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Abstract—We consider the problem of data collection from a
continental-scale network of energy harvesting sensors,palied
to tracking mobile assets in rural environments. Our appliation
constraints favour a highly asymmetric solution, with heavly

duty-cycled sensor nodes communicating with powered base

Moreover, since sensor nodes are typically powered by bat-
teries with limited energy, energy harvesting techniqueshs

as solar panel [9] and Wireless Power Transfer (WPT) [10],

[11] have investigated to extend lifetime of nodes. WPT

stations. We study a novel scheduling optimisation problem IS implementable by various technologies such as inductive

for energy harvesting mobile sensor network, that maximise
the amount of collected data under the constraints of radio
link quality and energy harvesting efficiency, while ensumg a
fair data reception. We show that the problem is NP-complete
and propose a heuristic algorithm to approximate the optima
scheduling solution in polynomial time. Moreover, our algagithm
is flexible in handling progressive energy harvesting evest such
as with solar panels, or opportunistic and bursty events, sth
as with Wireless Power Transfer. We use empirical link qualiy
data, solar energy, and WPT efficiency to evaluate the propesl
algorithm in extensive simulations and compare its perfornance
to state-of-the-art. We show that our algorithm achieves tgh
data reception rates, under different fairness and node létime
constraints.

Index Terms—Link scheduling, Optimisation, Fairness, Energy
Harvesting, Mobile Sensor Network

I. INTRODUCTION

coupling, magnetic resonate coupling, and electromagneti
radiation, for short, medium, and long distance applicegio
respectively [12], [13]. Presently, the long distance WPT
system has been studied to power a large number of devices
distributed in a wide area [14], [15], [16].

A number of considerations make the data collection in
wildlife tracking non-trivial. First, the number of nodearcbe
quite large (several hundreds) and while the nodes normally
arrive back in large groups, their exact arrival sequence is
often unknown. Second, during days with cloudy skies and
adverse solar charging weather conditions, the amountaf so
energy harvested is reduced. In addition, charging effigien
of WPT becomes very low when the node is far from the WPT
transmitter (large-scale channel fading) [17] or encoumnte
antenna orientation bias (shown in Section VI-A). It is thus
critical to collect more data from those nodes before their
harvested energy is exhausted. Third, the wireless linkitgua

R ECENT advances in embedded systems and batter_y teBPaata transmission between each node and the BS may vary
nology have enabled a new class of large-scale wirelggy, fime. Having a node transmit during instances when the

sensing applications [1], [2]. Consider a swarm of microiade

channel quality is poor is likely to result in packet recepti

vehicles fitted with a variety of sensors that can achieve ﬁn@rrors which in turn would require retransmissions andsthu

graingd threfa_-dimensionall sampling of our physical SPaCGTereased energy expenditure. Fourth, data should be down-
enabling exciting new applications such as urban surveida loaded from the nodes in a fair way. In particular, the amount

disaster recovery and environmental monitoring [3], [4].
is now possible to monitor individual movement patterns
wildlife alongside the various aspects of their environtrjéh

[6], [7], [8]. In a typical mobile sensing scenario, sensodes

of data collected from each node should be greater than
certain application-specific threshold. This is imparten

maximise the accuracy of data analysis, e.g., in the countext

mobility modelling and population characteristics for dlife

mounted on a carrier (e.g., vehicle or animal) collect nwousr ‘monitoring [18], [19].

sensor readings while in transit. The nodes ultimatelyarri

Conventional scheduling such as the one employed in IEEE

back at a known rendezvous point (e.g., command centergys 15 4 [20], [21] are based on First Come First Served

animal pen), often as a large swarm and remain there

CFS), which we refer to abatch processingBatch pro-

an extended period of time. The data stored on each sensQLgjng has limited performance in real-world conditiofitsw
node is offloaded to a base station (BS) during this tlmf?regular radio channels and limited bandwidth. Any nodgwi

An earlier version of this article appeared in the Procegsliof the 11th the
European Conference on Wireless Sensor Netwded§SN [Li et al. 2014].
This article features a new scheduling optimisation witlergg harvesting,
experimental characterisation and more complete theatetinalysis.
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poor link quality occupies the channel due to retransmissio
while the nodes with higher link quality have to wait. In
addition, batch processing does not support data collectio
fairness, potentially downloading a large amount of dadanfr
a small subset of nodes.

As an example, consider the problem of scheduling data
transmissions in cattle monitoring application [22]. A sen
collar which contains embedded sensors (e.g., GPS, 3-axis
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accelerometer and magnetometer) is attached to the cowMie discuss the communication protocol on which EHFS is
record biological data [23], [24], [25]. The solar panel tie t based in Section Ill. Section IV formulates system and energ
node harvests energy continuously during the sunny daytinmeodels in data collection. In Section V, we first present the
A WPT receiver on the sensor collar harvests energy frosecheduling optimisation and constraints. Then we prové tha
the WPT transmitter opportunistically when the animal stayhe optimisation problem is NP-complete and introduce our
in the charging range. The data is offloaded to a BS whiguboptimal algorithm. Section VI demonstrates the experi-
is deployed near a cattle drinking trough. Figure 1 depictsents on Sensor-WPT testbed, and compares the performance
an energy harvesting mobile sensor network (MSN) for datd the EHFS algorithm to the state-of-the-art in simulasion
collection. Finally, the paper is concluded in Section VII.

