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Abstract—Recently, the mobile network operators (MNOs) are exploring more time flexibility with the rollover data plan, which allows
the unused data from the previous month to be used in the current month. Motivated by this industry trend, we propose a general
framework for designing and optimizing the mobile data plan with time flexibility. Such a framework includes the traditional data plan,
two existing rollover data plans, and a new credit data plan as special cases. Under this framework, we formulate a monopoly MNO’s
optimal data plan design as a three-stage Stackelberg game: In Stage I, the MNO decides the data mechanism; In Stage II, the MNO
further decides the corresponding data cap, subscription fee, and the per-unit fee; Finally in Stage III, users make subscription
decisions based on their own characteristics. Through backward induction, we analytically characterize the MNO’s profit-maximizing
data plan and the corresponding users’ subscriptions. Furthermore, we conduct a market survey to estimate the distribution of users’
two-dimensional characteristics, and evaluate the performance of different data mechanisms using the real data. We find that a more
time-flexible data mechanism increases MNO’s profit and users’ payoffs, hence improves the social welfare.

Index Terms—Rollover data plan, Three-part tariff, Time flexibility, Game theory.
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1 INTRODUCTION

1.1 Background and Motivations

DUE to the increasing competition in the telecommu-
nications market, Mobile Network Operators (MNOs)

are under an increasing pressure to increase market shares
and improve profits [2]. One approach is to adopt various
novel wireless technologies to improve the quality of service
(QoS) to attract more subscribers. However, the technology
upgrade is often costly and time-consuming. A complemen-
tary economical approach is to explore various innovative
data pricing schemes to better address heterogeneous user
requirements.

Traditionally, most network operators used the flat-rate
data plans for wireless data services [2], where users pay a
fixed fee for unlimited monthly data usage. Later in 2010,
the Federal Communications Commission (FCC) and Cisco
backed usage-based pricing to penalize those heavy users
and manage the traffic. Therefore, MNOs started to adopt
the usage-based pricing scheme, where the subscribers are
charged based on their actual data consumptions. A widely
used form of usage-based plan adopted by many MNOs
today is the three-part tariff plan, which consists of a
monthly subscription fee, a data cap within which there is
no additional cost of usage, and a linear unit price for any
data consumption exceeding the data cap.

Recent years have witnessed many MNOs exploring the
time flexibility in their data plans to further increase their
market competitiveness. For example, the rollover data plan,
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which allows the unused part of the data cap from the
previous month to be used in the current month, has been
implemented by many MNOs, e.g., AT&T [3], T-Mobile [4],
and China Mobile [5]. Such a rollover plan reduces the users’
uncertainty due to stochastic data demands, and offers users
more time flexibility. This motivates us to ask the first key
question in this paper:

Question 1. Who will benefit more from the introduced time
flexibility, the MNO or users?

Although centering around the same core idea, various
rollover data plans in practice can be quite different in terms
of the consumption priority and the expiration time. For
example, AT&T specifies that the rollover data from the
previous month will be used after the current monthly data
cap is fully consumed [3], while China Mobile specifies
that the rollover data will be used before consuming the
current monthly data cap [5]. As for the expiration time,
both AT&T and China Mobile require the rollover data to
expire after one month, while T-Mobile allows subscribers
to accumulate their rollover data over several months [4].

We observe that a common feature of various rollover
data plans is that a user can only use the “remaining”
data cap from the previous month(s). This motivates us
to propose a credit data plan that inversely allows users to
“borrow” their data quota from future months.1 In fact, the
rollover and credit data mechanisms represent two differ-
ent ways of exploring the data dynamics across the time
dimension: backward and forward. This motivates us to ask
the second and the third key questions in this paper:

Question 2. Which data mechanism is the most time-flexible?

Question 3. Which data mechanism should the MNO adopt?

