p

, conditioned on the distance
to the closest BS from the origin. It yields the coverage
expression

P
c

=

Z

r>0

e�⇡�Ar

2

0e�
T�2r↵

0

p L
I

✓
Tr↵

0

p

◆
2⇡�

A

r
0

dr
0

. (6)

For a homogeneous PPP, L
I

(

Tr

↵
0

p

) is given by

L
I

✓
Tr↵

0

p

◆
= exp

�
�
I

⇡(1� �)r2
0

 
, where (7)

� =

2(T/p)2/↵

↵
E
g

[g2/↵(�(�2/↵, T g/p))� �(�2/↵)], (8)

in which �(z) is the Gamma function, while �(z, a) =R1
z

xa�1e�xdx is the upper incomplete Gamma function,
and E

g

[.] is the expectation taken with respect to interferers’
channel distribution g.

Proposition 1. The general expression of the coverage prob-
ability for the typical UE of MNO-0 cellular network is

P
c

= ⇡�
A

Z 1

0

exp{�(Az +Bz↵/2)}dz, (9)

where the coefficients A and B are given by

A = ⇡[(�
I

(� � 1)) + �
A

], B =

T�2

p
. (10)

Proof: A formula for a coverage probability of the typical
UE when the BSs are distributed according to a homogeneous
PPP of intensity � is derived in [23, Eqn.2]. Substituting (7)

in (6) and changing the variable r2
0

! z, we can express the
coverage probability as

P
c

=

Z

z>0

e�
T�2

p z

↵/2

| {z }
noise

e�⇡(�I(��1))z

| {z }
interference

e��A⇡z⇡�
A| {z }

user association

dz. (11)

Here the integrand in (11) comprises of terms related to noise,
interference, and user association, while each BS employs
a constant power p. We can express (11) as (9) with the
coefficients A and B in (10).

When the interfering links undergo Rayleigh fading, � =

1 + ⇢(T,↵), where

⇢(T,↵) = T 2/↵

Z 1

T

�2/↵

(1 + u↵/2

)

�1

du. (12)

For this special case, we see that � is independent of transmit
power.

Except for ↵ = 4, P
c

cannot be evaluated in closed
form. Nevertheless, a simple closed-form approximation for
the general case, where ↵ > 2, and where both noise and
intra-operator interference are present, can be given as [24,
Eqn. 4]

P
c

' ⇡�
A

"
A+

↵

2

B2/↵

�

�
2

↵

�
#�1

, (13)

where �(z) is the Gamma function. For “interference-limited
case”, which occurs when �2 ! 0, we have B ! 0; therefore,
the above approximation simplifies to

P
c

' �
A

(�
I

(� � 1)) + �
A

. (14)

The significance of the approximation in (13) is that it
allows us to study the asymptotic behavior of P

c

. These
asymptotic results give us a qualitative understanding of the
system as various parameters change. Likewise, we can use
(13) to obtain the required transmit power p for given QoS,
as we will see in the later sections.

In Propositions 2-5 in Sections III-A and III-B below, we
show the coverage probability for a user of buyer MNO-0
when every BS (Assumption 2.1) and when some of BSs
(Assumption 2.2) of seller MNOs serve the users of MNO-0.
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In Proposition 6 in Section III-C, we show the coverage prob-
ability for the case when MNO-0 uses its own infrastructure.
Also, for all these cases, the asymptotic behavior of coverage
probability is expressed accordingly.

A. SINR Coverage Analysis When Assumption 2.1 Holds
Proposition 2. Under Assumption 1 and Assumption 2.1, the
coverage probability of a typical UE of buyer MNO-0 is

P
c

= ⇡�

Z 1

0

exp{�(A
1

z +Bz↵/2)}dz, (15)

where A
1

= ⇡��, and � and B are given by (8) and (9),
respectively. Then, we can approximate P

c

using (13) as

P
c

'
"
� +

↵

2⇡�

B2/↵

�

�
2

↵

�
#�1

. (16)

Proof: As per Assumption 2.1, we have �
I

= �
A

= �.
Substituting these values in Proposition 1, we obtain (15). The
approximation (16) is obtained by applying (13).

Proposition 3. Asymptotic behavior of P
c

: (i) When the
number of seller MNOs (N ) is fixed, as the BS intensity of
MNO-0 increases such that �

0

! 1, the coverage of MNO-
0 saturates at 1

�

. (ii) For a fixed BS intensity of MNO-0,
as the number of seller MNOs (N ) increases, the coverage
probability also saturates at 1

�

. (iii) For fixed number of seller
MNOs (N ), if MNO-0 does not have its own infrastructure
such that �

0

= 0, then P
c

'
h
� +

↵

2⇡�(

2

↵ )

B

2/↵
PN

i=1

�i

i�1

.

Proof: From the closed-form approximation in (16), we
can see that (i) When �

0

! 1, since B and
P

N

k=0

�
k

remain
constant, P

c

! 1/�. (ii) When N ! 1, since B and and
�
0

� are constants, P
c

! 1/�. (iii) When �
0

= 0, A
1

=

⇡�
P

N

i=1

�
i

. Simplifying (16), we obtain the desired results.

B. SINR Coverage Analysis When Assumption 2.2 Holds
Proposition 4. Under Assumption 1 and Assumption 2.2, the
downlink coverage probability of a typical user of buyer MNO-
0 is

P
c

= ⇡�

Z 1

0

exp{�(A
2

z +Bz↵/2)}dz, (17)

where A
2

= ⇡(
P

k2N[{0} wk

�
k

(� � 1) + �), and the B and
� are given by (8) and (9), respectively. Also, the approximate
P
c

for this case is

P
c

'

1 +

¯�(� � 1)

�
+

↵

2⇡�

B2/↵

�(

2

↵

)

��1

, (18)

where ¯� =

P
k2N[{0} wk

�
k

and w
k

= �
k

/�.