II. RELATED WORK

In this section, we review the literature on link scheduling
and optimisation in wireless networks. To solve different
ﬂ optimisation goals, recent work considers throughputrgne
consumption or time delay.

/ The cow with sensor collar  Extensive studies have been conducted on link scheduling
in cellular networks. In [26], the link quality is predicted
H\ - ‘ ‘ _% by an application framework which tracks the direction of
T~ =7 m travel of mobile phones at the BS. They develop energy-aware
) - scheduling algorithms for different application worklealich
as syncing or streaming. Some scheduling optimisationstwhi
~. consider multicast [27], quality-of-service assurancg] [@nd
fair relaying with multiple antennas [29] are proposed to
m achieve optimal delay, capacity gain or network utility.eTh
majority of related work has focused on addressing the
A4 scheduling problem in the context of wireless networks [30]
[31], [32], [33]. However, the notion of fairness in wiretes
- WPT transmitter networks focuses on fair allocation, such as channelsstask
) o o ) ~among different queues, or time slots among the links in
Fig. 1. Motivating Application: the energy harvesting mebi each super frame, which is different from the fairness iradat
sensor network for cattle monitoring. The sensor collar ig)iection of MSN.
equipped with a solar panel and a WPT receiver. A link scheduling for maximum throughput-utility in single
hop networks with the constraint of network delay is presént

In this paper, we propose Energy Harvesting Fair Schedut [34]. It establishes a delay-based policy for utility iept
ing (EHFS) to optimise data collection in a large-scale gnermisation. The policy provides deterministic worst-caséayge
harvesting sensor network. The optimisation model sclesdubounds with total throughput-utility guarantee. The autho
transmissions based on both link quality and residual gne&frg in [35] proposes an opportunistic scheduling algorithmt tha
the node. It also ensures fairness by attempting to guarangarantees a bounded worst case delay in single-hop véreles
a certain application-specific amount of data collectednfronetworks. However, those scheduling algorithms are noi-app
each node. We first show that this optimisation problem @able in MSNs, because they do not consider the constrdints o
NP-complete. Next, we propose EHFS heuristic algorithm tmergy and fairness of collection. In [36], a sensing sclieglu
optimise the scheduling in linear time. The EHFS algorithmong sensor nodes is presented to maximise the overall
prioritises the nodes for scheduling based on a ratio of tiguality of Monitoring utility subject to the energy usageher
link quality and harvested energy. This enables the nod#és wscheduling algorithm maximises the overall utility which i
the lowest energy reserves and good communication links evaluate quality of sensor readings based on the greedy
to transfer their data first. In addition, we develop a statdgorithm. For body sensor networks, Sidhanth,al. focus
transition model to address the fairness criterion and mme on polling-based communication protocols, and address the
overall network goodput. Moreover, a Sensor-WPT testbedpsoblem of optimising the polling schedule to achieve miaim
built to characterise the WPT charging efficiency. Spedlfica energy consumption and latency [37]. They formulate the
the experimental results show that WPT efficiency is jointlgroblem as a geometric program and solve it by convex
affected by distance between WPT transmitter and receiveptimisation.
and their antenna orientation. While we use the wildlife mon To the best of our knowledge, there is no research focusing
itoring application as a case study, the proposed optifoisaton link scheduling optimisation for fair data collection in
model and EHFS algorithm are application-agnostic andéerenergy harvesting MSNs. The recent work in the literature
applicable to a wide variety of large-scale energy harmgstiis not applicable because they do not optimise the schegulin
mobile sensing scenarios with delay tolerance. with the requirements of both energy consumption and data

The rest of paper is organised as follows: Section teception fairness. The key difference of our work over pre-
presents related work on link scheduling and optimisatiomious scheduling optimisation is that for a single-hop MSN
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Fig. 2: The timing relationshipT'start; and T'end; stand for the starting and ending time of node data transmission
respectively. The nodes with different data amounts aredwdled to transmit untit = F'.

which includes a large number of energy harvesting nodes, IV. SYSTEM MODEL

data collection is maximised in a fair way. We formulate the on the basis of Section IlI, the BS aggregates the nodes
transmission scheduling optimisation model in Section V. and channel information in the RCAP in order to schedule the
transmissions. In this section, we explain the basic rmtati
and present an abstract generalisable model of the network,
which is used for the optimisation model presented in the
In this section, we present a communication protocol taection V-A. We assume that there avenodes that directly

improve the data collection performance under our speciff@émmunicate with the BS using single-hop communication.
constraints. The residual energy of a nodeat the beginning of RCAP is

0
We propose a communication protocol for scheduling opﬁi—enm?d byEl In order to prevent a node from completely .
misation in MSN. We utilise a 2-stage communication mod epleting its battery, we assume that a node powers down if

with random channel access period (RCAP) followed bge residual energy goes below a certain thresiaid In this

scheduled data transmission period (SDTP) (see Figurg 2) aper, a node in S_UCh a state is referred to aead node .
This may happen if any node consumes more energy than it

