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Abstract—Vehicular communication plays a key role in near-future automotive transport, promising features such as increased traffic

safety and wireless software updates. However, vehicular communication can expose drivers’ locations and thus poses privacy risks.

Many schemes have been proposed to protect privacy in vehicular communication, and their effectiveness is usually evaluated with

privacy metrics. However, to the best of our knowledge, (1) different privacy metrics have never been compared to each other, and (2) it

is unknown how strong the metrics are. In this paper, we evaluate and compare the strength of 41 privacy metrics in terms of four novel

criteria: Privacy metrics should be monotonic, i.e., indicate decreasing privacy for increasing adversary strength; their values should be

spread evenly over a large value range to support within-scenario comparability; and they should share a large portion of their value

range between traffic conditions to support between-scenario comparability. We evaluate all four criteria on real and synthetic traffic

with state-of-the-art adversary models and create a ranking of privacy metrics. Our results indicate that no single metric dominates

across all criteria and traffic conditions. We therefore recommend to usemetrics suites, i.e., combinations of privacy metrics, when

evaluating new privacy-enhancing technologies.

Index Terms—Privacy metrics, vehicular communications, vehicular networks, privacy, monotonicity, privacy-enhancing technologies
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1 INTRODUCTION

VEHICULAR communication technologies allow vehicles
to communicate with other vehicles and infrastructure

nodes to enable features such as intersection collision avoid-
ance and cooperative adaptive cruise control. To realize these
features, vehicles transmit sensitive data—often without
encryption—for example their location, speed, and heading.
This information can be used by anybody within wireless
transmission range to track vehicles and their drivers on a
large scale, which raises privacy concerns [1]. These privacy
issues are well recognized, and many approaches have been
proposed to protect privacy. For example, vehicles are often
assumed to have a pool of pseudonyms in addition to a long-
term identifier, and different schemes have been proposed to
change pseudonyms in a privacy-preserving way without
compromising safety and accountability [2]. Privacy metrics
quantify how effectively these schemes protect privacy.

Because privacy is difficult to quantify, privacy metrics
focus on quantities that are related to privacy, for example the
number of vehicles that an adversary cannot distinguish or
the probability that an adversary can track a vehicle success-
fully.Many suchmetrics have been proposed, and researchers
usually select one or twometrics to evaluate a new scheme.

However, there is a lack of research into the metrics them-
selves. In particular, we are not aware of research that com-
pares privacymetrics or analyzes how strong privacymetrics

are. Strong privacy metrics are important to ensure an accu-
rate and consistent measurement of privacy, which is essen-
tial to evaluate newprivacy protection schemes.

Contributions. In this paper, we make two contributions
to research on privacy in vehicular networks.

First, we contribute to the methodological foundations of
privacy measurement by proposing a method to evaluate
the strength of privacy metrics using four novel criteria:

� Monotonicity requires that metrics show decreasing
privacy with increasing adversary strength. This pre-
vents misjudging the effectiveness of new privacy-
enhancing technologies (PET).

� Extent requires that metric values are spread over a
large value range, and evenness requires that metric
values are distributed uniformly.

� Together, extent and evenness support fine-grained
privacy analysis within a scenario, e.g., between
vehicles, over time, and between parts of a city, as
well as visualization of privacy levels.

� Shared value range requires that metric values share a
common value range when applied in different traf-
fic conditions. This allows for comparisons between
scenarios.

Second, we evaluate the strength of 41 privacy metrics
for vehicular networks, rank the metrics according to
their scores in the four criteria, and make specific recom-
mendations for the use of privacy metrics in vehicular
networks. In particular, our key findings and recommen-
dations are:

� No single metric excels in all four criteria, and the
strength of many metrics varies between traffic condi-
tions. We therefore recommend to always use metrics
suites that combine the strengths of differentmetrics.
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� There are significant weaknesses in some metrics
that have been used to evaluate pseudonym-chang-
ing schemes in the past, for example the mean track-
ing duration, time/distance to confusion, and maximum
tracking time. We therefore recommend to use these
metrics with caution, if at all.

Our contributions advance the state of the art in privacy
measurement and are of particular use to researchers who
design privacy protections for vehicular networks and use
privacy metrics to evaluate their systems.

2 RELATED WORK

In this paper, we draw on related work on privacy and pri-
vacy metrics in vehicular communications, privacy metrics
in other fields, and research on evaluating the strength of
privacy metrics.

2.1 Privacy Metrics for Vehicular Networks

In the past 15 years, many different privacy metrics have
been proposed to evaluate the effectiveness of new
PETs [3]. In the vehicular networking context, privacy met-
rics have been used, for example, to evaluate new pseudo-
nym-changing strategies. These strategies determine how
and how often vehicles change their public broadcast identi-
fiers to reduce the likelihood that an adversary can track
them. Proposed strategies include silent periods [4], pseu-
donym swapping [5], and mix zones [6], and in each case
the privacy provided by each strategy was evaluated with a
privacy metric: maximum tracking time [4], entropy [5],
and the adversary’s success rate [6], respectively.

Despite the large variety of privacy metrics, there is no
consensus in the community as to which privacy metrics
should be used [7]. For example, Wasef and Shen [8] use
anonymity set size to quantify location privacy, whereas
Eckhoff et al. [5] use entropy to offset the weaknesses of
anonymity set size. Shokri et al. [9] argue that individual
metrics are insufficient to quantify location privacy and
combine confidence intervals, entropy, and incorrectness.
Many other privacy metrics have been used, including
cumulative entropy [6] and the mean time to confusion [10].
Although some of these papers argue for or against certain
privacy metrics, they do not evaluate the existing privacy
metrics in a uniform scenario and against a formal set of
criteria.

In this paper, we evaluate all 14 metrics that, to the best
of our knowledge, have already been used in vehicular com-
munications (see Table 2 in the next section). In addition, we
evaluate 21 metrics from the wider privacy literature. These
metrics have not been used in vehicular communications
before, but they can be calculated because their computa-
tions use data that is available in vehicular communications
scenarios. We also evaluate variations of 6 metrics, either to
offset their weaknesses, for example normalized versions of
the hiding property and user-specified innocence, or to explore
alternate definitions, for example a version of the maximum
tracking time that is based on the adversary’s success rate
instead of the anonymity set size.

