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Location Aware Opportunistic Bandwidth
Sharing between Static and Mobile Users with

Stochastic Learning in Cellular Networks
Arpan Chattopadhyay, Bartłomiej Błaszczyszyn, Eitan Altman

Abstract—In this paper, we consider the problem of location-dependent opportunistic bandwidth sharing between static and mobile
(i.e., moving) downlink users in a cellular network. Each cell of the network has some fixed number of static users. Mobile users enter
the cell, move inside the cell for some time and then leave the cell. In order to provide higher data rate to the highly mobile users
whose fast fading channel variation is difficult to track, we propose location dependent bandwidth sharing between the two classes
of static and mobile users; the idea is to provide higher bandwidth to the mobile users at favourable locations, and provide higher
bandwidth to the static users in other times. Our approach is agnostic to the way the bandwidth is further shared within the same
class of users; it can be combined with any particular bandwidth allocation policy employed for one of these two classes of users. We
formulate the problem as a long run average reward Markov decision process (MDP) where the per-step reward is a linear combination
of instantaneous data volumes received by static and mobile users, and find the optimal policy. The optimal policy is binary in nature; it
allocates the entire bandwidth either to the static users or to the mobile users at any given time. The reward structure of this MDP is not
known in general, and it may change with time. To alleviate these issues, we propose a learning algorithm based on single timescale
stochastic approximation. Also, noting that the MDP problem can be used to maximize the long run average data rate for mobile users
subject to a constraint on the long run average data rate of static users, we provide a learning algorithm based on multi-timescale
stochastic approximation. We prove asymptotic convergence of the bandwidth sharing policies under these learning algorithms to the
optimal policy. The results are extended to address the issue of fair bandwidth sharing between the two classes of static and mobile
users, where the notion of fairness is motivated by the popular notion of α-fairness in the literature. Numerical results exhibit significant
performance improvement by our scheme, as well as fast convergence, and also demonstrate the trade-off between performance gain
and fairness requirement.

Index Terms—Cellular network, mobility, dynamic bandwidth sharing, location-dependent bandwidth sharing, fair allocation, Markov
decision process, stochastic approximation.
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1 INTRODUCTION

In recent years, cellular traffic has shown unprecedented
growth, due to the proliferation of high-specification
handheld/mobile devices such as smartphones and
tablets. It is speculated that increasing use of applica-
tions such as video streaming or downloading, image or
media file transfer, social networking applications and
cloud services (requested or run by these devices) will
further increase this traffic demand in the coming years.
In order to meet the enormous bandwidth demand for
these applications, the use of macro-assisted small cell
networks (see [1], [2], [3], [4], [5]) have recently become
popular; the small cells (such as femtocells and picocells)
can meet the bandwidth demand of the users, while
the macro base stations are supposed to provide cellular
coverage.

While small cell networks can provide high through-
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put to the static users, the performance of mobile users
(i.e., fast moving users) deteriorates due to frequent
handoff at cell boundaries resulting in huge signaling
overhead (see [6]) and temporary data outage for each
handoff. As a solution to this problem, the use of het-
erogeneous network architecture has been proposed (see
[7]), where only macro base stations can serve the mobile
users; the relatively large cell size of the macro base
stations result in a much smaller handoff rate for mobile
users in this architecture. Static users can be served by
either macro or micro base stations. However, this alone
is not capable of meeting the growing traffic demand
from mobile users, and hence new improvements in PHY
and MAC techniques are essential.

In order to address the above issue, we propose op-
portunistic (and dynamic) sharing of the total allocated
bandwidth to a base station, by the two classes of static
and mobile downlink users, based on user locations.
The transmission bandwidth available for a macro base
station can be shared among its users in many ways.
However, the interference field and downlink path-loss
vary over various locations inside a macro cell, due to
spatio-temporal variation in fast fading, distance and
shadowing from various interfering base stations. Hence,

ar
X

iv
:1

60
8.

04
26

0v
2 

 [
cs

.N
I]

  2
1 

A
ug

 2
01

8



2

a natural way to improve user throughput is to employ
dynamic bandwidth sharing among the static and mobile
users inside a macro cell, depending on their instan-
taneous location, direction of motion and speed; the
idea is to provide more bandwidth to the mobile users
opportunistically when they are at favourable locations,
in a distributed fashion so that the base stations need not
communicate among themselves to decide on bandwidth
allocation. This approach also alleviates the problem
of measuring fast fading channel variations from the
base station to the highly mobile users. Our goal is to
maximize the time average of a linear combination of
the expected data rates of mobile and static users. We
formulate the problem as an average reward Markov de-
cision process (MDP), and establish the policy structure.
However, the decision making requires information on
the location of other base stations and the shadowing
realizations from other base stations to various locations
in the macro cell; these quantities might not be known
to the macro base station, and some of them might
even change over time. Hence, instantaneous data rate
for a fast moving mobile user may not be computable
in the presence of the spatially varying unknown in-
terference field; only the cumulative amount of data
downloaded by the mobile user over an interval will
be available to the macro BS. Hence, we provide a
learning algorithm using the theory of stochastic approx-
imation, and prove its asymptotic convergence to the
optimal dynamic bandwidth sharing policy. Next, we
propose a learning algorithm based on multi-timescale
stochastic approximation, which converges to the op-
timal policy for the problem of maximizing the time-
average expected data rate of mobile users subject to
a constraint on the time-average expected data rate of
static users. Hence, the learning algorithms can be used
by the macrocells to dynamically adapt the bandwidth
sharing policy depending on mobile user locations. We
also explain how to adapt the dynamic bandwidth
sharing scheme when fair bandwidth sharing between
the classes of static and mobile (i.e., moving) users is
required. Finally, we demonstrate numerically that the
proposed dynamic (opportunistic) bandwidth allocation
scheme can improve user performance significantly, and
also demonstrate the trade-off between performance im-
provement and a measure of the degree of fairness in
allocation.

1.1 Related Work

There has been a vast literature on the impact of user
mobility in wireless networks. The authors in [8] have
shown that mobility increases the capacity. [9] has ex-
plored the trade-off between delay and throughput in
ad-hoc networks in presence of mobility. The papers [10],
[11], [12], [13], [14] study the impact of inter and intra
cell mobility on capacity, and also the trade-off between
throughput and fairness; these results show that mobility
increases the capacity of cellular networks when base

stations cooperate among themselves.
However, in practice, base stations may not cooperate.

Moreover, due to frequent handoff of fast moving mobile
users, significant control bandwidth has to be dedicated
for handoff management; it is often the case that handoff
results in temporary data outage for mobile users. In
order to optimize the performance of cellular networks
under user mobility, we propose to use optimal dynamic
bandwidth sharing between the two classes of static and
mobile users (depending on user locations); this problem
is formulated as an average reward MDP (where the re-
ward is a time average linear combination of data rates of
static and mobile users) and later learning algorithms for
computation of the optimal policy are provided. There
have been some work in the literature relevant to our pa-
per. The authors of [15] also have evaluated gain in per-
formance due to mobility by favouring users with good
radio channel conditions, however they did not propose
any optimal bandwidth allocation scheme among users
under mobility when channel condition may not be
measured accurately. The paper [16] deals with propor-
tional fair scheduling algorithm for a fixed population
of users with time-varying channel conditions due to
mobility; this paper proposes a single-timescale stochastic
approximation based algorithm to estimate throughput
of each user, and analyses its convergence. The paper
[17] essentially considers location based proportional fair
scheduling over a finite time horizon to a fixed user
population, but it does not provide any convergence
analysis of the proposed algorithm. The authors of [17]
allocate bandwidth among users opportunistically via
the construction of a spatial radio map which depends
on path-loss and slow fading but is averaged over fast
fading; in other words, they pursue a more experi-
mental and data-driven approach. Reference [18] solves
the problem of bandwidth allocation among users as a
static optimization problem that yields the fraction of
bandwidth to be allocated to each user at a given state;
this method maximizes the sum throughput of users, is
easy to implement, but it requires the knowledge of user
mobility statistics at the base station.

However, to the best of our knowledge, there has been no
prior work that considers optimal dynamic bandwidth sharing
depending on user location in order to maximize the sum data
rate of mobile users subject to a constraint on the time-average
sum data rate of static users, and proposes any learning
algorithm based on multi-timescale stochastic approximation
for this problem with provable convergence guarantee; in our
current paper, we seek to address these problems.

1.2 Organization and Our Contribution

The rest of the paper is organized as follows:
• The system model is described in Section 2.
• In Section 3, we develop optimal bandwidth sharing

strategy between the two classes of static and mobile
users in a single cell, so as to maximize the time
average of a linear combination of expected sum
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throughputs of static and mobile users inside the
cell. This unconstrained optimization problem is
formulated as an average reward Markov decision
process (MDP), and optimal policy structure is de-
rived analytically. To the best of our knowledge, this
model and mathematical contributions including
the specific policy structures are new contributions
to the literature and they can be used in practical
wireless cellular networks.

• In Section 4, we provide a learning algorithm
based on stochastic approximation, which converges
asymptotically to the optimal bandwidth sharing
policy, without using the transition and cost struc-
ture of the MDP.

• Noting that the unconstrained optimization problem
can be used to solve the constrained problem of
maximizing the time average sum rate of the mobile
users subject to a constraint on the time-average
sum rate of the static users, we provide, in Sec-
tion 5, a learning algorithm based on multi-timescale
stochastic approximation, which provably converges
to the optimal policy for the constrained problem.
This multi-timescale stochastic approximation based
learning algorithm yields a randomized policy, and
the randomization technique proposed in this paper
is novel to the literature. This randomized band-
width allocation technique can be used in practical
cellular network where a precise radio map of the
cell is not available.

• In Section 6, we show how the dynamic (and oppor-
tunistic) bandwidth sharing schemes developed in
previous sections can be adapted to ensure a fair al-
location between the two classes of static and mobile
users; we specifically adapt the notion of α-fairness
and extend our algorithms to this framework.

• In Section 7, we numerically demonstrate consider-
able performance gain due to opportunistic band-
width sharing, and also explore the trade-off be-
tween performance gain and fairness in allocation.
Fast convergence of the proposed learning algo-
rithm is also demonstrated.

• In Section 8, we show the equivalence of the global
problem of decentralized maximization of the time
average of a linear combination of the expected
sum throughputs of mobile and static users, with a
problem where each base station seeks to maximize
the time average of a linear combination of the
expected sum rates of all mobile users and all static
users via location aware opportunistic bandwidth
sharing between the two classes of static and mobile
users. We also explain how to modify our algo-
rithms in case the location of users in a cell are not
known perfectly, thereby extending the algorithms
to a more practical regime. We also motivate the
need for location based bandwidth sharing instead
of channel estimation based bandwidth allocation.
It has also been argued how to extend the proposed
algorithms for more generalised system model.