1. The telecom market in many countries is based on the real-name
registration, hence it is difficult for a user to keep borrowing data
and then stop the subscription without paying back. Moreover, the
Data Bank platform [6] implemented by China Unicom allows users
to borrow data from the MNO, which exhibits a similar idea to the
credit data plan.
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Furthermore, the MNOs profit from mobile data services
through carefully choosing and optimizing their mobile data
plans. Even though the MNOs have implemented different
versions of rollover data plans in practice, there is no sys-
tematical understanding on how the time flexibility affects
the optimal data plan design. This motivates us to ask the
fourth key question in this paper:
Question 4. What is the impact of time flexibility on the MNO’s

optimal data cap, subscription fee, and per-unit fee?

In this paper we will study and evaluate these innovative
data mechanisms and reveal the impact of time flexibility in
a comprehensible way. We hope that our results in this paper
could pave the way for the MNOs to better implement and
the public to better understand these time-flexible mobile
data plans.

1.2 Solutions and Contributions

In this paper, we study the optimization of the three-part
tariff data plan with time flexibility in a monopoly market,
and consider four data mechanisms which are different in
the special data (rollover or credit data) and the consumption
priority.

We formulate the monopoly MNO’s optimal data plan
design as a three-stage Stackelberg game, with the MNO
as the leader and users as followers. Specifically, the MNO
decides which kind of data mechanism to adopt in Stage I,
then further decides its profit-maximizing data cap and the
corresponding subscription fee and per-unit fee in Stage II.
Finally, users make their subscription decisions to maximize
their payoffs in Stage III.

To the best of our knowledge, this is the first paper that
systematically studies the MNO’s optimal three-part tariff
plan with time flexibility. The main results and contributions
of this paper are summarized as follows:

• Systematic Study of Data Mechanisms with Time Flexi-
bility: We propose a general framework that includes
the traditional data mechanism and three innovative
data mechanisms with rollover or credit data as
special cases. Based on such a unified framework,
we further study the optimal design for mobile data
plan with time flexibility.

• Three-Stage Decision Model: We model and analyze the
interactions between the MNO and users as a three-
stage Stackelberg game. Despite the complexity of
the model, we are able to fully characterize the user
subscription in Stage III, the MNO’s optimal data cap
and pricing strategy in Stage II, and the optimal data
mechanism choice in Stage I.

• User Subscription: We consider users’ heterogeneity in
the data valuation and the network substitutability.
We find that under the optimal data plan, the profit-
maximizing MNO admits subscribers based only on
their data valuations, while treating users of different
network substitutability identically.

• Optimal Data Plan: We study the impact of MNO’s
quality of service (QoS), operational cost, and capac-
ity cost on its optimal data plan. Our analysis reveals
a counter-intuitive insight: a better time flexibility
dose not necessarily lead to a smaller data cap; the

data cap can be larger if the MNO is weak with a
poor QoS and large costs.

• Performance Evaluation: We conduct a market survey
to estimate the statistical distribution of users’ data
valuation and network substitutability. The simu-
lations based on the empirical data further reveal
that both MNO and users can benefit from the time
flexibility. The MNO benefits more than users if the
MNO provides good services and experiences small
costs. Otherwise, users will benefit more from the
time flexibility than the MNO.

The remainder of this paper is organized as follows. In
Section 2, we review the related works. Section 3 introduces
our system model and the three-stage game. Section 4
presents the four data mechanisms with time flexibility in
detail. In Section 5, we analyze the three-stage decision
model through backward induction. Section 6 presents the
numerical results and Section 7 concludes this paper.

2 LITERATURE REVIEW

The optimal design of mobile data plan has been exten-
sively studied in the literature. The early studies focused on
the debate between flat-rate and usage-based schemes [7].
After introducing the data cap, Dai et al. in [8] demonstrated
that heavy users would pay for their usage, while light
users would benefit from it. Then Wang et al. in [9] studied
the optimization of the three-part-tariff in the congestion-
prone network. Xiong et al. in [10] focused on the sponsored
content and analyzed a Stackelberg game pricing model
on the MNO’s data plan optimization. Zheng et al. in [11]
studied the dynamics of users’ data consumption through
a dynamic programming formulation. However, the above
studies did not consider various forms of flexibility in-
troduced in recent mobile data plans, including the time
dimension [12], [13], user dimension [14], [15], [16], and
location dimension [17], [18].