Proof: As per Assumption 1, we have �
A

= �, while ac-
cording to Assumption 2.2, we have �

I

=

P
k2N[{0} wk

�
k

.
Substituting these values in Proposition 1, we have the desired
result in (17). Also, using the approximation (13) for (17), we
obtain (18). Lastly, w

k

is the activity level of users of MNO-0
in another MNO-k, which is equivalent to the probability that
a user associates with shared BSs belonging to MNO-k. That

is, w
k

is the probability that the BS belonging to MNO-k is
the nearest BS to the typical user. Since the total intensity of
BSs that a user can associate with is �, due to superposition
property, w

k

= �
k

/� is the probability that a user will connect
to a BS belonging to MNO-k.

Proposition 5. Asymptotic behavior of P
c

: (i) For fixed
number of seller MNOs (N ), when the BS intensity of the
buyer MNO-0 increases (�

0

! 1), the coverage of MNO-
0 saturates at 1/�. (ii) For fixed BS intensity of MNO-0,
as the number of seller MNOs (N ) increases, the cover-
age of MNO-0 increases and then saturates to 1. That is,
if lim

N!1
P

i2N �
i

= 1 and lim

N!1 ¯�/� = 0, then
lim

N!1 P
c

= 1, (iii) For fixed number of seller MNOs
(N ), if MNO-0 does not have its own infrastructure, then
P
c

'
h
1 +

¯

�(��1)PN
i=1

�i
+

↵

2⇡�(

2

↵ )

B

2/↵
PN

i=1

�i

i�1

.

Proof: From the approximation in (18), (i) using w
i

=

�
i

/�, we have

¯�

�
=

P
i2N[{0} �

2

i

�2

=

P
i2N[{0} �

2

i

(

P
i2N[{0} �i

)

2

.

Dividing both the numerator and denominator on the right side
by �2

0

, we obtain

¯�

�
=

1 +

P
i2N[{0}(

�i
�

0

)

2

[1 +

P
i2N[{0}(

�i
�

0

)]

2

.

Therefore, when �
0

! 1, we have lim

�

0

!1
¯

�

�

= 1. Since B

remains constant, ↵

2⇡�

B

2/↵

�(

2

↵ )

! 0. Thus, we have P
c

! 1/�.
(ii) As N ! 1, given our assumptions, ¯�/� ! 0.

Similarly, since B remains constant, ↵

2⇡�

B

2/↵

�(

2

↵ )

! 0. Thus,
we have P

c

! 1.
(iii) When �

0

= 0, we have � =

P
i2N[{0} �i

. Thus, we
obtain the desired result.

Note that Proposition 5 (i) is valid not only when �
0

! 1,
but also when any �

i

! 1. In our case, an increase in the
BS intensity does not correspond to an increase in co-channel
interference, which is different from [23]. Proposition 5 also
confirms our intuition that a greater sharing of infrastructure
leads to a better coverage. Increasing the buyer MNO-0’s
infrastructure also leads to coverage improvement.

We can see that when the number of seller MNOs (N )
increases, the coverage of the buyer MNO-0 saturates at 1

following Proposition 5 (ii). This leads to the main difference
between Proposition 3 and Proposition 5. In Proposition 3,
although the number of sellers increased, the maximum cov-
erage of MNO-0 leads to only 1/�.

C. When the MNO-0 Employs its Own Infrastructure
For the case when the MNO-0 uses its own infrastructure,

the coverage probability can be obtained as follows.

Proposition 6. The coverage of MNO-0 without buying in-
frastructure is approximated as

P
c

'
"
� +

↵

2⇡�
0

B2/↵

�

�
2

↵

�
#�1

. (19)
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Proof: Without infrastructure sharing, the interference
is only from BSs of MNO-0. Thus, �

I

= �
0

, regardless
of Assumption 2.1 or Assumption 2.2. Also, the user can
associate only with the BSs of MNO-0. Thus, �

A

= �
0

.
Hence, using (13) we obtain the desired result.

Asymptotically, P
c

! 1/� as �
0

! 1, since B remains
constant.

IV. ANALYSIS OF TRADE-OFFS

A. Minimum Transmit Power Required to Satisfy the QoS
In the Propositions 7 and 8 below, we express the minimum

transmit power for each BS of the buyer MNO-0 to achieve
the coverage QoS when every BS (Assumption 2.1) and when
some of BSs (Assumption 2.2) of seller MNOs serve the users
of MNO-0. Let us further assume that the MNO-0 wants to
ensure that the coverage probability of a typical UE satisfies
the QoS constraint

P
c

� 1� ✏, (20)

where 0 < ✏ < 1 is some arbitrary value. In order to satisfy
the coverage constrain in (20), the minimum power required
for each BS of MNO-0, for given infrastructure, is given by
the following proposition.

Proposition 7. Let Assumption 1 and Assumption 2.1 hold.
Assume that the interfering links undergo Rayleigh fading and
� be defined as before. Then, given the condition that 1� ✏ <
1/�, where � is given by (8), the minimum transmit power
required for each BS of MNO-0 such that P

c

� 1� ✏, is

p ' c
0

��↵/2, where c
0

=


2⇡(1� (1� ✏)�)

↵(1� ✏)(T�2

)

2/↵

�(

2

↵
)

��↵/2

.

(21)

Proof: When the interfering links undergo Rayleigh fad-
ing, � = 1 + ⇢, as given in (12), and is independent of p.
Thus, using (13) in the inequality P

c

� 1 � ✏, and solving
for p, we obtain the desired result. For p > 0, it suffices that
1 � �(1 � ✏) > 0 in the expression for c

0

. Re-arranging the
terms gives the desired result.

Proposition 8. Let Assumption 1 and Assumption 2.2 hold. We
assume that the interfering links undergo Rayleigh fading and
� be defined as before. Then, given the sufficient condition that
1� ✏ < 1/�0, where �0

= 1 +

¯

�(��1)

�

, the minimum transmit
power required for each BS of MNO-0 such that P

c

� 1� ✏,
is

p ' bc
0

��↵/2, where bc
0

=


2⇡(1� (1� ✏)�0

)

↵(1� ✏)(T�2

)

2/↵

�(

2

↵
)

��↵/2

.