Base Station

Slot BoundaryStatic Users

Mobile Users

Line 2

Line 1

     The arrows show direction of motion of mobile users 

Fig. 1. A snapshot of one cell with base station, static
users and mobile users. Two lines (line 1 and line 2) cross
the cell; these lines have lengths l1vσ and l2vσ respec-
tively inside the cell, where l1 = 5, l2 = 6, v is the velocity
of mobile users and σ is the time slot duration. Mobile
users entering the cell stay for l1 or l2 slots and then leave
the cell. In each slot, depending on the instantaneous
location of all users inside the cell, bandwidth is shared
opportunistically between the classes of static and mobile
users.

• Finally, we conclude in Section 9.
• All proofs are provided in the appendix.

2 SYSTEM MODEL

We consider a cellular network with multiple (possibly
infinite and heterogeneous) base stations (BSs) on the
two dimensional plane. Among these BSs, we consider
one single BS and focus on the cell served by that BS
(see Figure 1); this BS can be a macro BS if the network
is heterogeneous. We consider two classes of downlink
users served by this BS: Static users (SU) and mobile
users (MU). We assume that there exist multiple directed
lines/routes (e.g., roads) crossing the cell, and MUs are
moving along these lines with constant speed v. This
can be a model for the roads in urban or suburban
areas where users sitting in fast moving cars download
contents from the base stations. Given a realization of
the line segments inside the cell, we assume that, MUs
are entering a cell along each line according to a time-
homogeneous process, and the arrival rate is potentially
different along different routes. We assume that all the
base stations transmit simultaneously (either on the same
band or using frequency reuse), and these transmissions
create interference at the SUs and MUs.

In order to mathematically formulate the dynamic
bandwidth sharing problem, we make the following
simplified modeling assumptions (also, see Figure 1 for
a clear pictorial description):

• Time is discretized into slots of duration σ. Hence,
a MU moves vσ distance in one slot.

• The BS under consideration knows the locations of
all static users associated with it.
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• The BS knows the lines intersecting with its cell,
and also the lengths of these corresponding line seg-
ments. Let us denote the number of line segments
intersecting with the cell under consideration, by n.
Let the i-th line segment have length liσv, i.e., a MU
can remain in the i-th line segment for li number of
time slots. Thus, the model is as follows: any MU
that enters the cell (after coming out of a handoff)
along the i-th line segment spends a time of li slots,
and finally enters another cell. The values {li}1≤i≤n
are known to the base station.

• We allow the MU arrival rates along the n line
segments to be unequal. We denote the number of
arrivals to the cell along line i at time slot t by
a bounded random variable Ai,t; we assume that
Ai,t is i.i.d. across t and independent across i; the
arrival process will be correlated across cells, but
that does not affect the resource allocation problem
for a single cell.

• At the beginning of each slot τ , the BS under con-
sideration decides the fraction ητ of the available
bandwidth to be dedicated for transmission to the
mobile users. The remaining bandwidth is assigned
to the set of static users. In each slot, a base station can
allocate equal bandwidth to all available mobile users, or
possibly unequal (arbitrarily) bandwidth sharing among
the mobile users is done. Similarly, the (1−ητ ) fraction
of bandwidth can be shared arbitrarily among all
static users. In this paper, we assume equal bandwidth
sharing within one user class for the sake of illustration.
It is important to note that, for fast moving users,
traditional channel estimation may not be very accu-
rate since the user might travel the fading coherence
distance very fast; hence, dynamic bandwidth allo-
cation among users based on instantaneous channel
qualities may not be feasible. This necessitates loca-
tion dependent bandwidth sharing which works on
a slower timescale compared to variation in fading
due to high speed of users. However, our scheme of
sharing bandwidth between two classes of users can
well accommodate any scheduling policy employed
within the same class of users. Another reason for
not considering location-dependent (resp., channel
quality based) bandwidth allocation to individual
users (instead of user classes) is that this will result
in allocation of bandwidth to the user having the
best location (resp., channel quality) at any given
time slot, which might be unfair to all other users.
See Section 8.6 for detailed discussion on the necessity of
location-dependent bandwidth sharing instead of channel
quality measurement based bandwidth allocation.

• At the beginning of each slot, the base station gets to
know the number m of existing mobile users inside
the cell (including the newly arrived MU), the index
set z1, z2, · · · , zm of lines on which each of these
mobile users are moving, and also the remaining
sojourn times (in terms of slots) t1, t2, · · · , tm of
those mobile users. This can be done via the GPS

connection of the mobile users. Otherwise, since the
base station records the time and line of entry of
a new MU into the cell, and since the velocity is
known, the base station can always calculate the
location of any mobile station inside the cell. We
define s := ({ti, zi}mi=1) to be the state of the system
at the beginning of a slot.
We will explain in Section 8.2 how we can relax the
assumption on availability of perfect information of the
system state to the decision maker.

• At state s, if all available bandwidth (assumed to
be equal to 1 unit) is allocated only to MUs, then,
given a bandwidth sharing scheme among all SUs
and a bandwidth sharing scheme among all MUs,
and given the realization of shadowing and path-
loss from each BS to each location in the cell, the
amount of data each MU will be able to download
over a slot is a random variable since the fading
process seen by each user (from the serving BS and
interfering BSs) over this slot is random. However,
if these quantities and the fading distribution is
known, the base station can calculate the expected
data volume each user will be able to download
until the beginning of the next slot.1. Let us define
Rmobile(s) to be the (random) total amount of data
the MUs download per unit bandwidth if the entire
bandwidth is allocated to MUs, and similar meaning
applies for Rstatic(s) (i.e., this is the random amount
of data the SUs can download in a slot in case the
entire bandwidth is allocated to SUs). In presence
of fading, the expectations of these two random
variables (expectation taken over fading distribu-
tion) are denoted by Rmobile(s) and Rstatic(s). Note
that, Rmobile(s) and Rstatic(s) are dependent on the
shadowing realizations from all base stations to
the static and mobile users over various locations
in the cell (since they will determine the signal
to interference ratio for various users at different
locations).
We will assume in Section 3 that Rmobile(s) and
Rstatic(s) are known to the BS; this assumption will
be relaxed in subsequent sections.

3 OPPORTUNISTIC BANDWIDTH ALLOCATION
UNDER PERFECT KNOWLEDGE OF MEAN USER
RATES Rmobile(s) AND Rstatic(s)

3.1 Markov decision process formulation

We formulate the dynamic (i.e., opportunistic) band-
width allocation problem for a BS as a Markov decision
process. We assume in this section that the base station

1. Note that, for a given realization of the location of base stations
and for a given realization of the spatially varying shadowing process,
the amount of interference at any location is not a random variable if
there is no fading. Even the interference averaged over random, time-
varying fading is a deterministic quantity. But this quantity is unknown
in general to a BS which does not possess global information about the
base station locations and shadowing process.
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knows Rmobile(s) and Rstatic(s) perfectly for each state
s at each slot.

3.1.1 State Space

New mobile users arrive to the cell in each slot. The state
of the system at the beginning of a slot is considered. The
state at the beginning of a slot (after new arrivals in the
previous slot) is of the form s := ({ti, zi}mi=1), where m is
the number of mobile users present in the cell, ti is the
residual sojourn time of the i-th user in the cell, and zi ∈
{1, 2, · · · , n} is the index of the line along which the i-th
mobile user is moving; if zi = k, then ti ∈ {1, 2, · · · , lk}.
Note that the state space is finite since the number of
arrivals in each slot is bounded and each mobile user
stays inside the cell for a bounded number of slots.

3.1.2 Action Space

Given a state, the BS takes an action x ∈ [0, 1]; x is the
fraction of bandwidth the BS decides to allocate to the
mobile users. Hence, our action space is [0, 1]. In this
work, we assume that, at any given time, all static users
share the (1 − x) fraction of bandwidth equally among
themselves, and all mobile users share the x fraction of
bandwidth equally among them.2

3.1.3 State Transition

For current state s := ({ti, zi}mi=1), if p MUs arrive to
the cell in a slot, then the next state will be s′ = ({(ti −
1)+, zi}mi=1, {ti, zi}

m+p
i=m+1), where zi ∈ {1, 2, · · · , n}∀i ∈

{m+ 1,m+ 2, · · · ,m+ p} is the index of the line along
which the i-th new arrival at the slot enters the cell, and
ti = lk if zi = k for i ∈ {m + 1,m + 2, · · · ,m + p}. In
course of this, if (ti − 1)+ = 0 for any i ∈ {1, 2, · · · ,m},
then information of that user is removed from the state
since he has already left the cell. We denote the state at
time slot τ by s(τ).

3.1.4 Policy

A stationary policy η(·|·) is a family of probability dis-
tributions η(·|·) on the action space [0, 1] conditioned on
the state s; i.e., η(·|s) denotes the probability distribution
of the action taken whenever the system reaches state s.
If η(·|s) is such that for each state s, the policy chooses
one action with probability 1, then the policy is called
a stationary deterministic policy η(·); in this case, η(s)
denotes the action taken at state s. We denote by ητ the
action taken at time τ (i.e., the fraction of bandwidth
allocated to the class of MUs in slot τ ); this will be equal
to η(s(τ)) if a stationary deterministic policy η(·) is used
in decision making. We denote by ητ a number in [0, 1],
and by η(·) a function.

2. From the optimization point of view, it will always be better to
allocate x fraction of bandwidth to the best mobile user at a given slot,
and (1− x) fraction to the best static user for ever. But this will result
in complete starvation for many static users, and short-term service
unfairness among the mobile users; each mobile users will get high
data rate in some slots, and very low (possibly zero) data rate in some
other slots.

3.1.5 Single Stage Reward

If the system state is s(τ) at slot τ , and if an action ητ ∈
[0, 1] is taken, the total (random) reward for the base
station at decision epoch τ is defined as

R(τ) := ητRmobile(s(τ)) + ξ(1− ητ )Rstatic(s(τ)).

3.1.6 Objective Function

Let us denote the expectation under policy η(·|·) by
Eη(·|·); the expectation is over the randomness in the
policy and over the randomness in state evolution. We
seek to solve the following problem of maximizing the
time average of the expected reward per slot:

sup
η(·|·)

lim inf
N→∞

1

N

N∑
τ=1

Eη(·|·)

(
ητRmobile(s(τ)) + ξ(1 − ητ )Rstatic(s(τ))

)
(1)

Here ξ ≥ 0 can be considered as a Lagrange multiplier;
it captures the emphasis we put on the time average sum
throughput of SUs and MUs in the objective function.
This problem is an unconstrained optimization problem.

