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Abstract

In this paper, a joint transmitter and receiver design for pattern division multiple access (PDMA) is proposed.

At the transmitter, pattern mapping utilizes power allocation to improve the overall sum rate, and beam allocation

to enhance the access connectivity. At the receiver, hybrid detection utilizes a spatial filter to suppress the inter-

beam interference caused by beam domain multiplexing, and successive interference cancellation to remove the

intra-beam interference caused by power domain multiplexing. Furthermore, we propose a PDMA joint design

approach to optimize pattern mapping based on both the power domain and beam domain. The optimization of

power allocation is achieved by maximizing the overall sum rate, and the corresponding optimization problem is

shown to be convex theoretically. The optimization of beam allocation is achieved by minimizing the maximum

of the inner product of any two beam allocation vectors, and an effective dimension reduction method is proposed

through the analysis of pattern structure and proper mathematical manipulations. Simulation results show that the

proposed PDMA approach outperforms the orthogonal multiple access and power-domain non-orthogonal multiple

access approaches even without any optimization of pattern mapping, and that the optimization of beam allocation

yields a significant performance improvement than the optimization of power allocation.
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I. INTRODUCTION

With the new challenges of explosive mobile data growth, tremendous increase in the number of

connected devices, and continuous emergence of new service requirements, future communication systems

with high spectral efficiency are needed. In order to efficiently support unprecedented requirements for

system sum rate and access connectivity, researchers from both industry and academia are focusing on the

design of next-generation multiple access techniques, particularly non-orthogonal multiple access (NOMA)

[1], [2].

In mobile communications systems, the design of multiple access schemes is of great importance to

increase the sum rate in a cost-effective manner. In general, multiple access schemes can be classified

into orthogonal and non-orthogonal ones based on the way wireless resources are allocated to the users.

Orthogonal multiple access (OMA) schemes, such as orthogonal frequency division multiple access

(OFDMA) in downlink and single-carrier frequency division multiple access (SC-FDMA) in uplink,

are adopted in the 4G mobile communication systems such as Long-Term Evolution (LTE) and LTE-

Advanced (LTE-A) [3]. In order to attain further enhancements in sum rate and access connectivity,

more advanced multiple access schemes need to be developed. Actually, NOMA schemes are optimal in

the sense of achieving the capacity region of the broadcast channel [4]. In NOMA schemes, multi-user

signals are superposed in the same time and frequency resources via code domain and/or power domain

multiplexing at the transmitter, and separated at the receiver by multi-user detection based on successive

interference cancellation (SIC) or message passing algorithm (MPA). Recently, several representative

NOMA schemes have been proposed, such as power-domain NOMA (PD-NOMA), and sparse code

multiple access (SCMA). PD-NOMA was introduced in [5] by using superposition coding at the transmitter

and SIC at the receiver, which lays the foundation for NOMA when a single resurce block, such as OFDM

subcarrier, is available. SCMA was proposed in [6] by efficiently using multiple resource blocks available

in the system and mapping bit streams directly to sparse codewords, which is thus amenable to the use

of MPA with acceptable complexity [7].

Different from the above mentioned NOMA schemes, pattern division multiple access (PDMA) adopts

PDMA patterns to separate user signals at the transmitter, where the PDMA patterns can be realized in

multiple resource domains [8], [9]. By means of multiple-domain multiplexing, PDMA can make the best

of wireless resources to increase the sum rate with affordable computational complexity. Quasi-orthogonal

space-time block codes in spatial domain were utilized in [10] to realize resource multiplexing, where
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the dimension of pattern matrix scales with the number of transmitter antennas. The performance of

cooperative PDMA was analyzed in [11], which was shown to outperform cooperative OMA in terms

of sum rate when the same target data rate requirement was assigned to users. Recently, more and more

advanced receivers have been investigated for PDMA. Iterative detection and decoding algorithm was

proposed in [12], and SIC iterative processing based on minimum mean square error (MMSE) detection

and channel decoding was proposed in [13]. The pattern design was studied in [14] for massive machine

type communication (mMTC) as well as enhanced mobile broadband (eMBB) deployment scenarios, and

several non-optimal design criteria were proposed. However, little has been reported on some joint design

for the transmitter and receiver yet, especially based on multiple-domain multiplexing. Although PDMA

is a promising candidate for future communication systems, comprehensive and thorough researches are

still needed on the pattern and transceiver design.

Furthermore, as one of the key technologies of future mobile communications systems, large-scale

antenna arrays (LSA) have been put forward to significantly improve the system sum rate with extra

degrees of freedom which facilitate transmit diversity and spatial multiplexing gains [2], [15], [16]. Facing

a massive number of connected devices, LSA can provide sufficient spatial resources. More recently, the

application of LSA to NOMA has been receiving growing attention for further performance improvement

[17], [18].