(22)

Proof: When the interfering links undergo Rayleigh fad-
ing, � = 1 + ⇢, as given in (12), and is independent of p.
Thus, using (13) in the inequality P

c

� 1 � ✏, and solving
for p, we obtain the desired result. For p > 0, it suffices
that 1 � (1 � ✏)(1 + �0

) > 0 in the expression for bc
0

. Here
�0

= 1+

¯

�(��1)

�

and ¯� =

P
N

i=0

w
i

�
i

. Re-arranging the terms
gives the sufficient condition.

According to Proposition 7 and Proposition 8, for a given
QoS, the transmit power of the BSs of an MNO should
decrease with increasing BS intensity. For instance, if ↵ = 4,
then p / 1p

�

. Then, we will use (21) for Assumption 2.1,
and (22) for Assumption 2.2 to obtain the minimum transmit
power from BS of MNO-0, when there is no infrastructure
sharing. Also, we will obtain the optimal cell radius of a BS
of MNO-0 when using the minimum power.

B. Trade-off Between Power and Infrastructure
Every MNO wishes to guarantee a certain probability of

coverage to its own customers. For this purpose, if a UE is
experiencing outage, the MNO can either choose to increase
the transmit power of the BSs so as to increase the coverage
radius, or offload the call to a shared BS. It is natural to look
at the possible trade-off between increasing the power and
sharing more infrastructure.

Intuitively, in both Proposition 7 and Proposition 8, the
minimum required transmit power decreases with increasing
BS densification.

• For Assumption 2.1 the sufficiency condition 1/� is the
maximum attainable coverage probability as the transmit
power p ! 1 and as the system becomes interference
limited (i.e. B ! 0). That is, we have the upper bound
P
c

 1/�. Thus, the QoS, 1 � ✏, can be achieved by
varying the transmit power only when 1� ✏ < 1/�.

• Similarly, for Assumption 2.2, the sufficiency condition
1/�0 is the maximum attainable coverage probability
when the transmit power p ! 1 such that B ! 0.
The QoS, 1� ✏, can be achieved by varying the transmit
power only when 1� ✏ < 1/�0.

We can see that if the sufficient conditions for the cases with
Assumption 2.1 and Assumption 2.2 are violated, MNO-0
cannot satisfy the outage QoS by simply varying the transmit
power. The MNO-0 will have to buy more infrastructure from
other MNOs.

Let R be the cell radius of a BS defined as the distance at
which a UE will receive �3 dB SNR. Then, for the important
special cases when there is no infrastructure sharing, we have
the following scaling law as a corollary.

Corollary 1. When there is no infrastructure sharing, the min-
imum BS transmit power of Assumption 2.1 and Assumption

2.2 for which 1� ✏ < 1/� are
1) From Assumption 2.1, the minimum transmit power is

p ' c
0

�
�↵/2

0

, where c
0

is given in (21) and c
0

is
independent of �

0

. The optimal cell radius is R ' c

0
0p
�

0

,

where c0
0

=

�
2c

0

�

2

�
1/↵.

2) From Assumption 2.2, the minimum transmit power is
p ' bc

0

�
�↵/2

0

, where bc
0

is given in (22) such that �0
= �,

and bc
0

is independent of �
0

. We can obtain the optimal
cell radius as R ' bc0

0p
�

0

, where bc0
0

=

�
2bc

0

�

2

�
1/↵

.

Proof: When there is no infrastructure sharing, it means
that N = ; and we have � = �

0

. Since the cell edge is defined
as the distance at which SNR is �3 dB, we have

pR�↵

�2

=

1

2

. (23)
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Using Proposition 7 and Proposition 8, the proofs are as
follows: (i) Given Assumption 2.1, putting p = c

0

�
�↵/2

0

from (21) in (23), we can solve for R to obtain the result.
(ii) Similarly, given Assumption 2.2, in (22) ¯� = �

0

without
infrastructure sharing. Also �0

= �. Thus, we obtain required
minimum transmit power in the Corollary 1. Then, putting
p = bc

0

�
�↵/2

0

in (23), we can solve for R to obtain the result.

A scaling law similar to Corollary 1 can be found in [25,
Lemma 1] and [26, Lemma 1] for homogeneous PPP, using
a slightly different approximation, as p / �

�↵/2+1

0

. However,
our formula differs from theirs in the order of the exponent as
well as the proportionality constant. Likewise, the scaling law
for the cell radius, R / 1/

p
�
0

, corresponds to that obtained
by [27] for hexagonal grid model.

C. Areal Power Consumption of Seller MNO

In Propositions 9 and 10 below, we express the areal power
consumption as a function of BS intensity of seller MNO and
show the convexity of the areal power consumption.

Let the transmit power of each BS belonging to the seller
MNO-k, where k 2 K\{0}, be denoted by p

k

. Apart from
the transmit power, each BS also consumes a fixed amount
of circuit power, denoted by p

c

. Hence, the total power
consumption of a BS of an MNO-k is p

k

+p
c

. Since the MNO-
k has �

k

BS per unit area, the areal power consumption of
the network (i.e. power consumption per unit area) is

S
k

= �
k

(p
k

+ p
c

). (24)

For MNO-k, let the QoS constraint on coverage probability
of a typical UE be P

c

� 1� ✏ and the threshold SINR be T
k

.
In order to satisfy this constrain, it can either increase its BS
intensity �

k

or increase its transmit power p
k

. The trade-off
between �

k

and p
k

was given by Proposition 7. Similarly, the
trade-off between �

k

and S
k

follow immediately.

Proposition 9. Given the assumptions in Proposition 7, the
areal power consumption of seller MNO-k, where k 2 K\{0},
is

S
k

(�
k

) =

(
�
k

(p
max

+ p
c

), if 0  �
k

 (

ck
p

max

)

2/↵,

�
k

(c
k

�
�↵/2

k

+ p
c

), if �
k

� (

ck
p

max

)

2/↵,
(25)

where c
k

=

h
2⇡(1�(1�✏)�)

↵(1�✏)(Tk�
2

)

2/↵�(
2

↵

)

i�↵/2

.

Proof: Since the MNO-k does not buy infrastructure from
other MNOs, the net BS intensity that a typical UE of MNO-
k experiences is �

k

. Thus, from Corollary 1, we have p
k

'
c
k

�
�↵/2

k

. Putting p
k

in (24) and recalling that 0 < p
k

 p
max

,
we have (25).