Our work in this paper contributes to finding a set of con-
sensus metrics by presenting a comprehensive evaluation
and ranking of a large number of privacy metrics.

2.2 Criteria for Privacy Metrics

Many authors have proposed criteria that good privacy
metrics should fulfill. For example, they should be under-
standable and indicate the adversary’s chances of suc-
cess [11]; they should show both the level of privacy and the
potential for privacy violations [12]; they should integrate
accuracy, uncertainty, and correctness as three components
of the adversary’s success [9]; and they should quantify the
amount of resources an adversary needs to succeed [13].

These criteria can serve as a checklist of what a privacy
metric should fulfill. However, they are not suitable to eval-
uate how well a privacy metric addresses each criterion,
especially when comparing privacy metrics to each other.
To address this issue, in previous work we have proposed
the criterion of monotonicity to evaluate the strength of pri-
vacy metrics [14], [15].

In this paper, we propose three novel criteria in addition
to monotonicity to evaluate the strength of privacy metrics
for vehicular networks.

2.3 Evaluation of Privacy Metrics

When evaluating new PETs, it is important to select strong
privacy metrics because weak privacy metrics may overesti-
mate privacy and result in real-world privacy violations.
However, despite the large number of privacy metrics and
the existence of criteria for privacy metrics, we are not aware
of systematic efforts to evaluate the strength of privacy met-
rics for vehicular communications. The most closely related
work in this respect is Murdoch’s evaluation of metrics for
anonymous communication [16].

In our own previous work, we presented a method for
the evaluation of privacy metrics in genomic privacy [15]
and a preliminary adaptation of this method to vehicular
privacy [14]. Our initial method was based on the idea that
privacy metrics should be monotonic, and that we can sys-
tematically evaluate their monotonicity using appropriately
defined models for user and adversary behavior. In this
paper, we define these user and adversary models for vehic-
ular communications, expand the set of studied metrics to
include metrics that are relevant for vehicular communica-
tions, and introduce three new criteria for metric strength:
extent, evenness, and shared value range.

We thus close the gap in knowledge about the strength of
privacy metrics for vehicular networks by systematically
evaluating the strength of 41 privacy metrics based on four
formal criteria.

2.4 Privacy Visualization

The visualization of privacy can help privacy engineers
design new privacy-enhancing technologies. For example,
Reeder et al. [17] visualize privacy policies in an Expand-
able Grid and show that this interface can help privacy
experts make decisions. In vehicular networks, privacy met-
rics are naturally associated with the locations of vehicles
and can be visualized as a map overlay. However, the use
of such visualizations of location privacy has not been
investigated. Compared with existing work, we evaluate
the conditions privacy metrics need to satisfy to produce
good visualizations and briefly explore possible uses for
such visualizations.
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3 METHODOLOGY

Our goal is to evaluate the strength of privacy metrics for
vehicular networks. To do this, we adapt the method we
first introduced for genomic privacy [15] to vehicular net-
work privacy and introduce three new criteria that measure
the strength of privacy metrics.

Assumptions. Our method provides a controlled environ-
ment to experiment with privacy metrics by abstracting
from many of the factors that affect privacy in the real
world. For example, we assume that precise and timely
position updates are available for all cars—a best-case sce-
nario from the adversary’s viewpoint—instead of consider-
ing network-level packet delays or losses. This ensures that

the evaluation of metric strength is not influenced by net-
work communication artifacts.

In addition, we abstract from the application of privacy-
enhancing technologies because a strong PET has a similar
observable effect on privacy metrics as a weak adversary
(and, conversely, a weak PET “looks” the same as a strong
adversary). In other words, the adversary’s success and the
user’s privacy are two sides of the same coin [9], [18], and
we focus on modeling the adversary’s side.

Overview. To apply our methodology (see Fig. 1), we first
define scenarios consisting of users and an adversary, where
the adversary aims to infer user behavior. Second, we calcu-
late the values of a range of privacy metrics in each scenario
and finally we measure the strength of each privacy metric
using four strength indicators: monotonicity, extent of
spread, evenness of spread, and shared value range. We
used open-source Python packages including NumPy [19],
SciPy [19], scikit-learn [20], scikit-gof, and mpi4py [21] to
implement our methodology.

3.1 User Behavior: Real-World Traffic Traces

We model user behavior using spatio-temporal traffic
traces. These traces of physical movement determine the
characteristics of the network traffic the adversary can
observe. We use eight sets of traffic traces, representing
combinations of real and synthetic traffic as well as inner
city traffic and highway traffic, to model realistic traffic in
varied environments. Fig. 2 plots the coordinates of all
vehicles at all time steps for each of the eight traffic traces.

For inner city traffic, we use taxi traces recorded in
Rome [22], Beijing [23], and Shenzhen [23] as well as syn-
thetic traffic based on measurements of real traffic in K€oln
[24] and Luxembourg [25]. The K€oln traffic traces were gen-
erated by the microscopic mobility simulator SUMO, based
on detailed travel and activity patterns collected by the Ger-
man Federal Statistical Office. The Luxembourg traces were
also generated by SUMO and are based on synthetic traffic
demand that combines the real population demographics,
road network, and traffic volume.

For highway traffic, we use real traffic from highway 101
near Los Angeles [26] and synthetic traffic from highway
A6 near Madrid. The synthetic traffic is based on real-world
traffic counts and has been generated by a microscopic
vehicular mobility simulator [27]. The resulting traffic traces
represent unidirectional, free flowing highway traffic.

Fig. 1. Methodology to evaluate the strength of privacy metrics. (1) User behavior and adversary behavior are combined into scenarios. (2) Privacy
metrics are applied to the scenarios. (3) The strength of privacy metrics in each scenario is evaluated with four strength indicators: monotonicity,
extent of spread, evenness of spread, and shared value range.

Fig. 2. Maps of the traffic traces used in our evaluation. Grayscale indi-
cates the density of traffic (black=dense). The traffic data of Beijing,
Rome, San Francisco, Shenzhen, and US Highway 101 are from real-
world vehicles. The data of Madrid, K€oln, and Luxembourg are synthetic.
Note that the y axes for Madrid and US 101 are not to scale.
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Because the characteristics of vehicular network graphs
can depend on the time of day and day of the week [27], we
selected different combinations of time slots and days from
the full traffic traces where possible. Table 1 summarizes
the characteristics of each dataset.