Time flexibility corresponds to the rollover data plan in
practice. Despite of the increasing popularity of the rollover
data plan, the related theoretical study just emerged very
recently. As far as we know, there existed only two related
works before this work. Specifically, Zheng et al. in [12]
compared the rollover data plan with a traditional three-part
tariff, and found that the moderately price-sensitive users
can benefit from subscribing to the rollover data plan. Wei
et al. in [13] further looked at the choice of expiration time
of the rollover data and analyzed the impact of the rollover
period lengths through a contract-theoretic approach.

User flexibility corresponds to the shared data plan and
data trading. Sen et al. in [14] introduced an analytical
framework for studying the economics of shared data plans.
Zheng et al. in [15] examined the “2CM” data trading market
launched by China Mobile Hong Kong, and Yu et al. in
[16] further analyzed users’ realistic trading behaviors using
prospect theory.

Location flexibility corresponds to the global data services,
e.g., Skype Wi-Fi and Uroaming. Duan et al. in [17] studied
how the global providers work with many local providers to
promote the global mobile data services, and examined the
flat-rate and usage-based schemes. Ma et al. in [18] proposed
an optimal design of time and location aware mobile data
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TABLE 1: T , {Q,Π, π, κ}, κ ∈ {0, 1, 2, 3}
Data Mechanism Special Data Surplus or Deficit Consumption Priority Effective Cap Qeκ(τ)

κ = 0 None τ = 0 Cap Q
κ = 1 Rollover data τ ∈ [0, Q] Cap⇒Rollover Q+ τ ∈ [Q, 2Q]
κ = 2 Rollover data τ ∈ [0, Q] Rollover⇒Cap Q+ τ ∈ [Q, 2Q]
κ = 3 Credit data τ ∈ [−Q, 0] Cap⇒Credit 2Q+ τ ∈ [Q, 2Q]

Fig. 1: Three-Stage Stackelberg Game.

pricing, incentivizing users to smoothen their traffic and
reduce network congestion.

Note that each of the above three dimensions deserves
substantial studies and further explorations. Our focus is
the optimization of the three-part tariff mobile data plan
with time flexibility (which was not studied in [12], [13]).

3 SYSTEM MODEL

In this paper, we consider a monopoly market with a
single MNO who provides mobile data services for het-
erogeneous users.2 The MNO designs a mobile data plan
to maximize its profit, and each user decides whether to
subscribe to the MNO to maximize his payoff.

We formulate the economic interactions between the
MNO and the mobile users as a three-stage Stackelberg
game, as shown in Fig. 1. The MNO is the Stackelberg
leader: it first decides the data mechanism to be imple-
mented within its three-part tariff data plan in Stage I, then
decides the data cap, the subscription fee, and the per-unit
fee in Stage II.3 Finally, the users make their subscription
decisions to maximize their payoffs in Stage III.

Next we first present a unifying framework of different
mobile data plans, then introduce the model in more details
from the perspectives of users and the MNO, respectively.

3.1 Mobile Data Plans
The three-part tariff data plan with time flexibility can be

characterized by the tuple T = {Q,Π, π, κ}, where the
subscriber pays a fixed lump-sum subscription fee Π for the

2. There are multiple competitive MNOs in the practical market.
The analysis for the competitive market requires a comprehensive
understanding on each MNO’s optimal data plan design. Due to space
limit, in this paper we focus on the monopoly case. We have reported
some preliminary results on the duopoly competition in [19].

3. In practice, an MNO adopts a data mechanism (i.e., rollover, credit,
or the traditional one) for a relatively long time period (e.g., three or five
years), while has the flexibility of updating data mechanism parameters
(i.e., the data cap, monthly subscription fee, and the per-unit fee) more
often (e.g., on a yearly basis). The three-stage formulation captures the
MNO’s different decisions at different time scales.

data usage up to the cap Q, beyond which the subscriber
pays an overage fee π for each unit of additional data
consumption. Here κ represents different data mechanisms
that gives the subscriber different degrees of time flexibility
on their data consumption over time.