The two periods interchange periodically until all the ns’)d':"'harvests The wireless channel between each node and the BS

finish data transmissions. woically infl db ety of ; tal fact
The purpose of the RCAP is to collect information abodp YPIcay Influenced by a varely of environmental factor

. ) . X . and the transmission noise. The channel variability in turn
sensor nodes, including their current link quality, the amto . .
. : . . _influences the Packet Reception Rate (PRR) of the node. We
of available data, and their power resources. This datarfits | . . .
i e§t|mate the PRR as a function of empirically collected RSSI
a singleHello packet and the nodes compete for the channte . X .
. . ; rages from a real testbed as outlined in Section VI-B.
in a random-access fashion. Nodes check the radio channe
for other data transmissions by using carrier sensing (GS)A Channel Model for Data Transmission
avoid packet collisions and the receptiontdéllo packets is = ) o )
acknowledged by the BS, so the nodes can turn off their radiog¢c0rding to the super frame as shown in Figure 2, we di-
until the end of the RCAP. However, ifello packets collision Vide the SDTPtoa number of slots where,S = 3 ;_; AT;.
happen, the senders have to back off a random time to seﬁgae,smtj (j € [1,5]) is allocated by the BS to only one
the channel again. node’s transmission for the purpose of avoiding collisions

The BS calculates the transmission schedule at the endT&erefore, the allocated tim@T; of the node: contains

RCAP by running the EHFS algorithm that we illustrate ir'imf[!tiplle tirlnetz_ slot? inthone ZUPG.r framﬁ.fEHFS Catlﬁuiaiﬁs
Section V-B. BS informs all sensor nodes the optimal scrmdLﬂphm:jal sou |(:_ns_ 0(; | eb nlo _esd|r;_ ea:jc trr?mtetslo ab €

by broadcasting &ACK packet at the end of the RCAP. schedule is optimised globally. is defined as € lotainumber
) . of super frames needed for all the nodes to finish their data
The SDTP is driven by the schedule calculated by tf}e . ;
i . . e ransmissions. The sequence number of super frame is denote

EHFS algorithm. The nodes find their transmission dATA :

slot) within the super frame and only transmit during theﬁlsf.(f € [1, ). We assume the residual energy when node
1 arrives at the data collection centre 5 (i € [1, N]). The

scheduled time to prevent interference. The Ie_ngth _of t%R is indicated by;f whereq! € [0,1]. Additionally o
DATA slots IS selected by the_ sgheduler and wil typlcalhfnay change from oné ’super frazme to 7the. next due to :ché time-
allow for multiple packgt transmlssu_)ns. We use ggardualsr varying channel. We assumﬁf does not change during the
to_prevent packet collisions due to t|me—synchron|satrmore._ super frame dué to block fading. The path loss of the sensor-
e B e b, e ok, MYl ca i aproxmate 3 fo-5pace pah oss (3
consume limited energy due to a long sleeping time during tﬁgd is given by,

SDTP. L(dips) = Ki1(d] 5g)**, 1)

IIl. COMMUNICATION PROTOCOL



where K, indicates the path loss componed{;BS is the Similarly, for all super frames, the data received by the BS
distance between the nodand BS at framg. K is denoted from any node is defined asy;, where

by ) F S

K1:7(47T) 5 (2) aZ:Zfoquj,(ze [LN]) (10)
GtzGrz/\() f=1j5=1

where Gy, and G, are the antenna gains of the transmitter

and receiver, respectivelyy = ¢/ fo, which is a ratio of speed B. Energy Model

of light ¢ and carrier frequency,. We define Signal-to-Noise  The energy consumption of nodes arises from the trans-

ratio (SNR) for data communication between the node and Bissions in RCAP and SDTP as shown in Figure 2. In this
as+;. Given an additive white Gaussian noise (AWGN) Witthaper, we 1€ heiior €ra—hack aNdera_sacr D the energy

power No, - consumption of transmitting onidello packet, receiving one
P L (3) HACKand oneSACKof the nodes, respectively. The, repre-
‘ NOL(d{BS) ’ sents energy consumption of transmitting one data packet. D

, ] _ to the tiny energy consumption of carrier sensing compared t
where P/ denotes the transmit power of the nodeThe transmitting and receiving packets [40], we neglect theesam
small-scale fading is indicated by. Then, the average SNRjn our model. The energy consumption of nada the RCAP

for the node;i is calculated by is E 4, where
tx -
7; = L (4) Ex = etz—heilo + €ra—hack + €ra—sack (11)
K1 No(d! 5g)%>

We next defineEp; as the energy that nodeconsumes on
In this paper, we derive the packet error probability of theata transmission in all super frames, where

channel between the sensor node and the BS based on its out- F g

age probablllf[y, which provides the Iqwer bo_und of the_z packe Ep; = Z ZIJ ere, (i € [1,N]) (12)

error probability under an assumption of ideal coding and Y

modulation. For illustration purpose, Rayleigh Block fagli . ] )

is considered [39]. The channel coefficient remains comstan FOr €nergy harvesting, the node may receive energy input

within each block, and varies between blocks. At timehe from multiple sources, such as solar, vibration, thermal, o
outage probability at the nodeis given by WPT. The total energy input for the node is the sum of energy