Motivated by the aforementioned discussions, we propose a joint transmitter and receiver design for

PDMA. The proposed approach is designed based on both the power domain and beam domain in a joint

manner. Pattern mapping at the transmitter utilizes power allocation and beam allocation to superpose

user signals, while hybrid detection at the receiver employs a spatial filter (SF) and SIC to separate the

superposed multiple-domain signals. Furthermore, the optimization of pattern mapping is investigated.

By theoretically proving the convexity of the corresponding sum rate maximization problem, a globally

optimal power allocation policy can be readily obtained. Through the analysis of pattern structure and

proper mathematical manipulations, an effective dimension reduction method is proposed to solve the

challenging optimization problem concerning beam allocation.

The rest of the paper is organized as follows. The system model is described in Section II. The proposed

PDMA joint design approach including pattern mapping at the transmitter and hybrid detection at the

receiver is presented in Section III. The optimization of pattern mapping including power allocation and

beam allocation is presented in Section IV. Simulation results are shown in Section V. Final conclusions
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are drawn in Section VI.

II. SYSTEM MODEL

In this paper, we consider a downlink transmission scenario with one BS communicating with multiple

users. The BS is equipped with a LSA, where a finite number of antennas cooperate with each other and

form an antenna cluster (AC) to fully exploit the cooperation gain [19]. Assume that there are multiple

ACs located in the BS, each AC equipped with NT antennas forms N beams with NT ≥ N , and each user

has NR antennas. For the ease of the following description and analysis, all the users in the corresponding

AC coverage are assumed to constitute a user group (UG). Assume each UG contains K users and an

AC covers a UG with NT ≤ KNR and N ≤ K ≤ 2N − 1 [8]. In this case, one beam will have to support

more than one user, i.e., some users in the same UG will share one beam. Without loss of generality, we

simplify the scenario into the case where an AC communicates with a UG.

Let Gk ∈ CNR×NT denote the channel matrix between the considered AC and the k-th user in the

considered UG. Assume that the BS has perfect channel state information (CSI). BF at the transmitter

is generated based on the CSIs of N target users from the UG. Let ntar denote one of the target users

covered by the n-th beam, and the set of target users is expressed as Ω = {1tar, 2tar, · · · , ntar, · · · , Ntar}.

Let fn ∈ CNT×1 denote the BF vector of the n-th beam, which is generated based on the CSI of the user

ntar. Let F ∈ CNT×N denote the BF matrix and it can be expressed as F = [f1, f2, · · · , fn, · · · , fN ].

According to different user requirements, the BF matrix F can be constructed based on the minimum

mean square error (MMSE) or zero-forcing (ZF) criteria.

At the transmitter, let t ∈ CN×1 denote the superposed signal vector after pattern mapping, and the

details for the design of t will be provided in the next section. Let x ∈ CNT×1 denote the transmit signal

vector from the AC, and it can be expressed as follows

x = Ft. (1)

At the receiver, let yk ∈ CNR×1 denote the received signal vector for the k-th user. Then, it can be

expressed as follows

yk = Gkx + wk, k = 1, 2, · · · , K, (2)

where wk ∼ CN (0, σ2
kINR

) denotes the additive white Gaussian noise vector whose elements have zero
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Fig. 1. Illustration of the proposed PDMA joint design approach.

mean and variance σ2
k.

In this paper, by constructing the superposed signal vector t at the transmitter and detecting the received

signal vector yk at the receiver, a PDMA joint design approach based on both the power domain and

beam domain is proposed.

III. THE PROPOSED PDMA JOINT DESIGN APPROACH

In this section, we present our proposed PDMA joint design approach as illustrated in Fig. 1, where

K user signals are superposed upon N beams after the process of pattern mapping at the transmitter and

detected at the receiver by means of hybrid detection.

A. Pattern Mapping at the Transmitter

The multiple-domain multiplexing is one of the key aspects of pattern mapping in PDMA. In general, the

power domain is chosen as the fundamental multiplexing domain in pattern mapping [8], [9]. However,

when only power domain is utilized, the stringent requirement in power allocation policy restricts its

generalization to various scenarios. In fact, the combination of multiple domains can make the most of

wireless resources and generalize PDMA to various application scenarios. By considering LSA, multiple
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beams in downlink can serve as spatial resources. Specifically, beams are shared by multiple users with

different power, and the corresponding allocation policy depends on pattern mapping.