We see that S
k

is a piece-wise continuous function of �
k

which initially increases linearly with �
k

, and beyond a certain
point, it behaves as a convex function. This can be verified by
checking the second derivative of S

k

for �
k

� (

ck
p

max

)

2/↵ as

d

2S
k

d�2

k

=

c
k

↵(↵� 2)

4

�
�↵

2

�1

k

. (26)

Since c
k

> 0 and ↵ > 2, we have d

2

Sk

d�

2

k
> 0, proving

the convexity of S
k

in the region �
k

� (

ck
p

max

)

2/↵. As
such, studying the behaviour of S

k

is not straightforward.
Nevertheless, the local minima in the convex region can be
found.

Proposition 10. Given the assumptions in Proposition 7 , let

�
th

=

⇣
ck

p

max

⌘
2/↵

. Then, for the region �
k

� �
th

, the BS
intensity for which the areal power consumption of MNO-k,
where k 2 K\{0}, is minimum is

�
k,min

= max

 
�
th

,


c
k

p
c

⇣↵
2

� 1

⌘�2/↵!
. (27)

Proof: We have dS
k

/d�
k

= p
c

� (c
k

(↵ � 2)�
�↵/2

k

)/2.
Solving dS

k

/d�
k

= 0 for �
k

, we have �⇤
k

= [

ck
pc
(

↵

2

� 1)]

2/↵.
This is clearly the minima if �

th

< �⇤
k

. Otherwise, �
k,min

=

�
th

.

Fig. 2: The areal power consumption (S
k

) versus BS intensity
(�

k

).

In Fig. 2, we illustrate S
k

as a function of �
k

, as given
in (25). We can see that it is composed of linear and convex
parts. The convex part of S

k

corresponds to that obtained for
hexagonal grid models via simulations in [29]. Similar, but not
the same, formulas were given in [25], [26].

V. ANALYSIS OF MARKET: BUYER’S STRATEGY

In this section, we propose a strategy for the buyer MNO-
0 which will allow it to choose the seller MNOs to buy the
infrastructure from. By using our method, the buyer MNO will
select the necessary number of seller MNOs, at minimum cost,
such that it can serve its users guaranteeing some QoS. We
have already seen in Propositions 7 and 8 and the discussion
given in Section IV-B that when the QoS constrain is such that
1 � ✏ < 1/�0 and 1 � ✏ < 1/�, respectively, the QoS can be
satisfied by simply increasing the transmit power. As such, in
this section, we will consider the case when these conditions
are violated. We first have the following proposition:

Proposition 11. Under Assumption 2.1, when the QoS con-
dition P

c

� 1 � ✏ > 1/�, the MNO-0 cannot improve its
coverage by buying infrastructure.

Proof: Using the approximation (16) in (20) and solving
for �, we obtain the feasible constraint of � as

� � ✓(1� ✏)

1� �(1� ✏)
. (28)
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where ✓ =

↵

2⇡

B

2/↵

�

�
2

↵

� , for some N such that ; ✓ N ✓ K. For

positivity, the denominator of (28) should be 1��(1�✏) > 0,
which when re-arranged gives 1/� > 1 � ✏. This contradicts
our assumption that 1� ✏ > 1/�.

Although this result seems counter-intuitive, it is not sur-
prising when we recall that in Proposition 3 (ii), even when
the number of MNOs which are willing to share infrastructure
increases i.e. N ! 1, the coverage of the BSs of MNO-0 can
only achieve P

c

! 1/�. Accordingly, it is not possible for the
MNO-0 to achieve the coverage beyond 1/� by buying more
infrastructure for the scenario of Assumption 2.1.

Proposition 12. Under Assumption 2.2, for the QoS condition
P
c

� 1 � ✏ > 1/�0 to be feasible for the buyer MNO-0, the
net BS intensity � = �

0

+

P
i2N �

i

must satisfy

X

i2N[{0}

✓
1� w

i

(� � 1)(1� ✏)

✏

◆
�
i

� ✓(1� ✏)

✏
, (29)

where w
i

=

�i
�

and ✓ is as given in (28), for some N such
that ; ✓ N ✓ K.

Proof: Using the approximation (18) in (20) and substi-
tuting ¯� =

P
N

i=0

w
i

�
i

, and solving for �, we have the required
result.

If there is a cost associated with the sharing of infrastruc-
ture, then we can formulate a cost minimization problem with
the QoS constraint as follows:

min
X

k2K\{0}

q
k

x
k

(30)

s.t. (C1)

X

k2K


1� �

k

x
k

(� � 1)(1� ✏)

�✏

�
�
k

x
k

� ✓(1� ✏)

✏
,

where q
k

> 0 is the price of infrastructure when buying from
MNO-k, where k 2 K\{0}, x

k

(0  x
k

 1) denotes the
fraction of infrastructure bought from seller MNO-k. Also,
note that x

0

= 1 since the buyer cannot buy infrastructure from
itself. We can interpret x

k

in two possible ways: 1) The buyer
MNO-0 buys the entire infrastructure of MNO-k but utilizes
the whole infrastructure of MNO-k for only x

k

fraction of
time, or 2) the MNO-0 buys only a fraction x

k

of the total
infrastructure of MNO-k, but utilizes it all the time. Thus the
total amount of infrastructure bought from MNO-k is �

k

x
k

.
Since the objective function is linear, the single constraint is
quadratic in x

k

, and the variable x
k

is a fraction in [0, 1], the
problem (30) becomes a convex optimization problem.