We note that scenarios with low traffic density, such as
Rome and Beijing, can be used to approximate the situation
during roll-out of a new vehicular networking technology,
when the percentage of vehicles equipped with the new
technology is still low.

3.2 Adversary Behavior

The adversary in vehicular communications is often assumed
to be a passive observer who aims to track vehicles [5]. To
evaluate the strength of privacymetrics, the adversarymodel
needs to (1) represent a realistic and strong adversary, and (2)
be adjustable tomodel adversaries of different strengths.

Tracking Algorithm. To fulfill the requirement for a realistic
and strong adversary, we implemented a state-of-the-art
tracking algorithm, the joint probabilistic data association fil-
ter (JPDA) (also called multiple hypothesis tracker (MHT)
with zero-scan [2]). Originally described for radar tracking
[28], JPDA has already been applied to vehicle tracking [2],
[29]. The JPDAalgorithmmaintains a list of tracks, each repre-
senting one vehicle. Whenever new observations arrive, the
tracker computes the best continuations for all tracks, based
only on positions and velocities of existing tracks and obser-
vations. JPDA uses Kalman filtering and can resolve non-
unique associations between existing tracks and newobserva-
tions. Our implementation of JPDA follows [28], with inspira-
tion for the definition of the state vector and covariance
matrices taken from [2], [29]. The tracker is subject to two
kinds of noise: process noise that represents random motion in
the system between observations, and measurement noise that
represents uncertainty in measurement. JPDA assumes that
both kinds of noise are normally distributed white noise with
covariancesQ (process noise) andR (measurement noise).

Ordered Strength Levels. To fulfill the requirement for
adjustable adversary strengths, we adjusted the parameters
for the JPDA tracker. Because tracker performance strongly
depends on the values for the covariance matrices R and Q
[2], we chose nine parameter levels for each r and q, with
r ¼ ½1; 10; 20; 30; 40; 50; 80; 100; 140� and q ¼ 0:1r. To evalu-
ate monotonicity, i.e., whether privacy metrics indicate high
privacy for weak adversaries and low privacy for strong
adversaries, these adversary strength levels need to be
ordered. We illustrate this ordering in Fig. 3, which shows
box plots of the probability that the adversary can continue
a vehicle’s track correctly in six different traffic conditions.
In each plot, the boxes indicate the upper and lower quar-
tiles and the median (red line), summarizing all vehicles
and time steps for one adversary strength level. The plots
also show the mean values (grey squares), and lines extend
to the 5 and 95 percent quantiles.

Fig. 3 confirms that the nine parameter levels for r
and q result in ordered levels of adversary strength, with 1

TABLE 1
Traffic Characteristics for Time/Day Combinations

City Day Time Length Granularity Cars Cars/km2 Type Road layout Reference

Rome Mon 1 pm 2700s 15s 182 0.16 taxi city [22]
Rome Tue 5 pm 2700s 15s 131 0.18 taxi city [22]
Rome Wed 10 am 2700s 15s 139 0.49 taxi city [22]
Rome Fri 8 am 2700s 15s 54 0.04 taxi city [22]

Madrid Mon 11 am 1000s 0.5s 1597 26620 synthetic highway [27]
Madrid Tue 8 am 1000s 0.5s 2215 36921 synthetic highway [27]

K€oln weekday 11 am 600s 1s 17980 23.3 synthetic city [24]

Luxembourg weekday 11 am 900s 1s 6167 39.9 synthetic city [25]

Shenzhen Mon 2 pm 1000s 1s 10359 4.61 taxi city [23]

US 101 Wed 7:50 am 250s 1s 1993 135036 car highway [26]
US 101 Wed 8:05 am 220s 1s 1533 69431 car highway [26]
US 101 Wed 8:20 am 120s 1s 1298 56656 car highway [26]

Beijing Mon 12 pm 900s 15s 7972 1.27 taxi city [23]

San Francisco Tue 1 am 3600s 5s 406 2.85 taxi city [23]
San Francisco Mon 8 am 3600s 5s 322 2.31 taxi city [23]

Fig. 3. Probability that a vehicle’s track is continued with the correct
observation, by adversary strength level. The subfigures show that an
increase in process noise weakens the adversary regardless of the traffic
condition.
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consistently the strongest adversary level and 140 the
weakest (adversary strengths for the other traffic conditions
are ordered as well, see Appendix A, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TMC.2018.2830359).

3.3 Privacy Metrics

We study 41 privacy metrics that have been proposed in the
literature, both in the vehicular networking literature and
the wider literature on privacy measurement in other appli-
cation domains. Table 2 summarizes the metrics we have

analyzed as well as our results for metric strength (we intro-
duce the criteria in Section 3.4). The table also indicates
whether the metrics evaluate privacy in each time step, for
each vehicle, or both. For example, entropy generates values
both per-time and per-vehicle, the adversary’s success rate
aggregates over all vehicles, i.e., it generates one value per-
time, and the mean tracking duration aggregates over all time
steps and thus generates values per-vehicle.

Due to the large number of metrics, we will not introduce
all metrics in detail, but instead focus on the strongest met-
rics, according to our analysis in Sections 4 and 5. For equa-
tions and references for the remaining metrics, we refer to
our previous work [3]. We present the metrics grouped by
the output they measure, according to the taxonomy we
introduced in [3]. Table 3 shows the notation used to for-
mally describe the metrics. For clarity, we omit the indices
for time steps and vehicles except where a metric is based
on two or more time steps or aggregates over vehicles.

3.3.1 Uncertainty Metrics

Many metrics rely on the concept of the anonymity set, i.e.,
the set of vehicles V that the adversary cannot distinguish.
In our evaluation, the anonymity set consists of all vehicles
v to which the tracker assigns a non-zero probability. Most
uncertainty metrics use variants of the entropy of the ano-
nymity set [30] to quantify privacy, indicating how uncer-
tain the adversary is about their estimate pðxÞ.