Note that, there are two expectations in this objective
function: one is over randomness in the fading process
(which are captured by Rmobile(s) and Rstatic(s)), and
the other one is over the randomness in the policy and
over the randomness in the state evolution (captured by
Eη(·|·)).

The problem (1) has a stationary, deterministic optimal
policy (by standard MDP theory), which we denote by
η∗ξ (·). Under the deterministic policy η∗ξ (·), the optimal
action at state s is denoted by η∗ξ (s) (parametrized by ξ)
or simply by η∗(s). The optimal value for the objective
in (1) is denoted by λ∗(ξ) or simply by λ∗.

It has to be noted that, under η∗ξ (·), we have

limt→∞

∑t
τ=1 R(τ)

t = λ∗(ξ) almost surely (by the ergod-
icity of the Markov chain {s(τ)}τ≥1).

Later in Section 8.1, we relate (1) to a global optimiza-
tion problem over multiple cells.

3.1.7 Connection Between the Unconstrained Problem
and a Constrained Problem

The unconstrained optimization problem (1) can be used
to solve the following constrained optimization problem
of maximizing the time-average sum data rate for the
mobile users while satisfying a minimum time-average
sum data rate constraint R0 for static users:

sup
η(·|·)

lim inf
N→∞

1

N

N∑
τ=1

Eη(·|·)

(
ητRmobile(s(τ))

)

s.t., lim inf
N→∞

1

N

N∑
τ=1

Eη(·|·)

(
(1− ητ )Rstatic(s(τ))

)
≥ R0

(2)

It is well-known that by choosing an appropriate value
ξ∗ for ξ and solving the optimization problem (1), one
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can find an optimal policy η∗ξ∗(·|·) for the constrained
problem (2) as well.

The following standard result tells us how to choose
the optimal Lagrange multiplier ξ∗ (see [19, Theorem 4.3]):

Theorem 1: Consider the constrained problem (2). If
there exists a multiplier ξ∗ ≥ 0 and a policy η∗ξ∗(·|·) such
that η∗ξ∗(·|·) is an optimal policy for the unconstrained
problem (1) under ξ∗ and the constraint in (2) is met with
equality under policy η∗ξ∗(·|·), then η∗ξ∗(·|·) is an optimal
policy for the constrained problem (2) also. �

Remark: We will see in Section 5 that, in order to meet
the constraint in (2) with equality, we will need random-
ization between two deterministic policies (contrary to
the fact that (1) has a stationary, deterministic, optimal
policy).

3.2 Optimal Policy Structure

In this section, we will only consider the unconstrained
problem (1). We formulate the problem as a Markov
decision process (MDP). The average reward optimality
equation for this MDP is given by (see [20, Chapter 7,
Section 4]):

h∗(s) = max
x∈[0,1]

(
xRmobile(s) + ξ(1− x)Rstatic(s)

−λ∗ +E(h∗(S′))

)
(3)

where λ∗ is the optimal average reward per slot for
the problem (1), h∗(s) is the optimal differential cost
at state s (see [20, Chapter 7, Section 4] for thorough
interpretation of the differential cost h∗(s)), and S′ is
the (random) next state whose distribution depends on
s and the realization of new arrivals. Note that, state
transition is independent of the action taken in any slot;
hence, the expectation in E(h∗(S′)) is taken only over
the randomness in the new arrivals of MUs to the BS in
one slot.

Theorem 2: (Optimal policy η∗ξ (·):) If the state s is such
that, Rmobile(s) − ξRstatic(s) > 0, then optimal action is
η∗ξ (s) = 1. If Rmobile(s)− ξRstatic(s) < 0, then η∗ξ (s) = 0.
If Rmobile(s) − ξRstatic(s) = 0, then we can choose any
action η∗ξ (s).

Proof: From (3), we can say that:

η∗ξ = arg max
x∈[0,1]

(
xRmobile(s) + ξ(1− x)Rstatic(s)

−λ∗ + E(h∗(S′)

)
,

i.e., η∗ξ should be the maximizer in the average cost
optimality equation. Since λ∗, ξ, Rmobile(s), Rstatic(s)
and E(h∗(S′)) are independent of x in this optimization
problem, we have

η∗ξ = arg max
x∈[0,1]

x

(
Rmobile(s)− ξRstatic(s)

)
This proves the theorem.

Remark: The binary nature of the optimal policy in
Theorem 2 makes is very easy to use the policy for opti-
mal bandwidth allocation in a practical cellular network.
Comments on Fairness: Note that, each static user will
asymptotically receive positive throughput, since with
positive probability a cell will have zero mobile user
at a given time slot. On the other hand, a mobile user
might get zero throughput in the current cell. In order
to ensure a fair bandwidth sharing inside each cell, we
describe in Section 6 how to share bandwidth between
the two classes for a modified objective function which
is motivated by the notion of α-fairness (see [21] for
reference). The modified objective function ensures that
both classes receive a positive throughput at the same
time.

Let us denote the steady-state probability of occur-
rence of state s by g(s), with

∑
s g(s) = 1. Under policy

η∗ξ (·), the optimal data rate for the mobile users per slot
is given by:

R
∗
mobile(ξ) :=

∑
s

g(s)Rmobile(s)η
∗
ξ (s).

Similarly, we define the optimal data rate of static users
per slot by

R
∗
static(ξ) :=

∑
s

g(s)Rstatic(s)(1− η∗ξ (s)).

Lemma 1: R
∗
mobile(ξ) decreases with ξ, and R

∗
static(ξ)

increases in ξ.
Proof: See Appendix A.

Error in estimating user location: This issue is ad-
dressed in Section 8.2 in detail.

4 LEARNING ALGORITHM FOR THE UNCON-
STRAINED PROBLEM

In Section 3, we assumed that perfect knowledge of
Rmobile(s) and Rstatic(s) is available to the BS. However,
in practice, unknown path-loss factor (since path-loss
exponent and location of interfering base stations are
unknown to the BS), unknown shadowing variation over
space and unknown fading distribution will make it
impossible for the base station to compute Rmobile(s) and
Rstatic(s). Hence, the base station cannot use the simple
policy structure given by Theorem 2. However, the base
station can get a feedback from the users about how
much data the users were able to download between
two successive decision instants; this can happen if the
base station keeps on sending data packets to the users,
and the users measure packet error rate in the received
data and send feedback to the base station before a
new decision is made. In this section, we propose a
sequential bandwidth allocation and learning algorithm,
which maintains a running estimate of Rmobile(s) and
Rstatic(s) for each state s, and updates these running
estimates as new user feedbacks are gathered, so as to
converge asymptotically to a stationary policy solving
the unconstrained problem (1).
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Assumption 1: The fading gain between any base sta-
tion (serving or interfering) and a specific location in
the cell comes from an ergodic Markov process (across
time slots) taking values from a bounded subset of the
nonnegative real line, and it is identically distributed
across locations in the cell and across various BSs. �

Note that, this assumption ensures that if we sample
Rmobile(s) infinitely often, we can essentially average
over fading, and obtain a correct estimate of Rmobile(s),
even though the slot duration σ might be smaller than
the time required to average over all possible fading
states by a mobile user.

Note that, by Theorem 2, we can restrict ourselves to
the action space {0, 1} instead of [0, 1]. With this reduced
state space, we present our sequential bandwidth alloca-
tion and learning algorithm, which is motivated by the
theory of stochastic approximation (see [22]).

4.1 The Learning Algorithm

Some notation: Let ητ ∈ {0, 1} denote the decision to be
taken at decision instant τ . Let Rmobile(s) and Rstatic(s)
be the (random) realization of the total rates received
between decision instant τ and decision instant τ + 1
by the mobile (resp., static) users, provided that ητ = 1
(resp., ητ = 0).

Fix any small number ε > 0. Suppose that at the
decision instant τ , the Markov chain has reached state s,
and let the current estimates of Rmobile(s) and Rstatic(s)

be R(τ)
mobile(s) and R

(τ)
static(s), respectively.

Let us define ν(s, 1, τ) :=
∑τ
t=1 1{st = s, ηt = 1} and

ν(s, 0, τ) :=
∑τ
t=1 1{st = s, ηt = 0}.

Let {a(t)}t≥1 be a decreasing sequence of positive
numbers with

∑∞
t=1 a(t) =∞ and

∑∞
t=1 a

2(t) <∞.
Algorithm 1: Start with arbitrary R

(0)
mobile(s) and

R
(0)
static(s).
(Decision on bandwidth sharing:) At decision instant τ ,

with probabilities ε
2 each, allocate the entire bandwidth

to the static users (i.e., take ητ = 0) or to the mobile users
(i.e., take ητ = 1). Else (with probability (1− ε)), allocate
the entire bandwidth to mobile users (i.e., ητ = 1) if
R

(τ)
mobile(s)−ξR

(τ)
static(s) > 0, allocate the entire bandwidth

to static users (i.e., ητ = 0) if R(τ)
mobile(s)− ξR

(τ)
static(s) < 0,

and allocate the entire bandwidth arbitrarily either to
SUs or to MUs if R(τ)

mobile(s)− ξR
(τ)
static(s) = 0.

(Updating/learning the estimates:) Just before the (τ+1)-
st decision instant, for each possible state s, make the
following update:

R
(τ+1)
mobile(s) = R

(τ)
mobile(s) + a(ν(s, 1, τ))1{s(τ) = s, ητ = 1}

×
(
Rmobile(s)−R(τ)

mobile(s)

)
R

(τ+1)
static(s) = R

(τ)
static(s) + a(ν(s, 0, τ))1{s(τ) = s, ητ = 0}

×
(
Rstatic(s)−R(τ)

static(s)

)

�

4.2 Optimality of the Learning Algorithm

Let us denote the average expected reward per slot
under Algorithm 1 by λ∗ε (ξ).

Theorem 3: Under Assumption 1 and Algorithm 1, for
each state s, we have limτ→∞R

(τ)
mobile(s) = Rmobile(s)

and limτ→∞R
(τ)
static(s) = Rstatic(s) almost surely. Con-

sequently, limε↓0 λ
∗
ε (ξ) = λ∗(ξ) (note that, ε cannot be

taken to be equal to 0).
Proof: See Appendix A.

4.3 Remarks
• Theorem 3 tells us that in a practical cellular net-

work where the shadowing realizations at all loca-
tions and the location of interfering base stations
are not known, one can still learn the asymptotically
optimal bandwidth sharing policy by learning only
Rmobile(s) and Rstatic(s).