Next we first introduce the four data mechanisms, then
demonstrate that the pure usage-based data plan and the
flat-rate data plan are special cases of the tuple T .

3.1.1 Four Data Mechanisms
We consider four data mechanisms indexed by κ ∈

{0, 1, 2, 3}. The key differences among the different data
mechanisms are the special data and the consumption priority.
To be more specific, the special data could be the rollover
data inherited from the previous month or the credit data
that can be borrowed from the next month, both of which
can enlarge a subscriber’s effective data cap (within which
no overage fee involved) in the current month. Moreover,
the consumption priority of the special data and the current
monthly data cap further affects how much the effective
data cap can be enlarged.

We summarize the key differences of the four data mech-
anisms in Table 1. Here we use τ to denote a user’s data
surplus (τ > 0) or data deficit (τ < 0) at the beginning of a
month, and use Qeκ(τ) to denote the corresponding effective
data cap. More specifically,

• The case of κ = 0 denotes the traditional data
mechanism without time flexibility. The subscriber
has no data surplus or deficit, and the effective cap
of each month is Qe0(τ) = Q;

• The case of κ = 1 denotes the rollover data mech-
anism offered by AT&T. The rollover data τ from
the previous month is consumed after the current
monthly data cap and expires at the end of the
current month. Thus the effective cap of the current
month is Qe1(τ) = Q+ τ ;

• The case of κ = 2 denotes the rollover data mech-
anism offered by China Mobile. The rollover data τ
from the previous month is consumed prior to the
current monthly data cap Q and expires at the end
of the current month. Thus the effective cap of the
current month is Qe2(τ) = Q+ τ ;

• The case of κ = 3 denotes the credit data mechanism
proposed in this paper. The credit data is from the
next month’s data cap Q,4 which is consumed after
the current monthly data cap Q (with a data deficit τ
from the previous month). Thus the effective cap of
the current month is Qe3(τ) = 2Q+ τ ;

As mentioned above, the time flexibility can enlarge the
subscriber’s effective data cap. According to Table 1, the

4. Since users can only borrow data from the next one month’s data
cap, Q is the maximal amount that can be borrowed.
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effective data cap of the traditional data mechanism (i.e.,
κ = 0) is always Q; while the potential maximal value of
the effective data cap is 2Q for the rollover and credit data
mechanisms (i.e., κ = 1, 2, 3). The larger the effective data
cap is, the less overage usage is incurred, which will further
change the users’ subscription decisions.

Table 2 provides a numerical example with five months’
data consumptions and the corresponding payments under
the four data mechanisms. Among the four schemes, the
last two schemes (i.e., κ = 2, 3) lead to the same least total
payment of $250, and the first scheme (i.e., κ = 0) leads to
the maximum total payment of $280. Is this a coincidence?
We will further discuss it in Section 4.

3.1.2 Special Cases of Three-Part Tariff
Next we illustrate that the pure usage-based data plan

and the flat-rate data plan are two special cases of the tuple
T = {Q,Π, π, κ}, κ ∈ {0, 1, 2, 3}.

Under the pure usage-based data plan, the subscriber has a
zero monthly data cap and only needs to pay a usage-based
fee for each unit of data consumption. Therefore, we can de-
note the pure usage-based data plan as Tp = {0, 0, πp, Na},
where Na represents that the data mechanism index κ has
no impact under the pure usage-based data plan (as there is
no data cap).

Under the flat-rate data plan, the subscriber pays a fixed
monthly subscription fee for unlimited data usage without
any additional overage fee, thus the per-unit fee π has no
impact. Strictly speaking, the data cap of the flat-rate data
plan is infinity. However, in this paper we model the user’s
data demand as a random variable d ∈ {0, 1, 2, ..., D} (to
be defined in Section 3.2), where D is the maximal data
demand. Therefore, in practice it is enough to set the data
cap to be no less than D to achieve the effect of a flat-rate
plan. Accordingly, we denote the flat-rate data plan as Tf =
{Qf,Πf, Na, Na}, where Qf ≥ D, and Na represents that the
per-unit fee π and the data mechanism κ have no impact.