R�enyi Entropy is a parameterized description of entropy.
By adjusting the parameter a, several popular variants of
entropy can be represented in terms of R�enyi entropy, for
example Shannon entropy (a ¼ 1) and collision entropy
(a ¼ 2). Min-entropy (a ¼ 1) focuses on the target for which
the adversary has the highest probability and thus indicates
a lower limit on privacy. Max-entropy (a ¼ 0) indicates the
maximum uncertainty the adversary can have when all
members of the anonymity set are equally likely and thus
represents an upper limit on privacy.

privRE � HaðXÞ ¼ 1

1� a
log2

X

x2X
pðxÞa:

Because entropy is strongly influenced by low-probability
outliers, quantiles on entropy computes entropy based on
only those parts of the adversary’s estimated probability
distribution that are above a certain quantile (we used the 5
percent quantile in our evaluation).

TABLE 2
Location Privacy Metrics Used in Our Evaluation

C
at
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o
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M
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e
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er

v
eh

ic
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H
ig
h
/
L
o
w

M
o
n
o
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n
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it
y

E
x
te
n
t

E
v
en

n
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s

S
h
.V

al
u
e
R
an

g
e

U
n
ce
rt
ai
n
ty

Anonymity set size (ASS)* @ @ H + o o –
Collision entropy @ @ H ++ o o +
Conditional entropy @ @ H ++ o + +
Conditional privacy @ @ H ++ – o o
Cross entropy @ @ H + – – +
Cumulative entropy* @ H + o o o
Entropy* @ @ H ++ o o +
Inherent privacy @ @ H ++ – o o
Max-entropy @ @ H + o + o
Min-entropy @ @ H ++ o o +
Normalized entropy @ @ H ++ o o ++
Quantiles on entropy @ @ H ++ o o +
User-centric location privacy, l=0.1* @ @ H o – – o
User-centric location privacy, l=2* @ @ H o – – +

In
fo
rm

.g
ai
n
/
lo
ss

Amount of leaked inform.* @ L o o + –
Conditional privacy loss @ @ L + o o ++
Increase in adversary belief @ @ L o – + ++
Information surprisal @ @ L – – – +
Loss of anonymity @ L o – – +
Mutual information @ @ L + o o ++
Pearson correlation @ @ L ++ o + +
Relative entropy @ @ H + – – +

E
rr
o
r

Expected distance error* @ H ++ – ++ –
Expected distortion* @ @ H + – – –
Expected estimation error* @ @ L + – – –
Incorrectness* @ @ H ++ + o ++
Mean squared error @ @ H o – – +
Perc. incorrectly classified* @ H o o + o

S
im Normalized variance @ @ H + o o +

A
d
v
.’
s
su

cc
es
s
p
ro
b
.

Adversary’s success rate* @ L o o + +
Hiding property, s=0.5 @ H + o o –
Norm. hiding property, s=0.5 @ H + o o o
Privacy breach level @ @ L ++ o o ++
User-specified innocence, s=0.5 @ H + o + –
Norm. user-specified innocence, s=0.5 @ H + o + o

T
im

e

Distance to confusion, h=0.1 @ L o o o o
Distance to confusion, h=3 @ L – o o o
Dist. to first confusion, h=0.1 @ L o o – o
Max. tracking time (ASS=1)* @ L o – – –
Max. tracking time (tracking success) @ L – o o o
Mean tracking duration* @ L o o + o
Time to confusion, h=0.1* @ L o o + o
Time to confusion, h=3* @ L o o + o
Time to first conf., h=0.1 @ L o o o o

Metrics in bold are explained in Section 3.3. Starred metrics have previously
been used in vehicular communications. H/L: high (H) or low (L) values indi-
cate high privacy. Ratings for the four criteria are based on their average nor-
malized scores: < 0:3: –, 2 ½0:3; 0:7½: o, 2 ½0:7; 0:9½: +, 2 ½0:9; 1�: ++.

TABLE 3
Notation for All Privacy Metrics

Hð�Þ Entropy
Ið�; �Þ Mutual information
v 2 V Set of vehicles the adversary aims to track
T Total observation time
Xv;t Adversary’s estimated probabilities for vehicle v at time t
Yv;t Adversary’s observed data (may be obfuscated)
X�

v;t True assignment of observations to vehicles
dðx; x�Þ Distance between the estimated and true location
h Threshold for entropy
l Rate of privacy decay
s Threshold for adversary’s probability
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Normalized Entropy uses max-entropy to normalize its val-
ues to ½0; 1�, indicating the adversary’s degree of uncertainty.
The bounded value range is likely to make normalized
entropy suitable for between-scenario comparisons.

privNE � HðXÞ
H0ðXÞ :

Conditional Entropy describes how much information (in
bits) is needed to describe the true mapping X� between
observations and existing tracks, conditioned on the
adversary’s estimateX.

privCOE � HðX�jXÞ ¼ �
X

x2X;x�2X�
pðx; x�Þlog2pðx�jxÞ

Inherent Privacy and conditional privacy are based on
entropy and conditional entropy, respectively. Both metrics
indicate how many yes/no questions the adversary would
have to answer correctly to describe the ground truth.

privIP � 2HðXÞ; privCP � 2HðX�jXÞ:

3.3.2 Information Gain/Loss Metrics

Information gain/loss metrics measure how much informa-
tion the adversary gains (or how much privacy the user
loses) through the adversary’s observation.

Amount of Leaked Information indicates howmany vehicles
v the adversary can track correctly, i.e., all cases in which the
observation with the highest probability corresponds to the
correct vehicle. Its values strongly depend on the total num-
ber of vehicles in a scenario.

privALI � jV j; 8v 2 V : max pðxvÞ ¼ x�
v:

Mutual Information indicates the amount of information
shared between the distribution of the adversary’s estimate
X and the true mappingX�.

privMI � IðX�;XÞ ¼ HðX�Þ �HðX�jXÞ:
Conditional Privacy Loss is based on mutual information

and measures the fraction of privacy lost through the
adversary’s estimate.

privCPL � 1� 2�IðX�;XÞ:

Pearson Correlation measures the degree of linear depen-
dence between the adversary’s estimate and the ground
truth, with a lower coefficient indicating higher privacy.

privPCC � covðX�; XÞ
sX�sX

:

3.3.3 Error Metrics

Error metrics measure how far the adversary’s Estimate is
from the ground truth, either in terms of probabilities or in
terms of geographical distance.

