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Abstract—Opportunistic computing is a paradigm for completely self-organised pervasive networks. Instead of relying only on fixed
infrastructures as the cloud, users’ devices act as service providers for each other. They use pairwise contacts to collect information
about services provided and amount of time to provide them by the encountered nodes. At each node, upon generation of a service
request, this information is used to choose the most efficient service, or composition of services, that satisfy that request, based on
local knowledge. Opportunistic computing can be exploited in several scenarios, including mobile social networks, IoT and Internet 4.0.
In this paper we propose an opportunistic computing algorithm based on an analytical model, which ranks the available (composition
of) services, based on their expected completion time. Through the model, a service requesters picks the one that is expected to be the
best. Experiments show that the algorithm is accurate in ranking services, thus providing an effective service-selection policy. Such a
policy achieves significantly lower service provisioning times compared to other reference policies. Its performance is tested in a wide
range of scenarios varying the nodes mobility, the size of input/output parameters, the level of resource congestion, the computational
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1 INTRODUCTION

P ERVASIVE personal users’ devices (e.g., smartphones,
tablets, etc.) and IoT devices (e.g., sensors) in the

physical environment are one of the key factors pushing
the BigData era [1], [2]. The number of such devices and
the amount of data they generate are expected to grow
exponentially over the next few years [1]. To elaborate this
huge amount of data, cloud platforms are typically used,
with mobile devices acting as mere data generators and
consumers of the output of data elaboration. This approach
might not be a solution working well in all scenarios. Even
next generation cellular technologies might not be able to
scale up the capacity to the levels required by predicted
traffic demands [1]. Furthermore, moving data to remote
cloud services might have serious privacy implications. This
is the case, for example, of Industry 4.0 applications, where
data generated in factory environments need to stay on
devices owned by the manufacturing company for confi-
dentiality reasons [3]. Similar concerns also arise in mobile
social networking applications, whereby users might not be
willing to send data over external remote cloud operators.

Because of the above concerns, edge and fog computing
solutions are gaining momentum [4], [5]. In edge and fog
computing, data-centric services are provided, possibly in a
cooperative way, by devices at the edge of the network, close
to where the data are generated. This addresses the “data-
gravity argument”, according to which the huge amount
of data generated at the edge of the network “attracts”
computation towards the edge, and not vice-versa [6].

Along this line, in this paper we target service provisioning
in mobile clouds of devices at the edge of the network, using
the opportunistic computing paradigm [7], [8]. By mobile

cloud, we denote a group of mobile devices at the edge
of the network, moving in a limited physical area (whose
dimension may range from an office environment to a
region of a city). According to the opportunistic computing
paradigm, mobile devices use each other’s hardware and
software resources when they are in physical proximity,
to provide services to each other (e.g., to elaborate local
data they have generated). The users’ mobility enables di-
rect device-to-device (D2D) opportunistic networking data
transfers, which are used to exchange input/output service
parameters, as well as to collect the information necessary
to nodes to decide how to provide services to each other
without centralised control.

This approach is relevant for several applications. As
an example, in case of industrial applications, it allows,
the owners of a factory to optimise the utilisation of the
mobile devices used by the workers, and use remote cloud
services only when needed. This can help reduce the cost of
IT services, which is considered a significant benefit, in par-
ticular for small and medium enterprises (SMEs) [3]. More-
over, this approach perfectly fits the scenarios for which
Proximity-based Services (ProSe) are foreseen in long-term
evolution (LTE) standards and 5G networks [9], whereby
services relevant for a specific geographical area are directly
provided by local nodes through D2D communications.
Moreover, service provisioning in mobile clouds is also a
viable option when users’ devices store privacy-sensitive
data that users would not share with third parties. For
example, users’ devices can provide data-centric services
based on elaboration on their own data, without “giving
away” raw data to third parties. Last but not the least, op-
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portunistic computing supports service provisioning in case
of infrastructure unavailability, such as incidents, disasters,
censorship, or severe congestions.

In this paper, we assume that mobile nodes1 request
services that have to be provided by other nodes in the
same mobile cloud. Nodes generating requests are hereafter
referred to as seekers. Given a particular service request,
there can be multiple ways of providing it, such as entirely
by a single device, or through a composition of service
components, each provided by a different device2. Hereafter,
devices providing services (and service components) are
referred to as providers. Moreover, it if does not cause confu-
sion, we will use the generic term “service composition” to
indicate both single-component and multiple-components
services, the former corresponding to a service composition
of length one.

In particular, this paper proposes the Minimum Ex-
pected Value (MEV) policy for service provisioning in mobile
clouds. Upon a service request issued by a seeker, MEV aims
at identifying the service provisioning option that minimises
the expected time required by the seeker to obtain the results
of the requested service (hereafter referred to as the service
provisioning time). To this end, nodes use a local view of the
network, built through context information exchanged dur-
ing opportunistic contacts with each other. Specifically, MEV
estimates the expected service provisioning time of each
composition known at the seeker (using local knowledge
only) through an analytical model. The composition with
the lowest expected service provisioning time (according
to this model) is invoked. As explained in more detail
in Section 3, MEV could be easily adapted to the case
of parallel executions for reliability. However, as the main
focus of this paper is on service provisioning rather than on
reliability (see Section 2 for the rationale), we hereafter do
not consider parallel service provisioning.

It is worth pointing out that, the main objective of the
analytical model at the basis of MEV is not to predict the
exact value of the expected service provisioning time of
each possible composition satisfying a given request. Rather,
the model aims primarily at ranking service provisioning
alternatives, in order to identify the one that will yield
minimum service provisioning time. We anticipate that,
even though not being its main objective, the model is also
capable of predicting with quite good precision the actual
average service provisioning time.

We assess the performance of MEV through simulation
experiments. Specifically, we compare MEV with three alter-
natives (called AFIR, RAN, and ATO, defined in Section 5),
which are representative of the state-of-the-art. We use
TheOne [10], which is a reference simulation environment
for opportunistic networks. Moreover, the simplifying as-
sumptions used to derive the analytical model do not hold
in any of the simulations. To make our simulation results
representative of a wide range of application scenarios and
environments, we use a number of real mobility traces,
which exemplify a diverse set of human mobility patterns,
from more “compact” scenarios where the nodes meet more

1. The terms node and devices are used interchangeably in the paper.
2. For the purpose of this paper, without loss of generality, sequential

components provided by the same device, can be merged together and
considered as a unique service component.

frequently, to more sparse scenarios where nodes meet
seldom, implying contact events are very rare. Moreover,
we also vary (i) the size of the I/O parameters, i.e., the net-
work congestion level; (ii) the contention at providers’ CPU,
i.e., the computation congestion at providers; and (iii) the
service execution time, i.e., the computational complexity of
service executions.

We validate the model accuracy in ranking service pro-
visioning alternatives. Results show that the model is able
to rank service compositions effectively (see Figure 6 in
Section 5). Thanks to this ranking effectiveness, in between
60% and 70% of the cases, MEV selects a better service
composition than the other three policies. Such a high
precision makes MEV the policy which achieves the lowest
average “loss”, where loss is measured, for a given policy
and a given service request, as the difference of service
provisioning time between that policy, and an ideal (infea-
sible) policy that selects the policy (among all four) that
will yield the minimum service provisioning time. After
assessing the usefulness of our analytical model in raking
service compositions, we directly compare the performance
of MEV against the other policies over the entire range of
considered parameters. In all of these cases, our results show
that MEV yields significantly lower service provisioning
times with respect to the other three policies. Specifically,
we find that the more scarce are the network or CPU
resources, the higher is the advantage of MEV over the
other policies. This shows that our model is particularly
helpful for resource-limited devices, which is particularly
appropriate for our reference scenarios. Moreover, we also
show that MEV yields lower service provisioning times with
respect to an ideal, but infeasible, policy, which, for any
given request, adopts the policy, among AFIR, RAN, and
ATO, that will yield the lowest service provisioning time.

We remark that, the fact that none of the simplifying
assumptions used to derive the analytical model hold in
the simulations, means that the gain of MEV over the other
policies does not depend on these assumptions, and that
the model at the basis of MEV is effective in ranking service
provisioning alternatives irrespective of those assumptions.
Moreover, the wide range of parameters considered gives
generality to the superior performance of MEV with respect
to the other policies.

The paper is organized as follows. Section 2 describes
the main approaches presented in the literature for service
provisioning and composition in mobile environments. The
MEV policy is described in 3, while Section 4 presents
the analytical model that estimates the expected service
provisioning time of a given service composition, on which
MEV is based. In Section 5 we characterise the precision of
the model in ranking service composition alternatives, and
compare MEV with the three alternative policies. Finally,
Section 6 draws the main conclusions of the paper.

2 RELATED WORK

A first body of related work [11], [12], [13], [14] proposes
service discovery and composition in mobile networks with
stable connectivity where disconnections are a failure state
or, equivalently, where service provisioning occurs only
among devices in direct communication [15]. In this paper
we focus on opportunistic networks where disconnections
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during service provisioning are the norm, and the entire
service composition design is modified accordingly.

Service composition in dynamic mobile networks has
been addressed also in [16], [17], by proposing simple
heuristics for selecting compositions, while in this paper
we exploit an analytical model to estimate the lowest ser-
vice provisioning time. Parallel service execution in mobile
clouds has been tackled in [16], [18], [19], [20]. However,
when composition is used [16], [19], [20] no model is derived
to estimate the best composition, while when such a model
is used [18] service composition is not used. The main target
of this paper is to improve over solutions in the first class,
by deriving a model of service provisioning time in case of
composition. As explained in Section 3, the same approach
and algorithm (with minimal modifications) can also be
used in the case when multiple compositions obtaining
the same composite service are run in parallel to improve
reliability of composed service execution.

Serendipity [19] (also part of Cirrus Clouds [21]) is an
opportunistic service provisioning system that shares some
similarity with our proposal. However, in Serendipity the
composition of a service is given and fixed, and the focus
is on (i) prioritising among components executions, and (ii)
optimising the completion time of each individual compo-
nent. Differently from our proposal, Serendipity can decide
to execute on providers not in contact with the seeker only in
presence of a coordination control channel thorough which
providers’ resources are pre-allocated. In absence of such
channel, which is the case we consider, Serendipity greedily
executes components on the first encountered provider if it
improves over local execution, while MEV picks providers
based on estimations of (i) their load, (ii) their service queue
and (iii) the time to exchange I/O parameters. Note that
using estimates for these parameters, as well as the time
to encounter them, is the most important feature of MEV,
which makes it significantly different from Serendipity. In
Section 5 we compare our proposal with AFIR, which works
very similar to how Serendipity would work in our settings.
The significant performance gap between the two (MEV
achieves up to 43% lower service provisioning time) shows
that the different features included in MEV provide, in
relevant scenarios, a significant benefit over Serendipity.