• At any state s, we randomize our decision with
probabilities ε and (1 − ε) for the following rea-
son. A sufficient condition for the convergence
of R

(τ)
mobile(s) to Rmobile(s) and convergence of

R
(τ)
static(s) to Rstatic(s) is lim infτ→∞

ν(s,1,τ)
τ > 0 and

lim infτ→∞
ν(s,0,τ)

τ > 0 almost surely for each s;
i.e., all state-action pairs should occur comparatively
often. We ensure this by the proposed random-
ized decision making and using the fact that the
states come from an ergodic discrete-time finite state
Markov chain. Very small or very large value of ε
might lead to possibly sample-path dependent slow
convergence rate.

• It is easy to see that:

|λ∗ε (ξ)− λ∗(ξ)| ≤
ε

2

∑
s

g(s)E|Rmobile(s)−Rstatic(s)|.

Hence, by choosing ε small, we can achieve a mean
reward per slot which is arbitrarily close to the
optimal value, but the convergence rate might be
slow depending on the initial values of the iterates
and the realization of the sample path.

• The above problem of yielding an average reward
slightly different than λ∗(ξ) can be solved in the
following way. At the decision instant τ , instead
of using the randomization with probability ε (as
defined in Algorithm 1), one could randomize for
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state s with a probability ε
ν(s,τ) where ν(s, τ) is the

number of occurrence of state s up to time τ . Since
the Markov chain is finite state, positive recurrent,
irreducible and independent of the actions taken by
the base station, and since

∑∞
k=1

ε
k = ∞, by the

second Borel-Cantelli lemma we can say that

P( lim
τ→∞

ν(s, 1, τ) =∞) = 1;

this is sufficient to prove Theorem 3. How-
ever, we did not use this randomization proba-
bility because it will not ensure the conditions
lim infτ→∞

ν(s,1,τ)
τ > 0 and lim infτ→∞

ν(s,0,τ)
τ > 0

almost surely for each s, which is necessary for the
convergence proof of the multi-timescale learning
algorithm (Algorithm 2 in Section 5.3) which is
inspired by Algorithm 1.

• A special choice would be a(t) = 1
t , which will lead

to sample averaging of the iterates (of course, with
the imperfection created by randomized sampling).
But we use the general step size a(t) here because
it will help in developing multi-timescale learning
algorithm for a constrained problem explained in
Section 5.

• The rate of convergence is dependent on sample
path (i.e., realization of arrival process and the
fading process at various locations), and also on
the size of the state space. However, convergence is
guaranteed by Theorem 3 so long as the state space
is finite.

• Speed of convergence will also depend on the choice
of a(t); however, choosing a suitable step size se-
quence is beyond the scope of this paper and we
propose to leave it for future research work in this
domain.

5 LEARNING ALGORITHM FOR THE CON-
STRAINED PROBLEM

In Section 4, we had provided a learning algorithm that
solves problem (1) for a given ξ. However, let us recall
from Theorem 1 that, in order to solve the constrained
problem (2), we need to choose an appropriate ξ∗. Since
the transition structure of the MDP in Section 3 might
not be known apriori (as discussed in Section 4), in this
section we develop a sequential decision and learning
algorithm for dynamic bandwidth sharing between the
two classes of static and mobile users; this algorithm
maintains an estimate of ξ∗ and updates this estimate
each time user is observed before a new MU enters the
cell. We prove asymptotic convergence of the policy to
the set of optimal policies.

5.1 Need for Randomization

Note that, while an optimal Lagrange multiplier ξ∗ may
exist for a feasible constraint R0, the optimal policy
η∗ξ∗(·|·) solving the constrained problem (2) may not be a

deterministic policy. This can be explained in the follow-
ing way. By Lemma 1, the optimal per-slot sum data rate
for static users R

∗
static(ξ) increases with ξ. However, since

there are finite number of states and only two actions
{0, 1}, there are finite number of deterministic policies in
the class specified by Theorem 2. The mapping from state
space to action space can only change a finite number
of times as we increase ξ from 0 to ∞, Hence, the plot
of the optimal time-average sum rate of static users
under policy η∗ξ (·) (i.e., R

∗
static(ξ)), as a function of ξ,

would look like an increasing staircase function where
the discontinuities correspond to the values of ξ where,
by increasing ξ− to ξ+, the policy changes because the
optimal action for exactly one state changes from 1 to 0.
Let the set of ξ values where this plot is discontinuous,
be denoted by S. Also, let D denote the set of values
of mean data rate per slot for static users, which can be
achieved only via η∗ξ (·) by varying ξ from 0 to ∞.

In light of the above discussion, it is clear that a way to
meet the constraint in (2) with equality (if R0 /∈ D) is to
randomize between the two policies η∗ξ∗+(·) and η∗ξ∗−(·)
at each decision instant, with probabilities 1 − p and p
respectively; these two deterministic policies differ in the
action for exactly one state (if R0 /∈ D).

5.2 A special randomization technique

In Algorithm 2 presented next, we implement this ran-
domization in a slightly unconventional way in order to
tackle certain technical issues. Let us recall the policy
η∗ξ (·) from Theorem 2. We choose a very small number
δ > 0 (choice of δ is explained in Algorithm 2 later in
Section 5.3), and define a probability density function
fp(·) (parametrized by a probability p) as follows:
fp(y) = p

δ if y ∈ [−δ, 0], fp(y) = 1−p
δ if y ∈ (0, δ], and

fp(y) = 0 for all other values of y.
For any given ξ, in each slot τ one can sample a

random variable ∆τ ∼ fp ({∆τ}τ≥1 i.i.d. across τ ) and
use the policy η∗ξ+∆τ

(·) (i.e., take action η∗ξ+∆τ
(s(τ)) in

slot τ ). If ξ = ξ∗ and R0 does not belong to D, then this
scheme will correspond to randomizing between η∗ξ∗+(·)
and η∗ξ∗−(·) with probabilities 1−p and p in each slot (but
this randomization is applicable to all possible values of
ξ).

Let the optimal value of p for a given value of ξ
be denoted by p∗(ξ); this is the optimal value of p
under multiplier ξ so that the corresponding randomized
algorithm (described just above using the probability
density function fp(·)) meets the constraint with equality
(if possible, given the value of ξ, as explained later in this
section).

Definition 1: The set K(R0) ⊂ [0, 1]×[0, A] is defined to
be the set of tuples (p∗(ξ), ξ) under which the random-
ized policy described above meets the constraint in (2)
with equality.

Assumption 2: There exists ξ∗ > 0 and p∗(ξ∗) ∈ [0, 1]
such that the corresponding randomized policy with
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these parameters is optimal for the constrained prob-
lem (2), while the constraint is satisfied with equality.
In other words, the set K(R0) is nonempty. �

Note that, K(R0) involves the function p∗(ξ), and p∗(ξ)
can be 0 or 1 also, depending on the value of ξ. If ξ is
such that

∑
s g(s)P(η(s) = 0|ξ, p)Rstatic(s) < R0 for all

p ∈ [0, 1], then we will have p∗(ξ) = 0. If ξ is such that∑
s g(s)P(η(s) = 0|ξ, p)Rstatic(s) > R0 for all p ∈ [0, 1],

then we will have p∗(ξ) = 1. These two events happen
if the value of ξ does not fall within a δ-neighbourhood
of the element from S for which the constraint can be
met with equality, and R0 does not belong to D; the
constraint cannot be met with equality in this case under
this ξ. If R0 does not belong to D but the value of ξ
is within δ-neighbourhood of the value from S which
can achieve this R0, then p∗(ξ) can be anything in the
interval [0, 1], depending on the value of R0, so that the
constraint is met with equality (if possible).

It is easy to prove the following:
Lemma 2: p∗(ξ) is Lipschitz continuous in ξ.

Remark: This lemma will be required to prove desired
convergence of our learning Algorithm 2. Note that, if
we only randomize between policies η∗ξ−δ(·) and η∗ξ+δ(·)
with probabilities p∗(ξ) and 1 − p∗(ξ) in each slot, then
the result in this lemma will not hold. This is the
specific reason that we consider this special form of
randomization.

Definition 2: Let the sets S and D change to Sε and
Dε when, in each slot τ , we decide ητ = 1 or ητ = 0
with probabilities ε

2 each, and use the policy η∗ξ (·) with
probability (1 − ε). Similarly, let the analogue of K(R0)
be Kε(R0), and the analogue of p∗(ξ) be p∗ε (ξ).

5.3 The Learning Algorithm Based on Two
Timescale Stochastic Approximation

Now we present a sequential bandwidth allocation and
learning algorithm in order to solve the constrained
problem (2). The algorithm maintains running estimates
{R(τ)

mobile(s), R
(τ)
static(s)} for all s, the Lagrange multiplier

ξ(τ), and the randomizing parameter p(τ); this algorithm
is motivated by two-timescale stochastic approximation
(see [22]).

Suppose that at the decision instant τ , the Markov
chain has reached state s, and let the current iterates
be R

(τ)
mobile(s), R(τ)

static(s), ξ(τ) and p(τ). Let us define
Rτ to be the collection of {R(τ)

mobile(s), R
(τ)
static(s)} for

all s. We define η∗ξ (·, ·) to be the same policy as η∗ξ (·)
given in Theorem 2, except that Rmobile(s) and Rstatic(s)
in Theorem 2 are replaced by the currents estimates
R

(τ)
mobile(s) and R

(τ)
static(s) in slot τ ; the action taken in

slot τ is η∗ξ (s(τ),Rτ ).
Let ητ ∈ {0, 1} denote the decision at decision instant

τ . Let Rmobile(s) and Rstatic(s) be the (random) realiza-
tion of the total rates received between decision instant
τ and decision instant τ + 1 by the mobile (resp., static)
users, provided that ητ = 1 (resp., ητ = 0).

Let us define ν(s, 1, τ) :=
∑τ
t=1 1{st = s, ηt = 1} and

ν(s, 0, τ) :=
∑τ
t=1 1{st = s, ηt = 0}.

Let {a(t)}t≥1 and {b(t)}t≥1 be decreasing sequences
of positive numbers with

∑∞
t=1 a(t) =

∑∞
t=1 b(t) = ∞,∑∞

t=1 a
2(t) < ∞,

∑∞
t=1 b

2(t) < ∞ and limt→∞
b(t)
a(t) = 0.

More specifically, we choose a(t) = 1
tn1

and b(t) = 1
tn2

,
with 1

2 < n1 < n2 ≤ 1. Let [x]A0 denote the projection of
x on the compact interval [0, A], and let us choose the
value of A is chosen so large that R

∗
static(ξ = A) > R0.

Fix any small number ε > 0. We choose δ > 0 to be a
very small number, smaller than 1/10-th of ε and 1/10-th
of the smallest difference between two successive values
of ξ from the set Sε.