Expected Distance Error measures the Expected euclidean
distance dðx; x�Þ between the true location and the esti-
mated location over multiple time steps t.

privEDE � 1

jV jT
X

t2T

X

v2V

X

x2X
pðxv;tÞdðx; x�Þ:

Incorrectness indicates the adversary’s probability of
error. It replaces the Euclidean distance with an indicator
function d̂ that yields 0 if the adversary was able to track a
vehicle correctly, and 1 if the tracking was not successful.

privINC �
X

x2X
pðxÞd̂ðx; x�Þ:

3.3.4 Adversary’s Success Metrics

Adversary’s success metrics quantify how likely it is that
the adversary succeeds.

Privacy Breach Level indicates the posterior probability the
adversary assigns to the true vehicle, given the observations
y from the current time step.

privPBL � pðx ¼ x�jyÞ:

3.3.5 Time Metrics

Time metrics are based on the time during which the adver-
sary can (or cannot) successfully track a vehicle.

Time to Confusion indicates the cumulative time during
which entropy is below a threshold h, i.e., the time during
which the adversary is not confused.

privTC � Time during which HðXÞ < h:

3.4 Criteria for Metric Strength

We use four criteria to evaluate the strength of these privacy
metrics: monotonicity, the spread of the value range in
terms of extent and evenness, and the portion of the value
range that is shared across scenarios.

3.4.1 Monotonicity

The most important requirement for privacy metrics is
monotonicity, i.e., metrics should indicate decreasing pri-
vacy values with increasing adversary strength. Non-mono-
tonic metrics may indicate the same privacy level for weak
and strong adversaries, or for strong and weak PETs. The
use of non-monotonic metrics can thus lead to misjudging
the strength of privacy protections, and subsequently to
real-world privacy violations.

We have previously proposed an algorithm to compute
monotonicity scores [15] (adapted to vehicular networks in
Fig. 4). In brief, the algorithm uses two statistical tests for
each pair of successive adversary strength levels to deter-
mine whether the difference between mean metric values is
statistically significant and points in the expected direction
(positive for higher-better metrics, negative for lower-better
metrics). Each outcome of each statistical test is then
assigned points: þ1 for a statistically significant difference
in the expected direction, �1 for a statistically significant
difference in the wrong direction, �2 for a change in direc-
tion (such a peak means that strong and weak adversaries
cannot be distinguished and is thus not desirable), and �0:2
for a change that is either zero or not statistically significant
(slight penalty for metrics that have similar values for suc-
cessive adversaries). The total monotonicity score is the
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addition of these point values. We normalize monotonicity
scores to ½0; 1� based on the monotonicity values for all met-
rics in our study.

3.4.2 Extent and Evenness of Spread

The spread of a metric’s value range indicates how suitable
a metric is to distinguish privacy levels within scenarios. A
large spread makes it easier to identify statistically signifi-
cant differences between privacy levels. This helps to judge
whether a PET works equally well in different parts of a
city, for example in areas of high or low traffic density,
allows to compare vehicles to each other, and allows to eval-
uate privacy levels over time. To support these within-sce-
nario comparisons, the metric’s value range should spread
evenly over a large value range.

To measure the extent of the spread, we first calculate the
standard deviation s of the normalized metric values for all
adversary strengths individually. The extent score then cor-
responds to the average standard deviation over all adver-
sary strengths, normalized to ½0; 1� based on the extent
values for all metrics in our study.

To measure the evenness of the spread, we analyze the
uniformity of metric values, i.e., how close the distribution
of values is to a uniform distribution. We use the Cram�er-
von Mises criterion, which measures the goodness of fit
between a theoretical distribution and an empirical distribu-
tion, to analyze the fit between the uniform distribution

Uð0; 1Þ and the normalized metric values for all adversary
strengths combined. Because the Cram�er-von Mises crite-
rion is influenced by the number of samples, we normalize
the criterion by the number of metric values.

3.4.3 Shared Value Range

How much of a metric’s value range is shared across traffic
conditions indicates how suitable a metric is to compare pri-
vacy levels between different scenarios, for example with dif-
ferent traffic characteristics or different road layouts. This
helps to judge whether the performance of a new PET is
independent of specific traffic patterns, that is, whether
PETs work equally well regardless of the time of day, day of
the week, or city in which they are deployed. To support
these between-scenario comparisons, metrics should not be
influenced by the number of vehicles or the size of the area.
For example, we expect that metrics that use some form of
normalization will have a large shared value range.

To formalize this criterion, we measure how much of a
metric’s value range is shared between traffic conditions.
We first calculate the global value range for each metric
across all traffic conditions and then compute the percent-
age of the global value range used in each traffic condition.

3.4.4 Discussion of Criteria

Of the four criteria for metric strength we have defined in
this section, monotonicity is the most important require-
ment that all metrics should satisfy. The other three criteria
focus on more specific requirements: extent and evenness
are important to compare privacy levels within a scenario,
and shared value range is important to compare privacy
levels between scenarios. Their usefulness thus depends on
what kinds of comparisons the metrics are being used for.

4 RESULTS

We have applied our methodology to all nine levels of
adversary strength in all fifteen traffic conditions, and eval-
uated 41 privacy metrics with respect to our four criteria for
metric strength.

For each criterion, we first present detailed results to illus-
trate the criterion. Due to the volume of result data (� 800GB
andmore than 2000 individual plots), we present only a small
subset of our results in detail. We then present the full set of
results in aggregated heat maps and show how the strength
of metrics can depend on the traffic condition. Finally, we
rank metrics by their strength for each criterion and derive
specific recommendations formetric selection in Section 5.

4.1 Monotonicity

To illustrate our results for the monotonicity requirement,
Fig. 5 shows one metric, the anonymity set size, in four traffic
conditions. Each subfigure shows the distribution of metric
values for the nine adversary strength levels using violin
plots, and additionally indicates confidence intervals (hori-
zontal lines), the area between quartiles (shaded), mean val-
ues (bold numbers), and whether higher or lower numbers
indicate higher privacy (green line). The full set of violin plots
for all metrics and traffic conditions is included in the supple-
mentarymaterial, available online.