In this paper, pattern mapping of our proposed PDMA approach is designed based on the combination

of power domain and beam domain. Power resources are chosen as the fundamental multiplexing domain

and beam resources as the key multiplexing domain in the pattern mapping. As shown in Fig. 1, pattern

mapping at the transmitter utilizes power allocation and beam allocation to superpose multiple-domain

signals. Let s ∈ CK×1 denote the transmit symbol vector for the UG with s ∼ CN (0, IK) and [s]k = sk

the transmit symbol for the k-th user. Let P ∈ RN×K denote the power allocation matrix and [P ]nk = pnk

the transmit power allocated to the k-th user in the n-th beam. Assume that each beam is allocated the

same power Pb, i.e.,
K∑
k=1

pnk = Pb, n = 1, 2, · · · , N . Let B ∈ [0, 1]N×K denote the beam allocation matrix

and [B]nk = bnk the beam allocation indicator for the k-th user in the n-th beam with bnk = 1 if the k-th

user is covered by the n-th beam and bnk = 0 otherwise. Correspondingly, the superposed signal vector

after pattern mapping can be expressed as follows

t =
(
B ◦ P 1/2

)
s, (3)

where ◦ denotes the operation of Hadamard product, and [t]n = tn =
K∑
k=1

bnk
√
pnksk, n = 1, 2, · · · , N .

B. Hybrid Detection at the Receiver

For the received signals, we propose to use hybrid detection as illustrated in Fig. 1, where SF is used

to suppress the inter-beam interference caused by beam domain multiplexing and SIC is then used to

remove the intra-beam interference caused by power domain multiplexing.

Firstly, SF is performed for the received signal vector to suppress the inter-beam interference. Let

Vk ∈ CNR×N denote the SF matrix for the k-th user and vnk the n-th column vector of Vk. After the

procedure of SF, the scalar received signal znk can be expressed as follows

znk = vHnkyk=vHnkGkfntn + vHnkGk

N∑
n′=1
n′ 6=n

fn′tn′ + vHnkwk, n = 1, 2, · · · , N, k = 1, 2, · · · , K, (4)

where the first term of the right hand denotes the combination of the desired information and intra-beam

interference, and the other two terms denote the inter-beam interference and noise, respectively. According

to different user requirements, the SF matrix Vk can be constructed based on the MMSE or ZF criteria.
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If Vk is constructed based on the MMSE criterion, it can then be expressed as follows [20]

Vk = min
Ṽk

E
{∥∥∥t− Ṽ H

k yk

∥∥∥2

2

}
=
(
GkFAFHGH

k + σ2
kINR

)−1
GkFA, k = 1, 2, · · · , K,

(5)

where A
∆
= E

{
ttH
}

with its element being expressed as [A]ij =
K∑
k=1

bikbjk
√
pikpjk. Note that the

computational complexity of the matrix inversion involved in (5) is approximately O(N3
R). If Vk is

constructed based on the ZF criterion, it can then be expressed as follows

Vk = GkF
(
FHGH

k GkF
)−1

, k = 1, 2, · · · , K. (6)

The computational complexity of the matrix inversion involved in (6) is approximately O(N3). In a prac-

tical communication scenario, both NR and N are not so large. Therefore, the computational complexity

of the SF procedure can be affordable.

Secondly, normalization is applied to the scalar received signal to meet the implementation condition of

SIC. For a fixed channel realization, the inter-beam interference and noise term in znk is assumed indepen-

dently Gaussian distributed with mean zero and variance
N∑

n′=1
n′ 6=n

∣∣vHnkGkfn′
∣∣2Pb+σ2

k‖vnk‖
2. Correspondingly,

the expression in (4) can be reshaped through normalization as follows

z′nk = hnk

K∑
k′=1

bnk′
√
pnk′sk′ + qnk, n = 1, 2, · · · , N, k = 1, 2, · · · , K, (7)

where qnk denotes the sum of the inter-beam interference and noise after normalization with E
[
|qnk|2

]
= 1,

hnk the equivalent normalized channel gain between the k-th user and the AC which can be expressed as

follows

hnk =
1√

N∑
n′ 6=n,n′=1

|vHnkGkfn′ |
2
Pb + σ2

k‖vnk‖
2

vHnkGkfn, n = 1, 2, · · · , N, k = 1, 2, · · · , K. (8)

Let H ∈ RN×K denote the equivalent normalized channel gain matrix between the considered UG and

AC, and it satisfies [H ]nk = hnk. Then, the multiple-input multiple-out (MIMO) channel between the

k-th user and the considered AC can be degraded into single-input single-out (SISO) channels after the

normalization [20], which facilitates the implementation of SIC.
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Finally, SIC is applied to the normalized scalar received signal to remove the intra-beam interference,

and it is used to decode symbols iteratively by subtracting the detected symbols of weak users first to

facilitate the detection of strong users. Without loss of generality, we assume that the K users are sorted

in an ascending order of normalized channel gain hnk with respect to the index number k for any index

number n. For instance, |hnk| ≤ |hnk′| holds for any n = 1, 2, · · · , N if 1 ≤ k ≤ k′ ≤ K. Consequently,

the k′-th user can correctly decode the signal symbol in spite of the interference of the k-th user in the

n-th beam. Correspondingly, the signal to interference plus noise ratio (SINR) of the k-th user in the n-th

beam can be expressed as follows

γnk =


|hnk|2bnkpnk

1+|hnk|2
K∑

k′=k+1

bnk′pnk′

, n = 1, 2, · · · , N, k = 1, 2, · · · ,K − 1,

|hnk|2bnkpnk, n = 1, 2, · · · , N, k = K.