Algorithm 2: Start with R
(0)
mobile(s), R(0)

static(s), p(0), ξ(0).
(Decision on bandwidth sharing:) At decision instant τ ,

with probabilities ε
2 each, allocate the entire bandwidth

to the static users or to the mobile users. Else, (with
probability (1 − ε)) sample a random variable ∆τ (in-
dependent across τ ) from the distribution fp(τ)(·) inde-
pendent of all other random variables, and use the policy
η∗
ξ(τ)+∆τ

(·, ·) (i.e., take an action ητ = η∗
ξ(τ)+∆τ

(s(τ),Rτ )).

In other words, choose ητ = 1 if R(τ)
mobile(s(τ)) − (ξ(τ) +

∆τ )R
(τ)
static(s(τ)) > 0, choose ητ = 0 if R(τ)

mobile(s(τ)) −
(ξ(τ) + ∆τ )R

(τ)
static(s(τ)) < 0 and choose ητ arbitrarily if

R
(τ)
mobile(s(τ))− (ξ(τ) + ∆τ )R

(τ)
static(s(τ)) = 0.

(Updating/learning the estimates:) Just before the (τ+1)-
st decision instant, for each s, update as follows:

R
(τ+1)
mobile(s) = R

(τ)
mobile(s) + a(ν(s, 1, τ))1{s(τ) = s, ητ = 1}

×
(
Rmobile(s)−R

(τ)
mobile(s)

)
R

(τ+1)
static(s) = R

(τ)
static(s) + a(ν(s, 0, τ))1{s(τ) = s, ητ = 0}

×
(
Rstatic(s)−R

(τ)
static(s)

)
p(τ+1) =

[
p(τ) + a(τ)(

∑
s

1{s(τ) = s, ητ = 0}

×Rstatic(s)−R0)

]1
0

ξ(τ+1) =

[
ξ(τ) + b(τ)(R0 −

∑
s

1{s(τ) = s, ητ = 0}Rstatic(s))
]A
0

�

5.4 Optimality of the Learning Algorithm for the
Constrained Problem

Let us denote the nonstationary, randomized policy
induced by Algorithm 2 by η(ε)(·|·, ·, ·, ·); the quantity
η(ε)(·|s,Rτ , ξ(τ), p(τ)) denotes the probability distribution
on the set of actions conditioned on the current state and
the current values of the iterates.

Theorem 4: Under Assumption 1, Assumption 2 and
Algorithm 2, we have limτ→∞R

(τ)
mobile(s) = Rmobile(s)

and limτ→∞R
(τ)
static(s) = Rstatic(s) for all s almost surely.
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Also, for any ε > 0, (p(τ), ξ(τ)) → Kε(R0) almost surely
as τ →∞.

Proof: See Appendix A.
Let us denote

R
rand,ε

static := lim inf
N→∞

1

N

N∑
τ=1

Eη(ε)(·|·,·,·,·)

(
(1−ητ )Rstatic(s(τ))

)
and

R
rand,ε

mobile := lim inf
N→∞

1

N

N∑
τ=1

Eη(ε)(·|·,·,·,·)

(
ητRmobile(s(τ))

)
Corollary 1: limε↓0R

rand,ε

mobile and limε↓0R
rand,ε

static exist, and
these limit values are equal to the optimal value of
the objective in the constrained problem (2) and R0,
respectively.

Proof: See Appendix A.
Remark: Corollary 1 implies that Algorithm 2 approxi-

mately solves the constrained problem (2) for arbitrar-
ily small ε > 0. This result, which is derived from
Theorem 4, allows us to optimally assign bandwidth
between the static and mobile user classes even when
the transition probability structure of the MDP is not
known apriori.

5.5 Remarks on Theorem 4:

• Two timescales: The update scheme is based on two
timescale stochastic approximation (see [22, Chap-
ter 6]). Note that, limt→∞

b(t)
a(t) = 0; ξ is adapted in the

slower timescale, and Rmobile, Rstatic and p are up-
dated in the faster timescale). The dynamics behaves
as if the slower timescale update equation views
the faster timescale iterates as quasi-static, while a
faster timescale update equation views the slower
timescale update equations as almost equilibrated;
as if ξ is being varied in a slow outer loop, while
the other iterates are being varied in an inner loop.

• Structure of the iteration: Note that, the value of ξ is
increased whenever the sum data downloaded by
static users between two successive decision instants
is less than the target R0, so that more emphasis
is given to the static user rate in the objective
function. Under the same situation, the value of
p is reduced for the same reason. The goal is to
converge to a randomized policy η(ε)(·|·, ·, ·, ·) so that
the corresponding randomized policy satisfies the
constraint in (2) with equality.

• Algorithm 2 induces a nonstationary policy. But, by
Theorem 4 and Corollary 1, the sequence of policies
generated by Algorithm 2 converges close to the set
of optimal stationary, randomized policies for the
constrained problem (2).

6 FAIR BANDWIDTH SHARING BETWEEN
STATIC AND MOBILE USER CLASSES

In previous sections, the proposed dynamic bandwidth
sharing schemes do not guarantee nonzero throughput
to each user all the time. While such schemes are suit-
able for elastic traffic applications, they are not at all
suitable for streaming applications such as online video
watching or voice call. In fact, opportunistic bandwidth
sharing depending on user location as described before
will result in unfair sharing of bandwidth. In order
to incorporate fairness constraint into the opportunistic
bandwidth sharing problem, we modify the objective
function presented in Section 3.1.

Let us denote R
α

static(s) := ERαstatic(s) and
R
α

mobile(s) := ERαmobile(s) where α is a real number.
In this section, we consider the following uncon-

strained problem:

sup
η(·|·)

lim inf
N→∞

1

N

N∑
τ=1

Eη(·|·)

(
ηατ R

α
mobile(s(τ))

+ξ(1− ητ )αR
α
static(s(τ))

)
(4)

and also the associated constrained problem as follows:

sup
η(·|·)

lim inf
N→∞

1

N

N∑
τ=1

Eη(·|·)

(
ηατ R

α
mobile(s(τ))

)

s.t., lim inf
N→∞

1

N

N∑
τ=1

Eη(·|·)

(
(1− ητ )αR

α
static(s(τ))

)
≥ R0

(5)

This objective function is motivated by the notion of α-
fairness (see [21]). The intuition is that the degree of
fairness in resource allocation between mobile and static
user classes can be controlled by appropriately tuning α
in (4) and (5).

Let us recall the proof of Theorem 2; Theorem 2
provides optimal allocation for the special case α = 1. In
general, the function xαR

α

mobile(s)) + ξ(1− x)αR
α

static(s)
is strictly convex in x for α > 1 or for α < 0, strictly
concave in x for α ∈ (0, 1), independent of x for α = 0,
and linear in x for α = 1. Hence, for α > 1 or for
α < 0, the optimization maxα∈[0,1] x

αR
α

mobile(s)) + ξ(1 −
x)αR

α

static(s) will always have x∗ = η∗(s) ∈ {0, 1}. On
the other hand, for α ∈ (0, 1), the optimal value of x
lies in (0, 1). Hence, in this section, we focus only on
α ∈ (0, 1). Within this interval, α close to 0 yields more
egalitarian solution, whereas α close to 1 provides more
opportunistic bandwidth sharing.

Note that, α in this current paper is slightly different
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from α in [21]).3

6.1 Policy structure under perfect knowledge of
R
α

static(s) and R
α

mobile(s)

Let us assume the availability of perfect knowledge at
the base station (as assumed in Section 3), but let us
consider the objective function (4). Similar to Theorem 2,
the optimal action at state s is given by

η∗ξ (s) = arg max
x∈[0,1]

(
xαR

α

mobile(s)) + ξ(1− x)αR
α

static(s)

)
.

Differentiation w.r.t. x and setting the derivative equal
to 0, we obtain:

η∗ξ (s) =
(ξR

α

static(s))
1

α−1

(ξR
α

static(s))
1

α−1 + (R
α

mobile(s))
1

α−1

(6)

The optimal policy is to allocate η∗ξ (s) fraction of band-
width to mobile users and 1−η∗ξ (s) fraction of bandwidth
to static users whenever the system reaches state s. Let
this optimal policy be denoted by η∗ξ (·).

The following lemma is easy to prove:
Lemma 3: η∗ξ (s) in (6) is strictly decreasing and Lips-

chitz continuous in ξ for all s and for all ξ > 0.

6.2 Learning Algorithm for the Unconstrained Prob-
lem (4)

Let us now consider imperfect knowledge at the base
station as assumed in Section 4, but with the modified
objective function (4) with α ∈ (0, 1). We seek to propose
learning algorithms as done in Algorithm 1.

Note that, since a strictly positive fraction of band-
width is always allocated to static and mobile users
at any given time, samples of Rαmobile(s) and Rαstatic(s)
are always available whenever the system reaches state
s. As a result of this and the positive recurrence of
the Markov chain associated with state evolution, the
estimates of R

α

mobile(s) and R
α

static(s) will be updated
infinitely often for each state s, and there is no need to
do the randomization with probability ε as described in
Section 4.

Let ητ ∈ [0, 1] denote the decision at decision instant
τ . Let Rαmobile(s) and Rαstatic(s) denote the samples (of
the α-th moment of the corresponding rates) obtained
between decision instant τ and decision instant τ + 1.

3. In [21], if the resource (e.g., rate) allocated to user i is ri, then

α-fair utility function is given by
∑
i
r1−αi −1

1−α . For α > 1, it requires
minimization of

∑
i r

1−α
i , and for α < 1, it requires maximization of∑

i r
1−α
i . For α = 1, this reduces to maximization of

∑
i log(ri), which

is called proportional fair allocation; we exclude this case because this,
in our current problem, will result in bandwidth sharing independent
of the value of s. In our current paper, we have used α in a slightly
different sense than [21], though the broad concept of fairness is the
same as [21]; the only difference is that, unlike [21], we consider
fairness only between two classes of users, and any bandwidth sharing
policy can be employed within a single class.

Suppose that at the decision instant τ , the Markov
chain has reached state s, and let the current estimates of
R
α

mobile(s) and R
α

static(s) be R(τ)
mobile,α(s) and R

(τ)
static,α(s),

respectively.
Let ν(s, τ) :=

∑τ
t=1 1{st = s}. Let {a(t)}t≥1 be a de-

creasing sequence of positive numbers with
∑∞
t=1 a(t) =

∞ and
∑∞
t=1 a

2(t) <∞.
We propose the following algorithm to learn the opti-

mal policy for problem (4).
Algorithm 3: Start with any arbitrary initial estimates

R
(0)
mobile,α(s) > 0 and R

(0)
static,α(s) > 0.