Our later analysis on the MNO’s optimal data plan is
based on the general tuple T = {Q,Π, π, κ}. Meanwhile,
we will characterize the conditions under which the MNO’s
optimal three-part tariff with time flexibility would degen-
erate into the pure usage-based data plan Tp or the flat-rate
data plan Tf.

3.2 User Model
Next we introduce a user’s three characterizations: the

data demand d, the data valuation θ, and the network sub-
stitutability β. Based on these, we derive a user’s expected
payoff.

First, we model the user’s monthly data demand d as
a discrete random variable with a probability mass func-
tion f(d), a mean value of d̄, and a finite integer support
{0, 1, 2, ..., D}. Here the data demand is measured in the
minimum data unit (e.g, 1KB or 1MB according to the
MNO’s billing practice).

Second, we follow [7] by denoting θ as a user’s util-
ity from consuming one unit of data, i.e., the user’s data
valuation. According to our market survey conducted in
mainland China, θ falls into the range between 10 RMB/GB
and 60 RMB/GB with a large probability. We will further
discuss it in Section 6.1.

TABLE 2: Numerical Example for κ = 0, 1, 2, 3.

Month Jan. Feb. Mar. Apr. May Total
Data Consumption 2GB 2GB 4GB 4GB 1GB 13GB

κ = 0 Payment $50 $50 $65 $65 $50 $280

κ = 1
τ 0 1GB 1GB 0 0

$265
Payment $50 $50 $50 $65 $50

κ = 2
τ 0 1GB 2GB 1GB 0

$250
Payment $50 $50 $50 $50 $50

κ = 3
τ 0 0 0 -1GB -2GB

$250
Payment $50 $50 $50 $50 $50

Here the data cap is 3GB, the subscription fee is $50, the overage fee is $15/GB,
and τ denotes the data surplus or deficit of each month.

Third, we further explore a user’s behavior change when
he reaches the effective data cap Qeκ(τ), since further data
consumption leads to an additional payment. Although the
user will still continue to consume data in this case, he will
rely more heavily on other alternative networks (such as
Wi-Fi). As in [14], we use the network substitutability β ∈
[0, 1] to denote the fraction of overage usage shrink. A larger
β value represents more overage usage cut (thus a better
network substitutability).

A user’s mobility pattern can significantly influence the
availability of alternative networks. Hence, different users
usually have heterogeneous network substitutabilities. For
example, a businessman who is always on the road may
have a poor network substitutability (hence has a small
value of β); while a student can take the advantage of
the school Wi-Fi network (hence has a large value of β).
According to our market survey, β falls into the range
between 0.7 and 1 with a large probability. We will further
discuss it in Section 6.1.

Without loss of generality, we normalize the total user
population size to one in the rest of the paper. We assume
that users are homogeneous in the data demand distribution
f(d), 5 and investigate the heterogeneity in the data valua-
tion θ and network substitutability β. Therefore, we model
each user by the two-dimensional characteristics (θ, β), and
define the whole user market as M = {(θ, β) : 0 ≤
θ ≤ θmax, 0 ≤ β ≤ 1} with probability density functions
h(θ) and g(β), since our market survey shows that θ and
β are independent with the Pearson correlation coefficient
less than 0.05. Furthermore, we denote Ψ(T ) ⊆ M as the
subscriber set, i.e., the type-(θ, β) user subscribes to the
MNO if and only if (θ, β) ∈ Ψ(T ).