The solution to the problem can be split into two parts. First,
we need to find the optimal set N , i.e. select MNOs from
which to buy the infrastructure. Second, we need to determine
the optimal value of x

k

for k 2 N . Assuming that we know
N , we find the optimal value of x

k

using Lagrange multiplier
method. We have the Lagrangian of (30) as

L (µ, x
k

) =

X

k2N[{0}

q
k

x
k

� 1

µ

✓
✓(1� ✏)

✏
�

X

k2N[{0}

�
k

x
k

+

X

k2N[{0}

�2

k

x2

k

�
(� � 1)(1� ✏)

◆
. (31)

Here 1/µ is the Lagrange multiplier such that µ > 0. Note
that here for k = 0, q

0

= 0 and x
0

= 1. Taking first order
partial derivative of L(µ, x

k

) with respect to x
k

for k 2 N ,
we obtain

@L(µ, x
k

)

@x
k

= q
k

+

�
k

µ
� 2�2

k

x
k

(� � 1)(1� ✏)

µ�
. (32)

By using the first order optimality condition @L

@xk
= 0, we

obtain the optimal x⇤
k

as

x⇤
k

=

�(µq
k

+ �
k

)

2�2

k

(� � 1)(1� ✏)
. (33)

Substituting x⇤
k

from (33) in the (C1) of (30) and setting
it to be an equality, as per complementary slackness condi-
tion, yields

P
k2N[{0}

⇣
1� �kx

⇤
k(��1)(1�✏)

�✏

⌘
�
k

x⇤
k

=

✓(1�✏)

✏

.
Then, solving for optimal µ⇤ gives,

µ⇤
=

�F ±pF 2 � 4E(G�H)

2E
(34)

where

E =

X

k2N[{0}

�q2
k

4�2

k

✏
, F =

X

k2N[{0}

q
k

�

✓
1

2�
k

✏
� 1

2�2

k

◆
,

G =

X

k2N[{0}

�

✓
1

4✏
� 1

2�
k

◆
, H =

✓(1� ✏)2(� � 1)

✏
.

For the uniqueness of µ⇤, we have an extra condition that
the discriminant be zero, i.e, F 2 � 4E(G�H) = 0 has to be
satisfied. As such, by substituting E and F back to (34), and
setting F 2 � 4E(G�H) = 0, we obtain the unique solution
of µ⇤ as,

µ⇤
=

P
k2N

qk

�k

�
✏

�k
� 1

�

P
k2N

⇣
qk

�k

⌘
2

. (35)

Positivity of µ⇤ is ensured if ✏ > �
k

for all k 2 N .
Finally, substituting the unique µ⇤ from (35) to (33), we

obtain the optimal and unique solution of x⇤
k

. It is easy to
verify that the obtained x⇤

k

is positive, since in (33), the
only way that x⇤

k

can be negative is when the denominator is
negative, i.e. (� � 1)(1� ✏) < 0. This condition is equivalent
to ✏ > 1, which is a contradiction. Thus, x

k

is always positive.
However, the computed value of x⇤

k

can be greater than unity.
Hence, we set x⇤

k

= 1 if x⇤
k

> 1.
Let us now consider finding the optimal N , which is

essentially a combinatorial problem. A simple greedy approach
can be used for the selection of MNOs in N [28, Chap 17.1].
The greedy algorithm is provided in Algorithm 1 to solve the
problem in (30). The idea behind this greedy algorithm is as
follows: We first sort the seller MNOs according to their cost
per BS intensity values in an ascending order. We then select
the first MNO in this list and compute µ⇤ and x⇤

k

from (35)
and (33), respectively. If x

k

> 1, then set x
k

= 1. After this,
we check whether the constrain (C1) in (30) is satisfied. If the
(C1) is not satisfied, then we take the next MNO from the list
and repeat the procedure until the constrain is satisfied. The
computational complexity of Algorithm 1 is O(K2

), since
we need to compute x⇤

k

for all k 2 N in two nested loops. A
solution can be derived within K2 iterations.
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Algorithm 1 Greedy Algorithm
1: Initialize x

k

= 0, w = 0,
2: Compute ⇢

k

= q
k

/�
k

3: Sort the sellers by ⇢
k

in ascending order such that ⇢
⇡

1


⇢
⇡

2

· · ·  ⇢
⇡K

4: for i = 1 to K do
5: Set N = {⇡

1

, . . . ,⇡
i

}
6: Compute µ⇤ using (35)
7: Compute x⇤

k

using (33) for all k 2 N
8: if x⇤

k

> 1 for any k 2 N then
9: Set x⇤

k

= 1,
10: end if
11: if

P
k2N[{0}

h
1� �kx

⇤
k(��1)(1�✏)

�✏

i
�
k

x⇤
k

� ✓(1�✏)

✏

,

then
12: Terminate
13: end if
14: end for
15: Compute P

c

from (18).

VI. ANALYSIS OF MARKET: SELLERS’ COMPETITION

A. Cournot-Nash Oligopoly Market Model

In this part, we will study the equilibrium pricing due to
the sellers’ competition as well as the optimal fraction of
infrastructure that the seller MNOs will be willing to sell.
We will formulate the sellers’ competition as a Cournot-
Nash oligopoly game [30]. The Cournot oligopoly model is
suitable when there are limited number of sellers competing
to sell homogeneous products. In our case, the product is the
infrastructure provided by the seller MNOs. In the real world
scenario, there are limited number of MNOs that compete to
sell some amount of their infrastructure. Each seller MNO is
selfish and is always interested in getting a better payoff. The
MNOs do not communicate with each other, thus they will not
know exactly how much infrastructure is being sold by their
competitors. Also, the pricing will depend on the operational
expense of the shared infrastructure. As such, we will consider
the cost of power consumption. Note that the cost of spectrum
does not come into play, since each seller MNO utilizes the
spectrum of the buyer MNO-0 to serve the users subscribing
to the buyer MNO-0.