At decision instant τ , if the system is at state s, allocate
the following fraction of bandwidth to the mobile users:

ητ =
(ξR

(τ)
static,α(s))

1
α−1

(ξR
(τ)
static,α(s))

1
α−1 + (R

(τ)
mobile,α(s))

1
α−1

(7)

Just before the (τ + 1)-st decision instant, for each
possible state s, make the following update:

R
(τ+1)
mobile,α(s) = R

(τ)
mobile,α(s) + a(ν(s, τ))1{s(τ) = s}

×
(
Rαmobile(s)−R

(τ)
mobile,α(s)

)
R

(τ+1)
static,α(s) = R

(τ)
static,α(s) + a(ν(s, τ))1{s(τ) = s}

×
(
Rαstatic(s)−R

(τ)
static,α(s)

)

�
Theorem 5: Under Assumption 1 and Algorithm 3, for

each state s, we have limτ→∞R
(τ)
mobile,α(s) = R

α

mobile(s)

and limτ→∞R
(τ)
static,α(s) = R

α

static(s) almost surely.
Proof: The proof is similar to the proof of Theorem 3.

6.3 Learning Algorithm for the constrained prob-
lem (5)

In this subsection, we seek to propose learning algo-
rithms for the constrained problem (5), in a way similar
to Section 5.3. Let us define

R
∗
mobile,α(ξ) :=

∑
s

g(s)R
α

mobile(s)(η
∗
ξ (s))α

and

R
∗
static,α(ξ) :=

∑
s

g(s)R
α

static(s)(1− η∗ξ (s))α,

where η∗ξ (s) is defined in (6). By Lemma 3, R
∗
static,α(ξ)

is strictly increasing and continuous in ξ. Hence, if the
constraint in (5) is feasible, then there exists one ξ∗ >
0 such that the constraint is met with equality under
the optimal policy given in Section 6.1 with ξ = ξ∗, i.e.,
R
∗
static,α(ξ∗) = R0 under η∗ξ∗(·).
Now we propose a sequential bandwidth allocation

and learning algorithm (based on single timescale stochas-
tic approximation) that will solve problem (5).
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Suppose that at the decision instant τ , the Markov
chain has reached state s, and let the current estimates of
R
α

mobile(s), R
α

static(s) and ξ∗ be R
(τ)
mobile,α(s), R(τ)

static,α(s)

and ξ(τ), respectively. Let ν(s, τ) :=
∑τ
t=1 1{st = s}.

Let ητ ∈ [0, 1] denote the decision at decision instant τ .
Let Rαmobile(s) and Rαstatic(s) denote the samples obtained
between decision instant τ and decision instant τ + 1.

Let {a(t)}t≥1 be a decreasing sequence of positive
numbers with

∑∞
t=1 a(t) = ∞ and

∑∞
t=1 a

2(t) < ∞. The
numbers B > 0 and A > B are such that ξ∗ ∈ (B,A).

Algorithm 4: Start with any arbitrary initial estimates
R

(0)
mobile,α(s) > 0, R(0)

static,α(s) > 0 and ξ(0).
At decision instant τ , if the system is at state s, allocate

the following fraction of bandwidth to the mobile users:

ητ =
(ξ(τ)R

(τ)
static,α(s))

1
α−1

(ξ(τ)R
(τ)
static,α(s))

1
α−1 + (R

(τ)
mobile,α(s))

1
α−1

(8)

Just before the (τ + 1)-st decision instant, for each
possible state s, make the following update:

R
(τ+1)
mobile,α(s) = R

(τ)
mobile,α(s) + a(ν(s, τ))1{s(τ) = s}

×
(
Rαmobile(s)−R

(τ)
mobile,α(s)

)
R

(τ+1)
static,α(s) = R

(τ)
static,α(s) + a(ν(s, τ))1{s(τ) = s}

×
(
Rαstatic(s)−R

(τ)
static,α(s)

)
ξ(τ+1) =

[
ξ(τ) + a(τ)(R0 −

∑
s

1{s(τ) = s}Rαstatic(s))
]A
B

�
Theorem 6: Under Assumption 1 and Algorithm 4,

we have limτ→∞R
(τ)
mobile,α(s) = R

α

mobile(s) and
limτ→∞R

(τ)
static,α(s) = R

α

static(s) for all s, and ξ(τ) → ξ∗

(if there exists ξ∗ ≥ 0 such that R
∗
static,α(ξ∗) = R0)

almost surely.
Proof: The proof is similar to the proof of Theorem 4.

Remark: If ξ(τ) = 0 for some τ , the entire bandwidth
is allocated to the class of mobile users at that decision
instant. To avoid this, we always maintain ξ(τ) ≥ B > 0.

7 PERFORMANCE IMPROVEMENT THROUGH
OPPORTUNISTIC BANDWIDTH ALLOCATION: A
NUMERICAL STUDY

In this section, we numerically explore the improvement
in performance for static and mobile users via oppor-
tunistic bandwidth allocation.

7.1 Asymptotic performance Improvement for vari-
ous combinations of α and θ

We consider the following simulation environment:
• The base stations are located on the corners of a

regular grid; the set of locations of base stations

is given by {(1000i, 1000j) : −10 ≤ i ≤ 10,−10 ≤
j ≤ 10)}, where the unit of distance in the xy plane
is meter. Hence, the smallest distance between two
base stations is 1000 m. We consider Voronoi cells
under this realization of the base stations. The base
station whose cell is under consideration is located
at the origin, and its cell is a 1000 m × 1000 m square
with the origin at its center.

• Path loss at a distance r is r−β with the path-loss
exponent β = 4. There is no shadowing and fading
in the wireless propagation environment. However,
later we will also demonstrate the convergence rate
of Algorithm 2 in presence of shadowing and fad-
ing.

• All base stations are transmitting at the same power
levels. Since we do not assume any thermal noise
at the receiving nodes, and sine the signal-to-
interference-ratio (SIR) remains unchanged if the
transmit power of each base station is multiplied
by the same factor, we can safely assume that the
transmit power of each base station is 1 unit.

• There are 500 static users inside the cell containing
the origin, and their locations are chosen indepen-
dently with uniform distribution from the cell.

• Two roads along the x = 25 line and y = 50
line intersect the cell under consideration. Each
of these 1000 m long line segments are divided
into 10 segments of length 100 m each (it can be
segmented further to the shadowing decorrelation
distance level). We assume that mobile users enter
the cell along these lines at a velocity 50 m/sec, and
the slot duration is 2 sec so that each MU covers one
100 m distance segment in one slot, i.e., each MU
traverses the cell in 20 seconds (10 slots).

• The number of arrivals (of MUs) to the cell in
each slot is 50 times a Bernoulli distributed random
variable with mean 1

θ ; this is a batch arrival process.
• We assume that, if the entire bandwidth (assumed to

be 1 unit) is allocated to a single MU, then the total
amount of data this MU can download over a 100 m
long line segment is given by log2(1 + SIRcentre)
where SIRcentre is the SIR value at the center of the
segment. For example, the total data rate assigned
to a MU when it is crossing the distance between
(−500, 50) and (−400, 50) in a single slot is given
by log2(1 + SIR(−450,50)) (provided that the entire
bandwidth is allocated to this user). On the other
hand, the amount of data downloaded by a static
user when the entire bandwidth is allocated to
this user is given by log2(1 + SIR) when the SIR
corresponds to the location of the static user.

Since the stochastic approximation algorithms pre-
sented in this paper asymptotically converge to the opti-
mal value, we first consider perfect knowledge scenario
where the MDP transition and cost structures are known
to the decision maker. For opportunistic (i.e., location-
dependent) bandwidth allocation, we assume that all
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α θ ξ R
equal
mobile,α R

equal
static,α R

∗
mobile,α R

∗
static,α

0.1 0.1 2.3 0.4867 0.4655 0.5263 0.4654
0.1 0.9 1 0.7675 0.6161 0.7680 0.6212
0.9 0.1 1.5 0.0237 0.2539 0.0387 0.2780
0.9 0.9 1.9 0.0935 0.0275 0.0941 0.0289

TABLE 1
Comparison of equal bandwidth sharing among all users

against opportunistic (dynamic) bandwidth sharing
between the static and mobile user classes, for various

combinations of α and θ (and correspondingly
appropriate choice of ξ). Under dynamic bandwidth

sharing (columns 6 and 7 in the table), it is assumed that
all users in the same user class (static or mobile) share

equally the bandwidth available to that class at any
moment. The notation has been defined in the text.

users in the same class (i.e., static or mobile) share equal
bandwidth among themselves all the time.

We have done extensive simulation over a range of
parameter values, for various realizations of the location
of static users. In this section, we only provide a few of
them to illustrate the performance gains and trade-offs.

We first focus on the problem (5) for α ∈ (0, 1)
for comparison. For each combination of α and θ, we
first compute non-opportunistic performance metrics
R
equal

mobile,α and R
equal

static,α which are analogous to R
∗
mobile,α

and R
∗
static,α defined in Section 6.3 (with ξ dropped

from the notation), except that R
equal

mobile,α and R
equal

static,α are
calculated assuming equal bandwidth sharing among all
static and mobile users at any point of time. Then we
chose an appropriate value of ξ (for a given α and θ) so
that, under the corresponding optimal policies given in
Section 6.1 with this choice of ξ, the constraint in (5) is
(approximately) met with equality; clearly, our objective
is to solve the constrained problem (5). The quantities
R
∗
mobile,α and R

∗
static,α under α = 1 become R

∗
mobile

and R
∗
static (defined in Section 3.2). Our goal is to see

how much improvement is possible (via opportunistic
bandwidth sharing) in the time-average sum data rate
of mobile users which keeping the same quantity un-
changed for static users. The results are summarized in
Table 1. Note that, each row in Table 1 corresponds to
an independent set of static user locations.

From Table 1, we observe that even 60% improvement
is possible in the time-average throughput of mobile
users, while keeping the time-average throughput of
static users almost unchanged; this clearly shows that
it is worth employing the proposed opportunistic band-
width allocation algorithms in cellular networks. We also
observe that the margin of performance improvement
decreases as α becomes smaller. This happens because
of two reasons: (i) choice of α ∈ (0, 1) allows more fair
allocation at the cost of opportunistic gain, (ii) it is also
an artifact of the choice of α ∈ (0, 1) since the derivative
of the concave function xα is decreasing in x. On the

other hand, performance gain in the data rate for mobile
users becomes smaller if θ becomes close to 1. When θ
is small, bandwidth is allocated only to the mobile users
when they come close to the base station; however, when
θ is large, there are a large number of mobile users inside
the cell at any time with high probability, and hence
equal bandwidth sharing among the mobile users results
in significant bandwidth allocation to the mobile users
which are either close or away from the base station.

