
1

Multi-User Cooperative Mobile Video Streaming:
Performance Analysis and Online Mechanism

Design
Lin Gao, Senior Member, IEEE, Ming Tang, Haitian Pang, Student Member, IEEE, Jianwei Huang, Fellow,

IEEE, and Lifeng Sun, Member, IEEE

Abstract—Adaptive bitrate streaming enables video users to adapt their playing bitrates to the real-time network conditions, hence
achieving the desirable quality-of-experience (QoE). In a multi-user wireless scenario, however, existing single-user based bitrate
adaptation methods may fail to provide the desirable QoE, due to lack of consideration of multi-user interactions (such as the multi-user
interferences and network congestion). In this work, we propose a novel user cooperation framework based on user-provided networking
for multi-user mobile video streaming over wireless cellular networks. The framework enables nearby mobile video users to crowdsource
their cellular links and resources for cooperative video streaming. We first analyze the social welfare performance bound of the proposed
cooperative streaming system by introducing a virtual time-slotted system. Then, we design a low complexity Lyapunov-based online
algorithm, which can be implemented in an online and distributed manner without the complete future and global network information.
Numerical results show that the proposed online algorithm achieves an average 97% of the theoretical maximum social welfare. We
further conduct experiments with real data traces, to compare our proposed online algorithm with the existing online algorithms in the
literature. Experiment results show that our algorithm outperforms the existing algorithms in terms of both the achievable bitrate (with an
average gain of 20% ∼ 30%) and social welfare (with an average gain of 10% ∼ 50%).

Keywords—Mobile Video Streaming, Adaptive Bitrate, Mobile Crowdsourcing, Online Algorithm

F

1 INTRODUCTION

1.1 Background and Motivations
Global mobile data traffic is growing at an unprece-
dented rate, where mobile video streaming contributes
most of the data growth. According to Cisco [1], mobile
video streaming traffic has accounted for 60% of the
global mobile data traffic in 2016, and the percentage
is expected to increase to 78% by 2021. Adaptive BitRate
(ABR) streaming [2] is a promising technology for video
streaming over large distributed HTTP networks (e.g.,
Internet) and has been adopted by many popular online
video streaming systems (e.g., HTTP dynamic streaming
of Adobe [3], HTTP live streaming of Apple [4], and
smooth streaming of Microsoft [5]). The key idea of ABR
is to enable video players to adapt the playing bitrate
(corresponding to the quality of video, e.g., resolution) to
the real-time network conditions to ensure the desirable
quality-of-experience (QoE).

While most of the existing works focused on the bitrate
adaptation methods of a single user (e.g., [6], [7]), in this
work we consider a more general scenario of multi-user
video streaming over wireless cellular networks. In the

• L. Gao is with the School of Electronic and Information Engi-
neering, Harbin Institute of Technology, Shenzhen, China, E-mail:
gaol@hit.edu.cn; M. Tang and J. Huang are with the Network Com-
munications and Economics Lab (NCEL), Department of Information
Engineering, The Chinese University of Hong Kong, E-mail: {mtang,
jwhuang}@ie.cuhk.edu.hk; H. Pang and L. Sun are with the Department
of Computer Science and Technology, Tsinghua University, China, E-mail:
pht14@mails.tsinghua.edu.cn, sunlf@tsinghua.edu.cn.

multi-user wireless scenario, the QoE of each mobile user
is affected not only by the stochastic changing of his own
network condition (e.g., channel fading), but also by the
potential resource competition and interference of other
users [8]–[19]. Without proper coordination or coopera-
tion among users, such competition and interference may
degrade the network performance greatly (e.g., leading
to congestion), hence increase the video streaming cost
and harm the user QoE. Thus, the existing single-user
based bitrate adaptation methods often fail to provide
desirable QoE for video users in the multi-user scenario,
due to lack of consideration of multi-user competition
and interference.

To this end, in this work we will study the multi-
user cooperative video streaming, where (nearby) mobile
video users cooperate with each other in both bitrate
adapting and video downloading. Namely, each user
can download video data for other users using his own
cellular link or download his video data through others’
links. In this sense, users aggregate their cellular links and
resources for the cooperative video streaming. Figure 1
illustrates such a cooperative streaming model with three
users {1, 2, 3}, where user 1 downloads for all three users
and user 2 downloads for himself and user 3. Note that
user 3 does not have the available cellular link.

There are several real-world scenarios where the multi-
user cooperative streaming is useful and helpful. First,
the most relevant scenario is User-Provided Networking
(UPN) [20], [21], where mobile devices (e.g., 4G smart-
phones) with abundant cellular link capacities operate
as mobile hotspots and provide Internet access to other

ar
X

iv
:1

80
5.

09
24

9v
1

 [
cs

.N
I]

 2
1

M
ay

 2
01

8

2

WiFi/Bluetooth
1

2

3

3G
/4G

Internet

Cooperative User Goup

3G
/4G

Internet

3G
/4G

User 1's Segment
User 2's Segment
User 3's Segment

Internet

X

Figure 1. Cooperative Video Streaming Model.

devices. UPN has been widely studied and implemented
today, and some IT and Telecom companies (such as
OpenGarden [22], Karma [23], and AT&T [24]) have pro-
vided commercial UPN services. The cooperative stream-
ing proposed in this work can enhance the capability of
UPN on providing the video streaming service. Another
more concrete scenario is Mobile Live Streaming (MLS)
[25], [26], with which people can watch live activities
of their friends or share their own activities to their
friends on their smartphones. MLS becomes popular in
recent years with the proliferation of smartphones and
4G cellular networks. Nowadays, many social network
companies have provided MLS services, such as IngKee
[27], Youtube Live [28], and Facebook Livestream [29].
The cooperative streaming proposed in this work can
improve the live streaming quality in MLS.

The key motivation for considering such a cooperative
streaming system is the heterogeneity of mobile devices.1
Note that cooperative streaming can be easily imple-
mented in a practical scenario (such as UPN and MLS)
by installing some customized apps (e.g., OpenGarden
[22]) on smartphones, and the related optimization and
incentive issues have been studied in the recent literature
(e.g., [20], [21]). However, the existing techniques in [20],
[21] cannot be directly applied to the cooperative video
streaming model, due to the asynchronous operations of
video streaming and the unique QoE requirements of
video applications. This motivates us to study the multi-
user cooperative streaming in this work.
1.2 Solution and Contributions
In this work, we propose a general multi-user cooperative
video streaming framework based on UPN [20], [21]. The
key idea is to enable nearby mobile users to form a
cooperative group (via WiFi or Bluetooth) and aggregate
their cellular links and resources for the cooperative
video downloading and bitrate adapting. We focus on
studying the users’ streaming behaviours (i.e., download
scheduling and bitrate adaptation) in the proposed coop-
erative framework. Namely, for each video user, when

1. According to [1], smartphones only account for 38% of the total
mobile devices, and a large amount of non-smartphone mobile devices
(e.g., tablets and laptops) still lack stable and always-on Internet con-
nections, especially in the outdoor environment. Our proposed system
can help these devices connect to the Internet via the links of nearby
smartphones. Furthermore, even for the smartphone devices with
the same or similar Internet capability, they may have different cost
evaluations for energy consumption (depending on, for example, their
battery status), resulting in certain “heterogeneity” among devices.

and from whom he is going to download each video
segment, at which bitrate? Our goal is to understand the
performance bound of the system and design an online
scheduling method to approach such a bound.

First, we formally define the users’ operations in the cooper-
ative streaming system, and formulate the corresponding social
welfare optimization problem (Section 4). The optimal solu-
tion of this problem provides the theoretical performance
bound of the proposed cooperative streaming system. A
comprehensive analysis for such a performance bound is
the foundation of the future study on privacy, security,
and incentive mechanism design.2

Second, we analyze the social welfare performance bound
of the proposed cooperative streaming system (Section 5).
Directly solving such a performance is challenging, due
to the asynchronous operations of users as well as the
mixed-integer nature of the problem. To this end, we
introduce a virtual time-slotted system with the synchro-
nized operations, and formulate the new social welfare
optimization problem as a linear programming (which
can be solved efficiently with many standard methods).
We show that with proper choices of time parameters, the
optimal solution of the virtual time-slotted system can
provide an effective upper-bound and lower-bound for
the optimal solution (performance bound) of the original
system, which forms the feasible performance region of
the proposed cooperative streaming system.

Finally, we design a Lyapunov-based online streaming
algorithm for the practical implementation of the proposed
cooperative streaming system (Section 6). The proposed al-
gorithm converges to the theoretical performance bound
asymptotically, with a controllable approximation error
bound. Moreover, it relies only on the current state and
historical streaming information (while not on any future
network information), hence can be implemented in the
online manner; and it requires only the local information
exchange within each cooperative group (while not the
global network information exchange), hence can be
implemented in the distributed manner. We perform ex-
tensive experimental simulations with real data traces to
evaluate its performance gap with the theoretical bound
and to compare its performance with state-of-art online
algorithms in the existing literature.

For more clarity, we summarize the logical relationship
among the above three parts as follows: (i) the social wel-
fare optimization problem in Section 4 defines the theoretical
performance bound of the proposed cooperative streaming sys-
tem (but it is challenging to solve); (ii) the virtual time-slotted
system in Section 5 helps characterize the region (i.e., upper-
bound and lower-bound) of the above theoretical performance

2. In practice, there have been various existing approaches to
address the privacy/security issue in the similar systems. For example,
Opengarden [22] solves the privacy/security issue by using advanced
data encryption technique through built-in softwares, while Karma [23]
solves it by using hardware-enabled data encryption technique through
dedicated devices. These existing technical ways can help us quickly
build the privacy and security system.

3

bound; (iii) the online algorithm in Section 6 converges to the
above theoretical performance bound asymptotically in the re-
alistic scenario without complete future network information.
More specifically, the key contributions of this work are
summarized as follows.
• Novel Model: To our best knowledge, this is the first

work that proposes a general multi-user coopera-
tive streaming framework for mobile video stream-
ing. The framework enables mobile video users to
crowdsource their radio connections and resources
for cooperative video streaming, and can effectively
improve the QoE of video users. Moreover, we
provide both theoretical performance analysis and
practical algorithm design for such a cooperative
streaming system.

• Performance Bound Analysis: We analyze the theoret-
ical performance bound of the proposed coopera-
tive streaming system, overcoming the challenging
issue of asynchronous operations by using a virtual
time-slotted system. Such a performance bound
analysis is fundamental for the design, evaluation,
and implementation of practical algorithms in such
a cooperative streaming system.

• Online Algorithm Design: We implement the coop-
erative streaming system in the practical scenario
without future and global network information,
and design a Lyapunov-based online streaming al-
gorithm. The proposed algorithm converges to the
theoretical performance bound asymptotically.