A subscriber’s payoff is the difference between his util-
ity and total payment. More specifically, for a type-(θ, β)
subscriber with d units of data demand and an effective
data cap Qeκ(τ), his actual data usage is d− β[d−Qeκ(τ)]+,
where [x]+ = max{0, x}. Moreover, we use ρ to represent
the MNO’s average quality of service (QoS).6 Mathematically,
ρ is a utility multiplicative coefficient, thus the subscriber’s
utility is ρθ(d−β[d−Qeκ(τ)]+). In addition, the subscriber’s

5. According to the statistical analysis in [20], [21], users’ monthly
demand can be estimated by a log-normal distribution. For analysis
tractability, we consider a homogeneous demand distribution. In the
future, we will consider the heterogeneous case and collect users’ data
usage records to estimate the demand distributions as in [11], [15].

6. In practice, an MNO’s wireless data service depends on the
network congestion, which has been studied before (e.g., [2], [7]). In
this work, instead of modeling the detailed congestion-aware control,
we are more interested in the long-term average quality of the MNO’s
wireless data service.
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total payment consists of the subscription fee Π and the
overage payment π(1−β)[d−Qeκ(τ)]+. Therefore, the payoff
of a type-(θ, β) subscriber with d units of data demand and
an effective cap Qeκ(τ) is given by

S(T , θ, β, d, τ)

=ρθ
(
d− β[d−Qeκ(τ)]+

)
− π(1− β)[d−Qeκ(τ)]+ −Π,

(1)
where the data demand d and the data surplus (or deficit) τ
are two random variables that change in each month. After
taking the expectation over d and τ , we obtain a type-(θ, β)
subscriber’s expected monthly payoff as

S̄(T , θ, β) =Ed,τ [S (T , θ, β, d, τ)]

=ρθ
[
d̄− βAκ(Q)

]
− π(1− β)Aκ(Q)−Π.

(2)

Here Aκ(Q) is the type-(θ, 0) subscriber’s expected
monthly overage data consumption under the data mechanism
κ, defined as follows:

Aκ(Q) =Ed,τ
{

[d−Qeκ(τ)]
+ }

=
∑
τ

∑
d

[d−Qeκ(τ)]+f(d)pκ(τ), (3)

where the summation range of d is from 0 to the maximal
demand D, while the range of τ depends on the data
mechanism κ, which is given in (14), (17), and (20). The
pκ(τ) represents the probability mass function of τ under
the data mechanism κ. Moreover, pκ(·) is the key difference
among the four data mechanisms, since the data mechanism
κ affects a subscriber’s payoff through Aκ(Q) in (2). In
Section 4, we will further explain how to compute pκ(τ)
and Aκ(Q) in detail.

Furthermore, the expected total payoff of the whole market
under T is the integration over all the subscribers in Ψ(T ),
as follows:

S̃(T ) =

∫∫
Ψ(T )

S̄(T , θ, β)h(θ)g(β)dθdβ. (4)

So far, we have introduced users’ characteristics and
derived their payoffs. Next we move on to model the profit-
maximizing MNO.

3.3 MNO Model

In the following we formulate the MNO’s revenue, cost,
and profit, respectively.

3.3.1 MNO’s Revenue

The MNO’s revenue obtained from a subscriber consists
of the subscription fee and the possibly overage fee. There-
fore, the MNO’s revenue from a type-(θ, β) subscriber with d
units of data demand and an effective cap Qeκ(τ) is

R(T , θ, β, d, τ) = π(1− β) [d−Qeκ(τ)]
+

+ Π. (5)

Since d and τ are two random variables that change
in each month, we take the expectation and obtain the
MNO’s expected monthly revenue from a type-(θ, β) subscriber
as follows:

R̄(T , θ, β) =Ed,τ [R (T , θ, β, d, τ)]

=π(1− β)Aκ(Q) + Π,
(6)

where (1−β)Aκ(Q) is the type-(θ, β) subscriber’s expected
overage usage. Again we will provide more details on

Aκ(Q) in Section 4. Moreover, the MNO’s expected total
revenue from the entire market under T is

R̃(T ) =

∫∫
Ψ(T )

R̄(T , θ, β)h(θ)g(β)dθdβ. (7)

3.3.2 MNO’s Cost

In reality, the MNO’s cost is quite a complicated function
that is related to many factors [2]. In this paper, we consider
two kinds of costs experienced by the MNO, i.e., the capac-
ity cost and the operational cost.