One should also note that, the amount of gain will
vary depending on the topology of a cell, location of
interfering base stations, static user locations, shadowing
realizations in various locations as well as fading process
statistics; it is hard to quantify these effects but some
intuitive conclusions can be drawn. For example, if
static users are very close to the base station, then the
performance gain in the throughput of mobile users will
be less since opportunistic allocation will assign more
bandwidth to static users. The numerical work presented
in this section is only an illustration for possible perfor-
mance gain by location-dependent dynamic bandwidth
allocation.

7.2 Convergence of Algorithm 2 for α = 1

Here we consider the same network model as in Sec-
tion 7.1 except that (i) the shadowing between any base
station and any static user location or road segment
center is assumed to be independent lognormal random
variable with standard deviation 8 dB, (ii) the fading
gain between the origin and any location inside the cell is
exponentially distributed with mean 1 (Rayleigh fading),
but the fading in any interfering link is averaged out, (iii)
θ = 0.2, (iv) there is only one line x = 50 along which
the mobile users traverse.

The convergence of Algorithm 2 is examined under
this network setting. We first generate the network and
compute the time-average expected data rate to static
and mobile user classes when all users are allocated
equal bandwidth in each slot; the mean data rate per
slot for the static user class is then set as the target
R0 in (2), and Algorithm 2 is employed with stepsize
sequences a(t) = 1

t0.6 , b(t) = 1
t and initial estimates

R
(0)
mobile(s) = 1, R(0)

static(s) = 1 and ξ(0) = 2. Under
Algorithm 2, the evolution of 1

N

∑N
τ=1 ητRmobile(s(τ)),

1
N

∑N
τ=1(1 − ητ )Rstatic(s(τ)) against N and ξ(τ) against

τ for a single sample path are shown in Figure 2. From
Figure 2, we can see that all iterates converge asymp-
totically, and they are close to the respective limiting
values within 20000 iterations. In practice, the conver-
gence will be faster because the initial values R(0)

mobile(s),
R

(0)
static(s) and ξ(0) will be chosen based on prior ex-

perience in previous days, and will be chosen close
to the target values. Also, the convergence speed will
depend on the network parameters, network topology,
wireless propagation model and the step size sequences
{a(τ), b(τ)}τ≥0. From Figure 2, we can see that more than
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Fig. 2. Convergence of Algorithm 2.

150% improvement is possible in the sum throughput of
mobile users while achieving the same sum throughput
for static users.

8 ADDITIONAL DISCUSSION

8.1 Connection Between the Cell Level Problem and
a Global Problem

Let us consider a heterogeneous network consisting of
two tiers of base stations (BSs). The two tiers are mod-
eled by two independent stationary, ergodic processes
Φmacro and Φmicro (such as homogeneous Poisson point
processes). SUs are assumed to be located on R2 accord-
ing to a stationary, ergodic point process Ustatic of inten-
sity λSU . We assume that MUs are moving with constant
speed v along a collection of directed routes; these routes
are modeled by a stationary, ergodic line process (such
as directed homogeneous Poisson line process, see [23,
Chapter 8]). Given a realization of the line process, we
assume that, at any time t, two successive MUs on any
line of L are separated by an exponentially distributed
distance with mean 1

λMU
, i.e., the MUs on any line form

a Poisson point process of intensity λMU at any time t.
Hence, the crossing of any point of a line by the MUs
form a time homogeneous Poisson process with intensity
λMUv.

A static user is served by a macro or micro BS, and
the association rule can be arbitrary (e.g., a SU can be
associated with the BS that sends strongest signal to the
SU). Each MU is served by the nearest macro BS. We
call the Voronoi cells generated by Φmacro as macro cells.
From now on, unless specified, a cell will mean a macro
cell.

Note that, the heterogeneous network model is used
to illustrate our model in advanced cellular network
context (e.g., for LTE). But the analysis presented in this
paper will be valid even if the network is homogeneous
and each BS is allowed to serve both SUs and MUs.

Let us consider the time-slotted simplification of the
above system and the problem addressed in Section 3.
The unconstrained optimization problem (1) can be
used for performance optimization in a single macro
cell. Let us enumerate the macro BSs on the plane

by {1, 2, · · · }. Since the base stations do not communi-
cate for making the decision on bandwidth allocation,
and since each macro BS has different number of line
segments intersecting its cell and different number of
SUs associated with it, the dynamic bandwidth sharing
policy adopted by the network is η = ×∞k=1η

(k) where
η(k) is the policy used by the k-th macro BS. Let us
denote the numerator in (1) for the k-th macro BS, i.e.,∑N
τ=1 Eη(k)

(
ητRmobile,k(s(τ)) + ξ(1− ητ )Rstatic,k(s(τ))

)
by r(k,N). Let us consider the following problem:

sup
η

lim inf
M→∞

lim inf
N→∞

∑M
k=1 r(k,N)

NM
(9)

Now, since η = ×∞k=1η
(k), the above problem can be

rewritten as:

lim inf
M→∞

1

M

M∑
k=1

sup
η(k)

lim inf
N→∞

r(k,N)

N

Let the optimal mean reward per slot for the problem
(1) for cell k be λk. Now, for (9), lim infM→∞

1
M

∑M
k=1 λk

is almost surely equal to the expected optimal time-
average reward for the typical macro cell. Hence, by
solving the problem (1) for each cell, we can maximize
the expected optimal time-average reward for the typical
macro cell.

8.2 Addressing the Possibility of Error in Location
Estimation for MUs

Let us recall the framework in Section 3. It has to be
noted that there can be error in estimating the location
of a mobile user, and therefore an error in estimating
the residual sojourn time of a mobile user inside a cell
is possible. Let us assume that the error in estimation of
states at any two different time slots are independent,
and that we know the error statistics (i.e., given the
observed state ŝ, we know the conditional distribution
p(s|ŝ) of the true state s). Since the action in a slot does
not affect the state transition, the best possible action one
can take in a slot is to choose
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η∗ξ (ŝ)

= arg max
η∈[0,1]

∑
s

p(s|ŝ)
(
ηRmobile(s) + ξ(1− η)Rstatic(s)

)
:= arg max

η∈[0,1]

(
ηr̃mobile(ŝ) + ξ(1− η)r̃static(ŝ)

)
.

The structure of the optimal policy will be similar to
Theorem 2. Similarly, it will be optimal to work with
the observed state ŝ in case learning algorithms are
employed.

8.3 Deviation from movement along a line

The analysis in this paper can be trivially extended to the
case where the location of mobile users vary according
to a positive recurrent discrete-time Markov chain over
the cell divided into a finite number of area segments.
The state in this case should include the location of all
mobile users at a given time. However, in such cases, the
location of each user needs to tracked by the base station
in each slot; this is not required if the users move along
straight lines with known velocity, since one can easily
predict the location of a user at a time once the initial
location of that user at a given time instant is known.
In this paper, we considered movement of users along a
line because it stands for vehicle movements along roads
and it is a simple but powerful example.

8.4 Unequal bandwidth sharing within a single class
of users

From the anslysis presented in Section 3, it is clear
that the decision at any given state s depends only
on R̄mobile(s) and R̄static(s), and not on the specific
bandwidth fraction allocated to each user within a user
class. The percentage bandwidth allocation among mo-
bile users within the class of mobile users determines
R̄mobile(s) which affects the decision η∗ξ .

8.5 Multiple user classes

In case there are multiple user classes with different
velocities, analogous to Theorem 2, the optimal policy
will be to allocate the entire bandwidth to a single user
class at any given time. Algorithm 2 can be extended
for maximizing the time average data rate for one class
subject to a minimum time-average data rate constraint
on each of the other classes; in this case, one Lagrange
multiplier needs to be updated for each constraint, and
the optimal solution for the constrained problem will
involve randomization among multiple policies.

8.6 Channel estimation versus location-based band-
width sharing

For fast moving users, traditional channel estimation
may not be very accurate since the user might travel the

fast fading coherence distance very fast; hence, dynamic
bandwidth allocation among users based on instanta-
neous channel qualities may not be feasible. Also, even
if channel measurement is accurate, for a user mov-
ing at a velocity 72 kmph, the channel coherence time
will be less than 50 ms; hence, gathering chennel state
information from each user every 50 ms will require
huge signaling overhead. Moreover, it may be difficult
to estimate the interference at any given location, since
the interference at any location depends on path-loss,
shadowing and time-varying fast fading gains from all
interfering base stations. As an alternative, we propose
location-dependent bandwidth sharing. Section 3 deals
with the situation where R̄mobile(s) and R̄static(s) are
known; this amounts to assuming that the path-loss and
shadowing from serving and interfering base stations
are known, and the distribution of fast fading gains
from the serving and interfering base stations to each
location are also known. We emphasize that this is an
idealistic assumption, and, in practice, the serving base station
has to learn R̄mobile(s) and R̄static(s) over time from the
download data volume reported by the users; this is discussed
in Section 4 and Section 5. Clearly, the learning algorithms
do not need any propagation based model. While channel
quality measurement, if done accurately, can result in superior
user performance, our proposed algorithms for location-based
bandwidth algorithms with learning are useful when accurate
channel estimates and interference estimates are not available
due to high velocity of users.

Location dependent bandwidth sharing has also been
discussed in [15], where a preference is given to the
mobile users located close to the base station.

9 CONCLUSION

In this paper, we have proposed and analyzed op-
portunistic (dynamic) bandwidth sharing depending on
user location and mobility, in order to improve the
performance of cellular networks. Even though we have
solved the basic problem in this paper, there are nu-
merous issues to improve upon: (i) In practice, there
can be multiple (possibly uncountable) values of user
velocity. Hence, a dynamic bandwidth sharing scheme
that allocates bandwidth depending on exact velocity
of each user needs to be developed (this might require
classification of user velocities into a finite set). (ii) For
general motion of users, one reasonable approach would
be to divide the cell into various zones (or locations), and
assume a Markov evolution of user locations; similar
learning techniques as in our paper can be applied in
such situation. (iii) Testing and optimizing the proposed
and subsequent algorithms in real data-traffic networks
will be an important requirement. We propose to pursue
these topics in our future research endeavours.
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APPENDIX A
A.1 Proof of Lemma 1
Let ξ ≥ 0 and κ > 0. By the optimality of η∗ξ (·) and
η∗ξ+κ(·), we can write:

R
∗
mobile(ξ) + ξR

∗
static(ξ) ≥ R

∗
mobile(ξ + κ) + ξR

∗
static(ξ + κ)

and

R
∗
mobile(ξ+κ)+(ξ+κ)R

∗
static(ξ+κ) ≥ R

∗
mobile(ξ)+(ξ+κ)R

∗
static(ξ)

By adding these two equations, we obtain:

R
∗
static(ξ + κ) ≥ R∗static(ξ).

Similarly we can prove that R
∗
mobile(ξ) decreases in ξ.