Fig. 4. Algorithm to calculate monotonicity scores. LB (lower-better)
refers to metrics where lower values indicate higher privacy.
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The anonymity set size for US highway 101 at 8:20 am
(Fig. 5a) has the lowest monotonicity rating, caused by
changes in the wrong direction between adversary strengths
30 and 80, and by the negative peak at adversary strength 80.
US highway 101 at 7:50 am (Fig. 5b) has the next highest
monotonicity rating, caused by the negative peak at adver-
sary strength 100. In Rome (Fig. 5c), the anonymity set size is
monotonic, but several strength levels have no statistically
significant difference (e.g., 30/40 and 80/100). In the figure,
this lack of a statistically significant difference can be seen in
the overlapping confidence intervals between neighboring
violins. San Francisco (Fig. 5d) has the highest monotonicity
rating for the adversary’s success rate because the metric is
monotonic and all strength levels are clearly distinguishable.

In Fig. 6, we use a heat map to visualize monotonicity
scores in a compact way. Each square represents one set of
results presented in detailed violin plots above, computed
according to our algorithm in Fig. 4. For example, the last
square in the third row summarizes Fig. 5a (anonymity set
size for US highway 101, 8:20 am). The heat map thus sum-
marizes the results for 15 traffic conditions and 44 metrics,
i.e., 660 individual results.

The heat map shows that several metrics have high mono-
tonicity regardless of the traffic condition, for example entropy

and the privacy breach level. Very few metrics are non-mono-
tonic throughout and therefore not recommended, for exam-
ple information surprisal. The monotonicity of most other
metrics varies depending on the traffic condition. For example,
the adversary’s success rate is very strong in three traffic condi-
tions but only of medium strength in the other conditions. If
thesemetrics are selected to evaluate a newPET, it is necessary
to validate theirmonotonicity for the specific scenario.

Heat maps visualize a large number of results by traffic
condition, but they do not show the overall ranking of pri-
vacy metrics. To do this, we aggregate the heat map into
box plots, such that each row in the heat map is represented
by one box. We then sort the boxes by their mean values
and plot the 15 best metrics (we show the full plot in Appen-
dix C, available in the online supplemental material).

Fig. 7 shows that the metric with the highest monotonicity
score is entropy, followed by seven other metrics that are
derived from entropy.We note that several of the metrics that
have been proposed to evaluate PETs for vehicular networks,
such as the maximum tracking time, the time to confusion, and
themean tracking duration, are not among the strongestmetrics
(in fact, their averagemonotonicity scores are below 0.5).

The normalized monotonicity scores of the top metrics
are higher than 0.5 in all cases, indicating that the metrics
are mostly monotonic and therefore suitable to evaluate and
compare new PETs.

A score below 0.5 is generally undesirable because it
indicates the presence of non-monotonic behavior, for
example cases where a metric indicates higher (instead of
lower) privacy for a stronger adversary. These metrics are
not suitable to evaluate the performance of PETs because
they may misjudge not only how well a new PET protects
privacy, but also how two PETs compare to each other.

4.2 Extent and Evenness of Spread

To illustrate our requirement for spread, we plot the privacy
values as colors on city maps, such that light colors indicate
high privacy and dark colors indicate low privacy (Fig. 8).
The light/dark color sequence corresponds to the global
value range for each metric.

Fig. 5. Anonymity set size in four traffic conditions, ordered from lowest to highest monotonicity.

Fig. 6. Heat map for monotonicity. The colors indicate the monotonicity
score (from yellow = low to blue = high).

Fig. 7. Distribution of the monotonicity for the 15 best metrics across all
traffic conditions. The top-8metrics all belong to the uncertainty category.
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In the Rome (1 pm) traffic condition, incorrectness (Fig. 8a)
has a large extent (0.87), which can be seen in the clear
representation of both the darkest and lightest colors, indi-
cating that there is non-negligible probability mass on a
large range of privacy values. The evenness is lower (0.73),
which can be seen through a lower proportion of medium
browns compared to roughly equal proportions of the dark-
est and lightest colors. In contrast, entropy (Fig. 8d) has a
lower extent (0.58), which is visible in the absence of very
light colors, but a higher evenness (0.87), indicated by the
clear visibility of light, medium, and dark colors.

In Luxembourg, entropy (Fig. 8b) has both low extent and
low evenness, which can be seen in the complete absence of
light colors and a large overrepresentation of dark colors.
Mutual information (Fig. 8e) has a higher extent, indicated by
the presence of lighter colors in the center, but the evenness
is still low, again indicated by the overrepresentation of
dark colors. For this traffic condition, mutual information is
thus more suitable to visualize differences in privacy
between the dense city center and the less-dense outskirts.

For traffic on the US highway 101, incorrectness (Fig. 8c)
shows a much lower extent compared to Rome, but a very
high evenness. This highlights an interesting property of
the incorrectness metric: we find that its distribution is
bimodal for all inner-city traffic conditions, but not for the
highway traffic conditions. As a result, incorrectness is one of
the few metrics where we find a statistically significant dif-
ference between city traffic and highway traffic (i.e., no
overlap in 95 percent confidence intervals for extent). Other
metrics with a similar behavior include conditional privacy
loss, privacy breach level, and mutual information (Fig. 8f).

In Fig. 9, we show the extent and evenness scores on heat
maps. Even though the extent scores are lower on average

than the evenness scores, the two heat maps show a similar
pattern of high and low scores, indicating that extent and
evenness may be correlated. We discuss correlations
between our four criteria in Section 4.5.

The heat maps show that some metrics have a low extent
in all scenarios, e.g., expected distance error and user-centric
location privacy, and some metrics have low evenness
throughout, e.g., cross entropy and user-centric location pri-
vacy. Even though the monotonicity of these metrics may be
high, their low spread in terms of extent and/or evenness
makes them less suitable to measure differences in privacy
within a scenario or to visualize privacy levels on a map.

Some metrics score highly in extent but low on evenness,
for example incorrectness and conditional privacy loss. The val-
ues of these metrics generally have a bimodal distribution.
Incorrectness, for example, has most of its probability mass
on the values 0 and 1, and very little probability mass in
between. Although these metrics can clearly separate
vehicles that enjoy high resp. low privacy, they are less suit-
able for visualization and fine-grained analysis than metrics
that score highly on evenness, such as max-entropy.

Metrics with both high extent and high evenness, such as
max-entropy and privacy breach level, are most desirable,
because they can show within-scenario differences clearly
and can highlight how privacy levels change between areas
of low and high privacy.