• Experiment and Demo: We conduct extensive exper-
iments with real data traces, which show that our
proposed cooperative streaming system, together
with the online streaming algorithm, outperforms
the existing systems and algorithms in terms of
both achieved bitrate (with an average gain of
20% ∼ 30%) and social welfare (with an average
gain of 10% ∼ 50%). We also construct a real demo
system to implement and evaluate the proposed
system and algorithm.

The rest of the paper is organized as follows. In Section
2, we review the related work. In Section 3, we present
the system model. In Section 4, we provide the problem
formulation. In Section 5, we propose the virtual time-
slotted system and the performance bound analysis.
In Section 6, we propose the Lyapunov-based online
streaming algorithm. We provide simulation results in
Section 7 and conclude in Section 8.

2 LITERATURE REVIEW
Prior works on ABR video streaming mainly focused on
the bitrate adaptation of a single user using either buffer-
based method [6] or channel prediction-based method
[7]. Recently, there is a growing interest in exploiting
the multi-user cooperative video streaming. From the
modeling perspective, the existing cooperative stream-
ing models can be classified into four categories (see

[8] for more details): Bandwidth Aggregation (BA) model
[9], Device-to-Device (D2D) model [10]–[12], Crowdsourced
Mobile Streaming (CMS) model [13], [14], and Mobile Peer-
to-Peer (MP2P) model [17]–[19].

1) BA Model [9]: The key idea is to aggregate the
bandwidth of nearby users to help a particular mobile
video user’s streaming. The BA model mainly focused
on the simple one-to-many cooperation between a single
video user and multiple helpers [9]. We consider a more
general many-to-many cooperation framework with mul-
tiple video users and multiple helpers, where each user
acts as both the video user and the helper.

2) D2D Model [10]–[12]: The key idea is to enable
nearby video users to share their downloaded video
segments with each other through D2D links. In [10],
Golrezaei et al. studied the cache-based D2D cooper-
ation, where mobile video users cache popular video
contents and deliver to other users via D2D links in
the future. Our model differs from that of [10] in the
following aspects. First, we consider the real-time co-
operation of nearby users, while they considered the
future opportunistic cooperation. Second, we study the
jointly video streaming of multiple users, while they
studied the video streaming of different users separately.
In [11], [12], researchers studied the real-time D2D based
cooperation, where multiple nearby users watch the
same video and share video contents cooperatively via
D2D links. Our model is similar but more general than
those in [11], [12], as we allow different users to watch
different videos. This introduces an additional dimension
(i.e., video index) when making the scheduling decision,
hence involves additional challenges.

3) CMS Model [13]–[16]: The key idea is to en-
able nearby mobile video users pool their network re-
sources together to satisfy all users’ video streaming
requirements jointly. Note that our proposed cooperative
streaming model falls into this category. In [13], Pu et
al. proposed a rate adaptation algorithm for optimizing
the adaptive streaming across multiple mobile users
(possibly watching different videos), but they didn’t
consider the individual characteristics of different users.
In [14], [15], Tang et al. focused on the incentive design
in the multi-user CMS model and proposed a multi-
dimensional auction-based mechanism to incentivize
video users to collaborate with each other under infor-
mation asymmetry. However, they neither performed the
performance bound analysis, nor designed the online
algorithm. In [16], Gao et al. analyzed the performance
bound for multi-user CMS models, but didn’t consider
the online algorithm design. In this work, we will study
both the theoretical performance bound and the practical
online algorithm systematically.

4) MP2P Model [17]–[19]: The key idea is to enable
video users act as virtual video servers and send the
downloaded segments to other users via Internet. Thus,
in the MP2P model, a video user can potentially help
other users that are not physically close-by. The key
difference between our model and the MP2P model is

4

as follows. In the MP2P model, each video segment has
multiple copies residing on both the video server and
the user devices (peers), and video users can download
a video segment from either the server or a user peer, via
his own wireless cellular link. Hence, the key design pur-
pose of MP2P model is to reduce the load of the video server.
In our cooperative streaming model, however, each video
segment has a unique copy residing on the video server,
and users can download a video segment (from the video
server) either via his own wireless cellular link or a
neighbor’s cellular link. Hence, the key design purpose
of our model is to reduce the uncertainty or improve the
efficiency of user’s wireless cellular link.

3 SYSTEM MODEL
3.1 Network Model
We consider a set N , {1, . . . , N} of mobile video users
in wireless cellular networks, who want to watch videos
(on their smartphones) via 3G/4G cellular links. Mobile
users are heterogeneous in terms of their cellular link
capacities and video quality requirements. For example,
a user requesting a high quality video may suffer from a
low cellular link capacity, due to factors such as a severe
channel fading and a high cellular network congestion.
This may reduce the quality of the video and increase the
video quality variation, both harming the user’s quality
of experience (QoE). On the other hand, a user requesting
a low quality video (or not playing a video at all) may
experience a high cellular link capacity, and have extra
capacity to help other users. Thus, it is desirable to
enable users to connect with each other to download the
streaming video contents cooperatively.

There are many real-world application scenarios for
such a cooperative video streaming. Consider, for exam-
ple, that a group of friends who want to watch a live soc-
cer match together on their phones at a remote location
(e.g., a camping or skiing site), or a family who wants to
watch one or multiple movies on their phones in the train
or in the car, or a group of students who want to watch
different online lectures using WiFi at a busy hotspot
(e.g., a classroom). In all these cases, some or all of the
users may have poor or intermittent cellular connectivity,
depending on the coverage of their service providers.
Thus, aggregating the resources of nearby users for the
cooperative video streaming may significantly improve
the overall user satisfactions.

1) User-Provided Network (UPN): UPN enables
nearby mobile users to form a cooperative group (via
WiFi) and aggregate their radio connections and re-
sources for cooperative data downloading. We consider
a general multi-user cooperative streaming scheme based
on UPN. Namely, in a cooperative group, each user
can download video data for other users using his own
cellular link (and resources) and download his video
data through other users’ links (and resources). As men-
tioned previously, we assume that some well-designed
incentive mechanisms (e.g., auction [30]–[33], contract

WiFi/Bluetooth

3G
/4

G

3G
/4G

Internet
Internet

User 1 User 2

3G
/4GX

User 1's Data
User 2's Data
User 3's Data

User 3

Segmented Operation
(Asynchronous)

User 1

User 2

Time TimeSlot 1 Slot 2

Time-Slotted Operation
(Synchronous)

Slot 3

User 1's
Moving Path

User 1

Hotspot 2

Hotspot 1

11:00
11:30

12:30
13:15

Figure 2. Hotspot-Based Mobility Model.

[34]–[37], or others trust mechanisms [38], [39]) have
been adopted, such that users are willing to participate
in the cooperative streaming system to help others.

Figure 1 illustrates such a cooperative streaming model
with three users {1, 2, 3}, where user 1 downloads
one segment for himself, one segment for user 2, and
two segments for user 3, while user 2 downloads two
segments for himself and one segment for user 3. Note
that user 3 does not download any video content due to
the temporary interruption of his cellular link.

2) Mobility Model: The cooperation gain of such a
cooperative streaming highly depends on the number of
cooperative users and the duration of cooperation, both
closely related to the users’ mobility patterns. We adopt a
hotspot-based mobility model [40], where the whole area is
divided into a set of small hotspots and the non-hotspot
area,3 and each user moves across a sequence of hotspots
during his travel in the following pattern: staying for a
certain period of time in each hotspot that he passes, and taking
some time for each transition (from one hotspot to another).
Figure 2 illustrates such a mobility model, where user 1
stays at hotspot 1 for 30 minutes (11:00∼11:30), and then
takes 1 hour to move to hotspot 2 and stays at hotspot
2 for 45 minutes (12:30∼13:15).

In such a hotspot-based mobility model, users in the
same hotspot at the same time can connect with each
other (hence form a cooperative group), while users in
different hotspots or in the non-hotspot area cannot. Such
a mobility model has been widely-used in the scenarios
where users need to take certain time to interact with
each other (e.g., mobile data forwarding in [41]).

Notations: We consider the operation in a period of
continuous time T , [0, T], where t = 0 is the initial
time and T is the ending time. Let A , {1, . . . , A} denote
the set of all hotspots, and {0} denote the non-hotspot
area. The key notations in this part are listed below.
• an(t) ∈ A

⋃
{0}: the location of user n at time t;

• hn(t) > 0: the cellular link capacity of user n at time t;
• en,m(t) ∈ {0, 1}: the indicator denoting whether users

n and m are encountered (i.e., in the same hotspot) at
time t, i.e., en,m(t) = 1 if an(t) = am(t) ∈ A.

For convenience, we refer to the user location and
cellular link capacity {(an(t), hn(t)),∀n ∈ N , t ∈ T } as
the network information, which varies randomly over time.
Note that the encounter indicator en,m(t) can be derived
from the location information of users n and m.

3. A hotspot is a small area where users are likely to stay for a
substantial amount of time (e.g., a bus stop or a coffee shop), hence
can maintain their WiFi connections for a reasonable amount of time.

5

3.2 Video Streaming Model
We consider a typical ABR streaming model [2], where
a single source video file is partitioned into multiple
segments and delivered to a video user using HTTP. The
key features of ABR model are summarized below.

(i) Video Segmenting: To facilitate the video delivery
over the Internet, a source video file is divided into a se-
quence of small HTTP-based file segments, each contain-
ing a short interval of playback time (e.g., 2–10 seconds)
of the source video, which is possibly several hours in
term of the total duration (e.g., a movie). A user down-
loads the video segment by segment.

(ii) Multi-Bitrate Encoding: Each segment is encoded at
multiple bitrates, each corresponding to a specific video
quality (such as resolution). A user can select different
bitrates for different segments according to real-time
network conditions.

(iii) Data Buffering: For smoothly playing, each down-
loaded segment is first stored in a buffer at the user’s
device, and then fetched to the video player sequentially
for playback. The maximum buffer size on user device
is usually limited (e.g., 20–40 Seconds).

Notations: Key notations in this part are listed below.
• βn > 0: segment length (in seconds) of user n’s video;
• Rn , {R1

n, R
2
n, ..., R

Z
n } (with 0 < R1

n < R2
n < ... <

RZn): the set of bitrates (in Mbps) available for user n,
which depends on both the sever-side protocols and the
user-side parameters such as device type.
• Qn > 0: maximum buffer size (in seconds) of user n.

4 PROBLEM FORMULATION
In this section, we first characterize the users’ behaviours
in the cooperative streaming model, and then formulate
the associated optimization problem.

Specifically, with the ABR streaming, each source video
is downloaded segment by segment. Namely, each user
starts to download a new segment (with a specific bi-
trate) only when completing the existing segment down-
loading. Hence, users operate in an asynchronous manner,
as they may complete segment downloading at different
times. We refer to such an operation scheme as the
segmented download operation.

4.1 Downloading Sequence
With the segmented operation, each user n’s download-
ing operation can be characterized by a sequence:

Sn ,
{
sn[1], sn[2], ..., sn[k], ...