(9)

And the overall sum rate of the AC can then be expressed as follows

Rsum =
N∑
n=1

K∑
k=1

log2 (1 + γnk). (10)

Note that the performance gain of our proposed approach profits from enhanced access connectivity

supported by the multiple-domain multiplexing and strong SINR ensured by the hybrid detection. The

hybrid detection at the receiver is designed based on the multiple-domain multiplexing at the transmitter,

and the corresponding optimization of pattern mapping at the transmitter can further improve the system

performance.

IV. OPTIMIZATION OF PATTERN MAPPING

Pattern mapping is optimized based on both the power domain and beam domain in the proposed PDMA

joint design approach. Power resources act as the fundamental multiplexing domain of the pattern, and

beam resources act as the key multiplexing domain of the pattern. Given the integer beam allocation

indicator bnk, the optimization problem of the overall sum rate maximization falls into the scope of

combinatorial programming, which is hard to be solved directly. Just as we pointed out in [21], a brute

force approach is generally required for obtaining a global optimal solution. However, such an approach

has an exponential complexity with respect to (w.r.t.) the number of beams and the number of users,

and it is computationally impracticable even for a small-size system. In our previous work in [22], by

merging the beam allocation indicator bnk and the transmit power pnk into one variable, the original 2-D
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optimization problem of pattern mapping can be simplified to a 1-D optimization problem. However, by

using that approach, outlier may exist in the obtained pattern mapping results. Therefore, in this paper, we

propose an efficient approach to solve this challenging problem. Pattern design of the proposed PDMA

joint design approach involves the optimization of power allocation and that of beam allocation.

A. Optimization of Power Allocation

In this subsection, the optimal power allocation of the proposed PDMA approach is investigated. In

general, NOMA schemes are used to increase system rates in future mobile communications systems.

The optimization of power allocation can be formulated as a sum rate maximization problem. Besides,

BF at the transmitter is generated based on the CSI of the target user, and hence the target user should

be allocated with nonzero power to ensure its availability. Let δnk denote the lower bound of the transmit

power allocated to the k-th user in the n-th beam, and it can be expressed as follows

δnk =

 ε, if n = 1, 2, · · · , N, k ∈ Ω,

0, else,
(11)

where ε denotes the slack variable for the target user. Therefore, the power allocation problem can be

expressed as follows

max
pnk

n=1,2,··· ,N,k=1,2,··· ,K

Rsum =
N∑
n=1

K∑
k=1

log2 (1 + γnk)

s.t. C1 : pnk ≥ δnk, n = 1, 2, · · · , N, k = 1, 2, · · · , K,

C2 :
N∑
n=1

K∑
k=1

pnk ≤ Psum,

C3 : log2 (1 + γnk) ≥ Rmin
nk , n = 1, 2, · · · , N, k = 1, 2, · · · , K,

(12)

where Psum denotes the maximum sum transmit power for the AC, and Rmin
nk the minimum rate requirement

for the k-th user in the n-th beam. Correspondingly, we have the following theorem.

Theorem 1: The optimization problem in (12) is convex.

Proof: Please refer to the Appendix A.

Generally, the Karush-Kuhn-Tucker (KKT) conditions can be used to solve the convex optimization

problem in (12). However, the inequality constraints in the KKT approach usually makes the corresponding

optimization problem hard to be solved directly. By adding a barrier function into the original objective
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function, the inequality constraints can be readily removed. Therefore, we adopt the barrier method [23]

to tackle the problem and get the optimal power allocation policy in an undemanding manner.

B. Optimization of Beam Allocation

The beam resource is another key multiplexing domain in our approach. Pattern design of the PDMA

joint design approach is mainly to optimize beam allocation. In the following, the in-depth analysis on

pattern structure is presented, and then the relevant optimization of beam allocation is investigated.

1) Pattern Structure: Beam allocation matrix B is specified as the PDMA pattern matrix. Let [B]k = bk

denote the beam allocation vector of the k-th user. In other words, the transmit symbols for the UG are

mapped into beam domain by means of pattern, and the specific allocation of beam resources to the

considered user is performed through the corresponding beam allocation vector.