Generally, metrics with a high monotonicity score do
not necessarily score highly in spread. For example, the
metric with the highest monotonicity score, entropy, only
has medium extent and evenness scores. Comparing the
ranking of metrics according to monotonicity (Fig. 7) and
extent (Fig. 10a), we find that only four metrics occur
in both top 15 lists (incorrectness, privacy breach level,

Fig. 8. Spread: extent versus evenness. These plots show an overplot of five adversary strengths (1, 20, 40, 80, 140) with 20 percent transparency. All
metrics in this plot have high monotonicity, but show varying degrees of extent and evenness.
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anonymity set size, and max-entropy). This indicates that in
some cases it may be necessary to trade-off monotonicity
against extent. The choice of metrics in such a situation
depends on the purpose of the evaluation. One possible
choice is to find a compromise metric with relatively high
scores in both criteria, e.g., privacy breach level or max-
entropy, to both evaluate the effectiveness of PETs and
visualize privacy levels on a map. Another choice is to
combine the best metrics from each criterion, i.e., entropy
and incorrectness, in a metrics suite.

Compared with the distribution of monotonicity in
Fig. 7, the boxes in Fig. 10 have wider ranges. This means
that even the metrics with the highest extent and evenness
scores may be weak in some traffic conditions. Their
suitability for within-scenario comparisons can therefore
be condition-specific and should be validated before the
metrics are used.

4.3 Shared Value Range

Metrics that use the same value range regardless of the traf-
fic condition are more suitable to compare privacy levels
between scenarios. To illustrate this requirement for a
shared value range, Fig. 11 shows the anonymity set size and
distance to confusion in two traffic conditions each (top row)
and the normalized entropy in four traffic conditions (bottom
row). We can see that the value range for anonymity set size
depends heavily on the traffic conditions, ranging up to 80
in Rome (not shown), 120 in Shenzhen (Fig. 11a), and 800 in
Beijing (Fig. 11b). For Beijing, the shared value range is 1.00
because the metric values cover the entire global value
range. Rome (0.09) and Shenzhen (0.14) indicate much
lower values for the shared value range.

A similar observation holds for the distance to confusion,
which ranges up to 14000 onMadrid’s A6 highway (Fig. 11c),
but only up to 800 on the US 101 highway (Fig. 11d). This

Fig. 9. Heatmaps for the spread (extent and evenness) of privacymetrics. The colors indicate the value of each criterion (from yellow = low to blue = high).

Fig. 10. Distribution of the metric’s spread for the best 15 metrics across all traffic conditions.
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indicates that neither the anonymity set size nor the distance to
confusion are suitable for between-scenario comparisons. In
contrast, the bottom row shows the value of normalized
entropy in the same four traffic conditions as in the top row. In
each case, the metric is valued between 0 and 1, indicating
that normalized entropy supports comparisons between traffic
conditions.

Fig. 12 summarizes our results for the shared value range
in a heat map. Most metrics with a low shared value range
across traffic conditions, e.g., amount of leaked information,
expected estimation error, and hiding property, are calculated
from absolute values such as the number of vehicles, dis-
tance, and time, which do not have a natural upper limit.
These metrics vary significantly between different scenarios,
resulting in a small shared value range. Metrics that have a

large shared value range across traffic conditions, e.g., condi-
tional privacy loss, incorrectness, and normalized entropy, use
fractions or ratios to calculate their values. As a result, their
value ranges have defined upper and lower limits and a
larger portion of it is shared across traffic conditions.

Fig. 13 ranks the 15 metrics that score highest on shared
value range. We note that some metrics with a high shared
value range score very low on monotonicity, e.g., increase in
adversary belief and information surprisal. Despite their shared
value range, these metrics cannot be recommended to com-
pare privacy between scenarios because they may misjudge
the strength of the adversary or PET in the scenario.

Eight of the metrics in Fig. 13 also occur in the list of top
metrics for monotonicity, e.g., incorrectness and normalized
entropy. These metrics can be recommended for between-
scenario comparisons.

4.4 Influence of Parameter Settings

We studied nine metrics that are configurable with a param-
eter: (normalized) hiding property, (normalized) user-specified
innocence, time/distance to (first) confusion, and user-centric
location privacy. Our experiments show that the metric val-
ues depend on the parameter setting in each case, i.e., the
privacy level indicated by metrics depends on the parame-
ter value. In this section, we analyze whether the metric
strength in terms of monotonicity, extent and evenness of
spread, and shared value range depends on the parameter
setting as well.

(Normalized) hiding property and (normalized) user-specified
innocence use a threshold s for the adversary’s probability.
We find that the value of s does not influence the strength

Fig. 11. Shared value range: metrics in the top row show very different value ranges (y axis), while the bottom row (normalized entropy) has a shared
value range of [0,1] across all scenarios.

Fig. 12. Heatmaps for the shared value range of privacymetrics. The colors
indicate the size of the sharedvalue range (fromyellow = low to blue = high).

Fig. 13. Distribution of the shared value range for the best 15 metrics
across all traffic conditions.
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of the metrics (the full results are shown in the heat maps in
Appendix D, available in the online supplemental material).
We therefore discuss only a single parameter level, s ¼ 0:5,
in the paper.

Time/distance to (first) confusion use a threshold h on the
adversary’s uncertainty (i.e., entropy). We find that the
strengths of time/distance to first confusion are not influenced
by the value of h, and therefore we discuss only h ¼ 0:1 for
these metrics. In contrast, the strengths of time/distance to
confusion vary depending on the parameter setting. Specifi-
cally, the spread (both extent and evenness) and shared
value range improve with higher parameter values, while
monotonicity improves with lower parameter values. We
therefore discuss h ¼ 0:1 as well as h ¼ 3 in the paper.

User-centric location privacy uses the parameter l to
express the rate of privacy decay over time. We find that the
evenness of the spread is not influenced by l, whereas
monotonicity and the extent of the spread improve with
lower parameters, and the shared value range improves
with higher values of l. We therefore discuss l ¼ 0:1 and
l ¼ 2 in the paper.

4.5 Correlation between Criteria

To show that all four of our criteria are necessary to mea-
sure the strength of privacy metrics, we evaluate whether
they are independent or correlated with each other.

Fig. 14 shows two of the pairwise correlations between
the four criteria in scatter plots (we show the remaining
pairwise correlations in Appendix B, available in the online
supplemental material). The plots show one small blue cir-
cle for each combination of metric and traffic condition.
Large orange circles indicate the average value for each met-
ric. To show how individual metrics behave in different
traffic conditions, we highlight entropywith red squares and
incorrectnesswith blue triangles.