}
, (1)

with each element sn[k] denoting the information of the
k-th downloaded segment, including the segment owner
u, bitrate level z, bitrate r = Rzu,4 download start time ts,
and end time te. Namely, we can write sn[k] as

sn[k] = (u, z, r, [ts, te]) .

4. Here the bitrate r = Rz
u is redundant information, and mainly

introduced for facilitating the later description.

To distinguish the information of different segments,
we will also write the information of segment sn[k] as
(un[k], zn[k], rn[k], t

s
n[k], t

e
n[k]) whenever needed.

It is easy to see that our cooperative streaming model
generalizes the model without crowdsourcing, in which
case we can simply restrict each user n downloading only
his own segment, i.e., un[k] = n,∀n, k.

Next we provide the constraints for a feasible down-
loading sequence Sn of user n.

(i) Timing Constraint: As users download segment by
segment, we have the following timing constraint:

C.1 : ten[k] ≤ t
s
n[k+1], ∀k = 1, ..., |Sn|.

A strict inequality implies that user n waits for some time
before starting to download the next segment sn[k+1], for
example, when all users’ buffers are full.

(ii) Capacity Constraint: Each segment sn[k] = (u, z, r,
[ts, te]) consists of r ·βu Mbits of video data, and is down-
loaded by user n within time interval

[
tsn[k], t

e
n[k]

]
. Hence,

we have the following cellular link capacity constraint:

C.2 : r · βu ≤
∫ ten[k]

ts
n[k]

hn(t)dt, ∀k = 1, ..., |Sn|,

where hn(t) is the real time cellular link capacity (in
Mbps) of user n at time t.

(iii) Encounter Constraint: Each user can only download
data for a nearby encountered user. Hence, a segment
with sn[k] = (u, z, r, [ts, te]), n 6= u is feasible only if users
n and u are encountered during

[
tsn[k], t

e
n[k]

]
, i.e.,

C.3 : en,u(t) = 1, t ∈
[
tsn[k], t

e
n[k]

]
, ∀k = 1, ..., |Sn|.

4.2 Receiving Sequence
Given the feasible downloading sequences of all users,
i.e., Sn,∀n ∈ N , we can derive the segment receiving
sequence of each user m as follows:5

Ŝm =
⋃

n∈N ,k∈{1,...,|Sn|}:un[k]=m

{
sn[k]

}
. (2)

We assume that a proper download scheduling has been
adopted, such that there is no repeated segments within
Ŝm, and all segments in Ŝm are sorted according to
the playback order. We denote the k-th segment in the
reordered Ŝm by ŝm[k]. Then, we can write the receiving
sequence of user m as:

Ŝm ,
{
ŝm[1], ŝm[2], ..., ŝm[k], ...

}
, (3)

with each element ŝm[k] =
(
û, ẑ, r̂, [t̂s, t̂e]

)
denoting

the information of the k-th segment played by user
m. Similarly, we will write the information of ŝm[k] as
(ûm[k], ẑm[k], r̂m[k], t̂

s
m[k], t̂

e
m[k]) whenever needed.

5. We assume the WiFi transmission time is zero. One motivation for
such an assumption is that the recent IEEE 802.11 standard family (e.g.,
802.11n, ac, ad) has become increasingly powerful, and can support a
data rate up to Gbit/s, which is much higher than those of the current
cellular systems (such as 3G and 4G).

6

It is easy to see that ûm[k] = m for all ŝm[k] ∈ Ŝm.
To facilitate the later analysis, we further assume that
t̂em[k] ≤ t̂em[k+1], ∀k = 1, ..., |Ŝm|, that is, user m receives
the segments in Ŝm sequentially. Note that this can
always be achieved by a proper schedule of download-
ing sequences with the full network information. For
example, if t̂em[k] > t̂em[k+1], i.e., the k+1-th segment is
received before the k-th segment, we can simply change
their downloading orders.

As mentioned previously, each received segment is
stored in a buffer at the user’s device, and then is fetched
to the video player sequentially for playback. Let qm[k]

denote the buffer level (in seconds) of user m when
receiving the k-th segment, i.e., at the time t̂em[k]. Then, we
have the following buffer update rule for user m:

qm[k] =
[
qm[k−1] −

(
t̂em[k] − t̂

e
m[k−1]

)]+
+ βm, (4)

where [x]+ = max{0, x}. Here t̂em[k] − t̂
e
m[k−1] is the time

interval between receiving of ŝm[k−1] and ŝm[k], during
which a period t̂em[k] − t̂em[k−1] of video is played back
and removed from the buffer; βm is the segment length
(playback time) of the newly received segment ŝm[k].

Since each user m’s buffer size is limited with Qm
(seconds), we have the following buffer constraint:

C.4 : 0 ≤ qm[k] ≤ Qm, ∀k = 1, ..., |Ŝm|.

4.3 User Welfare
The welfare of a user mainly consists of two parts: a util-
ity function capturing the user’s QoE for video service,
and a cost function capturing the user’s energy consump-
tion for both video downloading and playing.

1) Quality-of-Experience (QoE): Users often desire for
a higher video quality without frequent quality changes
and freezes during playback. Hence, a user’s QoE mainly
depends on the video quality, quality fluctuation, and
rebuffering. Note that bitrate is a good measurement of
video quality, and in general there is a distinct and mono-
tonic relationship between bitrate and quality. Hence, we
will define the QoE on bitrate for notational convenience.

(i) Video Quality: A higher video quality (bitrate) brings
a higher value for users. Let gn(r) denote the value
that user n achieves from bitrate r during one unit of
playback time. Then, the total value that user n achieves
from all received segments Ŝn (each with a playback
time of βûn[k]

= βn) is:

Vn(Ŝn) ,
|Ŝn|∑
k=1

gn
(
r̂n[k]

)
· βn. (5)

Obviously, gn(·) is an increasing function (as video qual-
ity monotonically increases with bitrate). In our simu-
lations, we adopt the following value function: gn(r) =
log(1 + θn · r), where θn > 0 is a user-specific evaluation

factor capturing user n’s desire for a high quality video
service.

(ii) Quality Fluctuation: The change of quality (bitrate)
during playback decreases the user QoE, especially when
the quality is degraded. In this work, we assume that
there is a value loss proportional to the bitrate decrease
once the quality is degraded, while there is no value loss
when the quality is upgraded. Let φQDEG

n > 0 denote the
value loss of user n for one unit (in Mbps) of bitrate
decrease. Then, the total value loss of user n induced by
quality degradation is6

LQDEG
n (Ŝn) ,

|Ŝn|∑
k=2

φQDEG
n ·

[
r̂n[k−1] − r̂n[k]

]+
, (6)

where [x]+ = max{0, x}. Here r̂n[k−1] > r̂n[k] indicates
that a quality degradation occurs between ŝn[k − 1] and
ŝn[k], with a bitrate decrease of r̂n[k−1] − r̂n[k].

(iii) Rebuffering: If a video buffer is exhausted before
receiving a new segment, the video player has to freeze
the playback and rebuffer the video for a certain time.
Such a freeze during playback is called rebuffering. The
rebuffering during playback greatly affects the user QoE.
By the buffer update rule (4), a rebuffering occurs when

qn[k−1] < t̂en[k] − t̂
e
n[k−1],

with a detailed rebuffering time t̂en[k] − t̂
e
n[k−1] − qn[k−1].

Let φREBUF
n > 0 denote the value loss of user n for one

unit (second) of rebuffering time. Then, the total value
loss of user n induced by video rebuffering is

LREBUF
n (Ŝn) ,

|Ŝn|∑
k=2

φREBUF
n ·

[
t̂en[k] − t̂

e
n[k−1] − qn[k−1]

]+
. (7)

Based on the above, we can define the utility of each
user n under a receiving sequence Ŝn as follows:

Un(Ŝn) , Vn(Ŝn)− LQDEG
n (Ŝn)− LREBUF

n (Ŝn). (8)
2) Energy Cost: Users incur some energy cost in video

streaming. Such energy cost mainly includes the energy
consumptions for downloading data via cellular links
(and Internet) and exchanging data via WiFi links.

(i) Energy Consumption for Video Downloading (via Cel-
luar and Internet): When downloading data via the cellu-
lar link (and Internet), users’ energy consumption de-
pends on both the downloading time and the down-
loaded data volume [42]. Let cTIME

n ≥ 0 denote the time-
related energy consumption factor of user n (i.e., for
each unit of downloading time), and cDATA

n ≥ 0 denote
the volume-related energy consumption factor of user n
(i.e., for each unit of downloaded data). Then, the energy
consumption of user n for downloading video contents
via cellular links and Internet is [42]:

ECELL
n (Sn) ,

|Sn|∑
k=1

(
cTIME
n · (ten[k] − t

s
n[k]) + cDATA

n · rn[k] · βun[k]

)
.

(9)

6. Our model can be directly extended to the case with upgrade loss,
by simply changing [x]+ into the absolute operation |x|.

7

(ii) Energy Consumption for Video Exchanging (via WiFi):
When downloading a segment for others, the user needs
to transmit the data to the segment owner via local WiFi
link, the energy consumption of which also depends on
the transmitting time and the transmitted data volume
[42]. Let wTIME

n ≥ 0 and wDATA
n ≥ 0 denote the time-related

and volume-related energy consumption factors of user
n on the WiFi link, respectively. The energy consumption
of user n for video exchanging on WiFi link is [42]:

EWIFI
n (Sn) ,

|Sn|∑
k=1

(
wTIME
n · 0 + wDATA

n · rn[k] · βun[k]

)
· 1(un[k] 6= n),

(10)

where 1(un[k] 6= n) = 1 if un[k] 6= n (i.e., the segment sn[k]
is downloaded for others), and 1(un[k] 6= n) = 0 other-
wise. Here we have assumed that the WiFi transmission
time of a single segment is small and hence negligible.

Based on the above, we can derive the total energy con-
sumption of each user n under a downloading sequence
Sn and receiving sequence Ŝn as follows:

Cn(Sn, Ŝn) , ECELL
n (Sn) + EWIFI

n (Sn). (11)

Note that our proposed system can work with other
energy models (e.g., those in [43]). In fact, the energy
consumption modeling and energy saving are not the
key objective of the proposed system. Instead, our key
objective is to improve the QoE of users.

3) Welfare: The welfare of each user n, denoted by Pn,
is defined as the difference between the utility (capturing
the QoE of users) and the cost (capturing the energy
consumption), i.e.,

Pn(Sn, Ŝn) , Un(Ŝn)− Cn(Sn, Ŝn). (12)

The social welfare is the aggregate welfare of all users:

W (S1, ...,SN) ,
N∑
n=1

Pn(Sn, Ŝn), (13)

where the receiving sequence Ŝn of each user n can be
derived from the downloading sequences Sn, n ∈ N .

4.4 Problem Formulation
Our purpose is to find the proper download scheduling
to maximize the social welfare achieved in the proposed
cooperative streaming model.