Other related papers touch upon orthogonal aspects
with respect to the focus of this paper. FemtoCloud [5] relies
on a localised controller and a group of nearby mobile de-
vices available to share computing resources. The controller
centrally solves an optmisation problem to allocate tasks to
mobile devices while they are in range, so as to optimise the
total number of useful computations in the group. In Mobile
Device Clouds [22], [23] mobile nodes allocate tasks to each
other to optimise the total energy consumption, and achieve
the longest possible time until the first node depletes energy.
In case of opportunistic contacts, tasks can be executed on
providers only if contacts are long enough to complete their
execution. Neither FemtoCloud nor MDC consider service
composition. Orthogonal to our work is also [24], where an
architecture is proposed to accomodate mobile cloud service
execution, leaving open the specification of the algorithms to
be run within the architecture. MEV could be easily plugged
into this architecture.

MEV has some conceptual resemblance with utility-

based forwarding in opportunistic network, such as, for ex-
ample, Delegation Forwarding [25]. However, with respect
to Delegation Forwarding, MEV does not choose more than
one service provider in parallel (which would be the equiva-
lent of using multiple forwarders in Delegation Forwarding)
and therefore the selected provider cannot be the one with
the ”max utility over those seen so far” as in Delegation
Forwarding, but needs to be selected based on estimates of
future contacts with suitable providers.

Finally, in this paper we extend our previous work [7],
[26] where we provided the initial definition of MEV. With
respect to [7], [26], in this paper we significantly refine the
analytical model at the core of MEV to better take into
account the specificities of service composition. Moreover,
we provide an extensive new set of performance results,
showing that our analytical model is able to correctly rank
service provisioning alternatives, thus making MEV more
effective than the other considered policies. We also com-
pare MEV with these policies using real mobility traces, and
discuss the advantages of the proposed solution. Finally, we
highlight the performance of MEV (in comparison with the
other policies) by varying several parameters, including size
of I/O parameters, network and providers’ CPU contention,
service execution time, mobility patterns.

3 THE MEV ALGORITHM

To describe the system behaviour we describe how a service
request is managed and what is the logical decision process
to select the components that form the composition involved
in the resolution of the request. Fig. 1a shows a graphical
representation of the algorithm used by seekers. Let us
consider a tagged seeker running an application that at
some point generates a request. The system running at the
seeker first finds, through the knowledge base (i.e., a local
storage with information about available services, managed
as described in the following of the section), all possible
compositions that would satisfy the request. Then, the ser-
vice provisioning time of each composition is estimated,
and the one providing the minimum provisioning time is
selected. If the first provider in the composition is in contact
with the seeker, the execution of the first component starts.
Otherwise, the seeker waits to encounter this provider. In
the meanwhile, it may encounter other nodes, which, as
explained in the following, could result in updating the local
knowledge at the node. In this case, the selected compo-
sition is re-evaluated, and possibly modified according to
more refined knowledge acquired by the seeker. Eventu-
ally, the service composition starts and proceeds until the
application request is satisfied. Between two consecutive
components, output parameters of the former are passed
to the next provider as input parameters.

Let us discuss more in detail how the key components of
Fig. 1a are realised. Let us first consider the block indicated
as ”research for resolution alternatives”: once a service
request is generated at a seeker, the system searches for
resolution alternatives to satisfy the request. To this end,
the system searches in the local knowledge base, in order
to collect all the known service components that might
be used and the statistics needed for the evaluation of
the alternatives. The knowledge base is updated by each
node upon encountering other nodes. In particular, for each
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Figure 1. System algorithm and composition representation

encountered node it stores (i) the set of provided services,
(ii) an estimate of the computation time for each provided
service, (iii) an estimate of the number of service requests
generated by the node upon encounter, and the respective
size of exchanged parameters, (iv) an estimate of contact
and inter-contact times, and (v) an estimate of the aver-
age throughput available when the two nodes encounter.
Specifically, for the reason explained in Section 4, upon
encountering, nodes exchange the first two moments of
service computation time, as well as the list of provided
services. The number and size of requests, contact and inter-
contact times and average throughout estimates are simply
monitored by each node without requiring exchange of in-
formation. This information is sufficient for the tagged node
to estimate the service provisioning time, as we explain in
Section 4.

After collecting the service components from the knowl-
edge base, the system builds a Service Graph out of them
(an example is shown in Fig. 1b) where vertices are com-
ponents, and edges represent the fact that two components
can be executed sequentially. Note that in the Service Graph
there is not yet information about which nodes provide
components, which is added in the following logical step
(the Composition Graph). Each path connecting two ver-
tices of the graph shows a possible composition to sat-
isfy the application request. Each service component sj
is identified in our system as a pair (Ij , Oj) where Ij is
the input type and Oj is the output type of sj . For the
sake of simplicity, in the following we assume that these
types are codified by integer values, furthermore we will
consider acyclic compositions, i.e. compositions where the
same components cannot appear twice. To ensure this, any
Service Graph we consider will contain only services sj
such that Ij < Oj . For instance, Fig. 1b shows a set
of service components {S1, S2, S3, S4, S5} linked by their
type dependencies together with two special components
Start and End, representing the start and the end points
of the service composition corresponding to the considered
request. Note that, nodes Start and End do not correspond
to any service component, and are only used to indicate the
start and end of the service composition. This means that, in
the composition graph, a single-component service (e.g., for

service si provide by node nj) corresponds to three nodes,
(Start, n0)→ (si, nj)→ (End, n0).

Given that each component may be offered by different
providers known by the seeker, there can be different com-
position alternatives depending on the chosen providers. To
identify these alternatives, a Composition Graph is created
(as in Fig. 1c), where, for each component, vertices are
created for all known providers offering the component.
On the resulting graph, each path from component Start
to component End is a suitable composition. The graph is
weighed, and weights are the key elements provided by
our analytical model to estimate the service provisioning
time, as explained in Section 4. Note that the graph may
change from node to node, as we assume it is built based on
information available locally and collected through direct
pairwise contacts, and not on global information.

In the ”alternatives evaluation” block, the list of alterna-
tives taken from the graph is then evaluated by computing
the estimated service provisioning time when using each
possible composition. How the model does these estimates
is described in Section 4. After the evaluation, the system
ranks the alternatives, choosing the one with the least ex-
pected service provisioning time.

In the ”wait for best alternative contact” block, the
seeker, if it is not currently in contact with the chosen
provider for the first service component, waits for a contact
with it. Otherwise the decision process is over and the
service request is queued to be sent to the provider. If
the seeker has to wait for the first provider, it continues
to monitor the state of the network upon new contacts.
Any new contact triggers a new exchange of information
between the nodes. This information may alter the classi-
fication computed previously, so, in this case, the system
goes back to the alternatives evaluation phase to update the
ranking of the compositions.

4 MODELLING SERVICE PROVISIONING TIME

This section introduces the stochastic model exploited to es-
timate the service provisioning time. Without loss of gener-
ality, we present the model by focusing on the provisioning
time of a service requested by a tagged seeker. For the sake
of explanation, let us first assume that this service can be
provided directly by a tagged provider encountered by the
seeker (i.e., the service composition is made of 1 service
component only). We then extend it to the general case
of composed services. Note that, in the following, when
required, we denote with h the index of the tagged seeker,
and j the index of the tagged provider. Most of the variables
used in the model refer to the pair (tagged seeker, tagged
provider). When this dependence is clear, we omit to use
the indices h, j, to make the notation simpler. The service
provisioning time in this case (hereafter denoted with R) is
made up of five consecutive phases, as follows:

• Contact of the service provider (W ). This is the time
needed by the seeker to encounter the provider
after the point in time when the service request is
generated. It is determined by the inter-contact time
between the seeker and the provider.

• Data transfer (Input Time B, Output Time θ). This
is the time needed to transfer the input parameters
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from the seeker to the provider and the output pa-
rameters from the provider to the seeker (after the
execution time is complete). In the latter case, we
also include in this phase the time required by the
provider to meet the seeker from the point in time
when the service execution is complete. Note that, in
an opportunistic network data transfers between two
nodes may be affected by connection disruptions,
due to the nodes mobility, but also by transfer from
and to other nodes that use the same shared medium,
or even by other concurrent transfers between the
seeker and the provider involving other requests.

• Queue waiting time (DQ). Once onto the provider,
actual execution may be delayed due to previous
pending requests. We model this as a FIFO queue
at the provider. The duration of this delay depends
both on the frequency of the request arrivals on the
provider and on the time to process them.

• Service execution time (DS). This is the time to execute
a service on the provider. It depends on both its
computational capabilities and on the type of the
service.

Each of these phases can be modeled as a separate random
variable as we will describe in the following of the section.
Since they are sequential, we obtain for a single component
service the following expression:

Rsingle =W +B +DQ+DS + θ (1)

For the case of a service composition made of n components,
the service provisioning time can be expressed as follows:

Rcomp =W +B +

n∑
i=1

(DQi +DSi + θi) (2)

In Equation 2, W and B refer to the time to meet the
first provider in the composition and transfer the input
parameters to it, respectively. DQi and DSi are the length
of queuing at the i-th provider and executing the i-th
component, respectively. θi represents the time required by
provider i to encounter provider i + 1 (or to encounter
the seeker, for provider n), and transfer to it the output
parameters of component i which become input parameters
of component i + 1 (or, for provider n, to transfer the final
output parameters to the seeker).

In the following of the section we explain how to esti-
mate the expected time taken by these phases. We discuss
the derivation of B and θ last, as this requires a number of
steps. Through these estimates and using Equations 1 and 2
each seeker can estimate the expected service provisioning
time of the available compositions, and pick the best one.

4.1 Contacting the service provider
Random variables TC and TIC model, respectively, the con-
tact and inter-contact times between two nodes h and j. For
each pair of nodes, we assume that contact and inter-contact
times between those nodes are independent and identically
distributed (i.i.d.). We also assume that contact and inter-
contact times of different pairs of nodes are independent
of each other. Finally, we assume that the variables TC and
TIC follow exponential distributions with rates δ and δ′. As

shown by real trace analysis presented, for example, in [27],
[28], although controversial, exponential contact and inter-
contact times is one of the possibilities, and is a common
assumption in the literature on opportunistic networking
and computing (e.g. [18], [29]). Also note that analysis on
real traces in Section 5 (where non-exponential contact and
inter-contact are also present) show that the model works
well also in more general settings. Since a node cannot know
beforehand the values of δ and δ′, each node computes an
estimate of these values by averaging the values of contact
and inter-contact times with other nodes collected during
opportunistic contacts.