) harvested from these sources over time. In this paper, wesfoc
Pr(y] < 7o) = / ’ p(Y)d(y]) =1 — exp(l—?), (5) On two energy harvesting sources, namely, solar and WPT, and
Yi elaborate further on them. The amount of harvested energy
where~ is the SNR threshold required for successful receffOm WPT depends on the transmit power, wavelength of the
tion at the BS. F signals and the distance between the RF energy source and
the harvesting node. We define the transmit power of WPT as
PYWFPT_ The harvesting power of nodeat framef is P; ;.
Therefore, the power harvested from the WPT transmitter can

F=1j=1

Substituting Equation (4) into Equation (5), the packeverr
probability at the BS can be given by

Pr s =1 — exp(— Ky - (d] 5g)™), (6) be calculated as follows:
Ko K1 Novo ) BYIT = 6i(d)8: (0) Py T R g |? (13)
B whered;(d) € (0,1] is a constant indicating WPT efficiency

factor given the distance between nadend the charger. The
other constand;(#) € (0, 1] denotes WPT efficiency given the
CIif = exp(—Kype - (difBS)K2)' (8) antenna alignment between nadand the charger; ; is the
’ WPT channel gain between noéland the charger at framge
The data payload stored on each node is represented byrurthermore, we denote the power harvested from solar panel
and the fairness coefficients is wherex € (0,100%]. Thus, gg psolar,
the data reception fairness ensures that the number of dat@f\’,en the time of WPT is; and the solar charging duration
packets the BS collects from each node is not less thay. s 7/, the harvested energy of sensads given by
We define the boolean variablg; as a transmission indicator
for nodei € [1, N] associated with the slot € [1, 5] in the AEB; ;= 6i(d)6:(0)(Ply " mi)hig [P + PEFer Tl (14)
super framef € [1, F). xfj = 1 means node has jth slot
reserved for transmission in super frarfie The number of V. FAIR SCHEDULING WITH ENERGY HARVESTING
data packets received by the BS in a super frame is defineqy, his section, we first formulate fair scheduling optimisa
asvy, where tion under the constraints of fairness and energy hangstin
N S We show that the optimisation problem is NP-complete. Next,
v = szlfj . qif, (f €[1,F)) (9) a heuristic algorithm, EHFS is proposed to approximate the
i=1 j=1

Therefore, the;/ can be

optimal solution.



A. Optimisation Formulation (24) ensures that the nodetops data transmissiongh‘f =0.

F B. EHFS Algorithm
mazimize > Maximising the collected data presented in Section V-A is
=t a typical 0-1 Multiple Knapsack Problem (MKP) [41]. We
subject to: E° — XF:(EA ! 4 AE: ;) — Eps > Era, reduce an instancg of a MKP to our scheduling optimisation
= problem by assigning\7; to each knapsack. Therefore, the
(i € [1, N]) (15) capacity of the knapsack is equal f57;. The items to be
@ >k N, (i€[1,N], ke (0,1]) (16) put in knapsacks are data packets Whose_ size is pr(_)rated
a < N, (i€ [LN)) a7 by qu. The parameters of the energy and fairness conditions
i T ’ ‘ (constraint (15) and (16)) are chosen so that they are satisfi
vy <1, @e[L,N], jell 8], fell F]) (18) by any placement of items. In this way, optimal placement
N P ) of items in knapsacks is reduced to such an instance of our
;xJ <1, GelLs] fell,F) (19) " scheduling problem. Since the problem is obviously an NP
P problem, this shows that our scheduling problem presemted i
i — Z Z ad,-qf >vl, (ie[L,N], jeL,89] the Section V-A is NP-complete.
g=1w=1 We propose a EHFS algorithm to approximate the optimal
fel,F) (20) solution. Due to the prominent effect of energy harvesting a
vl > szjm (' >4, 5 €[1,8]) (21) link quality variation on the scheduling, a ratio value foet

nodei is denoted as)/, where

ol >0l (9= £ >255€ LS, FELF]) (22 .

F—f f_ q; .