Let the fraction of infrastructure to be sold from the seller
MNO-k, k 2 K\{0}, be z

k

, where 0  z
k

 1. Then, the
total amount of infrastructure sold by the seller MNO-k is
y
k

= �
k

z
k

. Let the cost of operating its infrastructure be
C

k

(y
k

), which we define as

C
k

(y
k

) = a
k

S
k

(y
k

) + d
k

, (36)

where a
k

is the price of areal power consumption, d
k

is a
fixed operation cost, and S

k

is as given in (25). Let the overall
infrastructure from K seller MNOs available in the market be
denoted by y =

P
K

k=1

y
k

. Also, let us denote the fraction of
infrastructure of all MNOs except MNO-k by y�k

= y � y
k

.
Let the selling price of the infrastructure be Q(y). In

accordance to the “law of demand” of economics, the seller

MNOs will reduce the price of infrastructure as the demanded
quantity increases. We will assume Q(y) to be

Q(y) = ✓ � ⌘y, (37)

where ✓ > 0 is the initial installation price of infrastructure
from all seller MNOs and ⌘ > 0 denotes the marginal price of
the total infrastructure y in the market. The MNO-k’s profit is

F
k

(y
1

, . . . , y
k

) = y
k

Q(y)� C
k

(y
k

). (38)

In order to maximize the profit of MNO-k with respect to
y
k

, we first partially differentiate (38) with respect to y
k

, and
noting that @y/@y

k

= 1, we obtain

@F
k

@y
k

= y
k

dQ

dy
+Q� dC

k

dy
k

. (39)

Using the optimality condition @Fk
@yk

= 0 in (39) and solving
for y

k

, we obtain

y
k

=

1

dQ

dy

✓
dC

k

dy
k

�Q

◆
, (40)

which is in a fixed-point form. Let us denote the function at
the right hand side of (40) by BR

k

(y�k

) ⌘ 1

dQ
dy

⇣
dCk
dyk

�Q
⌘

,
which we referred to as the best response of MNO-k to the
action of other competitive sellers. Also, we have dQ

dy

= �⌘,
and

dC
k

dy
k

=

(
a
k

(p
max

+ p
c

), if 0  y
k

 (

ck
p

max

)

2/↵

a
k

(1� ↵

2

)c
k

y
�↵/2

k

+ a
k

p
c

, if y
k

� (

ck
p

max

)

2/↵.

We see that the marginal cost of MNO-k is constant up
until a certain point, after which the marginal cost starts to
monotonically increase. Thus, the action of MNO-k to sell y

k

amount of infrastructure depends on the action of other MNOs,
as given by the equation y

k

= BR

k

(y�k

). Substituting dCk
dyk

,
dQ

dy

, and Q in (40),

y
k

=

(
U
k

� y, if 0  y
k

 (

ck
p

max

)

2/↵

V
k

y
�↵/2

k

+W
k

� y, if y
k

� (

ck
p

max

)

2/↵,
(41)

where U
k

=

ak(pmax

+pc)�✓

�⌘

, V
k

=

ak(1�↵
2

)ck

�⌘

and W
k

=

akpc�✓

�⌘

. Recalling that y = y
k

+ y�k

, we obtain the best
response of MNO-k as

y
k

=

(
Uk
2

� y�k

2

, if 0  y
k

 (

ck
p

max

)

2/↵

Vky
�↵/2
k
2

+

Wk
2

� y�k

2

, if y
k

� (

ck
p

max

)

2/↵.
(42)

Since y
k

2 [0, 1], the best response of MNO-k is clipped at (i)
BR

k

(y�k

) = 0 if BR

k

(y�k

) < 0 or (ii) BR

k

(y�k

) = �
k

if
BR

k

(y�k

) > �
k

. The status of the market is known from the
global price information Q of the infrastructure in (37). Thus,
the actions of the MNOs will be reflected in the market price.
An MNO adjusts its action according to the market price as
given by its best response function (40). In (40), the price Q
will be fixed in a given iteration. Thus, it is not necessary for
each MNO to know the strategy of other MNOs.
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B. Equilibrium of Market
The equilibrium solution of the Cournot-Nash oligopoly

market, y⇤, is the fixed point of the best response
function. As such, the best responses of all K seller
MNOs can be expressed in vector form as y⇤

=

BR(y⇤
), where y⇤

= [y⇤
1

, y⇤
2

, . . . , y⇤
K

]

T and BR(y⇤
) =

[BR

1

(y⇤�1

), . . . ,BR
K

(y⇤�K

)]

T . The [.]T denotes transpose of
vector. By taking summation of (42) over all K seller MNOs,
and using the fact that

P
k2K\{0} y

⇤
�k

=

P
k2K\{0}(y

⇤ �
y⇤
k

) = (K � 1)y⇤, we can solve the equilibrium quantity y⇤

as
y⇤ =

1

K � 1

X

k2K\{0}

y⇤�k

. (43)

Once the equilibrium quantity y⇤ is computed, we can find the
corresponding equilibrium price q⇤ by substituting y⇤ into the
price function in (37), and we obtain q⇤ = Q(y⇤) = ✓ � ⌘y⇤.

The equilibrium quantity and equilibrium price of the entire
market can be calculated by using Algorithm 2. First of all,
we consider the competition among seller MNOs. Once we
compute the Cournot-Nash equilibrium for the sellers and
obtain y⇤ and q⇤, the buyer MNO-0 will use y⇤ and q⇤ to
compute its best response which is given by Algorithm 1.

Algorithm 2 Market Equilibrium Quantity and Price Between
Sellers and Buyer

1: Consider competition among seller MNOs.
2: Compute the Cournot-Nash equilibrium of each seller

MNO-k, y⇤
1

, y⇤
2

, . . . , y⇤
k

.
3: Calculate y⇤ from (43) and q⇤ = Q(y⇤) from (37).
4: Substitute y⇤

k

! �
k

and q⇤ in (30).
5: Use Algorithm 1 to find the optimal x⇤

k

and N .
6: Compute P

c

from (18).

Remark: When multiple buyer MNOs are considered, we
can assume that all of them can use the same infrastructure of
the seller MNOs without affecting the performance of each
other when the buyer MNOs transmit in (use) orthogonal
channels (spectrum). In this sense, there is no competition
among the buyers, as is assumed in our model. The buyers
will only decide how much infrastructure they need to buy at
the given selling price and their required QoS.

C. Stability of Nash Equilibrium of Cournot Oligopoly
The stability properties of the Cournot oligopoly game

are discussed in [31], [32]. Considering Assumption A and
Assumption B.1 in [32], the sufficient conditions for our
system to reach the Nash Equilibrium, which also implies
stability of the equilibrium are given as follows:

Proposition 13. The Nash Equilibrium of the Oligopoly game
is always stable, i.e. the iterative updates of each seller best
response always converge to the Nash Equilibrium, since the
following conditions (Condition 1 and Condition 2) are always
satisfied.