The PDMA pattern matrix is utilized to assign different transmit diversity orders to users as well. To

further analyze the pattern structure, we consider an example B with N = 3 and K = 5 that is designed

as follows

B =


1 1 0 1 0

1 1 1 0 0

1 0 1 0 1

 . (13)

We show its factor graph in Fig. 2. Each row of B is referred to as a beam resource and each column of

B is referred to as a user. Therefore, the sum of the corresponding column of B for the considered user

represents its transmit diversity order. The sum of the corresponding row in B for the considered beam

represents its overlap order. The ratio between the number of columns and the number of rows represents

the overload ratio of the PDMA pattern.

According to the above description of the PDMA pattern, we further explore some insights on the

pattern structure.

• Firstly, the proposed PDMA approach can be treated as a more general framework of PD-NOMA and

OMA. Specifically, by setting all the transmit diversity orders to be one and all the overlap orders to

be greater than one, the proposed PDMA approach can be transformed to a PD-NOMA one. On the

other hand, it can be transformed to an OMA approach by setting all the transmit diversity orders

and overlap orders to be one.

• Secondly, the PDMA pattern can be utilized to improve access connectivity. Let λ denote the overload
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Fig. 2. The factor graph corresponding to the PDMA pattern with N = 3 and K = 5.

ratio supported by the PDMA pattern with λ = K/N . By exploiting the PDMA pattern, the access

connectivity in the PDMA approach can then be increased to a maximum of
(
2N − 1

)
/N folds in

comparison with the OMA approach.

• Finally, the PDMA pattern enables dimension reduction for the LSA. Note that the maximum transmit

diversity order in pattern should be N [8], i.e., there is some certain user which transmits signal in

all the beams. Therefore, for the case of narrow beamwidth, the maximum number of beams in

one AC covering the corresponding UG cannot be too large. Specifically, a small matrix B is the

common case for the proposed PDMA approach. Beams are generally chosen as spatial resources

in the proposed approach other than antennas or space-time block codes in spatial domain [10].

Therefore, when combined with the LSA, the dimension of B is reduced from NT ×K to N ×K

with NT ≥ N , which can further enable the computational reduction of the receiver.

2) Optimization of Beam Allocation: The key of the proposed PDMA approach is pattern design, which

can impose significant effect on system performance and detection complexity. On the one hand, for a
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given N , different overload ratio λ can support varying access connectivity. The larger the overload ratio,

the better the system performance and the higher the detection complexity. On the other hand, for some

certain user, larger transmit diversity order can enable more reliable data transmission at the cost of higher

detection complexity. Therefore, proper pattern design is required to achieve a good trade-off between

system performance and detection complexity.

The inner product of the beam allocation vectors of any two users indicates the number of beam

resources shared by the two users. When the inner product is non-zero, the two users share some of the

same beam resources. Then, the two users cannot be distinguished on beam domain but power domain at

the receiver. When the inner product is zero, the two users employ different beam resources. Then, they

will have a large possibility not to interfere with each other on beam domain, which can greatly reduce

the detection complexity at the receiver. Therefore, by minimizing the maximum of the inner product of

any two beam allocation vectors, the inter-beam interference of any two beams can be reduced to the

greatest extent and the overall sum rate can then be maximized as much as possible. According to the

above discussions, we formulate the optimization problem of beam allocation in a heuristic way as follows

min max
bk,bk′

bTk bk′

s.t. k, k′ = 1, 2, · · · , K, k 6= k′,

µ1 ≤ µ2 ≤ · · · ≤ µk ≤ · · · ≤ µK ,

(14)

where µk denotes the transmit diversity order of the k-th user, and we assume that the beam allocation

vectors of the K users are sorted in an ascending order of their transmit diversity orders. The optimization

problem in (14) falls into the scope of combinatorial programming. Just as we point out previously, direct

solving of the the optimization problem needs large computational load. Therefore, we commit to an

effective dimension reduction method to solve this challenging problem.

By using elementary rank transformations, the matrix B can be reshaped in a partitioned structure:

B′ ,
[
B̄, B̃

]
, where B̄ ∈ [0, 1]N×N refers to the pattern of all the users in the target user set Ω, and

B̃ ∈ [0, 1]N×(K−N) refers to the pattern of all the other users among the UG. Then, we can get the

following theorem.

Theorem 2: If the BF matrix is constructed based on the ZF or MMSE criteria and the SF matrix is

also constructed based on the ZF or MMSE criteria, B̄ can be set to I .

Proof: Please refer to the Appendix B.
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Note here that the corresponding users in the target user set Ω will have a large possibility not to interfere

with each other by setting B̄ to I , which apparently helps to simplify the optimization problem in (14).