The time for seeker h to contact the generic service
provider j, is denoted by the random variable W . This is
equal to 0 if, at the time when the evaluation is done, h
and j are in contact, while it is equal to the residual inter-
contact time TIC otherwise (and, under our assumption,
its expected value is equal to E[TIC ] due to the memory-
less property of the exponential distribution). The expected
value of W is therefore:

E[W ] =

{
1
δ′ if h and j are not connected

0 otherwise
(3)

4.2 Service execution time
The random variable DSsi,j for the time needed to execute
service component si on a provider j is influenced both by
the device computational capabilities and by the implemen-
tation of the requested service component. We assume that
each provider keeps an estimate of the expected value of
DSsi,j based on the previous local executions, and sends
this value to the encountered nodes. Similarly, providers
also keep an estimate of the second moment of DSsi,j
and send it to other nodes during contacts. This is used
in the estimation of the waiting time DQ, as explained in
the next section. It is worth discussing why we chose to
use the measured first two moments of the execution time,
instead of defining an analytical model for this compo-
nent. In general, service execution times will depend on a
large number of parameters, also including the impact of
other local applications running on the device. Correctly
modelling these factors would have made our model too
complex to be practically useful. Also note that, the goal of
our model is not to describe precisely this part of the service
provisioning process, but showing that, if we can measure
simple statistics about it (the first two moments), we can
build an efficient algorithm to enable opportunistic service
computing.

4.3 Queue waiting time
We assume that the seeker locally generates requests ad-
dressed to the provider according to a Poisson process with
rate λ. Therefore, when the provider is encountered, in gen-
eral a batch of requests may have been accumulated, whose
input parameters need to be transferred. To account for this,
we model the service provider with a M [X]/G/1 queue. As
shown in [30], this is exact when (i) requests are generated
according to a Poisson process, (ii) inter-contact times are
exponential, and (iii) all requests stored at the seeker are
transferred to the provider during a contact. Under our
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assumptions, hypothesis (iii) may not hold. However, we
still use theM [X]/G/1 model, and assess the approximation
level by validating the results obtained using this model
against simulations in Section 5.

Let us denote with L the number of requests in a batch
received by the provider. The expected value of the random
variable DQj can be computed [30] based on the first
two moments of the service execution time DSsi,j (with
expected value d, second moment d(2) and average service
rate µ) and of the random variable L (with expected value
l and second moment l(2)). These values can be estimated
by monitoring the batches arriving to the provider and the
executed services. In addition, the provider estimates the
rate λ of the request batches and computes the average load
ρ of the provider as λ ∗ l ∗ d. Starting from these values, the
expected value of DQj can be computed, as shown in [30],
as:

E[DQj ] =
λld(2)

2(1− ρ)
+

l(2)d

2l(1− ρ)
(4)

4.4 Data transfer times

Unlike most analytical models in opportunistic networks,
we assume that the throughput available to nodes during
contact times is finite. Therefore, in our model we need
to take into account the possibility that data transfer may
be interrupted by disconnections, and therefore needs to
be resumed at the next contact event. In the following, we
denote with V the average throughput experienced between
the tagged seeker and provider and assume it is estimated
by the two nodes through a conventional smoothed average
algorithm using the throughput samples obtained during
actual data transfers between them. We also denote with k
and k′ the size of the input and output data to be transferred
for the requested service. Fig. 2 shows an illustrative exam-
ple where one disconnection occurs during the transfer of
the input data of size k. In addition to the time needed
to actually transfer data between the nodes, we have to
take into account additional inter-contact times between
consecutive contact events.

First of all, we analyse the case of data transfers in
single-component services. In this scenario we identified
three cases to model depending on the time when the first
contact (that we refer as TC(0)) used to transfer data ends.
The first case (case 1) is a scenario where all the phases of
the execution can be completed without any interruption.
In the second case (case 2), only the first data transfer (the
one used to transfer the input data of size k for the service

execution) completes without interruptions, while there is
at least one disconnection before the seeker completely
receives the result of the service execution. In the last case
(case 3), there is at least one disconnection before the input
data transfer phase is completed.

In the following we provide the expressions for B and
θ, considering their formulations involving seeker h and
provider j. Specifically, we analyse cases 1 and 2 in the
paper. Case 3 is conceptually analogous to case 2, and
therefore we include it in the Appendix3. Then, we model
the probabilities of the cases, i.e. p1, p2 and p3 = 1−p1−p2.
Note thatB is the same in cases 1 and 2. The expected values
of B and θ can be immediately derived by applying the law
of total probability:

E[B] = E[B|case1, 2] ∗ (p1 + p2) + E[B|case3] ∗ p3 (5)

E[θ] = E[θ|case1]∗p1+E[θ|case2]∗p2+E[θ|case3]∗p3 (6)

4.4.1 Analysis of case 1
In case 1, with no interruptions, the input and output
transfer times for a request from seeker h for a service
provided by node j, depend on the throughput available
between the nodes V , the sizes of the input and output
parameters (kdata, k′data respectively, whose value depends
on the requested service) and the size of the queued data
that has to be transferred between h and j before the input
and the output data transfers can be started (respectively
called kqueue and k′queue). The value of kqueue can be di-
rectly observed by the seeker during the evaluation of the
alternatives, while k′queue is estimated as the average size
of queued data in j addressed to h at the end of service
executions. Therefore, B and θ for case 1 can be modeled as
follows:

B|case1 =
k

V
θ|case1 =

k′

V
(7)

Where k = kdata + kqueue and k′ = k′data + k′queue. These
values of k

V and k′

V can be called the net transfer time for
B and θ, as they are the minimum estimated data transfer
times without the presence of any interruption.

4.4.2 Analysis of case 2
In the second case (case 2) the first data transfer can be
completed during the first contact, but the rest of the process
cannot. The input time B is the same already analysed in
Equation 7.

We analyse θ by considering the two possible cases: the
case where the (first) contact4 ends while the transfer of
output parameters is already ongoing (case 2A), and the
case when the contact ends before the output data transfer
has started. In the first sub-case, the first contact can be used
to start the output data transfer, but the same contact is not
long enough to complete the entire transfer (otherwise it
would fall in case 1). Otherwise, if the first contact ends
before the service execution is completed, θ may start during
a contact period (case 2B) or an inter-contact period (case
2C).

3. The Appendix is provided as supplemental material of this sub-
mission.

4. Here first contact still refers to the contact between the seeker and
provider at the beginning of the input data transfer phase. It is not the
first contact during which the output data transfer starts.
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t
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Figure 3. Phases of an output transfer starting during a contact, with 2
disconnections afterwards

θ in case 2A can be expressed as in Equation 8. The
key characteristics of case 2A are that (i) θ starts during
the first contact between the seeker and provider (ii) then
θ always includes the following inter-contact time (TIC(0)
in Equation 8), and (iii) it then finally may include an
additional number N2A ≥ 0 of inter-contact times. An
example of case 2A can be seen in Fig. 3, which represents
an output transfer phase with 2 disconnections. As shown
in the following, N2A can be characterised based on the
number of contacts needed to transfer k′ bytes minus the
data already transferred during the first contact. Consider-
ing that θ is made up of the net transfer time (k′/V ) plus
the additional inter-contact times needed to complete the
transfer, it can be expressed as follows:

θ|case2A =
k′

V
+ TIC(0) +

N2A∑
i=1

TIC(i) (8)

The characteristics of case 2B are that (i) θ starts during a
contact time , and (ii) it may include a number N2B ≥ 0 of
inter-contact times. As shown below, as we assume that con-
tact times are exponential and thus memoryless, N2B can
be characterised based on the number of contacts needed to
transfer k′ data (this is why N2B is stochastically different
from N2A, as N2A is the time to transfer k’ data minus
what has been transferred already during the first contact).
Therefore, θ in case 2B can be expressed as follows:

θ|case2B =
k′

V
+

N2B∑
i=1

TIC(i) (9)

Finally, the characteristics of case 2C are that (i) θ starts
during an inter contact time, and (ii) it may then include
an additional number N2C ≥ 0 of additional inter-contact
times. It is easy to see that, as we have assumed that contact
times are memoryless, N2C is stochastically equivalent to
N2B . Therefore, by denoting with TICR(0) the residual
duration of the inter-contact time during which it starts, θ
in case 2C can be expressed as follows:

θ|case2C =
k′

V
+ TICR(0) +

N2B∑
i=1

TIC(i) (10)

To find the expected values for θ in this three sub-cases, we
need to derive the distributions of N2A and N2B . Hereafter
we provide an intuitive derivation of the former. All details
can be found in the Appendix.
Lemma 4.1. The probability that, in case 2A, θ includes

N2A = n additional inter-contact times (after the first
one that it always includes) is as follows:

P{N2A = n} = e−δ
k+k′
V ∗

( δk
′

V )n+1

n+ 1!
∗ (1− ρ)µ
δ + µ(1− ρ)

(11)

Proof: We denote by TCR(0) the part of the first
contact time between the seeker and the provider, that is
the initial part of θ. Therefore, the remaining transfer time
is k′/V − TCR(0). In order for N2A to be equal to n, the
remaining transfer time must be longer than n contact times
but shorter than n+1 contact times. Equation 11 follows, as
shown in detail in Appendix A.1.