S et <o, e LN, G e L, 8) @3) = Ve LN e LT (29)
a=1

;cf] <@l (iel,N],je[1,8], fe[l,F)) (24) Accordingly, Ezf is obtained by

Based on the notations in the problem formulation, we for- ¢ 0 L £ F S8 #

mulate the EHFS for finding the optimal schedules as followsZi = £i — Y (Ea-o] +AE ;)= al-en (26)
Objective function of the optimisation model is to maximige Jr=1 pr=ti=1

of all I super frames. Constraint (15) specifies the minimufe motivation of calculating;’ is to prioritise the nodes
remaining energy to be abovg,. A node stops accessing théyased on both the link quality and harvested energy. The EHFS
channel after all its data has been transmitted or cons{E)  41gorithm gives a high transmission priority to the nodehwit

is violated. Consequently, it does not waste energy in RCAfrger,/. This method achieves large data reception because

in subsequent super frames. For this purpeses defined for the nodes with the samg, the node with the smallest
as an indicator of RCAP in a super frame for the node. If thgs gets higher transmitting priority. Similarly, for the nade

nodei does not compete for the channel in the RCAP of supg} f ; ; ! : P
frame f, o/ is equal 'I[Do 05 (Ea-¢f) indicates the ener Pl the same; , one with higher; has higher priority.
' Pi 2 f=1\HA Py 9 Inour algorithm, the node works in three states, Access &

consumption of the node in the RCAP of all super frameg,, i, yransmission (AD), NonAccess (NA) and NonData (ND).
Constraint (16) guarantees that the BS receives sufficietat d,, A state, the node competes for the channel in RCAP and

packets to meet the faimess requirement. Constraint (5! transmits data in SDTP as shown in Figure 2. In NA state, the

thed value Ofo‘_i b3r’] the total dpayloadAi. _Co_nstr:_;unts |(18) node neither accesses the channel nor transmits data lyut onl
and (19) specify t at at any data transmission time slot Or_Pé(ceives the&SACKpackets for the purpose of saving energy in
one node communicates with the BS to prevent transmissign, 5 ner frame. More importantly, none of the nodes, which
collisions. _ are in the NA state transmit data given that no time slots are
The only unknown s the total number of super frameg,cated to them. This helps more nodes achieve fairnass. |
during which a node is required to transmit. In other WordND state, the node does not turn on the radio and remains in

£ ino S ; ; f
¢; is not known. To determing; , we define a variable;; for e mode. Note that no matter which state the node works
in it harvests energy by WPT transmitter.

nodei at any slotj of super framef. Accordingly, constraint
The EHFS algorithm develops two steps to maximise the

(20) presents whether nodéas stopped the data transmission

I J 9 9 ; i i
Or Not.>g_; D=1 73,47 1S the total received packets untily,iy reception withy!. It is implemented as shown in Algo-
the current slotj of super framef. If the amount of data (hm 1.

packets received from nodematches the size of payloads Initially, all nodes are in AD state and the BS schedules

vfj is equal to 0. Constraints (21) and (22) ensure the futuig, ode; (i € [1, N]) which has maximumyf to transmit
slots j' and super frameg havev; = 0 if \; packets have gata. The BS records the number of data packets from the
been received from node Constraint (23) guarantees f,d[ node. Once the nodé meets the fairness of data reception
of the future super frames is 0 if{j = 0. As a result, the (constraint (16)), it transfers to the NA state. The benéiNA
remaining energy of nodéwhich is restricted by the RCAP state is to reduce the channel competition since the number

indicator gof stops decreasing in constraint (15). Constraimf nodes competing for the channel is decreased. Certainly,



Algorithm 1 EHFS Algorithm charging is carried out in the 915 MHz band while sensor
1: nodes are in AD state and compete the channel nodes communicate in the 2.4 GHz band, our network achieves
2: The BS calculates; for the node, foe [1,1;] simultaneous wireless information and power transfer. The
3: The BS sorts the nodes by/, thenn/ > /(i # i',i' € isotropic radiated power of WPT transmitter with 8 dBi

) [1, M) . integrated antenna gain is 3W. The sensor node is connected t
. The BS schedules the noddo transmit . . - - .
S if a;i > (k- \;) then a P2110 powerharvesting board with a 1 dBi omni-directional

4
5:
6: The nodei goes to NA state antenna [43]. The hardware setup is shown in Figure 3.
7
8

The BS schedules the next one to transmit
. else
9:  The node: remains in AD state
10: end if
11: if every node hasy; > (k- A;) Vi€ [1, N] then
12:  All the nodes transfer to AD state
13:  The BS calculates’ for each node

K3

14:  The BS sorts the nodes by, thenn/ >/, (i #i',i’ € i K : :

[1, N]) = S
15: if B; > Eyqthen
16: The BS schedules the noddo transmit
17:  else
18: The nodei changes state to the ND base statidh
19: The BS schedules the next one to transmit
20:  end if e
21:  if a; < \; then QEmm——r P
22: The node: remains in AD state __ e sensor With :
23: else o Xbee and
24: The node: changes state to the ND R, - WPT receiver g
25.  end if —
26: end if

Fig. 3: The hardware setup contains the BS, WPT transmitter
after the first step, all the nodes have at least); data @nd sensornode with RFBee transceiver (for data transmissi

packets being transmitted successfully and the fair remepf N 2.4 GHz) and WPT receiver.

data is achieved. At the second step, all the nodes change the

state from NA to AD. Then, the BS schedules the node with

Iargestnzf to transmit first. To maximise data reception, node In the first experiment, we measure the WPT efficiency
i remains in AD state until either constraint (15) or (17) neactor on distanceg;(d) in Equation (14). As shown in
longer holds. Moreover, if the constraint of (15) or (17) &t n Figure 4, the effective amount of power that can be captured
fulfilled by the node;, it transitions to ND state. By using thisby a sensor node varies with the distance between the node
approach, the number of data packets collected by the BSaisd the BS. Due to radiation exposure protection, the distan
maximised, meanwhile, the energy and fairness requiresnepétween WPT transmitter and P2110 powerharvesting board
are both achieved. has to be further than 20 cm.