First, in an ideal scenario with the complete network
information, we can formulate the following offline social
welfare maximization problem:

max
{Sn,n∈N}

W (S1, ...,SN),

s.t. C.1 ∼ C.4.
(14)

To solve this offline optimization problem, we need to
know the complete network information. The solution
of (14), denoted by W ∗, provides the theoretical perfor-
mance bound (in term of social welfare) of the proposed
cooperative streaming system. Note that (14) is an MILP
(mixed integer linear programming) and challenging to

solve.7 Hence, we will derive a feasible upper-bound and
a feasible lower-bound of W ∗ in Section 5.

Second, in a more general scenario without complete
(future) network information, we need to design online
scheduling algorithms, where the downloading opera-
tion of each user is performed in an online and dis-
tributed manner. We will study such an online schedul-
ing algorithm design and the associated performance
evaluation in Section 6.

5 PERFORMANCE BOUND ANALYSIS
In this section, we study the theoretical social welfare
performance bound of the proposed cooperative system
(i.e., the solution of the offline social welfare maximiza-
tion problem (14)), which serves as a benchmark for the
online scheduling solutions in Section 6.

However, directly solving (14) is challenging due to
the following reasons. First, users operate in an asyn-
chronous manner. Namely, different users may start to
download new segments at different times. Second, (14)
involves both discrete variables (e.g., u and z) and con-
tinuous variables (e.g., ts and te), hence is a compli-
cated mixed-integral optimization problem. Third, (14)
involves the integral operation (C.2), which is even more
challenging. Hence, we will focus on finding upper-
bound and lower-bound for the desired performance
bound of the cooperative streaming system.

To achieve this, we propose a virtual time-slotted down-
load operation scheme, under which the problem can be
formulated as an linear programming, hence can be
solved by many classic methods. We will show that
the solution of (14) under the segmented operation
scheme (i.e., the theoretical performance bound of the
proposed cooperative streaming system) is bounded by
the solutions under this virtual time-slotted system. It
is important to note that this time-slotted operation
scheme is only used for characterizing the theoretical
performance bound, but not for the practical imple-
mentation.

5.1 Time-Slotted Download Operation
To model the time-slotted operation scheme, we divide
the whole time period [0, T] into multiple time slots, each
with the same length. For convenience, we normalize the
length of each slot to be one. Hence, there is a set of T
time slots, denoted by T = {1, 2, ..., T}, with the τ -th slot
corresponding to time interval [τ − 1, τ].

Under the time-slotted operation scheme, each video
is downloaded slot by slot in a synchronized manner,
rather than segment by segment under the segmented
operation. Thus, in this case, we can focus on the seg-
ments that each user downloads in each time slot, instead

7. This is because in each user’s downloading sequence, we need to
determine not only the order of segments, but also the download start
time and end time for each segment. Even for the simplest case with a
single user, it is still an NP-hard problem to optimally determine the
download start time and end time of each segment.

8

Segmented Operation
(Asynchronous)

User 1

User 2

Time TimeSlot 1 Slot 2

Time-Slotted Operation
(Synchronous)

Slot 3

User 1's data User 2's data

Figure 3. Segmented vs Time-Slotted Operation.

of the segment downloading sequence. Moreover, to
guarantee the synchronous operation, we require that
each segment must be completely downloaded within
one time slot. Namely, users cannot download a segment
across multiple time slots.

For clarity, we illustrate the difference (in download
scheduling) between the segmented operation and the
time-slotted operation in Figure 3, where blue blocks
denote user 1’s data and orange blocks denote user 2’s
data. Under the segmented operation (left), users start to
download data at different times, while under the time-
slotted operation (right), users are synchronized, and
download data at the beginning of each time slot.

1) Downloading Vector: With the time-slotted opera-
tion, the downloading operation of each user n can be
characterized by a downloading vector:

Kn ,
{
κzn,m(τ), ∀τ ∈ T ,m ∈ N , z ∈ {1, ..., Z}

}
, (15)

where each element κzn,m(τ) is a non-negative integer,
denoting the total number of segments with bitrate level
z that user n downloads for user m in time slot τ .

Given the downloading vector Kn, we can derive the
total data that user n downloads in each time slot τ :

xDL
n (τ) =

N∑
m=1

xn,m(τ) =
N∑
m=1

Z∑
z=1

κzn,m(τ) · βm ·Rzm, (16)

where xn,m(τ) ,
Z∑
z=1

κzn,m(τ) · βm · Rzm is the amount

of data for user m in slot t. Then, we can define the
link capacity constraint and encounter constraint for a
feasible downloading vector Kn:

C̃.2 : xDL
n (τ) ≤ Hn(τ),

C̃.3 : en,m(t) = 1, t ∈ [τ − 1, τ], if xn,m(τ) > 0,

where Hn(τ) =
∫ τ
τ−1 hn(t)dt is the total cellular link

capacity of user n in time slot τ . Note that here we do
not need to consider the timing constraint (C.1) as the
operation is already slot by slot.

2) Receiving Vector: Given feasible downloading vec-
tors of all users, i.e., Kn,∀n ∈ N , we can derive the total
playback time that user m receives in each time slot τ :

yRE
m (τ) =

N∑
n=1

yn,m(τ) =
N∑
n=1

Z∑
z=1

κzn,m(τ) · βm, (17)

where yn,m(τ) ,
Z∑
z=1

κzn,m(τ) · βm is the total playback

time that user m receives from user n in slot τ .

Let qm(τ) denote the buffer level (in seconds) of user
m at the end of time slot τ . Then, we have the following
buffer update rule for user m:

qm(τ) = [qm(τ − 1)− 1]
+

+ yRE
m (τ), (18)

where [x]+ = max{0, x}. Here one time unit of video is
played back during time slot τ , and yRE

m (τ) is the playback
time of the newly received segments in slot τ .

Similarly, we have the following buffer constraint:

C̃.4 : 0 ≤ qm(τ) ≤ Qm, ∀τ = 1, ..., T.

3) User Welfare: Now we define the user welfare and
social welfare under the time-slotted operation.

(i) Video Quality: Similar as (5), the value that user n
achieves from all received segments is:

Ṽn ,
T∑
τ=1

N∑
m=1

Z∑
z=1

κzm,n(τ) · βn · gn(Rzn). (19)

(ii) Quality Fluctuation: Without loss of generality, we
assume that all the received segments of each user n
in each time slot τ are sorted in ascending order of
bitrate.8 Hence, quality degradation only occurs between
two successive time slots, while never occurs within a
time slot. Let rH

n(τ) and rL
n(τ) denote the highest bitrate

and lowest bitrate that user n receives in slot τ . Then,
similar as (6), the value loss of user n due to quality
degradation is:

L̃QDEG
n ,

T∑
τ=2

φQDEG
n · [rH

n(τ − 1)− rL
n(τ)]

+
. (20)

(iii) Rebuffering: By the buffer update rule in (18), a
rebuffering occurs in time slot τ when

qm(τ − 1) < 1,

with a rebuffering time 1 − qm(τ − 1). Then, similar as
(7), the value loss of user n induced by rebuffering is

L̃REBUF
n ,

T∑
τ=2

φREBUF
n · [1− qm(τ − 1)]

+
. (21)

(iv) Energy Consumption for Video Downloading (via Cel-
lular and Interent): Similar as (9), the energy consumption
of user n for downloading video is

ẼCELL
n ,

T∑
τ=1

(
cTIME
n · x

DL
n (τ)
Hn(τ)

+ cDATA
n · xDL

n (τ)
)
, (22)

where xDL
n (τ)
Hn(τ)

is the actual downloading time in slot τ .
(v) Energy Consumption for Video Exchanging (via WiFi):

Similar as (10), the energy consumption of user n for
exchanging video on local WiFi links is

ẼWIFI
n ,

T∑
τ=1

N∑
m=1,m 6=n

(wTIME
n · 0 + wDATA

n · xn,m(τ)) . (23)

Based on the above, the welfare of each user n is

P̃n(K1, ...,KN) , Ṽn − L̃QDEG
n − L̃REBUF

n − ẼCELL
n − ẼWIFI

n .
(24)

8. If not, we can simply change the orders of related segments.

9

4) Problem Formulation under Time-Slotted Opera-
tion: Now we can define the social welfare maximization
problem under the time-slotted download operation:

max
{Kn,n∈N}

W̃ ,
N∑
n=1

P̃n(K1, ...,KN),

s.t. C̃.2 ∼ C̃.4.

(25)

Similar to (14), this is an offline optimization problem
and requires the complete network information. More-
over, (25) is an integer programming, and can be solved
by many classic methods. Hence, we skip the detailed
derivations. For notation convenience, we denote the
solution of (25) by W̃ ∗.

5.2 Performance Bound
Now we characterize the theoretical performance bound
W ∗ of the proposed cooperative streaming system (under
the segmented operation) by using the solution W̃ ∗ of
(25) under the virtual time-slotted operation.

For convenience, we denote β , (β1, ..., βN) as the
vector consisting of all users’ segment lengths, and de-
note W ∗(β) and W̃ ∗(β) as the solutions of (14) and (25)
under β, respectively. We refer to a vector β as an integer
multiple of another vector β′, if each element βn in β is
an integer multiple of the corresponding element β′n in
β′. For example, β = (1, ..., N) is an integer multiple of
β′ = (0.5, ..., N/2).

Proposition 1. If β is an integer multiple of β′, then

W ∗(β) ≤W
∗
(β′), and W̃ ∗(β) ≤ W̃

∗
(β′).

This proposition can be proved by showing that in
both schemes, any downloading operation under β can
be equivalently achieved under β′.

Proposition 2. If β → 0 (i.e., βn → 0,∀n ∈ N), then

W ∗(β) = W̃ ∗(β).

This proposition can be proved by showing that with
infinitely small segment lengths β → 0, any download-
ing operation under the time-slotted operation scheme
can be equivalently achieved under the segmented op-
eration scheme, and vise versa.

Proposition 3. If β � 0 is a finite vector (i.e., each element
βn ≥ 0 is a finite number), then

W ∗(β) ≥ W̃
∗
(β).

This proposition can be proved by showing that with
finite segment lengths β � 0, any downloading oper-
ation under the time-slotted operation scheme can be
equivalently achieved under the segmented operation
scheme, but not vise versa.

Based on the above, we have the following theorem.

Theorem 1. Given a segment length β, the theoretical per-
formance upperbound W ∗(β) is bounded by:

W̃ ∗(β) ≤W
∗
(β) ≤ W̃

∗
(β′→0).

Intuitively, this theorem states that with any β, the
theoretical performance bound W ∗(β) of our proposed
cooperative streaming system is (a) lower-bounded by
W̃ ∗(β) (i.e., the optimal performance of the virtual time-
slotted system with the same segment length vector β),
and (b) upper-bounded by W̃ ∗(β′→0) (i.e., the optimal
performance of the virtual time-slotted system with in-
finitely small segment lengths β′ → 0). Therefore, the
performance of the virtual time-slotted system under dif-
ferent β characterizes the theoretical performance region
of our proposed cooperative streaming system.