Let [B̃]k = b̃k denote the vector of the k-th column of B̃. Then, according to Theorem 2, the optimization

problem in (14) can be transformed into the following equivalent form

min max
b̃k,b̃k′

b̃Tk b̃k′

s.t. k, k′ = 1, 2, · · · , K −N, k 6= k′,

µ′1 ≤ µ′2 ≤ · · · ≤ µ′k ≤ · · · ≤ µ′K−N ,

(15)

where µ′k denotes the transmit diversity order of the k-th user concerning B̃. It can be seen that the

dimension of the variable space for the optimization problem is greatly reduced from 2NK to 2N(K−N).

For the optimization problem in (15), a small beam allocation matrix is the common case for the proposed

PDMA approach, and consequently the complete enumeration method can be employed to achieve the

optimal beam allocation.

Note that in practice there may exist inter-beam and inter-AC/UG interferences as well due to the

possible beam overlap (e.g. between neighbouring beams) even when the inner product of the beam

allocation vectors of any two users is zero. However, by using our proposed approach, both the interferences

and the computational complexity can be really reduced.

V. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed PDMA joint design approach. In the

simulations, the number of antennas of each AC NT and that of each user NR are set to 16 and 4,

respectively. The BS is located in the cell center with radius 800 meters. It is assumed that all the users

in the considered UG are distributed uniformly in their corresponding AC coverage. For the propagation

channel, it is assumed that the complex propagation coefficient between each antenna of the BS and that

of each user is modeled as a complex small-scale fading factor timed by a large-scale fading factor, which

represents geometric attenuation and shadow fading [15]. For the small-scale fading factor, it is always

assumed to be i.i.d. random variable with distribution CN (0, 1). For the large-scale fading factor, the path

loss factor, the path loss exponent and the variance of log-normal shadow fading are set to 1, 3.7 and

10dB, respectively. In the following, unless otherwise stated, we assume that each AC contains N = 3

beams, and that the number of users varies from 4 to 7, which means that the proposed PDMA approach
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Fig. 3. AC sum rate versus power gain factor, where simple power allocation and beam allocation policies
are employed for the proposed PDMA approach.

can perform under different overload ratios (λ = 133% ∼ 233%).

In the simulations, the performance of the PDMA approach is firstly evaluated without any optimization

on pattern mapping, i.e., simple power allocation and beam allocation policies are adopted. For the simple

power allocation policy [5], users are sorted in an ascending order with respect to the normalized channel

gain. Let p0 denote the basic transmit power, which is allocated to the first ordered user. Then, the transmit

power allocated to the k-th ordered user is set to µk−1p0, where µ denotes the power gain factor. For

the simple beam allocation policy, the basic pattern design criterion [8] is that a larger transmit diversity

order is allocated to the user with smaller normalized channel gain, and vice versa.

In Fig. 3, we show the AC sum rate of the proposed PDMA approach. Also illustrated in the simulations

as performance benchmarks are the AC sum rates of the OMA and PD-NOMA approaches. As for the

OMA approach, the number of users is set to 3, i.e., each user monopolizes one beam. As for the PD-

NOMA approach, the number of users is set to 6, i.e., every two users share one beam [5]. As for the

PDMA approach, the simple power allocation and beam allocation policies are employed. The sum transmit
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Fig. 4. AC sum rate versus sum transmit power, where a simple beam allocation policy is employed.

power is set to 30dBm in the figure. Firstly, it can be observed from the figure that the performance of

the proposed PDMA approach is better than those of the OMA and PD-NOMA approaches when the

overload ratio λ > 1. Note here that a relatively higher computational complexity as the price will be paid

for the better sum rate of our proposed approach compared with the other “simple” or non-joint design.

Secondly, it can be observed that the performance deteriorates drastically when the power gain factor µ

decreases from 1 to 0, and the reason is that the proposed PDMA approach prefers user fairness to system

performance if µ < 1 . It can also be observed that the performance deteriorates slowly when µ increases

from 1, and the reason is that the proposed PDMA approach prefers system performance to user fairness

if µ > 1. When µ increases from 1, less power is allocated to the weaker user. Correspondingly, the

performance of the user targeted by the beamforming deteriorates drastically, which impairs the system

performance. Thirdly, it can be observed that the performance is not improved remarkably when K is

increased. The reason is that the weaker user is still targeted by the beamforming even when K is increased.

It shows the important role of the weaker user targeted by the beamforming on system performance.

In Fig. 4, we compare the AC sum rates between the proposed PDMA approach employing a simple
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Fig. 5. AC sum rate versus sum transmit power, where a simple power allocation policy is employed
with µ = 0.5.

power allocation policy with µ = 0.5 and the proposed PDMA approach employing an optimal power

allocation policy, where a simple beam allocation policy is employed. We can see that the performance

of the proposed PDMA approach is improved slightly when power allocation is optimized.