In the second experiment, we vary WPT receiver antenna
V1. PERFORMANCEEVALUATION orientation in order to configurég;(#) in Equation (14). The
Experiments are conducted on our Sensor-WPT testbeddigtance between WPT transmitter and the sensor node is fixed
measure the WPT efficiency as a fusion of distance betwegexm Initially, the antenna of WPT receiver on the node and
WPT transmitter and receiver and their antenna orientatiQyPT transmitter directly face towards each other. Theesfor
Then, given optimal schedules from the optimisation bie initial orientation is denoted as Zero degree rotatidre
AMPL, the performance of our EHFS algorithm is comparegrientation increases 45 degrees every ¥)@@d the sensor
to the optimal schedules. We utilise empirical link qualitthode records 1000 samples at each orientation. The sensor
solar and WPT energy harvesting to evaluate the proposedrde logs the sequence numbers and RSS! values of received
gorithm in extensive simulations and compare its perfolreanpackets in their flash. Figure 5 shows that antenna oriemtati

to state-of-the-art. affects the received power at the WPT receiver. When the
antenna orientation is at 90 and 270 degrees (two antennas
A. Experiments on Sensor-WPT Testbed are orthogonal to each other), the node harvests the lowest

We design two experiments to characterise the WPT effin €19y from the WPT transmitter.

ciency factorsy;(d) and §;(#), on our Sensor-WPT testbed.  Based on the two experiments, we observe that the WPT

In Sensor-WPT, each sensor node is equipped witheficiency is jointly affected by distance between WPT trans
rechargeable battery and consumes energy on sensing amnittler and receiver, and their antenna orientation. Fnéfie
data transmission activities. A Powercast [42] wirelesrghr parametersy;(6) and §;(d) are imported to our simulation
transmits power to the sensor nodes by WPT. Since WR®nfiguration in the next Section.
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show the standard deviation over 250 packets.

B [ odemee " asdees " smacgree 135 seges 180 amores 225 amges 270k 315 anres The WPT efficiency parameters;(6) and §;(d) are 0.5.
Additionally, in our simulations, the value df?, 6;(f) and
d;(d) are given on purpose so that some dead nodes which
i run out of energy can be observed among different scheduling
algorithms. The RSSI trace recorded by the sensors in our
: testbed (shown in Figure 3) is imported to our simulator,clihi
provides an environment to conduct repeatable simulations
0 1000 2,000 3000 4,000 5000 6,000 7000 8,000  based on empirical data. In this paper, we convert the RSSI
Sample Sequence to PRR for theq/ by the experimental results of PRR-RSSI
Fig. 5: Received power on the sensor node for varying anterigéationship [46].
orientation of the WPT receiver.
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B. Simulation Parameters C. Scenarios and Metrics

The data collection network in the simulation contains . . .
: We simulate the EHFS algorithm in Node On Pasture (NOP
one BS andN nodes (Vv € [10,300]) which are randomly g ( )

o L : cenario and Node Arriving Pasture (NAP) scenario. In NOP
dlstrlbute_d W'thm. the open da_ta collection centre. Themo‘icenario, we assume all the nodes are in the monitoring area
E:rzf)]mmunllf:ates with the B.S using Ccdgggzg r?‘d'ofm Zif GHEom the start of experiment to the end. In NAP scenario, the

€ working temperature is measure ¢ ETeIOre.Vec,  nodes arrive at the area at different times. We evaluate thre
I, and I, is 3V, 35mA and 15mA, respectively [44]. We

fi th o threshold of th ; performance metrics: number of data packets received by the
2057'?:58 & remaining energy threshold of the senisgyto BS (data reception), the number of fair nodes and the number

of dead nodes. Specifically, tHair node denotes the node

Payload of.the data packet has 32 bytes. The length of Mhich fulfils a; > k- A; (Constraint (16)). We compare the
Hello packet is 10 bytes. EquallJACK and SACKhave the performance of our EHFS algorithm with optimal solution at

same length asiello. Therefore, we have first. In NOP scenario, each node carries 80 KB data which is

10 x 8 the payload generated by the sensor node. Since the number
Cta—hello = Vee * Itz - Ry 0.03m.J (27)  of nodes communicating with the BS in a short time is small
in NAP scenario, we increase the data payload to 300 KB in
e e = v = Voo Lo 08 0 01 (28) Order to explore the limits of the scheduling algorithmsr Fo
Ry this reason, a node occupies the channel longer while more
39 % 8 nodes enter the area in NAP scenatrio.
etz = Vee Lt R 0.1mJ (29) To evaluate the performance of the EHFS algorithm in the