6 ONLINE SCHEDULING ALGORITHMS
In the previous section, we have analyzed the theoretical
performance bound of the cooperative streaming system,
which is achievable in an ideal scenario with com-
plete network information. In practice, however, network
changes randomly over time, and hence it is difficult to
obtain the future and global network information.

In this section, we study the practical scenario where
the future and global network information is not avail-
able. We propose an online scheduling algorithm based
on the Lyapunov optimization framework [44], which
relies only on the current local network information and
the scheduling history, while not on any future or global
network information.

6.1 Online vs Offline
We first discuss the key difference between online
scheduling and offline scheduling. In the offline schedul-
ing, the segment downloading sequences of all users at
all time are determined in advance, through, for example,
the offline social welfare maximization problem (14),
which requires the complete network information. In the
online scheduling, however, each user makes the down-
load scheduling decision (regarding the next segment to
be downloaded) in real time, e.g., at the time when he
completes a previous segment downloading.

In our proposed cooperative streaming system, such
a real time downloading decision mainly includes two
problems: whose segment to be downloaded, and at which
bitrate level? The decision may depend on different cri-
teria such as the real time user buffer levels (e.g., in
[6]), the channel bandwidth or throughput predictions
(e.g., in [7]), and other specific objective functions (e.g.,
Lyapunov drift-plus-penalty described below).

6.2 Lyapunov-Based Online Scheduling
Lyapunov optimization [44] is a widely used technique
for solving stochastic optimization problems with time
average constraints. In our model, an implicit time aver-
age constraint is that the average segment arriving rate
should be same as the video playback rate in term of
segment.9 If the video playback rate is smaller, then the

9. For example, for a video with 2-second segment, the playback rate
in term of segment is 0.5 (segments per second).

10

downloaded segments will be frequently dropped due to
the limited buffer size; if the video playback rate is larger,
then the rebuffering will frequently happen. Both cases
are not desirable in this system. To this end, we introduce
the Lyapunov optimization technique to optimize the
downloading scheduling in an online manner.

Suppose that a user n completes a segment down-
loading at time t, and needs to make the downloading
decision regarding the next segment to be downloaded.
We denote such a decision by (u, z), where u ∈ N
is the owner of the segment to be downloaded, and
z ∈ {1, ..., Z} is the bitrate level of the segment to
be downloaded. Obviously, a feasible decision (u, z) of
user n at time t satisfies the following user encounter
constraint: en,u(t) = 1.

For analytical convenience, we further denote qm(t) as
the buffer level of each user m at time t, and denote rm
as the bitrate of user m’s last received segment. This infor-
mation captures the current network state and historical
scheduling information that can be observed.

1) Objective Function: Given a feasible decision (u, z)
of user n, the data volume to be downloaded is Rzu ·
βu (Mbit), and the estimated downloading time is γu,z ,
Rz

u·βu

hn(t)
.10 The total energy consumption of user n (for this

particular downloading operation) and user u (for playing
the downloaded segment) is:

Cn(u, z) = ECELL
n + EWIFI

n .

The utility of receiver u on this particular segment is
Uu(u, z) = Vu − LQDEG

u − LREBUF
u .

The utility of other user m 6= u due to this operation is

Um(u, z) = −LREBUF
m = −φREBUF

m · [γu,z − qm(t)]
+
,

which only includes the potential rebuffering loss.
Therefore, the total welfare generated under (u, z) is

P (u, z) ,
N∑
m=1

Um(u, z)− Cn(u, z). (26)

2) Lyapunov Drift: Following the Lyapunov frame-
work, we define a modified Lyapunov function:

J(t) , 1
2

N∑
m=1

[Qm − qm(t)]
2
. (27)

The Lyapunov drift is the change of Lyapunov function
(from one decision-making time to the next), i.e.,

∆(t) , J(t+ γu,z)− J(t),

= 1
2

N∑
m=1

(
[Qm − qm(t+ γu,z)]

2 − [Qm − qm(t)]
2
)
,

(28)
where qm(t + γu,z) is the estimated buffer level of user
m at time t+ γu,z (i.e., the next decision-making time of
user n). For the receiver u, the estimated buffer level is:

qu(t+ γu,z) = min{Qu, [qu(t)− γu,z]+ + βu}.

10. Here we use the current channel capacity hn(t) to approximate
the capacity in a period of future time. Note that the actual download-
ing time may be different from γu,z due to the channel stochastics.

Algorithm 1: Lyapunov-based Online Scheduling
while at each decision-making time t do

if qn(t) + βn > Qn,∀n ∈ N then
/* no buffer can afford one more segment */
Wait for Tw = minn∈N (qn(t) + βn −Qn)

seconds;
else

Download a segment of bitrate level z∗ for
user u∗:

(u∗, z∗) = arg minu,z Φ(t) , ∆(t)−λ·P (u, z)

For other user m 6= u, the estimated buffer level is:

qm(t+ γu,z) = [qm(t)− γu,z]+.

3) Online Scheduling Algorithm: By the Lyapunov
optimization theorem, to stabilize the system while opti-
mizing the objective, we can use such a scheduling policy
that greedily minimizes drift-plus-penalty:

Φ(t) , ∆(t)− λ · P (u, z), (29)

where the negative welfare (−P (u, z)) is viewed as the
penalty incurred at time t, and λ ≥ 0 is a control
parameter. It is important to note that the buffer levels
(appearing in ∆(t)) serve as regulation factors, such that
the user with a larger idle buffer can be more likely to be
scheduled (hence reducing the possibility of rebuffering).
This term is different from the rebuffering loss in (7),
which is the actually realized loss when a rebuffering
event actually happens.

Based on the above analysis, we now design an on-
line algorithm that aims at minimizing the drift-plus-
penalty (29) in each decision-making time. We present
the detailed algorithm in Algorithm 1. Note that a user
may decide not to download any segment at a decision-
making time, when, for example, all buffers are full and
cannot afford one more segment. In this case, the user
will wait for a certain time and then trigger decision-
making event again. Hence, a decision-making time can be
either the time that a user completes a segment downloading or
the time that a user is triggered by the waiting timer.

Note that the online scheduling in Algorithm 1 works
in a distributed manner, as each user makes the decision
independently. To coordinate the downloading decisions
of different users and to avoid the redundant download-
ing of the same segment, nearby users need to exchange
the context information (e.g., buffer length, segment size,
encode bitrate, and url). To illustrate this, we construct
a real demo system on Raspberry PI. Please refer to our
online technical report [49] for more details.

4) Performance Analysis: Now we analyze the perfor-
mance of Algorithm 1. Let t[k] denote the k-th decision-
making time (counting all users), and let P[k] denote the
associated welfare achieved in the k-th download oper-
ation. Then, the social welfare generated by Algorithm 1

11

Average Link Capacity (Mbps)
0~0.7 0~1.3 0~2.5 0~5.0 0~8.0

A
ve

ra
ge

 B
itr

at
e

0

0.5

1

1.5

2

2.5
Multi-User Case (100% Viewing Video)

Lyapunov Prediction Buffer

(A) ISF
(B) NWF

No Cooperation

Full Cooperation

Average Link Capacity (Mbps)
0~0.7 0~1.3 0~2.5 0~5.0 0~8.0

A
ve

ra
ge

 B
itr

at
e

0

0.5

1

1.5

2

2.5
Multi-User Case (60% Viewing Video)

Average Link Capacity (Mbps)
0~0.7 0~1.3 0~2.5 0~5.0 0~8.0

A
ve

ra
ge

 B
itr

at
e

0

0.5

1

1.5

2

2.5
Multi-User Case (20% Video Users)

Average Link Capacity (Mbps)
0~0.7 0~1.3 0~2.5 0~5.0 0~8.0

A
ve

ra
ge

 B
itr

at
e

In
cr

ea
se

 (
M

bp
s)

0

0.5

1

Multi-User Case

Lyapunov-Based Algorithm

20%
Video
Users

100%

60%

(a) (b) (c) (d)
Figure 4. (a) Average Bitrate with 100% Video Users, (b) Average Bitrate with 60% Video Users, (c) Average Bitrate
with 20% Video Users, (d) Average Bitrate Increase under the Lyapunonv-based Algorithm.

during the whole time [0, T] can be computed by:

W ′(β) =
∑

t[k]≤T
P[k].

By the Lyapunov optimization theorem (Theorem 4.2 in
[44]), we obtain the following gap for W ′(β) and W ∗(β),
i.e., the theoretical performance upperbound.

Theorem 2.

lim
T→∞

E
[
W ′(β)

]
≥ E

[
W ∗(β)

]
− B

λ
,

where E[.] is expectation, and B is a positive constant.

Theorem 2 shows that Algorithm 1 converges to the
theoretical performance bound W ∗(β) asymptotically, with
a controllable approximation error bound O(1

λ).
However, this theorem does not directly help us calcu-

late the actual gap between W ′(β) and W ∗(β) in a particular
experimental scenario, as T is finite in practice. To this
end, we propose another approach based on Theorem 1
for the practical calculation of the actual gap, i.e.,∣∣W ∗(β) −W ′(β)∣∣ ≤ ∣∣W̃ ∗(β′→0) −W

′
(β)

∣∣.
Note that W̃ ∗(β′→0) is the solution of the integer pro-
gramming problem (25), and can be easily computed
in a practical experiment after collecting the complete
network information. In our experiments, the average
gap between W ′(β) and W̃ ∗(β′→0) is smaller than 3%.

7 EXPERIMENTS AND PERFORMANCE
7.1 Experiment Setting
1) Datasets: To evaluate the realistic performance of
the proposed cooperative streaming system, we conduct
experiments based on real data traces from two datasets:
ISF [46] and NWF [47].11 Both datasets record the user
access sessions at a set of WiFi hotspots in different
countries during a long period of time (3 years for
ISF and 5 months for NWF), representing two different
(hotspot-based) mobility scenarios: users encounter more
frequently in NWF, while the duration of each encounter
is larger in ISF.

11. ISF is provided by a non-profit organization “Ile Sans Fil” in
Canada, and is open source (available at CRAWDAD [46]). NWF is
obtained from a wireless service provider “NextWiFi” in China [47].

To simulate the video watching behaviours of mobile
users and the real cellular link throughputs for video
streaming, we use the video viewing session logs ob-
tained from BestTV [48], one of the largest OTT (Over
The Top) video service providers in China. There are 5
different bitrate levels (for mobile users) in this dataset:
{0.2, 0.4, 0.7, 1.3, 2.3}Mbps, corresponding to the lowest
to the highest video resolutions, respectively. Based on
the segment length, bitrate, and downloading time, we
can calculate the measured end-to-end link throughput
for each segment downloading. We use this measured
throughput to approximate the cellular link capacity
in our experiments. Moreover, the energy consumption
factors are chosen according to the real measurement
given in [45].