In Fig. 5 and Fig. 6, we compare the AC sum rates between the proposed PDMA approach employing

a simple beam allocation policy and the proposed PDMA approach employing an optimal beam allocation

policy, where a simple power allocation policy is employed with µ = 0.5 in Fig. 5 and µ = 1.5 in Fig. 6.

It can be observed that the PDMA approach employing the optimal beam allocation policy achieves great

performance gain over the PDMA approach employing the simple beam allocation policy, which verifies

the effectiveness of the proposed beam allocation policy. We can see from the figures that the performance

of the proposed approach with µ = 1.5 in Fig. 6 varies in a wider range than that with µ = 0.5 in Fig. 5

when the simple beam power allocation policy is utilized, which reveals that the impact of stronger users

on system performance is larger when beam allocation is not optimized. We can also see from the figures

that the performance of the proposed approach with µ = 0.5 in Fig. 5 varies in a wider range than the
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Fig. 6. AC sum rate versus sum transmit power, where a simple power allocation policy is employed
with µ = 1.5.

scheme with µ = 1.5 in Fig. 6 when the optimal beam power allocation policy is utilized, which reveals

that the impact of weaker users on system performance is larger when beam allocation is optimized.

In Fig. 7, we compare the AC sum rates between the proposed PDMA approach employing simple

power allocation and beam allocation policies and the proposed PDMA approach employing optimal power

allocation and beam allocation polices. We can see from the figure that the performance of the proposed

PDMA approach is improved greatly when both power allocation and beam allocation are optimized. It

can be seen from Fig. 4 to Fig. 7 that the optimization of beam allocation yields a significant improvement

of system performance than the optimization of power allocation.

VI. CONCLUSIONS

In this paper, we have proposed a PDMA joint design approach based on both the power domain and

beam domain, which can be treated as a more general framework of the PD-NOMA and OMA approaches.

The proposed PDMA approach enables the integration of a LAS into multiple access naturally. By using

the optimized power allocation and beam allocation policies, great performance gain has been achieved.
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Fig. 7. AC sum rate versus sum transmit power, where optimal power allocation and beam allocation
policies are employed.

For the future work, we would like to explore the sensitivity of our proposed approach to CSI estimation

and feedback errors.
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APPENDIX I

PROOF OF THEOREM 1

The optimization problem in (12) can be reshaped as a standard form problem [23] as follows

min
P

f (P ) = −
N∑
n=1

K∑
k=1

log2

(
1 +

|hnk|2bnkpnk
1 + |hnk|2wnk

)
s.t. C1: gnk1 (P ) = δnk − pnk ≤ 0, n = 1, 2, · · · , N, k = 1, 2, · · · , K,

C2: g2(P ) =
N∑
n=1

K∑
k=1

pnk − Psum ≤ 0,

C3: gnk3 (P ) = Rmin
nk − log2

(
1 +

|hnk|2bnkpnk
1 + |hnk|2wnk

)
≤ 0, n = 1, 2, · · · , N, k = 1, 2, · · · , K,

(16)

where wnk =


K∑

k′=k+1

bnk′pnk′ , n = 1, 2, · · · , N, k = 1,2, · · · ,K − 1,

0, n = 1, 2, · · · , N, k = K.

Next, we analyze the properties of the functions f(P ), gnk1 (P ), g2(P ) and gnk3 (P ). It is obvious that

gnk1 (P ) is affine in P for any n and k and that g2(P ) is affine in P as well. Due to the independence

of |hnk|2 and wnk on pnk, gnk3 (P ) is convex in P for any n and k. As for f(P ), it can be readily seen

that wnk couples multiple variables with respect to k but not n. Then, according to the transitivity of

the convexity [20], the convexity of f(P ) can be derived from the convexity of the function f(pn) =

−
K∑
k=1

log2

(
1 + |hnk|2bnkpnk

1+|hnk|2wnk

)
with pn = [P ]Tn for n = 1, 2, · · · , N .

Now we investigate the convexity of f(pn). Let ∇2f(pn) denote the Hessian matrix of f(pn) whose

elements are given by (17) at the bottom of next page. Define

α0
∆
=

1(
1

|hn1|2
+

K∑
l=1

bnlpnl

)2

ln 2

, (18)

βk
∆
=

1

ln 2

k∑
k′=1

 1(
1

|hn(k′+1)|2
+ wnk′

)2 −
1(

1
|hnk′ |

2 + wnk′
)2

, k = 1, 2, · · · , K − 1. (19)
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Then, the Hessian matrix can be expressed as follows

∇2f(pn) =



α0 α0 α0 · · · α0

α0 α0 + β1 α0 + β1 · · · α0 + β1

α0 α0 + β1 α0 + β2 · · · α0 + β2

...
...