It is clear from Fig. 14a that extent and shared value
range are not correlated (r ¼ 0:15), and similar results hold
for most of the other correlations. This indicates that all cri-
teria are necessary to evaluate the strength of privacy met-
rics because they evaluate independent aspects of the
behavior of privacy metrics.

The only exception is the correlation between extent and
evenness (r ¼ 0:60, Fig. 14b), i.e., between two criteria that
measure the spread of metric values. Although the correla-
tion coefficient of 0.60 indicates a positive correlation, the
correlation is not very high. As a result, there are several

cases where extent and evenness diverge and thus it is bene-
ficial to evaluate both aspects of a metric’s spread. For exam-
ple, while the mean values of most metrics (orange circles) in
Fig. 14b follow the linear correlation, many values for incor-
rectness (blue triangles) showmuch higher extent thanwould
be expected, while other metrics show much lower extent
than expected, e.g., expected distance error and increase in
adversary belief (the two bottom-right orange circles).

5 DISCUSSION

We have discussed and ranked 41 privacy metrics accord-
ing to four criteria: monotonicity, extent, evenness, and
shared value range. To make the choice of privacy metrics
easier, we now aggregate the four criteria into a single rank-
ing. We calculate the overall score for each metric by adding
up the normalized values for each criterion. Fig. 15 shows
that all metrics fall short of the maximum score of 4: the
metric with the best mean value across all scenarios is incor-
rectness (3.29), and the best strength score in a single traffic
condition is 3.76 (privacy breach level, Rome 10 am).

To compare whether the differences in overall metric
scores are statistically significant, Fig. 15 shows notched box
plots. The notches depend on the inter-quartile range (IQR)
and extend to 1:58 � IQR=

ffiffiffi
n

p
, indicating a roughly 95 percent

confidence interval for the median. We note that the notches
for several metrics are overlapping, indicating that there is no
statistically significant difference between the medians. In
particular, the confidence interval for the first metric

Fig. 14. Correlation between criteria. Pearson correlation coefficient
r ¼ 0:60 for evenness/extent, r < 0:16 for all others.

Fig. 15. Overall ranking of metric strength. The x axis shows the sum of
the four criteria (Monotonicity + Spread (Extent) + Spread (Evenness) +
Shared value range), each normalized to ½0; 1�, with equal weights.
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incorrectness overlaps with the confidence intervals of seven
other metrics (privacy breach level down to collision entropy,
with the exception of normalized entropy, Pearson correlation,
and max-entropy). As a result, we cannot decide on a clear
“winner” metric. In addition, the individual rankings for the
four criteria show that there is no single metric that outper-
forms the others in all criteria and for all traffic conditions.

5.1 Weak Metrics

Wenote that some of themetrics that have been proposed spe-
cifically for use in vehicular networks score low on monoto-
nicity and are in the bottom half of our overall metric ranking.
These metrics include the mean tracking duration, time/distance
to confusion, and maximum tracking time. Even though these
metrics may make sense intuitively, they can make PETs
appear stronger than they are (low monotonicity) or skew
comparisons between scenarios (low shared value range).
Therefore we recommend to replace these metrics with other
metrics that are stronger in vehicular network scenarios.

5.2 Visualization to Support PET Design

Our visualization of privacy metrics on city maps (Fig. 8)
showed that privacy often depends on the road layout and
traffic density in a city. For example, privacy levels were
often higher in the city center, and decreased towards the
outskirts of a city. A possible consequence for the design of
PETs is that it may make sense to apply one PET in city cen-
ters with dense traffic, and choose another PET for outskirts
with less dense traffic, or to adjust parameter settings to
provide adequate privacy in all areas.

Visualizing privacy levels on a map can support these
design decisions because it highlights in which areas differ-
ent PETs are most effective. Metrics that have high extent
and evenness and generate per-time and per-vehicle values,
e.g., max-entropy or privacy breach level, are suitable to create
such visualizations.

5.3 Metrics Suites

Even the best metrics in our experiments do not perform
well in all traffic conditions, as indicated in our box plots
and heat maps. One solution to this problem is to validate
all metrics before applying them to new traffic conditions.
Depending on the traffic data, this may take a long time and
may not always be feasible.

A better solution is therefore to combine several metrics
into ametrics suite, i.e., to alwaysworkwithmultiplemetrics.
This approach can offset weaknesses in metrics, especially if
the metrics in the suite are chosen carefully. We recommend
to consider three aspects when choosing ametrics suite:

� Only use metrics with a high monotonicity score
� Include metrics from different categories, e.g., uncer-

tainty, information gain/loss, and error (see Section
3.3 and Table 2)

� Include metrics that are particularly strong for
within-scenario comparisons as well as metrics that
are strong for between-scenario comparisons.

An example metrics suite could thus consist of normalized
entropy (uncertainty, high shared value range), conditional
privacy loss (information gain/loss, high extent), incorrectness
(error, high extent and shared value range), privacy breach

level (adversary’s success probability, high extent and
shared value range, good evenness), and time to confusion
with h ¼ 0:1 (time, high evenness). This metrics suite has an
average monotonicity score of 0.86.

To allow for the construction of metrics suites that meet
custom requirements, we publish our dataset with detailed
results for all four criteria in the supplementary material,
available online.

6 CONCLUSION

We have introduced four novel criteria to evaluate the
strength of privacy metrics: monotonicity, extent, evenness,
and shared value range. These criteria measure the consis-
tency of privacy metrics and their suitability for within-
scenario and between-scenario comparisons of privacy lev-
els. In extensive experiments, we have applied these criteria
to 41 privacy metrics in fifteen traffic conditions. Our results
allowed us to reason about the strength of privacy metrics
and generate an overall ranking of privacy metrics.

Our key findings are that (1) several existing metrics have
low monotonicity scores, i.e., they can misjudge the strength
of new privacy-enhancing technologies, (2) no single metric
dominates across all criteria and traffic conditions, and (3)
visualization can highlight where privacy depends on road
layout and can thus support the design of PETs.

Based on these findings, we recommend to always use
metrics suites when evaluating new PETs, i.e., to combine
several privacy metrics that have high monotonicity scores,
measure different outputs, and are strong for either within-
scenario or between-scenario comparisons.
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