The closed-form expressions of E[θ] in the three cases
can be derived as follows (see the Appendix for the proofs).
Lemma 4.2. The expected value of θ in case2A, 2B and 2C

are equal to:

E[θ|case2A] = k′

V
+

1

δ′
+

1

δ′
∗ e−δ

k+k′
V ∗

∗ (eδ k
′
V ∗ (δ k

′

V
− 1) + 1) ∗ (1− ρ)µ

δ + µ(1− ρ)
(12)

E[θ|case2B] =
k′

V
+ E

[
N2B∑
i=1

TIC(i)

]
=
k′

V

(
1 +

δ

δ′

)
(13)

E[θ|case2C] = k′

V
+ E[TIC(0)] + E

[
N2C∑
i=1

TIC(i)

]
=

=
1

δ′
+
k′

V

(
1 +

δ

δ′

)
(14)

To conclude the analysis of case 2 we need to derive the
probabilities of the three subcases, 2A 2B and 2C, condi-
tioned to the fact that we are in case 25. The probability of
case 2A is provided in the following Lemma:
Lemma 4.3. The probability of the first contact lasting

enough to complete the input data transfer, but not
enough to reach the beginning of the output data trans-
fer, is:

p(Case2A) =
e−δ

k
V ∗ µ(1− ρ)

δ + µ(1− ρ)
(15)

Proof: This probability can be written as the proba-
bility that the first contact time TC(0) is longer than the
time for the transfer of the input parameters (k/V ) plus
the queuing time at the provider (DQj) plus the service
computation time (DSi,j), but not long enough to also
include the transfer of the output parameters (θ). Equation
15 can be derived by exploiting this formulation, as shown
in the Appendix.

The probabilities of sub-cases B and C are calculated us-
ing the complement of the probability of case A ”weighted”
with the steady state probabilities of contact and inter-
contact phases. Specifically, case 2B corresponds to the case
where the end of the service computation time falls in a
contact time. For simplicity, we assume that this occurs with
a probability equal to the steady state probability that a
random point in time falls inside a contact. Analogously,
case 2C occurs with the steady state probability that a
random point in time falls inside an inter-contact. Therefore
we obtain:

pcase2B = (1− pcase2A) ∗
E[TC ]

E[TC ] + E[TIC ]
(16)

5. We derive the probabilities of cases 1, 2 and 3 later, in Section 4.4.3
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pcase2C = (1− pcase2A) ∗
E[TIC ]

E[TC ] + E[TIC ]
(17)

Using this probabilities we can find the expected value for
θ|case2 through the law of total probability.
4.4.3 Probabilities of single-component-service cases

Having derived all the components of the service provision-
ing time in all cases, we now need to derive expressions for
the probabilities of the three cases in which we have divided
the analysis.

Remember that case 1 is the case when the entire service
provisioning time R is shorter than the first contact time
between seeker and provider. Therefore the probability of
case 1 is P{R < TC(0)}. The following lemma provides a
closed form for this probability, and for p3. Probability p2 is
derived as 1− p1 − p3.

Lemma 4.4. The probabilities p1 = P{R < TC(0)} and p3
can be approximated as:

p1 =
µ(1− ρ)e−δ k+k

′
V

δ + µ(1− ρ)
(18)

p3 = P{TCR(0) <
k

V
} = FTC(0)

(
k

V

)
= 1−e− δkV (19)

Proof: See Appendix A.1 for p1. For p3, its expression
is straightforward, thanks to the assumption that contact
times are exponentially distributed, as it is is the probability
that the residual of the first contact TCR(0) is shorter than
the time k/V needed to transfer the input data without
interruptions.

4.4.4 Data transfer for service compositions

To complete the analysis, we now extend the derivation of
the service provisioning time to the case of multi-component
services. As discussed before, this is expressed by Equation
2, i.e.:

Rcomp =W +B +

n∑
i=1

(DQi +DSi + θi)

For W , B, DSi and DQi we can use the same formulation
used in the single service executions, as they have no
differences. For each i, θi clearly depends on the seeker-
provider pair corresponding to component i. Also in this
case, to simplify the notation, without loss of generality,
we omit the indices of the specific pair, and provide the
expression of θi for a generic component i, that we simply
refer as θ. In the formulation of θ, the first factor includes
the time to encounter the next provider, and possibly the
time needed to transfer previously queued data (e.g., other
input/output parameters) to be exchanged between these
two nodes. For simplicity, we keep this factor as a model
parameter (called average transfer queue time TQ), and we as-
sume that nodes estimate its value by monitoring previous
data transfers between the same nodes through a standard
smoothed average estimator. This is a well-established and
solid estimator, which is able to capture also fluctuations
of the estimated figure. On the other hand, the second part
is analogous to θ for single service composition in case 2B,

i.e. when it starts at the beginning of contact6, and therefore
can be expressed as in Equation 9. Therefore, θ becomes as
follows:

θ = TQ+
k′

V
+

[
N2B∑
i=1

TIC(i)

]
(20)

Given that TQ is a non-random parameter, we can calculate
the expected value of θ, using again the results provided in
Lemma 4.2, as:

E[θ] = TQ+
k′

V

(
1 +

δ

δ′

)
(21)

4.5 Weights of the Composition Graph

The model presented so far allows us to compute all possible
service provisioning times for all alternatives. To this end,
we use the Composition Graph (Fig. 1c) and (i) weigh
the edges of the graph using the appropriate parts of the
analytical model described in Section 4 (the details on how
this is done are presented in the following of the section), (ii)
use a standard shortest path algorithm to find the alternative
with the minimum estimated service provisioning time.

Remember that any edge (si, nj)(sk, nh) in the Compo-
sition Graph means that it is possible to compose services si
(provided by node nj), and sk (provided by node nh). For
any such edge, its weight ω is the expected time between
the end of the execution of service si on node nj and the
end of the execution of service sk on node nh, both for
single service execution and sequential compositions. We
can identify three types of edges that need different types of
weights:

• Starting edges: The edges outgoing from the start
node, represented as (start, nj)(sk, nh), must be
weighted with the estimated time to wait for the
next contact with the provider, plus the time to
transfer the input data for the service provisioning,
the queue waiting time and the service component
execution time, obtaining ω((start, nj)(sk, nh)) =
E[Wnj ,nh +Bnj ,nh +DQnh +DSsk,nh ]

• Ending edges: The edges incoming to the end node,
represented as (si, nj)(end, nh), are only weighted
with the estimated time E[θnj ,nh ] to transfer the
output of the service provisioning to the seeker.
We have to consider that the formula is different
for single-component and multiple-component ser-
vices. Remeber (Section 3) that in the composition
graph a single-component service corresponds to
three nodes, i.e., (Start, n0)→ (si, nj)→ (End, n0).
In this case, the type Isi (i.e., the input required by
service component si) matches the output Ostart of
node start. In terms of notation, we refer to θ in this
case as θnj ,nh , and as θCnj ,nh in the other case. θnj ,nh
and θCnj ,nh are the weights on the ending edges in
the two cases.

• Intermediate edges: These edges (si, nj)(sk, nh) are
only between two providers, so they are part of a
composition. Their weight, similarly to the starting

6. More precisely, in case 2B, θ starts during a contact. However, the
average values become the same due to the assumption of contact times
being exponentially distributed
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edges, is the sum of the estimated time E[θCnj ,nh ]
to transfer data between the providers, the estimated
queue waiting time E[DQnh ] on the second provider
and the estimated service execution time E[DSsk,nh ]
for service sk.

5 PERFORMANCE EVALUATION

In this section, we first assess the precision of the model
in ranking possible alternatives for service provisioning in
Section 5.1. Remember that providing an effective ranking
of the known alternatives is the key objective of our model.
Then, in Section 5.2 we compare the performance of the
policy that uses our model to select the service composition
to be used, with other reference alternatives, over a range of
different parameters. While the first session mainly demon-
strates the usefulness of the model in identifying the best
service composition, the second session mainly quantifies the
effectiveness of a policy using the model over a range of key
parameters.

We define MEV (Minimum Expected Value) as the policy
that selects the service composition corresponding to the
minimum expected service provisioning time according to
our model. We consider three alternative policies: a Random
policy (called RAN) that makes a random selection among
all service compositions known at the seeker; the Atomic
policy (ATO) that selects randomly a single-component so-
lution (i.e., not using multiple-components service provi-
sioning options); and the Always First (AFIR) policy. AFIR
always picks the first encountered provider that allows the
composition to progress towards the complete composed
service. Note that, in our case, as we consider sequential
compositions only, AFIR is equivalent to Serendipity [19].
Comparison with AFIR gives thus a comparison with one
of the reference policies in the state of the art.

We run trace-based simulations using the PMTR [31],
Haggle [32], MIT-Reality [33] and Rollernet [34] traces,
which are reference traces in the literature. Among the avail-
able Haggle traces, we used the one related to the Infocom
2005 and 2006 experiments (throughout referred to as Info05
and Info06). Unless otherwise stated, simulations are re-
peated 5 times using independent seeds, and average results
are presented with 95% confidence intervals 7. We defined
a warm-up period during which no requests are generated,
and nodes only acquire information about contact and inter-
contact times to yield stable estimates. Each service is identi-
fied by the type of its input/output, which is represented by
an integer. In our simulations, input types i are selected in
the range [0,7], while output types o in the range [1,8], with
the constraint that i must be less than o to avoid cyclic com-
positions. The average service execution time for a service
component is 75s, and service execution times are drawn
from an exponential distribution. Using a random variable
for service execution time, we take into account inevitable
variability in service execution also for the same type of
services (i.e., for a given value of their average execution
time). Unless otherwise stated, service inter-generation time
at seekers is uniformly distributed in the interval [40-80]s.
We consider two sizes of input/output parameters, i.e., 40

7. Replicating more times did not yield to significantly lower confi-
dence intervals

KB and 1280 KB, representing respectively light and heavy
data transfer cases. Finally, we take into account contention
on providers’ CPUs as follows. We consider that the CPU of
providers is shared round robin among a maximum number
of competing processes, M . The evolution of the competing
processes over time is a birth-death process. Specifically,
every quantum of time (0.1s in our simulations) the number
of competing processes is increased or decreased by 1 with
probability 0.1%, simulating the activation and deactivation
of processes. Parameter M allows us to vary the average
number of competing processes, and thus the level of con-
tention on providers’ CPUs. As far as network congestion
is concerned, the maximum bandwidth provided by the un-
derlying communication technology is split equally among
neighbouring nodes with active communications.

whenever a node communicates during a contact with
another node, we equally split the maximum bandwidth
between all nodes in its communication range.

Note that in the following we present results obtained
by varying most of these parameters over significant ranges.
Therefore, in addition to comparing our policy with others,
results in this section also show the effectiveness of our
model to select the most performing service provisioning
alternative also in scenarios where the modelling assump-
tions do not hold true. Specifically, in all simulations contact
and inter-contact times are driven by mobility traces, and
are not exponential, and service request generations are not
Poisson. These are the two fundamental assumptions of
our model: remember that for the other parameters (such
as, e.g., the average service execution time, the average
bandwidth between nodes) our model uses their average
values monitored over time, and therefore there are no
corresponding modelling assumptions.