... . . . ...

α0 α0 + β1 α0 + β2 · · · α0 + βK−1


, n = 1, 2, · · · , N. (20)

Recall that the property of SIC: |hnk| ≤ |hnk′ | holds for any n if 1 ≤ k ≤ k′ ≤ K. Then, it can be readily

obtained that that α0 > 0 and βk ≥ 0 for 1 ≤ k ≤ K − 1. Correspondingly, we have ∇2f (pn) � 0.

Therefore, the function f(pn) is convex in pn for any n = 1, 2, · · · , N .

According to the above discussions, the optimization problem in (12) can be readily proved to be

convex. This completes the proof.

APPENDIX II

PROOF OF THEOREM 2

To prove that B̄ can be set to I if the BF and SF matrices are constructed based on the ZF or MMSE

criteria, we take the case for ZF-BF and ZF-SF as examples, and the case for MMSE-BF and MMSE-

SF is similar. Firstly, by using elaborate mathematical manipulations, the considered channel matrix, the

ZF-BF matrix, and the ZF-SF matrix can be reexpressed neatly. Then, by analyzing the relevant items of

the equivalent normalized channel gain in (8) with the reexpressed matrices, particular characteristics can

be obtained. Correspondingly, the conclusion can be readily achieved. We present the proof in detail as

follows.

∇2f(pn)ij =

1(
1

|hn1|2
+

K∑
k′=1

bnk′pnk′

)2

ln 2

, i = 1, ∀j, or

j = 1, ∀i,

1(
1

|hn1|2
+

K∑
k′=1

bnk′pnk′

)2

ln 2

+ 1
ln 2

min(i, j)−1∑
k′=1

 1 1

|hn(k′+1)|2
+wnk′

2 − 1 1

|hnk′ |2
+wnk′

2

, i 6= 1, j 6= 1.

(17)
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Let GC =
[
GH

1tar ,G
H
2tar , · · · ,G

H
ntar

, · · · ,GH
Ntar

]H denote the composite channel matrix of the target

users. Then, Gntar = XntarGC for user ntar with Xntar = eHntar
⊗ INR

. As for ZF-BF, let FC ∈ CNT×NRN

denote the composite ZF-BF matrix. Then, it can be expressed as FC = GH
C

(
GCG

H
C

)−1 if NRN < NT or

FC =
(
GH
CGC

)−1
GH
C otherwise. Because NRN < NT is always guaranteed by the LSA, we take FC =

GH
C

(
GCG

H
C

)−1 for example. It can be reshaped in a partitioned structure FC = [F1,F2, · · · ,Fn, · · · ,FN ].

Correspondingly, the BF vector fn can be expressed in the following form: fn = Fn1
NR×1. Therefore,

the ZF-BF matrix can be expressed as F = [f1,f2, · · · ,fn, · · · ,fN ] = FCY with Y = IN ⊗ 1NR
.

As for ZF-SF, the ZF-SF matrix of the k-th user can be expressed as Vk = GkF
(
FHGH

k GkF
)−1 for

k = 1, 2, · · · , K.

Through proper mathematical manipulations, we have

vHnkGkfn′ = eHn
(
FHGH

k GkF
)−1

FHGH
k GkFen′ = eHn en′ , n, n

′ = 1, 2, · · · , N, k = 1, 2, · · · , K. (21)

Then, the expression in (8) can be simplified to be h̃nk = 1√
σ2
kξnk

, where

ξnk
∆
= vHnkvnk = eHn

(
FHGH

k GkF
)−1

en. (22)

Define Tk = FHGH
k GkF . Then, for user ntar, Tntar can be reshaped as follows

Tntar = Y HFH
C GH

CX
H
ntar

XntarGCFCY

= Y HXH
ntar

XntarY

, Πntar .

(23)

According to the above definitions of Xntar and Y , it can be readily obtained that all the elements of the

square matrix Πntar are zeros except [Πntar ]ntarntar
= 1. Therefore, when h̃nntar is calculated through the

expression in (8) for user ntar on all the beams except the ntar-th beam, the noise term will be unusually

magnified and h̃nntar will be approximately equal to zero for any n = 1, 2, · · · , N and n 6= ntar, which

means that the ntar-th user may be located in the coverage edge of the n-th beam. Obviously, neither

power resources nor beam resources allocated to the ntar-th user on the n-th beam can contribute much to

system performance. Correspondingly, the relevant b̃nntar can be set to zero if h̃nntar ≈ 0. Then, according

to the above discussions, B̄ = I can be readily obtained. This completes the proof.
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