2) Existing Online Algorithms: To evaluate the per-
formance of our proposed Lyapunov-based online algo-
rithm, we also perform simulations using the follow-
ing two typical existing online algorithms: Buffer-based
algorithm [6] and Channel Prediction-based algorithm
[7]. Specifically, buffer-based algorithm [6] introduces a
linear mapping between buffer and bitrate, and selects
the next segment bitrate based on the current buffer level:
a higher buffer level is mapped to a higher bitrate. Chan-
nel prediction-based algorithm [7] proposes a channel
prediction method, and selects the next segment bitrate
based on the predicted channel capacity: the highest bitrate
that can be supported by the predicted channel capacity.12

7.2 Multiple-User Case

Now we perform experiments for the multi-user sce-
nario, where some users play videos (called video users),
while others remain idle and can potentially help the

12. Note that both algorithms in [6] and [7] were designed for the
single-user scenario, and considered only the bitrate adaptation. In
the multi-user scenario, we need to consider both bitrate adaptation
and segment owner selection (i.e., whose segment to be downloaded)
as discussed in Section 6. To this end, we introduce the following
segment owner selection policy for these two algorithms in the multi-
user scenario: Each user n will choose to download the next segment for
another user u 6= n, if and only if (i) qn ≥ δTH ·Qn, (ii) qn − qu ≥ ∆TH ,
and (iii) qu = minm∈N qm. Intuitively, user n will choose to help the
user with the lowest buffer level, if his own buffer level is higher than
a ratio threshold δTH and meanwhile is higher than the lowest buffer
level by a threshold ∆TH . In our experiments, we will try different
values of δTH and ∆TH , and choose the best ones.

12

encountered video users.13 For simplicity, we assume
that all video users play the high-resolution videos (bi-
trate 2.3Mbps). The total video length is 500 seconds, the
segment length is 2 seconds, and the maximum buffer
length at the user’s device is 40 seconds. We use these
multi-user experiments to illustrate both the cooperation
gain of the proposed cooperative streaming system and
the performance gain of the proposed algorithm.

In the following experiments, we consider a total of
50 users and randomly choose a subset of users as
video users. We consider different network conditions,
characterized by the range of the average link capacity.
For example, a bad network condition corresponds to
a range [0, 0.7]Mbps, under which each user will be
randomly assigned by a real data trace with an average
link capacity smaller than 0.7Mbps.

1) Average Bitrate: Figure 4 shows the average bitrates
with different percentages of video users under different
network conditions. For each video user percentage and
network condition, we perform experiments with the
three algorithms under ISF and NWF mobility traces,
corresponding to different encountering scenarios (hence
different cooperation probabilities). To fully characterize
the cooperation gain, we also run the algorithms under
two benchmark encountering scenarios: (i) a full cooper-
ation scenario, where all users are always encountered
with each other, and (ii) a non-cooperative scenario,
where none of users are encountered.

Sugfigures (a) to (c) show the average bitrates with
100%, 60%, and 20% video users, respectively. As illus-
trated in (a), the solid bar denotes the average bitrate
under the non-cooperative scenario, and the hollow bar
denotes the average bitrate under the full cooperation,
in which the first (higher) line denotes the average bi-
trate under ISF (with a higher encountering probability)
and the second (lower) line denotes the average bitrate
under NWF (with a lower encountering probability).
Subfigure (d) shows the average bitrate increase (i.e., the
cooperation gain) using our proposed Lyapunov-based
algorithm, comparing with the achieved bitrate under
the non-cooperative scenario. The dash, solid, and dash-
dot lines denote the results with 20%, 60%, and 100%
video users, respectively. The marks “circle”, “square”,
and “triangle” denote full cooperation, ISF, and NWF,
respectively.

From subfigure (a), we can see that when the percent-
age of (high-resolution) video users is very high (e.g.,
100%), the increase of bitrate is very small under a low
link capacity range (e.g., lower than 2.5Mbps), as in this
case all users are lack of capacity, hence nobody can
help other users significantly. Under a high link capacity
range (e.g., [0, 5]Mbps and [0, 8]Mbps), the increase of bi-

13. We also construct experiments for the single-user scenario (i.e.,
non-cooperative scenario) to illustrate the performance gap of our pro-
posed Lyapunov-based online algorithm to the theoretical performance
bound as well as to compare the bitrate adaptation performance of our
proposed algorithm with the existing online algorithms. The detailed
results are provided in our online technical report [49].

trate becomes significant, as some users may have redun-
dant capacities, hence can help others. From subfigures
(b) and (c), we can see that when the percentage of video
users is low (e.g., 60% or 20%), the bitrate increase is
significant under all network conditions, mainly due to
the contributions of the idle users.

Subfigure (d) summarizes the increase of bitrate under
our proposed algorithm. We can see that with 100%
video users, the increase of bitrate continuously increases
with the link capacity, as a larger capacity gives the video
users more opportunities to obtain redundant capacity
and help others. With 20% video users, however, the
increase of bitrate continuously decreases with the link
capacity, as a very small capacity already leads to a
considerably high bitrate (due to the contributions of
a large population of idle users), hence the increase of
bitrate is more significant under a small capacity (as the
benchmark bitrate is smaller). With 60% video users, the
increase of bitrate first increases with the link capacity
(due to a similar reason in the 100% case), and then de-
creases with the link capacity (due to a similar reason in
the 20% case). The maximum bitrate increase ratio under
the full cooperation scenario can be up to 50% ∼ 230%
with 20% video users, 35% ∼ 60% with 60% video users,
and 4% ∼ 40% with 100% video users. Moreover, the
bitrate increase under the real data traces is bounded by
the above maximum ratio, and actually depends on the
encountering probability. In our experiments, the bitrate
increases under ISF and NWF can reach around 60% and
40% of the maximum bitrate increase, respectively.

2) Social Welfare: Figure 5 shows the average social
welfares and welfare gains with different percentages
of video users under different network conditions. The
key informations and observations regarding the social
welfare are similar as those regarding the average bitrate
in Figure 4, hence we skip the detailed discussions and
only present the results regarding the cooperation gain.
Specifically, using our proposed algorithm, the maximum
social welfare increase ratio (under the full cooperation
scenario) can be up to 20% ∼ 40% with 20% video
users, 10% ∼ 20% with 60% video users, and 5% ∼ 15%
with 100% video users. The social welfare increase under
ISF and NWF can reach 60% and 40% of the maximum
welfare increase, respectively.

3) Algorithm Comparison: From Figure 4 (a) to (c)
and Figure 5 (a) to (c), we can also evaluate the perfor-
mance difference between our proposed algorithm and
the algorithms in [6] and [7] in the multi-user scenario.
By comparing the difference between solid bars (for the
non-cooperative scenario) and the difference between
hollow bars (for the multi-user cooperative scenario), we
can find that the performance difference (between our
algorithm and the algorithms in [6], [7]) become more
significant in the cooperative scenario, especially when
the video user percentage is small. Such a performance
difference is mainly due to the non-optimal segment
owner selection in [6], [7]. In our algorithm, however,
the segment owner selection and the bitrate adaptation

13

Average Link Capacity (Mbps)
0~0.7 0~1.3 0~2.5 0~5.0 0~8.0

A
ve

ra
ge

 S
oc

ia
l W

el
fa

re

0

0.5

1

1.5

2
Multi-User Case (100% Video Users)

(A) ISF
(B) NWF

Full Cooperation

No Cooperation

Average Link Capacity (Mbps)
0~0.7 0~1.3 0~2.5 0~5.0 0~8.0

A
ve

ra
ge

 S
oc

ia
l W

el
fa

re

0

0.5

1

1.5

2
Multi-User Case (60% Video Users)

Average Link Capacity (Mbps)
0~0.7 0~1.3 0~2.5 0~5.0 0~8.0

A
ve

ra
ge

 S
oc

ia
l W

el
fa

re

0

0.5

1

1.5

2
Multi-User Case (20% Video Users)

Average Link Capacity (Mbps)
0~0.7 0~1.3 0~2.5 0~5.0 0~8.0

A
ve

ra
ge

 S
oc

ia
l W

el
fa

re
 In

cr
ea

se

0

0.1

0.2

0.3

0.4

Multi-User Case

Lyapunov-Based Algorithm

20%
Video
Users

60%

100%

(a) (b) (c) (d)
Figure 5. (a) Social Welfare with 100% Video Users, (b) Social Welfare with 60% Video Users, (c) Social Welfare with
20% Video Users, (d) Average Social Welfare Increase under the Lyapunonv-based Algorithm.

are optimised jointly.

8 CONCLUSION
In this work, we proposed a multi-user cooperative
video streaming framework for video streaming over
wireless networks. We analyzed the theoretical perfor-
mance bound of the proposed cooperative streaming
system, and designed the online streaming algorithm for
the practical implementation. We conducted extensive
experiments with real data traces, and illustrated both
the cooperation gain of the cooperative streaming system
and the performance gain of the proposed online stream-
ing algorithm. Adaptive bitrate streaming is a new tech-
nology trend of mobile video streaming, and the research
on multi-user cooperative video streaming is becoming
increasingly important. This paper developed a unified
cooperative framework, for both theoretical analysis and
practical implementation. There are several interesting
future research directions in this area. An important one
is to consider the users’ strategic behaviours and the
associated incentive issues in the cooperative streaming.

9 ACKNOWLEDGMENTS
This work is supported by the National Natural Science
Foundation of China (Grant No. 61771162, 61472204,
and 61521002) and the General Research Funds (Project
Number CUHK 14219016) established under the Uni-
versity Grant Committee of the Hong Kong Special
Administrative Region, China. This work is also sup-
ported by the Beijing Key Lab of Networked Multimedia
(Z161100005016051). Jianwei Huang is the corresponding
author.

REFERENCES

[1] Cisco VNI: Global Mobile Data Traffic Forecast Update, 2016-
2021.

[2] S. Akhshabi, Ali C. Begen, and C. Dovroli, “An Experimental
Evaluation of Rate-Adaptation Algorithms in Adaptive Stream-
ing over HTTP,” Proc. ACM MMSys, 2011.

[3] Adobe Systems, “HTTP Dynamic Streaming,” url: http://www.
adobe.com/products/hds-dynamic-streaming.html

[4] R.P. Pantos, “HTTP Live Streaming draft-pantos-http-live-
streaming-13,” Network Working Group, 2014, url: http://tools.
ietf.org/html/draft-pantos-http-live-streaming-13

[5] Microsoft, “Smooth Streaming,” url: http://www.iis.net/
downloads/microsoft/smooth-streaming

[6] T. Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A buffer-based approach to rate adaptation: Evidence from a
large video streaming service,” Proc. ACM SIGCOMM, 2014.

[7] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, D. Oran,
“Probe and adapt: Rate adaptation for http video streaming at
scale,” IEEE Journal on Selected Areas in Communications, 32(4):719-
733, 2014.

[8] M. Tang, L. Gao, H. Pang, J. Huang, and L. Sun, “Optimizations
and Economics of Crowdsourced Mobile Streaming,” IEEE Com-
munications Magazine, 55(4):21-27, 2017.