Condition 1:
dQ(y)

dy
� d2C

k

(y
k

)

d2y
k

< 0 8y
k

, Q, k. (44)

Proof: From (37) we can obtain dQ(y)

dy

= �⌘. The second
order differentiation of C

k

(y
k

) in (36) with respect to y
k

is
d

2

Ck(yk)

d

2

yk
= a

k

d

2

Sk(yk)

d

2

yk
while using the fact that y

k

= �
k

z
k

in

(36) and d

2

Sk(�k)

d

2

�k
from (26). We can express (44) as

dQ(y)

dy
�d2C

k

(y
k

)

d2y
k

=

(
�⌘, 0  �

k

 (

ck
p

max

)

2/↵

�⌘ � akd
2

Sk(�k)

d

2

�k
, �

k

� (

ck
p

max

)

2/↵.
(45)

When 0  �
k

 (

ck
p

max

)

2/↵, it is always true since ⌘ > 0

hence �⌘ < 0. Also, when �
k

� (

ck
p

max

)

2/↵, where �⌘ < 0,

a
k

> 0 and from the proof in (26), d

2

Sk(�k)

d

2

�k
> 0; hence, the

inequality �⌘ � a
k

d

2

Sk(�k)

d

2

�k
< 0 is always satisfied.

Condition 2:
dQ(y)

dy
� y

k

d2Q(y)

d2y
< 0 8y

k

, Q, k. (46)

Proof: Since d

2

Q(y)

d

2

y

= 0 and dQ(y)

dy

= �⌘ < 0, the
inequality in (46) is always true.

VII. NUMERICAL RESULTS

We assume that, for all K+1 MNOs, the BSs are spatially
distributed according to a homogeneous PPP inside a circular
area of 500 meter radius. The seller MNOs are assumed to
have the same intensity of BSs per unit area. The maximum
transmit power of each BS is p

max

= 10 dBm, the SINR
threshold at each user is T = 20 dB, the path-loss exponent
is ↵ = 5, and noise �2

= �150 dBm. Each BS from all
MNOs transmits at the maximum power in Figs. 3-4. The price
function for selling infrastructure from MNO-k, k 2 K\{0} in
(30) is set to q = ✓�⌘y, where the fixed cost of installation of
infrastructure for all seller MNOs is ✓ = 500 and the marginal
price is ⌘ = 5⇡ ⇥ 500

2.

A. Effect of Changing the Average Number of BSs of MNO-0
per Unit Area

In Fig. 3, the difference between coverage probability of a
user of the buyer MNO-0 before and after buying infrastructure
is illustrated. When the MNO-0 buys infrastructure, it uses
Algorithm 1 and the coverage probability is computed using
(18). When infrastructure is not purchased, the coverage
probability is computed by using (19) in Proposition 6.

When MNO-0 uses its own infrastructure, we see that the
coverage probability of a user of MNO-0 approaches 1/� as
�
0

increases. As such, the MNO-0 cannot simply increase
its own BS intensity to achieve a coverage more than the
upper bound of 1/�. The MNO-0 will have to buy more
infrastructure to gain more coverage. When the buyer MNO-0
buys infrastructure from seller MNOs using Algorithm 1, the
coverage probability of MNO-0 is the same for ✏ = 0.1 and
✏ = 0.3. The coverage of MNO-0 improves significantly and
becomes much greater than 1/�. When the BS intensity of
seller MNO-k, k 2 K\{0} increases, the coverage probability
of MNO-0 is increased. This verifies Proposition 5 (ii). Also,
for fixed �

k

, where k � 1, as �
0

increases, the coverage of
MNO-0 decreases, in accordance to Proposition 5 (i).
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Fig. 4: Coverage probability of a user of MNO-0 when �
0

! 1.

In Fig. 4, we illustrate the coverage probability a user of
MNO-0 before and after buying the infrastructure using a
greedy algorithm when �

0

! 1. When the MNO-0 employs
only its own infrastructure, the coverage probability can be
computed by using (19). When the MNO-0 buys infrastructure,
we assume the number of seller MNOs is six and the tolerable
outage probability ✏ = 0.1. It can be seen that P

c

! 1/�
when �

0

! 1 for both the cases when MNO-0 uses its own
infrastructure and when MNO-0 buys infrastructure. When
MNO-0 buys infrastructure, we only consider the scenario
presented by Assumption 2.2, for which the buyer’s coverage
probability is given by (18) and the buyer’s strategy given
by Algorithm 1. We see that, after buying infrastructure,
the coverage probability of a user of MNO-0 approaches the
bound 1/� ⇠ 0.12. This verifies the asymptotic analysis in
Proposition 5 (i).

B. Effect of Varying the QoS Parameter
In Figs. 5-6, we show the infrastructure bought by MNO-

0 while increasing the value of tolerable outage probability
✏ (i.e. P

c

� 1 � ✏). We assume that the fixed cost a and
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the price of infrastructure b for the price function q
k

in
(30) are the same for all seller MNOs. We consider the
cases when the buyer MNO-0 buys infrastructure from two,
four, and six seller MNOs. Fig. 5 plots the fractional values
of x =

P
K

i=1

x
i

, which indicates the total proportion of
infrastructure that MNO-0 purchases as ✏ changes. We see
that as the tolerable outage ✏ increases, the required amount
of infrastructure decreases. For smaller values of ✏, we see
that, in order to satisfy its QoS, the buyer eventually needs to
purchase infrastructure from all the available sellers.

The difference between coverage probability of a user
of MNO-0 before and after buying infrastructure is shown
in Fig. 6 for varying ✏. We evaluate the buyer’s coverage
probability after executing Algorithm 1 for its purchasing
strategy. We observe that for low values of ✏, MNO-0 is
unable to satisfy the required QoS solely through its own
infrastructure. As shown in Fig. 5, MNO-0 needs to buy from
all sellers. However, even after acquiring infrastructure from
all the available sellers, it may not be sufficient to satisfy its
QoS. As such, for lower ✏, the coverage probability saturates
at a value less than 1� ✏. When ✏ increases beyond a certain
value, x starts to decrease, indicating that at higher ✏ MNO-0
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buys less infrastructure.