5.1 Ranking precision of the model

5.1.1 Precision of alternative policies
We compare the four policies using two performance in-
dices. We evaluate the percentage of service requests for
which MEV is the best policy among the four, i.e., the
policy selecting the composition with minimum service
provisioning time. This index shows the effectiveness of
MEV in identifying a better service composition with respect
to AFIR, RAN and ATO. The second index is, for each policy,
the average difference in service provisioning time between
it and the best among the four. This index shows the average
“loss” incurred by using each of the policies with respect to
an ideal policy that for each service request takes the best
among the options identified by the four policies.

For each request generated at a seeker, we run all four
policies in parallel, to make sure that they all evaluate
service compositions based on the same conditions. For
fairness, in the simulations, the order in which the policies
are scheduled is randomised, to make sure no policy obtains
an unfair advantage due just to be scheduled first during
contacts. A new service request is generated when the best
composition among the selected ones has terminated. To
have a number of samples of service provisioning time
sufficient to compare the four policies, we replicated exper-
iments 40 times (replaying the RollerNet trace several times
to have a sufficiently long trace). To compute the loss index,
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we grouped requests in groups of 200 consecutive requests.
We averaged the loss of each group of 200 requests, obtain-
ing a sample of the average loss from each group. Finally,
we computed the average value of the index over all groups,
with 95% confidence level. The simulation parameters are
shown in Table 1.

Table 1
Simulation parameters for ranking experiments

Trace RollerNet
Simulation Time 100000s
Warm-up time 30000s

Component avg. execution time 75s
Input/Outpup size 40KB, 1280KB

Avg. CPU contention (processes) 3 (low), 10 (high)

Figure 4 shows the percentage of time each policy iden-
tifies the best composition (i.e., the one with the minimum
service provisioning time), varying the sizes of I/O param-
eters without CPU contention (left), and varying CPU con-
tention (right). In the latter case, the size of I/O parameters
is equal to 40KB. We anticipate that, in general, 40KB is the
size of I/O where the advantage of MEV is lower, as MEV
advantages become more and more evident as the network
congestion increases. Therefore, Figure 4 show “how useful”
the model is in identifying the best composition among the
considered policies.

Plots clearly show that MEV is by far the policy that
selects more often the best composition. This holds true ir-
respective of the size of I/O parameters, or CPU contention.
This happens in between 60% and 70% of the cases. AFIR is
the next most successful policy, followed by ATO and RAN.
We anticipate that this ranking among policies is a constant
feature that we have found in our experiments. The fact that
MEV outperforms AFIR shows the advantage of choosing
service compositions based on an accurate model of the
various phases of the service provisioning time. The fact that
MEV outperforms ATO shows that composition is helpful as
(i) it exploits service components that, due to mobility, may
become available sooner to the seekers, and (ii) it spreads
service load across providers more evenly. Finally, RAN
yields the worst performance, as it does not exploit suitable
service (component) providers upon encounters (as AFIR
and MEV do), and uses composed services without evalu-
ating whether this is advantageous over single-component
services (as MEV does).
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Figure 4. Percentage of selection of best composition w/o (left) and w/
(right) competing processes

Figure 5 shows the average “loss” in service provision-
ing time of each policy with respect to the best one, by
measuring the additional delay in the service provisioning
time with respect to the option which completes first for
that service request. First of all, it is worth nothing that

MEV is clearly the policy yielding the lowest average loss.
Results confirms the same ranking among policies already
observed in Figure 4. Finally, note that the advantage of
MEV increases both with the size of I/O parameters, as well
as with the number of competing processes, at least with
respect to the second best, i.e., AFIR. This shows another
general feature that we have found in our experiment,
i.e., that the gain of MEV increases the more resources
become limited, either in terms of bandwidth, or in terms
of CPU at providers. The key reason is that our model takes
into consideration the availability of both resources when
estimating the expected service provisioning time, and is
thus able to better distribute compositions among providers
the more resources become scarce.
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Figure 5. Average loss of the alternatives with respect to the best one,
w/o (left) and w/ (right) competing processes
5.1.2 Precision of model estimates
In this section, we analyse the effectiveness of the model
not only in identifying the best composition, but, more
broadly, in ranking alternatives. Specifically, we compare
the first five service compositions ranked by our model
(the first in the ranking being the one selected by MEV).
Simulation settings and parameters are the same already
explained in Section 5.1.1. Figure 6 shows, on the left-hand
side, the fraction of compositions for which each of the
five alternatives (ranked by our model in increasing order
of estimated service provisioning time) turns out being the
best. The first choice of the model is the best composition in
about 40% of the cases (slightly less for 1280KB I/O sizes).
This percentage is significantly higher than what a random
selection among the five would achieve (20%), and shows
that the model is really helpful in ranking the alternatives.
The fraction of times when the option ranked first by
the model is best is significantly higher than the fraction
when each of the other considered compositions is best.
Interestingly, the model is able to rank the five alternatives
rather precisely. The fraction of times alternative x in this
ranking turns out being the best is normally higher than the
percentage of time this happens for alternative x+1. Figure 6
indicates that there is room for improvement in MEV, as
the model not always identifies the best composition, while
“second-best” choices considered by the model result best in
a significant fraction of the cases. While MEV could certainly
be improved, results in Section 5.1.1 show that it is already
much more precise than state-of-the art alternative policies.
Based on Figure 6, a possible improvement of MEV could be
based on multi-path service composition: if MEV used, for
example, the first three alternatives provided by the model
and spawn three parallel executions of a service request, the
fraction of times MEV would not use the best composition
(among the five) would be only about 25%.
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The plot in Figure 6 right-hand side shows, for each
candidate composition provided by the model, the average
difference in service provisioning time with the best. The
“loss” increases when the network becomes more congested
(higher I/O sizes), as in general service composition delays
increase. However, in any case the loss of the first choice
(which corresponds to MEV) is significantly lower than that
of the other choices.
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Figure 6. Percentage of “success” for the first five compositions (left),
and average errors over the best (right)

To complete the analysis, Table 2 shows the precision of
the model in estimating the real average service composition
time. Specifically, we show the average service composition
time estimated by the model (“Est”) and the one mea-
sured in simulations for the compositions selected by MEV
(“Sim”). We also include these results for the PMTR and
Haggle-Info05 traces (differences in service provisioning
times across traces clearly depend on the mobility patterns
of the node in each one). Note that, our model estimates the
average service composition time that MEV would achieve,
while it does not provide an estimate of the distribution of
the service provisioning time. In simulation, each sample
of the MEV service composition time is a sample from
the random variable distribution whose average value our
model estimates. Therefore, it would not be appropriate to
compare the values of the model and the individual samples
obtained in simulation, while the average of those samples is
the value to compare with the model. Table 2 shows that the
average service provisioning time predicted by the model
is quite close to the one obtained in simulation for both
traces and both data transfer sizes, with a maximum error
of about 15%. Remember that achieving a high precision
on this index is not a primary goal of our model, whose
main purpose is to rank alternatives. However, it is very
good to see that the model is rather precise also from this
standpoint. Note that, this also indicates that the model is
robust in estimating the average service provisioning time
with respect to the several simplifying assumptions we
have to use in the analysis, as none of them holds in the
simulations.

Table 2
Accuracy of service provisioning time estimates

PMTR Info05 RollerNet
40KB 1280KB 40KB 1280KB 40KB 1280KB

Est 17413±
1137

13046±
1305

20138±
1413

21408±
1814

474 ±
58

665 ±
108

Sim 19091±
2439

15124±
1750

20208±
1229

19947±
1624

789 ±
87

916 ±
196

Summarising, the results presented in this section clearly
demonstrate the usefulness of the proposed model: (i) using

the model, MEV is able to correctly rank the alternative
options for service provisioning in a very large fraction of
cases, and in particular to identify the best (among MEV,
AFIR, RAN, ATO) in between 60% and 70% of the cases; (ii)
MEV provides a clear gain over any other considered policy,
by experiencing the lowest average loss with respect to the
best; (iii) while the primary goal of the model is to rank
service compositions, it is also quite precise in estimating
the average service provisioning time for the composition
chosen by MEV.

5.2 Comparison between policies

In this section we compare more directly MEV with AFIR,
RAN and ATO (AFIR in greater detail, since it is consistently
the second-best policy in the pool). We do so with respect
to a number of parameters, i.e., different mobility traces,
service execution times, size of I/O parameters, providers’
CPU contention. For the case of MEV, we have also obtained
results aimed at analysing more in detail the performance of
the individual components of the service provisioning pro-
cess, and the impact of longer or shorter warm-up periods
(remember that the warm-up is needed to acquire reliable
statistics about mobility, in order to feed the model). These
results are presented in the Appendix and are omitted here,
as they do not change any of the outcomes of the evaluation
discussed in the following of this section.

In the following set of simulations, we slightly changed
the configuration with respect to what explained in Sec-
tion 5.1.1. Specifically, we do not run all the four policies
in parallel for each request. Rather, in each simulation we
consider a specific policy, and draw the inter-request gen-
eration intervals from a uniform distribution in the range
[40s,80s]. This setting allows us to guarantee that the request
generation pattern is determined and controlled. The rest of
the simulation settings are again as reported in Table 1.

We first compare the four policies over all the mobil-
ity traces considered in the paper (PMTR, Haggle-Info05,
Haggle-Info06, MIT-Reality, RollerNet). Note that these
traces vary significantly in terms of number of nodes, pat-
terns of mobility, contact and intercontact times. Specifi-
cally, they include scenarios where nodes move across large
spaces and meet infrequently (e.g., in the case of Reality
Mining) and scenarios where nodes move close-by and meet
quite often (e.g., in the case of RollerNet). These features
impact significantly on the reliability of intercontact time
estimates used by MEV, and therefore the results presented
allow us to characterise its performance over a wide range
of mobility scenarios. Specifically, Table 3 reports the simu-
lation configurations used with each of the traces.