[9] Y. Zhang, C. Li, L. Sun, “DECOMOD: collaborative DASH with
download enhancing based on multiple mobile devices coopera-
tion,” Proc. ACM MMSys, 2014.

[10] N. Golrezaei, P. Mansourifard, A. F. Molisch, and A. G. Di-
makis, “Base-Station Assisted Device-to-Device Communications
for High-Throughput Wireless Video Networks,” IEEE Transac-
tions on Wireless Communications, 13(7):3665-3676, 2014.

[11] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and A.
Markopoulou “MicroCast: Cooperative Video Streaming on
Smartphones,” Proc. ACM MobiSys, 2012.

[12] Y. Cao, X. Chen, T. Jiang, and J. Zhang, “SoCast: social ties based
cooperative video multicast,” Proc. IEEE INFOCOM, 2014.

[13] W. Pu, Z. Zou, and C. W. Chen, “Video adaptation proxy for
wireless dynamic adaptive streaming over HTTP,” IEEE Workshop
Packet Video, 2012.

[14] M. Tang, S. Wang, L. Gao, J. Huang, and L. Sun, “MOMD:
A Multi-Object Multi-Dimensional Auction for Crowdsourced
Mobile Video Streaming,” Proc. IEEE INFOCOM, 2017.

[15] M. Tang, L. Gao, H. Pang, J. Huang, and L. Sun, “Multi-
Dimensional Auction Mechanism for Mobile Crowdsourced
Video Streaming,” Proc. IEEE WiOpt, 2016.

[16] L. Gao, M. Tang, H. Pang, J. Huang, and L. Sun, “Performance
Bound Analysis for Crowdsourced Mobile Video Streaming,”
Proc. IEEE CISS, 2016.

[17] X. Kang and Y. Wu, “Incentive Mechanism Design for Heteroge-
neous Peer-to-Peer Networks: A Stackelberg Game Approach,”
IEEE Transactions on Mobile Computing, 14(5):1018-1030, 2015.

[18] M. Klusch, P. Kapahnke, X. Cao, B. Rainer, C. Timmerer, and S.
Mangold, “MyMedia: mobile semantic peer-to-peer video search
and live streaming,” Proc. ACM MOBIQUITOUS, 2014.

[19] B. Rainer, C. Timmerer, P. Kapahnke, and M. Klusch, “Real-time
multimedia streaming in unstructured peer-to-peer networks,”
Proc. IEEE CCNC, 2014.

[20] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “Incentive
Mechanisms for User-Provided Networks,” IEEE Communications
Magazine, 52(9):20-27, 2014.

[21] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “Enabling Crowd-
Sourced Mobile Internet Access,” Proc. IEEE INFOCOM, 2014.

[22] Open Garden, url: http://opengarden.com/

http://www.adobe.com/products/hds-dynamic-streaming.html
http://www.adobe.com/products/hds-dynamic-streaming.html
http://tools.ietf.org/html/draft-pantos-http-live-streaming-13
http://tools.ietf.org/html/draft-pantos-http-live-streaming-13
http://www.iis.net/downloads/microsoft/smooth-streaming
http://www.iis.net/downloads/microsoft/smooth-streaming

14

[23] Karma, url: https://yourkarma.com/
[24] Tethering of AT&T, url: www.att.com/shop/wireless/tethering.html
[25] K. Mori, S. Hatakeyama, H. Shigeno, “DCLA: Distributed Chunk

Loss Avoidance Method for Cooperative Mobile Live Streaming,”
Proc. IEEE AINA, 2015.

[26] T. Wu, W. Dou, Q. Ni, S. Yu, and G. Chen, “Mobile Live Video
Streaming Optimization via Crowdsourcing Brokerage,” IEEE
Transactions on Multimedia, 19(10):2267-2281, 2017.

[27] IngKee, url: www.ingkee.com
[28] Youtube Live, url: www.youtube.com/live dashboard splash
[29] Facebook Livestream, url: www.facebook.com/livestream
[30] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “A Double Auc-

tion Mechanism for Mobile Data Offloading Markets,” IEEE/ACM
Transactions on Networking, 23(5):1634-1647, 2014.

[31] T. Luo, S. S. Kanhere, J. Huang, S. K. Das, and F. Wu, “Sustainable
Incentives for Mobile Crowdsensing: Auctions, Lotteries, and
Trust and Reputation Systems,” IEEE Communications Magazine,
55(3):68-74, 2017.

[32] L. Gao, Y. Xu, and X. Wang, “MAP: Multi-Auctioneer Progressive
Auction for Dynamic Spectrum Access,” IEEE Transactions on
Mobile Computing, 10(8):1144-1161, 2011.

[33] C. Jiang, L. Gao, L. Duan, and J. Huang, “Data-Centric Mobile
Crowdsensing,” IEEE Transactions on Mobile Computing, 2017.

[34] Q. Ma, L. Gao, Y.F. Liu, and J. Huang, “Incentivizing Wi-
Fi Network Crowdsourcing: A Contract Theoretic Approach,”
IEEE/ACM Transactions on Networking, 2018.

[35] L. Gao, J. Huang, Y. Chen, and B. Shou, “An Integrated Contract
and Auction Design for Secondary Spectrum Trading,” IEEE
Journal on Selected Areas in Communications, 31(3):581-592, 2013.

[36] L. Duan, L. Gao, and J. Huang, “Cooperative Spectrum Sharing:
A Contract-based Approach,” IEEE Transactions on Mobile Com-
puting, 13(1):174-187, 2014.

[37] L. Gao, X. Wang, Y. Xu, and Q. Zhang, “Spectrum Trading
in Cognitive Radio Networks: A Contract-Theoretic Modeling
Approach,” IEEE Journal on Selected Areas in Communications,
29(4):843-855, 2011.

[38] X. Zhang, Z. Yang, W. Sun, Y. Liu, S. Tang, K. Xing, and X.
Mao, “Incentives for mobile crowd sensing: A survey,” IEEE
Communications Surveys & Tutorials, 18(1):54-67, 2016.

[39] L. Gao, G. Iosifidis, J. Huang, L. Tassiulas, and D. Li, “Bargaining-
based Mobile Data Offloading,” IEEE Journal on Selected Areas in
Communications, 32(6):1114-1125, 2014.

[40] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models
for ad hoc network research,” Wireless Communications and Mobile
Computing, 2(5):483-502, 2002.

[41] P. Yuan and H.-D. Ma, “Opportunistic Forwarding with Hotspot
Entropy,” Proc. IEEE WoWMoM, 2013.

[42] N. Balasubramanian, A. Balasubramanian, and A. Venkatara-
mani, “Energy consumption in mobile phones: a measurement
study and implications for network applications,” Proc. ACM
SIGCOMM, 2009.

[43] M. A. Hoque, M. Siekkinen, and J. K. Nurminen, “Energy ef-
ficient multimedia streaming to mobile devicesła survey,” IEEE
Communications Surveys & Tutorials, 16(1):579-597, 2014.

[44] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems, Morgan & Claypool, 2010.

[45] G. P. Perrucci, F. H. Fitzek, and J. Widmer, “Survey on energy
consumption entities on the smartphone platform, Proc. IEEE
VTC-Spring, 2011.

[46] http://crawdad.cs.dartmouth.edu/ilesansfil/wifidog/
[47] http://www.nextwifi.cn/wifind/
[48] http://www.bestv.com.cn/
[49] Technical Report at arXiv, url: https://arxiv.org/abs/xxxx.xxxx

Lin Gao (S’08-M’10-SM’16) is an Associate Pro-
fessor with the School of Electronic and Infor-
mation Engineering, Harbin Institute of Technol-
ogy, Shenzhen, China. He received the Ph.D.
degree in Electronic Engineering from Shanghai
Jiao Tong University in 2010. His main research
interests are in the area of network economics
and games, with applications in wireless com-
munications and networking. He received the
IEEE ComSoc Asia-Pacific Outstanding Young
Researcher Award in 2016.

Ming Tang (S’16) is currently pursuing a Ph.D.
degree at the Department of Information Engi-
neering, The Chinese University of Hong Kong
(CUHK). Her research interests include wireless
communications and network economics, with
particular emphasis on user-provided networks,
mobile video streaming, and fog computing.

Haitian Pang (S’16) received his BE degree
in Department of Automation in 2014 from Ts-
inghua University, Beijing, China. He is currently
a PhD candidate in Computer Science in Ts-
inghua University. His research areas include
network game modeling, cellular-WiFi network-
ing, video streaming system design, and mobile
networking optimizations.

Jianwei Huang (F’16) is a Professor in the
Department of Information Engineering at The
Chinese University of Hong Kong. He is the
co-author of 9 Best Paper Awards, including
IEEE Marconi Prize Paper Award in Wireless
Communications 2011. He has co-authored six
books, including the textbook on “Wireless Net-
work Pricing”. He has served as the Chair of
IEEE TCCN and MMTC. He is an IEEE ComSoc
Distinguished Lecturer and a Thomson Reuters
Highly Cited Researcher.

Lifeng Sun was born in 1972. He received the
Ph.D. degree in System Engineer from the Na-
tional University of Defense Technology, Chang-
sha, in 2000. Currently, he is a professor at
Tsinghua University. His research interests in-
clude video streaming, video coding, video anal-
ysis and multimedia cloud computing. He is a
member of IEEE and ACM. He received Best
Paper Award in IEEE Transactions on Circuits
and Systems for Video Technology in 2010, Best
Paper Award at ACM Multimedia 2012, and Best

Student Paper Award at MMM 2015 and IEEE BigMM 2017.

http://crawdad.cs.dartmouth.edu/ilesansfil/wifidog/
http://www.nextwifi.cn/wifind/
http://www.bestv.com.cn/
https://arxiv.org/abs/xxxx.xxxx

15

APPENDIX
A.1 Implementation on Demo System
To illustrate the implementation of the proposed coop-
erative streaming system, we construct a demo system
on Raspberry PI Model B+ (with the Wheezy-Raspbian
operating system).14 In the demo system, Raspberry PIs
act as the mobile devices in the practical system, which
are equipped with monitors (for video playing), LTE USB
modems (for LTE connections), and WLAN adapters (for
WiFi connections).15 The devices can dynamically join
and leave the cooperative group, and there is no need for
centralized control. After joining the cooperative group,
the mobile devices download video segments via LTE
and forward video segments as well as control messages
to other devices (if needed) through WiFi.