C. Effect of Varying the Transmit Power from BSs of MNO-0
per Unit Area
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Fig. 7: Coverage probability of MNO-0 when increasing the
transmit power from BSs.

Fig. 7 illustrates the coverage probability of MNO-0 based
on the scenario of Assumption 2.1. We plot the coverage
probability when the transmit power of BSs of MNO-0 in-
creases, while setting the value of ✏ = 0.1. When there is
no infrastructure sharing, we consider the cases when �

0

is
5/(⇡ ⇥ 500

2

) and 10/(⇡ ⇥ 500

2

). Overall, we see the trend
that the coverage improves as the transmit power increases, but
quickly saturates to 1/� ⇠ 0.12. We also see that, for fixed
transmit power, when the BS intensity is denser, the coverage
of MNO-0 is higher.

When the BSs of MNO-0 employ low transmit power,
MNO-0 gains better coverage by sharing infrastructure with
the seller MNOs. We plot the case when MNO-0 buys
infrastructure from four sellers. However, the gain due to
infrastructure sharing is very small and does not exceed the
upper bound of 1/� ⇠ 0.12. For all the cases, when the
BSs of MNO-0 increase their transmit power, the maximum
bound of coverage can be achieved easily. There is very little
gain for MNO-0, in terms of coverage, when buying more
infrastructure while its BSs use a high transmit power. This
verifies Proposition 7 when p ! 1.

D. Equilibrium Price and Quantity from the Sellers
In Figs. 8 and Fig. 9, we consider the case of two seller

MNOs and the simulation parameters are given as follows:
the SINR threshold at the user of MNO-1 and MNO-2 are
T = �15 dB and 5 dB, respectively. For the areal power
consumption in (24), we set the fixed circuit power of MNO-
1 and MNO-2 as p

c

= 30 and 80, respectively. Also, the
cost of power from MNO-1 is a

1

= 50 and from MNO-2
is a

2

= 90 in (36). As such, it belongs to the case when
y
k

� (c/p
max

)

2/↵, for k = 1, 2 in (43).
In Fig. 8, the market equilibrium is illustrated. The best

response of seller MNO-1 to the action of MNO-2 and vice
versa can be obtained from (42). We plot the equilibrium
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quantity y⇤ from (43) with respect to y⇤
1

and y⇤
2

. Since
y
k

= �
k

z
k

where 0  z
k

 1, the best response y⇤
k

depends
on �

k

. For fixed value of �
1

= 10/(⇡ ⇥ 500

2

) and varying
�
2

= [10, 15, 20, 25, 30]/(⇡ ⇥ 500

2

), the equilibrium quantity
y⇤ decreases when �

2

increases. Similarly, we plot y⇤ by
varying �

1

= [10, 15, 20, 25, 30]/(⇡ ⇥ 500

2

) while setting
�
2

= 10/(⇡ ⇥ 500

2

). The best response of both MNO-1 and
MNO-2 are decreasing functions with respect to y = y

1

+ y
2

.
Hence, the best responses of MNOs decrease when y

1

and
y
2

decrease. Also, the best response of MNO-1 (y⇤
1

) decreases
when �

2

increases. Similarly, y⇤
2

decreases when �
1

increases.
The intersection point of y⇤

1

and y⇤
2

gives a single equilibrium
quantity of the Cournot game.

The corresponding equilibrium price q⇤ is obtained by
computing q⇤ = ✓ � ⌘y⇤, which yields a single equilibrium
price for each y⇤. The equilibrium price is plotted in Fig. 9
for different marginal prices ⌘. We consider (�

1

,�
2

) =

[(10, 10), (10, 15), (15, 20), (15, 25)]/(⇡ ⇥ 500

2

). When the
equilibrium quantity increases, the equilibrium price will de-
crease due to the law of demand in which the slope of the
equilibrium price depends only on the marginal price. While
the case of two seller MNOs is considered in Fig. 8 and Fig. 9,
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the case more than two seller MNOs is given in Fig. 10.

E. Coverage Probability of MNO-0 After Buying Infrastruc-
ture at Market Clearing Price
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Fig. 10: Coverage Probability of MNO-0 at equilibrium quan-
tity.

Fig. 10 shows the coverage probability of a user of MNO-
0 when it buys infrastructure at the equilibrium of market
clearing price. By employing Algorithm 2, all the seller
MNOs sell y⇤ amount of infrastructure at the equilibrium price
q⇤. We consider the cases when the intensity of BSs of MNO-
0 is chosen as [5, 10, 15, 20, 25]/(⇡⇥ 500

2

), and it buys from
three, four, and five seller MNOs. The cost ✓ = 500 and
⌘ = 5⇡ ⇥ 500

2. We observe that the coverage of a user of
MNO-0 improves when there are more seller MNOs in the
market.

VIII. CONCLUSION

We have studied the infrastructure trading problem for
multiple seller MNOs and one buyer MNO using stochastic
geometry. We have considered two scenarios of infrastructure
sharing. Firstly, when every BS of seller MNOs serves a
user from the buyer MNO. Secondly, when only some BSs
of each seller MNO serves at least one user from the buyer
MNO. We have first analyzed the coverage probability of a
user of the buyer MNO, and studied the trade-offs between
infrastructure sharing and increasing of transmit power. We
have then focused on the strategy selection of the buyer
and the competition among sellers. The strategy of a buyer
MNO is concerned about how many MNOs and which MNOs
to buy infrastructure from in order to satisfy its QoS. The
objective of the buyer is to minimize the purchasing cost of the
infrastructure. The strategy selection problem of the buyer has
been formulated as an optimization problem and the optimal
solution was found via Lagrange multiplier method. A greedy
algorithm has been proposed to compute the solution. The
problem of pricing and finding the fraction of infrastructure
that sellers are willing to sell has been formulated using a
Cournot-Nash oligopoly game. One of our major conclusions
is: infrastructure sharing can improve cellular coverage as long
as the interference and association are decoupled.
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