NOP and NAP scenarios, two Greedy scheduling algorithms
E? is given by a normal distribution with the mean value ofind FCFS algorithm are constructed in the numerical inves-
50 Joules according to the battery capacity of our sensatigations. Because two basic elements used in the EHFS are
The solar charging energy in the simulation makes use thle remaining energy representedEﬁ and link qualityqu
the Camazotznode, which has been developed for wildlifeof node, the Greedy scheduling algorithms are formulated
tracking [45]. Camazotzeduces data sampling rate when thby them. The first Greedy algorithm is called Low Energy
solar charge power is low. Figure 6 shows the harvested gne(QE) scheduling, namely, the transmission schedule is dase
of the two nodes over 43 hours on wild flying foxes. It isolely on theEif of node. LowerEf implies higher priority
observed that solar energy on the different nodes could bktransmission at super framg High PRR (HP) scheduling
dynamic due to the mobility of nodes, weather, and landscajie the second algorithm where the node with higblérhas
Specifically, the empirical solar energy data is utilisedtie higher priority. We compare them with the EHFS algorithm
energy model (shown in Section IV-B) of our simulator.  with x = 10%, 50% and 90%.



TABLE I: Comparison between the optimal solutions and th x10°

5
EHFS algorithm % 45| i e
+— 4 HAFSOM, k =50% i
Nodes AMPL (Cplex) EHFS < |ersomi=ame a1
Packets Runtime Packets Runtime I o
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2 4999 12 s 4981 01s 525
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5 12498 1m27s | 12484 0.06 s g 1t
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1) Comparing to BenchmarkTo compare to the optimal
schedule shown in Section V-A, we assess the performar
of our algorithm when it operates in ten small-scale networl
where the number of nodes is increased from 1 to 10. This il
tial comparison makes us aware of the performance differer
between the optimal solution and our algorithm. The node
carries 80 KB data, sa; = 2500. In fact, the comparison ‘ ‘ ‘ ‘ ‘
is not affected by different values, thus we choose=50% ° 50 0 b s 250 300
for both the optimal schedules and the EHFS algorithm. The ) _
optimal schedules achieve a maximum number of received d&ig- 8: Number of fair nodes amony, N is from 10 to 300.
packets with the fairness and remaining energy constraints

They are constructed using AMPL and a state of the art ILP ) ) )
solver, Cplex 12.5, in a 2.7 GHz Intel core processor with g \We find the data reception and fair nodes of FCFS, LE and
GB of memory. HP do not vary significantly from N = 150 to 300. The reason

Table | summarises running time, the number of collectdy Indicated by dead nodes which are shown in Figure 9. It
data packets and fair nodes. It is also found that there is Ha°Ws FCFS, LE and HP have much more dead nodes than
dead node in all tests and our algorithm guarantees exadfl§ EHFS algorithm starting from N = 50.
the same number of fair nodes as optimal schedules. On d=t=
reception, the EHFS algorithm and optimal solution have tt
maximum difference which is 706 when N = 9. On averag
the number of packets in our algorithm is less than the AMF
output by around 1.16%. Moreover, our algorithm is muc
more efficient than the optimisation model on runtime.

2) Node On Pasture Scenaridzigure 7 and 8 show the
performance of the aforementioned four scheduling allyorst
on the data reception and fairness. When there are only
nodes in the network, they have pretty similar performanc 10 50 100 150 200 250 300
However, FCFS, LE and HP collect 75.6%, 45.7% and 41.3+o Rumber ofnodes
less data packets than our algorithm when N = 300. With WFFig. 9: Number of dead nodes amoig N is from 10 to 300.
energy harvesting, it is observed that more data packets are
collected with more nodes. The number of fair nodes of our According to the EHFS algorithm, we know thatis a
algorithm is more than the ones of FCFS, LE and HP for 206rucial variable which affects the states transition of enod
180, 155 nodes whefn= 50% and N = 300. The reason is that. The performance of our algorithm varies with different
LE scheduling fails when the low energy nodes have poor linkalue. As shown, they are similar far= 10%, 50% and 90%
quality. The nodes with high PRR are not scheduled, howeveten N is 10. From N = 50 to N = 300; = 10% performs
they still consume energy on channel competitions in RCAPBetter than 50% and 90%. The reason is that any node which
For HP scheduling, the nodes with high PRR occupy the SDT$scheduled to transmit occupies more super frames when
for multiple super frames until they finish the transmissionis increased due to the fairness constraint (16). It makes th
This leads to a large number of dead nodes. However, thagber nodes compete the channel in RCAP repeatedly and cost
nodes could have potentially gained higher data recepltion.energy. However, increasing achieves more data collected
contrast, our algorithm makes the schedule basa@lfomhich from the single node, which benefits some application for
considers both remaining energy and link quality. Morepveandividual sensor monitoring. Therefore, the configunataf
it also achieves the fairness of data collection. x depends on the application requirement.
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3) Fairness Parameter EffecBased on the preceding sim-Figure 13. Due to the increase &f in this application, there
ulations, it is observed that differentaffects the performance are 12 dead nodes with the= 90% in our algorithm at the
of our algorithm. Essentially, the decides the fairness levelmaximum. Moreover, in Figure 13, the FCFS, LE and HP also
in EHFS. In this experiment, we analyse the impactofh have smaller dead nodes compared with the NOP scenario.
the NOP scenario with 300 nodes. Specifically, thie varied The reason is that a small number of nodes is scheduled to
from 10% to 100%. The performance of data reception, fairansmit at one super frame and they can finish 300 KB data
nodes and dead nodes are shown in Figure 10. transmission soon. So the newly arrived nodes have small

channel competition.
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Fig. 10: The effect ofx on the performance of EHFS algo- 50 100 150 200 250 300
rithm. N = 300 andx is from 10% to 100%. Rumber of nodes
Fig. 11: Data packets collected by the BS.is from 10 to