A.2 Proof of Theorem 3

Let us rewrite the update equation in Algorithm 1 as
follows:

R
(τ+1)
mobile(s) = R

(τ)
mobile(s) + a(ν(s, 1, τ))1{s(τ) = s}1{ητ = 1}

×
(
Rmobile(s)−R

(τ)
mobile(s) +N(τ+1)(s, 1)

)
R

(τ+1)
static(s) = R

(τ)
static(s) + a(ν(s, 0, τ))1{s(τ) = s}1{ητ = 0}

×
(
Rstatic(s)−R

(τ)
static(s) +N(τ+1)(s, 0)

)
where

N (τ+1)(s, 1) := Rmobile(s)−Rmobile(s),

and
N (τ+1)(s, 0) := Rstatic(s)−Rstatic(s).

This is an asynchronous stochastic approximation it-
eration as described in [22], with N(s, 1) and N(s, 0)
as Martingale difference noise sequences. However, for
each s,

lim inf
τ→∞

ν(s, 1, τ)

τ
≥ g(s)ε

2
> 0,

where g(s) has been defined in Section 3.2, and

lim inf
τ→∞

ν(s, 0, τ)

τ
≥ g(s)ε

2
> 0

almost surely.
Since each iterate is updated infinitely often, and since

the iterations of various components of the iterates are
uncoupled, for each s we can cast the iteration as an
ordinary stochastic approximation as defined in [22,
Chapter 2].

Now we will check some conditions from [22]. Let us
denote R := {Rmobile(s), Rstatic(s)}∀s.

Checking Assumption (A1) of [22, Chapter 2]:
Clearly, Rmobile(s)−R(τ)

mobile(s) is Lipschitz in R
(τ)
mobile(s)

and Rstatic(s) − R
(τ)
static(s) is Lipschitz in R

(τ)
static(s) for

each s; hence, this assumption is satisfied.
Checking Assumption (A2) of [22, Chapter 2]: This

assumption is satisfied by the choice of the step size
sequence.

Checking Assumption (A3) of [22, Chapter 2]: It
is easy to see that, {N (τ+1)(s, 1), N (τ+1)(s, 0)}τ≥1 for
each s is a sequence of Martingale difference noise
with zero mean, adapted to the sigma algebra generated
by {N (k)(s, 1), N (k)(s, 0)}0≤k≤τ,∀s. Also, the conditional
mean of |N (τ+1)(s, 1)|2 given all the noise values up to
time τ is uniformly upper bounded by some constant,
since T is Geometrically distributed and fading process
is bounded by Assumption 1. Hence, Assumption (A3)
of [22, Chapter 2] is satisfied.

Checking Assumption (A5) of [22, Chapter 3]: Note
that, limc→∞

Rmobile(s)−cx(s,1)
c = −x(s, 1) is continu-

ous in x(s, 1) for all s. Also, Rmobile(s)−cx(s,1)
c is de-

creasing in c. Hence, by Theorem 7.13 of [24], con-
vergence of Rmobile(s)−cx(s,1)

c over compacts is uniform.
Also, the collection of ODEs of the form ẋ(s, 1) =

limc→∞
Rmobile(s)−cx(s,1)

c = −x(s, 1) has a unique unique
globally asymptotically stable equilibrium x(s, 1) =
x(s, 0) = 0 for all s. Hence, this assumption is satisfied.

Let us consider the following ODE for all s:

ẋ(s, 1) = Rmobile(s)− x(s, 1)

ẋ(s, 0) = Rstatic(s)− x(s, 0)

The above ODE has a unique globally asymptotically
stable equilibrium x(s, 1) = Rmobile(s) and x(s, 0) =
Rstatic(s). Hence, by [22, Theorem 7, Chapter 3] and
[22, Theorem 2, Chapter 2], convergence of Algorithm 1
follows.

Now, it is easy to see that,

|λ∗ε (ξ)− λ∗(ξ)| ≤
ε

2

∑
s

g(s)E|Rmobile(s)−Rstatic(s)|

.
The second part of the theorem follows from this. �

A.3 Proof of Theorem 4

We will prove desired convergence in the two timescales
one by one.
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A.3.1 Convergence in the faster timescale

Lemma 4: Under Algorithm 2, we have
limτ→∞R

(τ)
mobile(s) = Rmobile(s) and limτ→∞R

(τ)
static(s) =

Rstatic(s) for all s almost surely.
Proof: The proof is similar to the proof of Theorem 3.

Lemma 5: Under Algorithm 2, we have limτ→∞ |p(τ)−
p∗ε (ξ

(τ))| = 0.
Proof: Note that, we can rewrite the p iteration (using

Taylor series expansion) as follows:

p
(τ+1)

=

[
p
(τ)

+ a(τ)(
∑
s

1{s(τ) = s, ητ = 0}

×Rstatic(s) − R0)

]1
0

= p
(τ)

+ o(a(τ))

+ lim
β→∞

[
p(τ) + β(

∑
s 1{s(τ) = s, ητ = 0}Rstatic(s) − R0)

]1
0
− p(τ)

β

= p
(τ)

+ o(a(τ)) + N
(τ)

+a(τ)E lim
β→∞

[
p(τ) + β(

∑
s 1{s(τ) = s, ητ = 0}Rstatic(s) − R0)

]1
0
− p(τ)

β

where N (τ) is a Martingale difference noise sequence,
o(b(τ)) is the tail of the Taylor series expansion, and the
expectation is under the randomized policy η(ε)(·|·, ·, ·, ·).

Now,

P(ητ = 0|s(τ) = s,Rτ , ξ(τ), p(τ))

=
ε

2
+ (1− ε)P(R

(τ)
mobile(s)− (ξ(τ) + ∆τ )R

(τ)
static(s) ≤ 0)

Note that, P(ητ = 0|s(τ) = s,Rτ , ξ(τ), p(τ)) is
continuous in (R

(τ)
mobile(s), R

(τ)
static(s), p

(τ), ξ(τ)). As a re-
sult of this and Lemma 4, the difference of the
above expectation under the policies η(ε)(·|·, ·, ·, ·) and
η(ε)(·|·, {Rmobile(s), Rstatic(s)}∀s, ·, ·) go to 0 as τ →∞.

Now we claim that (p(τ), ξ(τ)) converges to the inter-
nally chain transitive invariant sets of the o.d.e.

ṗ(t)

= E lim
β→0

[p(t) + β(
∑
s 1{s(t) = s, ηt = 0}Rstatic(s) − R0)]10 − p(t)

β
,

ξ̇(t) = 0,

where the expectation is under the policy
η(ε)(·|·, {Rmobile(s), Rstatic(s)}∀s, ·, ·) and the fading
distribution.

Note that, this o.d.e becomes ṗ(t) ≥ 0 at p(t) = 0,
ṗ(t) ≤ 0 at p(t) = 1, and else

ṗ(t) = E

(∑
s

1{s(t) = s, ηt = 0}Rstatic(s)−R0)

)
=

∑
s

g(s)P(ηt(s) = 0)Rstatic(s)−R0.

Since P(η(s) = 0) is decreasing in p(t), the o.d.e.

ṗ(t)

= E lim
β→0

[p(t) + β(
∑
s 1{s(t) = s, ηt = 0}Rstatic(s)−R0)]10 − p(t)

β

can have at most one limit point. This limit point,
which we call p∗ε (ξ), is either in {0, 1} or it is a stationary

point of the above o.d.e.
Also, by an argument similar to Lemma 2, p∗ε (ξ) is

Lipschitz continuous in ξ.
Hence, using an argument similar to [22, Chapter 6,

Lemma 1], we prove the lemma.

A.3.2 Convergence in the slower timescale

We first prove the following lemma.
Lemma 6: P(η(s) = 0) under the randomized policy

η(ε)(·|s, {Rmobile(s), Rstatic(s)}∀s, p∗ε (ξ), ξ) is continuous
in ξ.

Proof: We have:

P(η(s) = 0)

=
ε

2
+ (1− ε)P

(
Rmobile(s)− (ξ + ∆)Rstatic(s) ≤ 0

)
=

ε

2
+ (1− ε)P

(
∆ ≥ Rmobile(s)

Rstatic(s)
− ξ
)

This is continuous in ξ and p∗ε (ξ), and by an argument
similar to Lemma 2, p∗ε (ξ) is continuous in ξ. This proves
the lemma.

Now we state the final lemma.
Lemma 7: Almost surely, as τ → ∞, the iterates ξ(τ)

converges to the projection of Kε(R0) onto the ξ axis.
Proof: The proof follows using similar arguments

as [25, Appendix E.C.3, Appendix E.C.4 and Ap-
pendix E.C.5]. The arguments require the results in
Lemma 6, Lemma 4 and Lemma 5. The choice of A
should be sufficiently large, otherwise ξ(τ) might con-
verge to A.

The proof of the slowest timescale convergence in
[25, Theorem 12] involves checking of five conditions
required for [26, Theorem 5.3.1]. The constrained MDP
associated with [25, Theorem 12] had two constraints
and hence two slower timescale iterates, whereas we
have only one slowest timescale iterate for which it is
easier to check these five conditions. Since these condi-
tions hold, we can claim that the ξ iteration converges
almost surely to the set of stationary points of a suitable
o.d.e. Again, since we have only one slower timescale
iterate, using large enough A is sufficient to ensure that
the stationary points of that o.d.e. lie in (0, A); it was
much more complicated in [25, Theorem 12] since there
were two slower timescale iterates.

The proof of this lemma requires Lemma 6 and the
fact that Rstatic(s) has a bounded support (since by
Assumption 1, fading gain distribution has bounded
support).
In light of Lemma 4, Lemma 5 and Lemma 7, the theorem
is proved. �



19

A.4 Proof of Corollary 1

Using arguments similar to the proof of Lemma 6, under
η(ε)(·|·, ·, ·, ·), one can claim that

P(ητ = 0|s(τ) = s,Rτ = R, ξ(τ) = ξ, p(τ) = p, ε)

is continuous in (R, ξ, p, ε) for given s. Hence,
by Theorem 4, we can claim that: P(ητ =
0|s(τ) = s, ε) converges to the set {x : x =
η(ε)(0|s, {Rmobile(s), Rstatic(s)}∀s, ξ, p), (ξ, p) ∈ Kε(R0)}
almost surely as τ →∞.

Now,

lim
ε↓0
{x : x = η(ε)(0|s, {Rmobile(s), Rstatic(s)}∀s, ξ, p), (ξ, p) ∈ Kε(R0)}

= {x : x = η(0)(0|s, {Rmobile(s), Rstatic(s)}∀s, ξ, p), (ξ, p) ∈ K(R0)}.

The proof trivially follows from this. �
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