Tables 4 and 5 show the average service provisioning
time, together with their confidence intervals (with 95%
confidence level), for I/O sizes equal to 40KB and 1280KB,
respectively. In the first row we can see the results of the
simulations for PMTR traces. MEV yields 21% and 43%
lower service provisioning time, respectively, with respect
to the second-best policy i.e., AFIR, and, as observed be-
fore, outperforms all the other policies too. For the Info05
traces, MEV outperforms AFIR (by 4% and 7% respectively),
and drastically outperforms the other policies. MIT-Reality
is the most challenging scenario for MEV (and the most
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Table 3
Trace-based simulation parameters

Parameters PMTR Info05 Rollernet Info06 Reality

Number of
nodes

43 55 63 50 100

Total simula-
tion time

500000s 250000s 100000s 330000s 600000s

Mobility
warm-up
period

50000s 50000s 30000s 50000s 20000s

Request gen-
eration phase
duration

450000s 200000s 70000s 280000s 580000s

Density of
each service

75% 50% 75% 75% 75%

Table 4
Average service provisioning time (s) - 40KB Scenario

MEV AFIR RAN ATO
PMTR 35087 ±

2209
44557 ±
1897

65192 ±
2929

57020 ±
2391

Info05 32828 ±
1938

34221 ±
1057

61614 ±
3030

49057 ±
813

Reality 163358 ±
6595

161794 ±
6611

205849 ±
15587

197915 ±
2697

Info06 15542 ±
1718

19999 ±
1472

56316 ±
2035

38298 ±
2348

RollerNet 788± 86 1007± 65 3533± 142 2110± 97

favourable for AFIR). In fact, Reality is an extremely sparse
trace, where the large variability of intercontact times and
the low number of contact events make predictions not
very reliable. However, even in such case, MEV and AFIR
achieve comparable performance. The cases of Info06 and
RollerNet exemplify mobility patterns over smaller areas,
with shorter and more frequent inter-contact times. In the
Info06 trace, MEV outperforms AFIR by 22% and 37%, for
parameters sizes equal to 40KB and 1280KB, respectively. In
the case of Rollernet, MEV outperforms AFIR by 21% and
41% in the two configurations. As before, RAN and ATO
yield worse performance than AFIR (and MEV), with ATO
being the best among the two. These results confirm that
MEV outperforms AFIR (and all the other policies) by a very
significant margin in a range of different mobility patterns. It
is by large the best policy in scenarios with more ”compact”
mobility patterns. However, also in sparser conditions none
of the alternative policies yield shorter service provisioning
times.

In Figure 7 we analyse the behaviour of the four policies
for different levels of CPU contention at providers. Together
with results in Tables 4 and 5, they assess the performance
of the four policies under providers’ resource constraints.
The level of contention is controlled as explained at the
beginning of Section 5. In particular, in the case of “Low”
and “High” interference we have on average 3 and 10
other processes competing for the CPU at each provider.
Thanks to the use of the model, which dynamically takes
into consideration expected CPU load at providers, the
performance of MEV is rather insensitive to the increase
of CPU contention. This is achieved by distributing the
load on less congested providers, as appropriate. It is quite
interesting to note, among the other policies, the fact that
AFIR suffers particularly under high contention, and the
ranking between AFIR and ATO is swapped in this case.
This is a side effect of AFIR generating longer compositions
than ATO, which results in a higher total number of service
component requests in the system. Under severe CPU con-

Table 5
Average service provisioning time (s) - 1280KB Scenario

MEV AFIR RAN ATO
PMTR 26368 ±

1452
46826 ±
1179

66946 ±
2223

58834 ±
1385

Info05 33835 ±
513

36568 ±
1053

62067 ±
2559

49841 ±
1787

Reality 163105 ±
7038

158918 ±
2722

220052 ±
4357

197365 ±
4999

Info06 13339 ±
976

21495 ±
1606

55954 ±
3229

37624 ±
758

RollerNet 915± 195 1562± 177 4293± 126 2573± 275
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Figure 7. Service provisioning with changing CPU contention (Roller-
Net).

tention, this is clearly a significant problem. Note that MEV
is not affected by the same issue, as the model considers and
compares compositions of any length, thus moving from
longer to shorter compositions as appropriate.

The next set of results are obtained by varying the aver-
age service execution time at providers. To the best of our
knowledge, no well-established benchmarks are available
(such as a set of reference traces) to describe typical service
execution times of personal mobile devices. Therefore, we
have varied the average service execution time in our sim-
ulations, considering short (15s), medium (75s), and large
(135s) average execution times. We believe these values
are reasonable and representative, considering that we tar-
get services to be executed by personal mobile devices.
Therefore, we think that the presented results allow us to
characterise the performance of MEV in realistic conditions,
also as far as service execution times are concerned. Note
that, we have used the RollerNet trace, as this is the one
with the shorter intercontact times, and therefore the one
where service provisioning depends more on the service
execution time. Figure 8 shows the service provisioning time
for both the reference sizes of I/O parameters. In general,
we observe that, as expected, the service provisioning time
increases with the service execution time (and with the
input/output sizes). However, note that in MEV the increase
is very graceful, confirming that MEV is able to efficiently
spread the load across the possible providers. While, in
principle, also RAN would do the same, the comparison of
performance clearly shows that using additional knowledge
to estimate service provisioning times, as MEV does, is very
useful. Also note that, the performance gap between AFIR
and MEV constantly increases as service execution takes
longer and longer.

The results presented so far clearly show an advantage of
MEV over the other three policies. To complete the analysis,
we show in Figure 9 the average “loss” (i.e., the average
difference in service provisioning time) of the other policies
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against MEV. For this set of experiments, we used again the
simulation settings explained in Section 5.1.1 to make sure
time differences are computed for exactly the same requests,
executed with each policy under the same network and
providers’ conditions. Results are shown for varying I/O
sizes w/o CPU contention (left) and for varying levels of
CPU contention with I/O sizes set to 40KB (right). The first
three bars in the plot show the average loss of, respectively,
AFIR, RAN and ATO with respect to MEV. The fourth bar
shows the loss, with respect to MEV, of an ideal policy based
on an oracle, which uses, among AFIR, RAN and ATO, the
one that will perform best. Clearly, this policy is infeasible
in practice. The plot shows that MEV provides a significant
advantage in terms of service provisioning time over all
of the three policies. Quite interestingly, MEV provides a
non-negligible advantage over the ideal (infeasible) policy,
too. Also in this case, these features do not qualitatively
change with the size of I/O or the level of CPU contention.
However, the advantage of MEV over the other policies
increases when larger I/O sizes or higher contention are
considered. This shows once more that, under shortage of
resources (network bandwidth in the first case, CPU in the
second case) MEV becomes more and more efficient.
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6 CONCLUSIONS

In this paper we have presented an approach (MEV) to
identify effective service provisioning options in an op-
portunistic environment. We have defined a mathematical
model by which seekers can estimate the expected service
provisioning time using different available compositions,
and thus select the best one. The model is based only
on local knowledge that nodes collect by exchanging a
few information between each other during contacts. We
have analysed the precision of the model in quite some
detail, showing that the model fulfils its main objective,

i.e., to identify better service provisioning options than the
alternative policies we have considered. Specifically, in 60%
to 70% of the cases, the model identifies a better service
composition option with respect to the other policies. Its
average “loss” with respect to the best policy is by far the
lowest among the considered policies. The model is also able
to correctly rank the first-k compositions (we showed results
with k = 5). Specifically, ranking compositions according to
the estimated service provisioning time of the model, the
fraction of time the i-th composition turns out being the
best one is higher than the fraction of time this happens for
composition i+1 for all ranking positions i.

We have then directly compared MEV with the alterna-
tive policies, AFIR, RAN, and ATO. MEV outperforms all of
them by always yielding lower service provisioning times,
across a range of very different realistic human mobility
patterns. Specifically, we have found that MEV yields better
performance for “compact” mobility patterns, i.e., when
users do not move in too large areas, and meet rather
frequently. Note that this is the case for the application cases
we target and where we think opportunistic computing
makes more sense. For example, in industrial applications,
workers typically move in the area of a factory, and meet
rather frequently over a day. In Mobile Social Network-
ing applications, users are typically co-located in specific
geographical areas (e.g., a museum, a theme park, etc.).
Moreover, MEV outperforms the other policies over a range
of parameters. Most notably, as the providers’ network or
computation resources becomes scarce, the gain of MEV
increases, which shows that MEV is particularly suitable
in resource-constrained environments. Finally, MEV even
outperforms an ideal, infeasible, policy, which picks, for
each request, the policy that will perform best for that
request, among AFIR, RAN and ATO.

Taken together, these two sets of results show that (i)
the model is able to correctly identify very good service
compositions, and (ii) the gain of a policy using this model
is very significant, across a range of significant parameters.
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APPENDIX A
A.1 Proofs of Lemmas for data transfer times in Case 2
Lemma A.1. The probability that, in case 2A, θ includes

N2A = n additional inter-contact times (after the first
one that it always includes) is as follows:

P{N2A = n} = e−δ
k+k′
V ∗

( δk
′

V )n+1

n+ 1!
∗ (1− ρ)µ
δ + µ(1− ρ)

(22)

Proof: We denote by TCR(0) the part of the first
contact time between the seeker and the provider, that is
the initial part of θ. Therefore, the remaining transfer time
is k′/V − TCR(0). In order for N2A to be equal to n, the
remaining transfer time must be longer than n contact times
but shorter than n+ 1 contact times. Therefore,

P{N2A = n} =

= P{
n∑
i=1

TC(i) <
k′

V
−TCR(0) <

n+1∑
i=1

TC(i)|TCR(0) <
k′

V
}

(23)

Given that all contact periods TC(i) between h and j are in-
dependent and identically distributed exponential random
variables, we can consider

∑n
i=1 TC(i) as an Erlang variable

SC,n with n components, each with rate δ.
In Lemma A.2 (see the Appendix) we derive the distribu-

tion of TCR(0). Based on this result, we can thus condition
on a specific duration of TCR(0) and apply the law of total
probability:

P{N2A = n} =

=

∫ k′
V

0

P{SC,n <
k′

V
− t < SC,n + TC(n+ 1)|

|TCR(0) = t} ∗ P{TCR(0) = t}dt =

=

∫ k′
V

0

∫ k′
V −t

0

(
1− FTC(n+1)

(
k′

V
− t− x

))
∗

fSC,n(x) ∗ fTCR(0)(t)dxdt =

Recalling that TC(n+ 1) is exponentially distributed, while
SC,n follows an Erlang distribution, we obtain

FTC(n+1)(t) = 1− e−δt (24)

and

fSC,n(t) =
δntn−1e−δt

(n− 1)!
(25)

Therefore, we obtain:

P{N2A = n} =

=

∫ k′
V

0

∫ k′
V −t

0

e−δ(
k′
V −t−x) ∗ δ

nxn−1e−δx

n− 1!
∗

∗ δe
−δ(t+ k

V ) ∗ (1− ρ)µ
δ + µ(1− ρ)

dxdt =

= e−δ
k+k′
V ∗

( δk
′

V )n+1

n+ 1!
∗ (1− ρ)µ
δ + µ(1− ρ)