1) Architecture: Figure 6 shows the demo system ar-
chitecture with 4 mobile devices (Raspberry PI devices),
where mobile devices are connected with each other
via WiFi and connected to the video server on the
Internet via LTE. The demo system consists of the fol-
lowing (software) modules built in each mobile device.
The “Controller” module is the “heart” of the system
and responsible for storing key information (such as
system information and downloaded video data) and
offering necessary control signal for other components.
The “Scheduler” module is another key component
in the system and responsible for implementing our
proposed online Lyapunov algorithm and making the
scheduling decision. It mainly consists of two compo-
nents “Download” and “Receive”: (i) when the device
acts as a downloader helping others, the “Download” is
active and in charge of the information announcement
and scheduling determination; and (ii) when the device
acts as a receiver, the “Receive” is active and in charge
of information submission. The “Video Downloader”
module downloads video segments from video servers
on the Internet through LTE links. The “Video Transfer”
module is responsible for transmitting and receiving the
downloaded video data among devices through WiFi
links. The “Message Dispatcher” module is responsible
for transmitting and receiving the control messages (such
as buffer length, segment size, and url) among devices
through WiFi links. Finally, the “Video Buffer” module
stores the segments that are for the user’s own video
consumption, and the “User Interface” module fetches
video segments from buffer and displays to users.

2) Operation: The demo system operates in the fol-
lowing way. When a device is ready for downloading,

14. For more details about Respberry PI, please refer to:
http://www.raspberrypi.org.

15. Note that we implement the demo system on Raspberry PI to
simulate its implementation and operation on real smartphones. The
key reasons for such a simulation are following. First, Raspberry PI is
more user-friendly in programming on almost all functionalities, while
some functionalities of smartphones (both Android and IOS) are not
easily programmable. Second, such a simulation on Raspberry PI is able
to capture the key features of a real system on smartphones (when it
is developed).

LTE

Scheduler Controller

Message
Dispatcher

Video
Transfer

Video
Downloader

Download

Receive

System
Information

Downloaded
Video

User Interface

Video Buffer

WiFi to Other Devices

WiFi

Data Flow

Control Flow

LTE to Internet
Video Servers on

the Internet

LTE to Internet

Figure 6. Demo System Architecture.

its “Message Dispatcher” module starts to collect the
necessary information of nearby users and pass the in-
formation to the “Scheduler” module. Then, the “Sched-
uler” module makes the scheduling decision (i.e., for
whom it is going to download the next segment) and
passes the scheduling result, together with the necessary
information (e.g., the segment id, encode bitrate, and
url), to the “Controller” module. Finally, the “Controller”
module dispatches the “Video Downloader” module to
download the video segment and the “Video Transfer”
module to send the downloaded segment to the target
device.

3) Signal Flow: The detailed signal flow is shown as
follows. When a device is ready to download a new
segment (e.g., when completing a segment download),
it initiates and broadcasts a “READY” message via WiFi.
Then, all nearby devices who receive the message and
need helps will respond with the “ACK” message, to-
gether with the necessary context message (e.g., buffer
length, segment size, encode bitrate, url, etc.), via WiFi.
Such an information exchange is performed by the
“Message Dispatcher” module. Next, when receiving the
“ACK” messages from all nearby users, the device makes
the scheduling decision by using the Lyapunov optimiza-
tion framework in the “Scheduler” module, and then
downloads the related video segment via LTE through
the “Video Downloader” module. Finally, the device
passes the downloaded video data to the target device
through the “Video Transfer” module.

We notice that there may be many useless READY
messages (without ACK replies), especially in the sce-

16

0 10 20 30 40 50 60 70 80 90 100
0

5

10

User 1

C
ap

ac
ity

/
B

itr
at

e(
M

bp
s)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

B
uf

fe
r

(s
)

Capacity Bitrate (by own) Bitrate (by others) Buffer

0 10 20 30 40 50 60 70 80 90 100
0

5

10

User 2

C
ap

ac
ity

/
B

itr
at

e(
M

bp
s)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

B
uf

fe
r

(s
)

0 10 20 30 40 50 60 70 80 90 100
0

5

10

User 3

C
ap

ac
ity

/
B

itr
at

e(
M

bp
s)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

B
uf

fe
r

(s
)

Figure 7. Cooperation between Connected and Discon-
nected Users.

nario where users are more likely to be in the idle
mode than being in need of help (e.g., when users
want to download video occasionally and do not have
any download requests most of the time). This may
generate a lot of additional unnecessary overhead. To
reduce the unnecessary overhead caused by the unneces-
sary READY messages, we further introduce a “sleeping
mode” for downloaders. The idea is to put downloaders to
“sleep” (as far as collaboration is concerned16) when there is no
further downloading request. This can be achieved by two
functions called “Sleep” and “Awake” in the Controller
module of downloaders. The main task of “Sleep” is to
turn a downloader into the sleeping mode when the
downloader fails to receive an ACK message in a pre-
specified time frame (e.g., 10 seconds) after initiating a
READY message. A downloader in the sleeping mode
will no longer generate new READY message, until it
is awaken. The main task of “Awake” is to awake a
sleeping downloader when the downloader overhears
an ACK message (possibly to other downloaders). Of
course, each requester needs to initiate a virtual ACK
message at the very beginning to awake all potential
downloaders. Obviously, with the above “Sleep” and
“Awake” functions, our current approach can effectively
reduce the unnecessary READY messages in the scenario
mentioned above.

4) Real Experiments: To illustrate the real performance
of our proposed cooperative streaming, we further per-
form experiments over a demo system with 3 Raspberry
PI devices, denoted by {1, 2, 3}. The video server is set
up on a lab computer, the video bitrates set is {0.5, 1.0,
2.2, 5.0}Mbps, and the segment length equals 10s.

We perform experiments in the scenario where devices
have different cellular link capacities. The goal is to il-
lustrate how high capacity devices can help low capacity

16. Note that the downloader can still work on his own other tasks
at the same time.

devices to improve the overall video streaming stability
and performance of all devices. In these experiments,
each device has an average cellular link capacity of
3.5Mbps (when connecting to the Internet). Device 3
is always connected to the Internet, while device 1 is
disconnected from the Internet during the 25th to the
75th seconds and device 2 is disconnected from the
Internet during the 50th to the 100th seconds.

Figure 7 illustrates the video scheduling results for
all devices {1, 2, 3} in a particular experiment round.
Here x-axis corresponds to the video streaming time
horizon (of 100 second). In each subfigure, the green
curve denotes the real-time cellular link capacity of the
corresponding device, the yellow dash curve denotes
the real-time buffer level of the corresponding device,
the blue stems with “circle” denote the segments down-
loaded by the device itself, and the red stems with
“triangle” denote the segments downloaded by other
devices through cooperation. From Figure 7, we can see
that although devices 1 and 2 are disconnected from the
Internet half of the time, they are still able to download
and play the video smoothly with the help of device 3. By
averaging the results over multiple experiment rounds,
we find that our proposed cooperative streaming scheme
can improve the average social welfare by up to 50.9% on
average, comparing with the traditional non-cooperative
streaming scheme.

A.2 Single-User Simulation Results
Now we construct experiments for the single-user sce-
nario (i.e., non-cooperative scenario), where the user
plays a high-resolution video (bitrate 2.3Mbps). Similar
as in the multi-user experiments, the total video length
is 500 seconds, the segment length is 2 seconds, and the
maximum buffer length at the user’s device is 40 sec-
onds. We use these single-user experiments to illustrate
the performance gap of our proposed Lyapunov-based
online algorithm to the theoretical performance bound.
We also use these experiments to compare the bitrate
adaptation performance of our proposed algorithm with
the existing online algorithms.

Figure 8 shows the average bitrate and social welfare
under different average link capacities (extracted from
the measured link throughput traces). Red curve/black
bar denotes the theoretical upperbound (benchmark),
Blue curve/bar denotes the proposed Lyapunov-based
online algorithm, Green curve/bar denotes the channel
prediction-based algorithm in [7], and Pink curve/bar
denotes the buffer-based algorithm in [6]. Each point
in subfigures (a) and (b) denotes the average bitrate
and social welfare generated in one experiment (corre-
sponding to a particular choice of data trace), respec-
tively. Subfigures (c) and (d) shows the average bitrate
and average social welfare in 1000 experiments under
different average link capacity ranges. For example, in
the first bar group, we calculate the average bitrate and
average social welfare achieved in all experiments with
an average link capacity below 0.7Mbps.

17

Average Link Capacity (Mbps)
0 2 4 6 8

A
ve

ra
ge

 B
itr

at
e

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
Single-User Case

Benchmark
Lyapunov (Online)
Prediction (Online)
Buffer (Online)

Average Link Capacity (Mbps)
0 2 4 6 8

S
oc

ia
l W

el
fa

re

0.4

0.8

1.2

1.6
Single-User Case

(a) (b)

Average Link Capacity (Mbps)
0~0.7 0~1.3 0~2.5 0~5.0 0~8.0

A
ve

ra
ge

 B
itr

at
e

0

0.5

1

1.5

2
Single-User Case

Benchmark
Lyapunov (Online)
Prediction (Online)
Buffer (Online)

Average Link Capacity (Mbps)
0~0.7 0~1.3 0~2.5 0~5.0 0~8.0

A
ve

ra
ge

 S
oc

ia
l W

el
fa

re

0.5

1

1.5
Single-User Case

(c) (d)

Figure 8. (a) Average Bitrate in Each Experiment, (b) Social Welfare in Each Experiment, (c) Average Bitrate in 1000
Experiments, (d) Average Social Welfare in 1000 Experiments. (Red: Offline-Benchmark, Blue: Lyapunov-Online, Green:
Prediction-Online, Pink: Buffer-Online)

We can see from (a) and (c) that our proposed al-
gorithm (Blue) achieves an average bitrate higher than
other two algorithms (with an average bitrate increase
of 5% ∼ 30%), and is very close to the offline benchmark
(Red). We can further see from (b) and (d) that our
proposed algorithm achieves an average social welfare
higher than other two algorithms (with an average gain
of 10% ∼ 40%), and is very close to the theoretical up-
perbound (with an average gap less than 3%). Moreover,
the social welfare gain decreases with the maximum
link capacity. This is because with a larger link capacity,
all algorithms approach to the upperbound, hence their
differences become less significant.

The above experiments demonstrate that the bitrate
adaptation mechanism in our algorithm is better than
those in [6] and [7]. By Theorem 2, our algorithm asymp-
totically converges to the theoretical performance upper-
bound (with a controllable gap), while the other two
algorithms represent some reasonable heuristics without
a theoretical performance guarantee.

	1 Introduction
	1.1 Background and Motivations
	1.2 Solution and Contributions

	2 Literature Review
	3 System Model
	3.1 Network Model
	3.2 Video Streaming Model

	4 Problem Formulation
	4.1 Downloading Sequence
	4.2 Receiving Sequence
	4.3 User Welfare
	4.4 Problem Formulation

	5 Performance Bound Analysis
	5.1 Time-Slotted Download Operation
	5.2 Performance Bound

	6 Online Scheduling Algorithms
	6.1 Online vs Offline
	6.2 Lyapunov-Based Online Scheduling

	7 Experiments and Performance
	7.1 Experiment Setting
	7.2 Multiple-User Case

	8 Conclusion
	9 Acknowledgments
	References
	Biographies
	Lin Gao
	Ming Tang
	Haitian Pang
	Jianwei Huang
	Lifeng Sun

	Appendix