As shown in Figure 10, data reception rate decreases aff.
the number of dead nodes slowly increases with the incrgasin
k. This is because the transmission duration of one node
is extended wherk is increased. Other nodes with smal 300
harvested energAE; ; deplete their energy due to RCAP
if the channel is occupied by someone with higﬁ for a
long time. Their data is not collected by the BS before tt
nodes exhaust the energy. As observed, energy harves
can only retard this energy depletion instead of addressi
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The number of fair nodes

it thoroughly since the charging efficiency is affected bg th 10 *
environmental factors. We also find that the scheduling wi sof
smallerx achieves larger number of fair nodes. ‘ ‘ ‘ ‘ ‘
00 50 100 150 200 250 300

Therefore, Figure 10 indicates a tradeoff, namely, higher
guarantees more data packets collected from individuaé nod ) )
while sacrificing the system throughput; smallerachieves F19- 12: Number of fair nodes amorg, IV is from 10 to 300.
a higher system throughput, however, it does not guarantee
most of data can be collected from individual node since the
BS gives the priority to the one with Iargaf after all nodes
satisfy the fairness constraint.

4) Node Arriving Pasture Scenaridn this set of experi-
ments, we test the scheduling algorithms when nodes artrive
the data collecting point with a specific arrival rate. Weuaiss
the inter-arrival time of nodes is exponentially distribait
which is typically used to model situations involving the
random time between arrivals to a service facility [47].

From Figure 11 we find that the EHFS algorithm has u 10 50 100 150 200 250 300
to 2.3 times as many collected data packets as FCFS. . Number of nodes
outperforms LE and HP by nearly 1.7 times as well. Theig. 13: Number of dead nodes among N is from 10 to
reason is the newly arrived nodes fail to transmit since t3©0.
transmitting node have not finished the transmission due to
retransmissions. From Figure 12, we observe the differenced) WPT Efficiency EffectAccording to Equation (14) and
of fairness which is achieved by differentis smaller than the experiments in Section VI-A, it is observed th&at9)
the one in NOP scenario. That is because the BS schedulemdd;(d) jointly affect harvested energk E; ¢ of the sensor
small number of nodes in one super frame in NAP scenarimode and the performance of scheduling algorithm. Figure 14
The first step of EHFS algorithm is completed faster, hendkistrates the impact of the WPT efficiency on the data pecke
more nodes achieve fairness in NAP scenario. Likewise, theception of EHFS given that the number of nodes is 50+and
number of dead nodes in our algorithm has small differencei;50%. Data reception increases by increagifig) andé;(d)

Number of nodes

90 {mmLow Energy Scheduling
[EHigh PRR Scheduling

80 |IEKFSO, k = 10%
[CIKFSO, k = 50%

[CIKFSO. k = 90%

70
60+
50+

The number of dead nodes




since the nodes harvest more energy via WPT. Specifically)
when the nodes are close to the WPT transmitdgid{ = 1)
with WPT receiver antenna alignment; (¢) = 1), the data g
reception has the maximum value which is about 56250
packets. Even in the worst cas& (¢),;(6) = 0.1), EHFS

algorithm can still achieve the reception of 3251 packets. [9]

4107

55

’ 45

- 35
§0.5

S 0.6 5

] 15

) 05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
di(d) [13]

Fig. 14: Data packets reception according to WPT antenna
orientationd; (#) and distancé;(d). N = 50 and x = 50%.

[10]

(11]

[12]

(14]

VII. CONCLUSION [15]

In this paper, we have proposed and evaluated a fair link
scheduling optimisation model with the objective of maxnyg)
imising the data reception in the data collection of energy
harvesting MSN. The super frame structure is developed f%
the BS to collect data from the sensor nodes. We have pro&ed
that the scheduling optimisation is an NP-complete problem
Therefore, the EHFS algorithm is proposed to approximate tHel
optimal solutions in polynomial time. Our algorithm schésu
the transmissions of the nodes basedyfjrand three working
states in two steps. With the wildlife monitoring applicati [1°]
and our Sensor-WPT testbed, we have shown the numerical
performance of the EHFS algorithm based on the solar energy]
WPT charging efficiency, and RSSI. We have compared our al-
gorithm with the optimal schedules of the optimisation nodg;
and presented extensive simulations incorporating botte no
on the pasture and node arriving pasture scenario. Spdgifica
the EHFS algorithm provides a near-optimal scheduling éo tipo;
data collection in the energy harvesting MSN.
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