(26)

Lemma A.2. The probability density function of the residual
of the first contact starting after the service component
execution in case 2A is equal to:

fTCR(0)|case2A(t) =
δe−δ(t+

k
V ) ∗ µ(1− ρ)

δ + µ(1− ρ)

Proof: Finding this probability density means we have
to find a formulation for:

fTCR(0)|case2A(t) = P{TCR(0) = t|

|DQj +DSsi,j +
k + k′

V
> TC(0) > DQj +DSsi,j +

k

V
}

We substitute the residual with the total value of the dura-
tion of the first contact TCR

fTCR(0)|case2A(t) =

= P{TC(0)− (DQj +DSsi,j +
k

V
) = t|

|DQj+DSsi,j+
k + k′

V
> TC(0) > DQj+DSsi,j+

k

V
} =

=

∫ ∞
0

P{TC(0)−
(
x+

k

V

)
= t|DQj +DSsi,j = x∧

∧ x+
k + k′

V
> TC(0) > x+

k

V
} ∗ fDQj+DSsi,j (x)dx

To make the analysis tractable, we model the provider
as an M/M/1 queue, and therefore the service execution
times DSsi,j can be considered exponentially distributed
with the provider having average service rate µ and load
ρ. Under this assumption, the probability density function
fDSsi,j+DQj of DSsi,j +DQj is:

fDSsi,j+DQj (t) = (1− ρ)µe−µ(1−ρ)t (27)

With this value, we obtain:

fTCR(0)|case2A(t) =

=

∫ ∞
0

fTC(0)

(
t+ x+

k

V

)
∗ (1− ρ)µe−µ(1−ρ)xdx =

=

∫ ∞
0

δe−δ(t+x+
k
V ) ∗ (1− ρ)µe−µ(1−ρ)xdx

that through integration gives us the result:

fTCR(0)|case2A(t) =
δe−δ(t+

k
V ) ∗ µ(1− ρ)

δ + µ(1− ρ)
(28)

Lemma A.3. The probability of the first contact lasting
enough to complete the input data transfer, but not
enough to reach the beginning of the output data trans-
fer, is:

p(Case2A) =
e−δ

k
V ∗ µ(1− ρ)

δ + µ(1− ρ)
(29)

Proof: This probability can be written as the proba-
bility that the first contact time TC(0) is longer than the
time for the transfer of the input parameters (k/V ) plus the
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queuing time at the provider (DQj) plus the service com-
putation time (DSi,j), but not long enough to also include
the transfer of the output parameters (θ). By recalling that
we are in case 2 and, therefore, TC(0) is not shorter than
k/V (captured in case 3) and shorter than the total service
provisioning time without any disconnection (case 1), we
can write:

p(Case2A) = P{ k
V

+DQj +DSi,j < TC(0)|

| k
V
< TC(0) <

k

V
+DQj +DSi,j +

k′

V
}

That, isolating the durations of DQj and DSi,j becomes:

p(Case2A) =

∫ ∞
0

P{ k
V

+ x < TC(0)|

| k
V
< TC(0) <

k

V
+ x+

k′

V
∧DQj +DSi,j = x}∗

∗ P{DQj +DSi,j = x}dx =

=

∫ ∞
0

(1− FTC(0)(
k

V
+ x)) ∗ fDQj+DSi,j (x)dx

Using the expression for the density of DQj+DSi,j derived
in Lemma A.2 and the formula for the cumulative probabil-
ity of TC(0)

p(Case2A) =

=

∫ ∞
0

(1− (1− e−δ( kV +x))) ∗ (1− ρ)µe−µ(1−ρ)xdx =

= e−δ
k
V µ(1−ρ)

∫ ∞
0

e−x(δ+µ(1−ρ))dx =
e−δ

k
V ∗ µ(1− ρ)

δ + µ(1− ρ)

Lemma A.4. The probability that, in cases 2B and 2C, theta
includes N2B = n inter-contact times is as follows:

P{N2B = n} = P{N2C = n} =

= P{
n∑
i=1

TC(i) <
k

V
<

n+1∑
i=1

TC(i)} =

= e−δ
k
V ∗

( δkV )n

n!
(30)

Proof: Analogously to Lemma 4.1, we can use the
Erlang random variable SC,n to represent the first n contacts
of the data transfer phase , obtaining:

P{N2B = n} = P{N2C = n} =

= P{SC,n <
k

V
< SC,n + TC(n+ 1)} (31)

To find this value, we rewrite the expression in order to
use the known formulas for the density function of Erlang
distributions and the cumulative probability function for
exponential distributions seen in Equation 24 and Equation
25:

P{SC,n <
k

V
< SC,n + TC(n+ 1)} =

=

∫ k
V

0

P{ k
V
− x < TC(n+ 1)|SC,n = x} ∗ fSC,n(x)dx =

=

∫ k
V

0

(1− FTC(n+1)(
k

V
− x)) ∗ fSC,n(x)dx =

=

∫ k
V

0

e−δ(
k
V −x) ∗ δ

nxn−1e−δx

(n− 1)!
dx =

=
e−δ

k
V δn+1

n− 1!

∫ k
V

0

xn−1dx =
e−δ

k
V δn+1

n− 1!
∗
( kV )n

n
=

= e−δ
k
V ∗

( δkV )n

n!
(32)

that is the result provided in the lemma.

Lemma A.5. The expected value of θ|case2A is equal to:

E[θ|case2A] = k′

V
+

1

δ′
+

1

δ′
∗ e−δ

k+k′
V ∗

∗ (eδ k
′
V ∗ (δ k

′

V
− 1) + 1) ∗ (1− ρ)µ

δ + µ(1− ρ)
(33)

Proof: Given the definition of θ|case2A seen in Equa-
tion 8, its expected value can be expressed as:

E[θ|case2A] = k′

V
+ E

[
N2A∑
n=1

TIC(n)

]
+ E[TIC(0)] =

=
k′

V
+

∞∑
n=0

(
n∑
i=1

E[TIC(i)] ∗ P{N2A = n}

)
+E[TIC(0)]

(34)

From which, we can substitute the value obtained in Lemma
4.1 to obtain:

E[θ|case2A] =

=
k′

V
+

∞∑
n=0

(
n

δ′
∗ e−δ

k+k′
V ∗

(δ k
′

V )n+1

n+ 1!
∗ (1− ρ)µ
δ + µ(1− ρ)

)+
1

δ′
=

=
k′

V
+

1

δ′
+

1

δ′
∗e−δ

k+k′
V ∗ (1− ρ)µ

δ + µ(1− ρ)
∗
∞∑
n=0

(
n(δ k

′

V )n+1

n+ 1!
)

(35)

With the series
∑∞
n=0

n∗cn
n+1! having result ec ∗ (c− 1)+ 1, we

obtain the formula of the lemma.

Lemma A.6. The expected value of θ|case2B is equal to:

E[θ|case2B] =
k′

V

(
1 +

δ

δ′

)
(36)

Proof: Given the formulation of θ|case2B in Equation
9, its expected value is found as:

E[θ|case2B] =
k′

V
+ E

[
N2B∑
i=1

TIC(i)

]
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Similarly to Lemma 4.2, we can find:

E

[
N2B∑
i=1

TIC(i)

]
=

∞∑
n=0

(
n∑
i=1

E[TIC(i)]

)
∗P{NIC = n}

that is equal, using Lemma A.4, to:

E

[
N2B∑
i=1

TIC(i)

]
=

∞∑
n=0

n

δ′
∗ e−δ kV ∗

( δkV )n

n!
=

=
e−δ

k
V

δ′
∗
∞∑
n=0

n ∗ ( δkV )n

n!

Given that
∑∞
n=0 n ∗ cn/n! is a notable series with value

c ∗ ec, we can write:

E

[
N2B∑
i=1

TIC(i)

]
=
e−δ

k
V

δ′
∗ δk
V
∗ e δkV =

k

V
∗ δ
δ′

and returning to the starting formula, we have:

θ|case2B =
k′

V
+
k

V
∗ δ
δ′

that is equal to the formula of the lemma.
Lemma A.7. The expected value of θ|case2C is equal to:

E[θ|case2C] = k′

V
+ E[TIC(0)] + E

[
N2C∑
i=1

TIC(i)

]
=

=
1

δ′
+
k′

V

(
1 +

δ

δ′

)
(37)

Proof: This result follows the line of reasoning of
Lemma A.6 with the addition of E[TIC(0)] (due to the
fact that intercontact times are exponential, and therefore
E[TICR(0)] = E[TIC(0)]), that gives us the formula in the
lemma.

A.2 Analysis of data transfer in case 3
In the third and final case (case 3), we capture the scenario
where the contact cannot last long enough to complete the
input data transfer, that may happen for large inputs to
transfer or short contact periods. In this case B still starts
during a contact periods, but, before the end of the time
needed to transfer the input data (k/V ), a first inter-contact
period (denoted as TIC(0)) happens. Then, after resuming
the transmission, an additional number RNIC ≥ 0 of inter-
contact periods TIC(i) may occur. Therefore the formulation
for B|case3 can be written as:

B|case3 =
k

V
+ TIC(0) +

RNIC∑
i=1

TIC(i) (38)

To find the expected value of B|case3, we need a formula-
tion for P{RNIC = n}. This is not the same to the one seen
for P{N2A = n} in Lemma 4.1, given that the elapsed time
of the first contact period before the start of B is unknown.
We can then approximate the residual of the first contact
with the entire contact duration, obtaining the following
lemma.
Lemma A.8. If there is at least a connection interruption

during the input data transfer phase, the probability of

having exactly n additional interruptions, other than the
first one, during the phase is equal to:

P{RNIC = n} =
e−δ

k
V

(
δ kV
)n+1

n+ 1!
(39)

Proof: For the formulation of P{RNIC = n}, we con-
sider it as the probability of n contact periods

∑n
i=1 TC(i) to

be long enough to transfer the data that could not be trans-
fered during the first contact period k

V − TC(0). Therefore
P{RNIC = n} can be formulated as:

P{RNIC = n} =

= P{
n∑
i=1

TC(i) <
k

V
− TC(0) <

n+1∑
i=1

TC(i)|TC(0) <
k

V
}

(40)

Where, the summations can be substituted by the Erlang
random variable SC,n, obtaining:

P{RNIC = n} =

= P{SC,n <
k

V
−TC(0) < SC,n+TC(n+1)|TC(0) <

k

V
}

Again, we rewrite the expression in order to use the known
formulas for the density function of Erlang distributions
Equation 25 and the cumulative probability function for
exponential distributions Equation 24:

P{RNIC = n} =

=

∫ k
V

0

P{SC,n <
k

V
−t < SC,n+TC(n+1)}∗fTC(0)(t)dt =

=

∫ k
V

0

∫ k
V −t

0

P{ k
V
− t < x+ TC(n+ 1)|SC,n = x}∗

∗fSC,n(x)dx ∗ fTC(0)(t)dt =

=

∫ k
V

0

P{ k
V
− x < TC(n+ 1)|SC,n = x} ∗ fSC,n(x)dx =

=

∫ k
V

0

∫ k
V −t

0

(1− FTC(n+1)(
k

V
− t− x))∗

∗fSC,n(x) ∗ fTC(0)(t)dxdt =

Substituting the values, we obtain:

P{RNIC = n} =
∫ k

V

0

∫ k
V −t

0

e−δ(
k
V −t−x)∗

∗ δ
nxn−1e−δx

n− 1!
∗ δe−δtdxdt =

=
e−δ

k
V δn+1

n− 1!
∗
∫ k

V

0

∫ k
V −t

0

xn−1dxdt =

=
e−δ

k
V δn+1

n− 1!

∫ k
V

0

( kV − t)
n

n
dt =

That, through integration, is equal to:

=
e−δ

k
V (δ kV )n+1

n+ 1!
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Thanks to Lemma A.8, we can find the expected value of
B|case3:
Lemma A.9. The expected value of a data transfer phase

that starts during a contact period, but having at least
one disconnection period, is equal to:

E[B|case3] = k

V

(
1 +

δ

δ′

)
+
e−

δk
V

δ′
(41)

Proof: From the definition of B|case3, its expected
value is calculated as:

E[B|case3] = k

V
+ E

[
RNIC+1∑
i=1

TIC(i)

]
=

=
k

V
+

∞∑
n=0

n+1∑
i=1

E[TIC(i)] ∗ P{RNIC = n} (42)

Substituting the value of P{RNIC = n} provided by
Lemma A.8, we obtain:

E[B|case3] = k

V
+

1

δ′
+

∞∑
n=0

n

δ′
∗
e−δ

k
V (δ kV )n+1

n+ 1!
=

=
k

V
+

1

δ′
+
e−δ

k
V

δ′
∗
∞∑
n=0

n(δ kV )n+1

n+ 1!

we then divide the series in two notable exponential series:

E[B|case3] =

=
k

V
+

1

δ′
+
e−δ

k
V

δ′
∗
∞∑
n=0

(n+ 1)(δ kV )n+1

(n+ 1)!
−
∞∑
n=0

(δ kV )n+1

(n+ 1)!
=

=
k

V
+

1

δ′
+
e−δ

k
V

δ′
∗ (δ k

V
eδ

k
V − (eδ

k
V − 1)) =

=
k

V
(1 +

δ

δ′
) + e−δ

k
V ∗ 1

δ′

To formulate θ|case3, likewise to what we have seen in
cases 2B and 2C, we divide the formulation into in two sub-
cases 3A and 3B depending on the connection state between
the seeker and the provider at the start of the phase.

In case3A the output data transfer phase starts during
a contact and in case3B during an inter-contact period,
without any assumption on the number of disconnections
occurring in the phase. So, θ|case3A can be formalized ex-
actly as seen in Equation 9 and θ|case3B can be formulated
as in Equation 10.

For simplicity, in this case we don’t keep track in the
analysis of the time evolution of the previous phases of
service provisioning time with respect to the contact and
inter-contact processes. Therefore, we approximate pcase3A
and pcase3B using the steady state probabilities of contact
and inter-contact phases:

pcase3A =
E[TC ]

E[TC ] + E[TIC ]
(43)

pcase3B =
E[TIC ]

E[TC ] + E[TIC ]
(44)

Table 6
Synthetic-trace simulation parameters

Simulation runs 5
Number of nodes 30
Simulation space 500m× 500m
Total simulation time 400000s
Mobility warm-up period 10000s
Connectivity range 90m
Transmission speed 2Mbps
RWP node speed [0.6, 2.26]m/s
RWP node pauses 0s
Density of each service 25%
Input type range i ∈ [0, 7]
Requests output type range o ∈ [1, 8], o > i

With the formulation of θ in the two sub-cases and their
probability, we obtain the following lemma:
Lemma A.10. The expected value of θ|case3 is

E[θ|case3] = k′

V

(
1 +

δ

δ′

)
+

δ

δ′(δ′ + δ)
(45)

Proof: This immediately follows by using the results
in Lemma A.6 and Lemma A.7 to then apply the law of total
probability.

A.3 Derivation of p1
Lemma A.11. The probability p1 = P{R < TC(0)} of

a single-service request resolution process, involving a
seeker j, a provider h and the execution of service si,
ending during the same contact event when the input
data transfer phase started can be approximated as:

p1 =
µ(1− ρ)e−δ k+k

′
V

δ + µ(1− ρ)
(46)

Proof: This is straightforward by recalling that, in case
1, R = k

V + DSsi,j + DQj +
k′

V . We can condition on the
value ofDSsi,j+DQj and apply the law of total probability.
The distribution of DSsi,j +DQj is derived in Equation 27
in the Appendix. We obtain:

P{R < TC(0)} =

= P

{
k

V
+DSsi,j +DQj +

k′

V
< TC(0)

}
=

=

∫ ∞
0

(
1− FTC

(
k + k′

V
+ t

))
∗ fDSsi,j+DQj (t)dt (47)

that gives the formulation of p1.

A.4 Further analysis of the model accuracy and MEV
components
In a simulated opportunistic computing environment (as
described next) we use the algorithm proposed in this paper
to select compositions, and compare the estimates of the
model for minimum service composition with the values
observed in simulations for the selected compositions.

To validate more precisely the different stages of the
model and explore a larger range of parameters, we used
synthetic mobility traces. Specifically, we used the Ran-
domWayPoint model, modified as discussed in [35] in order
to avoid problems related to the initial transient phase of
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the mobility process8. The main simulation parameters are
described in Table 6. The total simulation time is 400000s.
During the first 10000s nodes only collect information about
their average contact and inter-contact times.

Such relatively long warm-up periods are useful to test
the performance of the proposed algorithm when ample
time is allowed for collecting statistics across nodes. To test
its sensitiveness to shorter warm-up periods we have also
run simulations where the simulation is 28800s (8 hours, a
typical working day) long, and the warm-up is only 1000s.
In both cases, we used two different rate of request gener-
ation, labelled hereafter ”5-8” and ”20-40”, where the time
between two consecutive service requests follows a uniform
distribution in the range [5,8]s or [20,40]s respectively. In
these experiments, Input/Output parameter sizes vary from
80 KBytes up to 2560 KBytes for the ”5-8” case and from
80 KBytes up to 5120 KBytes for the ”20-40” case9. We
decided to present these values for the transfer sizes, as in
the considered simulated scenarios they generate a light and
high traffic load during encounter between nodes, and are
thus representative of the two ends of the spectrum, i.e. a
non-saturated and a saturated network condition. Figure 10
shows the average service provisioning time for the differ-
ent request rates, and for increasing sizes of input/output
parameters. Curves obtained with long and short warm-up
periods are labelled as ”Long” and ”Short”, respectively.

We can see that, in both cases, the simulated service
provisioning times are lower for the ”Long” cases, with a
clear difference for small input and output data sizes. In
the ”Long” case estimates differ at most by 11% from the
simulated times for light request load and at most by 8%
for heavy load, while for the “Short” case estimates are up
to 20% higher than in simulations. While there is a clear
difference, we can anyway conclude that even relatively
short warm-up periods are sufficient to obtain reasonable
estimates. The following results are obtained using long
warm-up periods.

To validate the components of the model, we con-
sider two cases where we use, respectively, only single-
component services (named “Single”) and only composed
services (named “Comp”) because single-component ser-
vices are not available in the network. For both scenarios
we run two sets of simulations for the “5-8” and “20-40”
settings respectively.

In Fig. 11, we can see the average service provisioning
time in simulation (Comp Sim and Single Sim) and the
estimates provided by the model (Comp Est and Single Est)
for the “5-8” and “20-40” scenarios. For the “5-8” scenario
the model is very accurate in the “Single” case. When com-
positions are used, simulation results have a much larger
variance, as expected, and are more difficult to precisely
model in case of high request generation rates, due to the
higher variability of statistics about the status of providers
in case of higher loads. Nevertheless, it is clear that the
model accurately follows the trend of the simulation results.

8. Note that, although in general other mobility models are consid-
ered more realistic, RWP is still a valid option when users form a unique
social community moving in a common area [36].

9. This difference is due to the occurrences of overflowing in the
nodes’ output buffers caused by the limitations of the simulator when
high amount of data is transferred on a high load scenario.
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Figure 10. Service provisioning time (short/long warmup)
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Figure 11. Service provisioning time (single/multi component)

The difference of service time between the “Single” and
“Comp” cases is due to the fact that the amount of services
executed in “Comp” is almost double and that there is at
least one more data transfer between nodes for each request.

For the “20-40” scenario we see that with a lower gen-
eration rate, the network is in general less loaded. The
effect is particularly evident in the case of compositions.
Average completion times are reduced by about 500s, and
the maximum difference between estimated and real values
is 13% for the case of compositions and 11% for the case of
single service execution.

In Fig. 12 we show the results for the upload phases. We
can see how in the two cases we obtain good estimates. We
observe a higher overestimate between the model and the
simulation results for the ”Comp” case, in particular when
the load increases (scenario ”5-8”) and for higher sizes of the
parameters. In general, transfer times increase significantly
with the size of the parameters, which is expected. Note that
as the size increases, it becomes more and more likely that
a single contact is not sufficient to complete a transfer. This
results in a higher probability that also inter-contact times
must be factored in the upload time.

In Fig. 13 we show the results for the download phases.
The first aspect that can be noticed is that the model is quite
accurate, with a maximum error in the order of 10%. In
this case, we do not observe a very steep increase of the
curves for large parameter sizes, while the download times
are larger than upload times for small parameter sizes. This
is because the download phase typically always includes
at least an initial (residual) inter-contact time, because the
seeker and provider are most of the time not in contact when
service execution is over.
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Figure 12. Average upload transfer time
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