The MNO’s capacity cost mainly arises from its capital
expenditure (CapEx), the investment on its network capac-
ity. In reality, the data cap helps the MNO manage the
network congestion and ration the scarce network capacity
[22], and most MNOs imposed the data cap to alleviate
the network congestion [23]. Therefore, once the MNO
decides a data cap to be offered in the market, it should
make sure a corresponding network capacity is in place
to support the traffic. Motivated by this phenomenon, we
model the MNO’s capacity cost as an increasing function
J(Q) on the data cap Q. Intuitively, a larger data cap corre-
sponds to a more severe network congestion, which requires
more investment on the network capacity in advance. The
MNO’s capacity investment affects the network congestion,
which will change its QoS and eventually affect the user
utility of consuming data. Here we will not incorporate
the congestion-aware formulation in this work, but refer
interested readers to the related studies in [2], [7].

Furthermore, the MNO’s operational expense (OpEx)
mainly arises from the system management. After the MNO
decides the mobile data plan to implement in the market, the
subscribers’ total data consumption will affect the MNO’s
operational expense. Specifically, the expected total data con-
sumption from the whole market is

L(T ) =

∫∫
Ψ(T )

[
d̄− βAκ(Q)

]
h(θ)g(β)dθdβ. (8)

For analysis tractability, we follow [24] by considering
a linear operational cost, and denote c as the marginal
operational cost from unit data consumption.7 Accordingly,
the MNO’s operational cost is L(T ) · c.

Putting the capacity cost and the operational cost to-
gether, we compute the MNO’s expected total cost as follows:

C̃(T ) = L(T ) · c+ J(Q). (9)

3.3.3 MNO’s Profit

The MNO’s profit is the difference between its revenue
and cost. Hence the MNO’s expected total profit under T is

W̃ (T ) = R̃(T )− C̃(T ). (10)

So far we have introduced the four data mechanisms,
users’ payoffs, and MNO’s profit. In the following, we first
compare the degrees of time flexibility offered by the four
data mechanisms in Section 4, then study the three-stage
game in Section 5.

7. Such a linear-form cost has been widely used to model an opera-
tor’s operational cost (e.g., [24], [25]).
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(a) κ = 1 (b) κ = 2 (c) κ = 3

Fig. 2: Transition from τ (data surplus or deficit from the previous month) to τ ′ (data surplus or deficit of the next month).

4 DATA MECHANISMS AND TIME FLEXIBILITY

Recall that the numerical example in Table 2 shows that
the total payments for κ = 2, 3 are the same and the
least, while the payment for κ = 0 is the most. In this
section we will demonstrate that it is not a coincidence, but
a general conclusion reflecting the data mechanisms’ degrees of
time flexibility.

In the following, we introduce how to compute Aκ(Q)
in Section 4.1, then answer Question 2 (i.e., which data
mechanism is the most time-flexible) in Section 4.2.

4.1 Data Mechanisms
As mentioned in Section 3.2, the key difference among

the four data mechanisms is the distribution of the sub-
scriber’s data surplus or deficit pκ(τ), which further de-
termines Aκ(Q) according to (3). Particularly, for κ = 0,
the data surplus or deficit is always zero, i.e., τ = 0, since
it does not offer subscribers any special data. However, for
κ ∈ {1, 2, 3}, we need to consider the data demand dynamic
between successive months.

We illustrate the transition of users’ data surplus or
deficit τ between two successive months in Fig. 2. Specif-
ically, the horizontal axis corresponds to users’ random
data demand d ∈ [0, D], and the vertical axis represents
users’ data surplus or deficit τ ′ for the next month (given
his data surplus or deficit τ in the current month and
the data demand d). The differences among the three red
curves in Fig. 2 indicate the differences among the three
data mechanisms κ ∈ {1, 2, 3}.

In the following, we analyze the distribution pκ(τ) and
compute Aκ(Q) under the four data mechanisms.

4.1.1 Traditional Data Mechanism κ = 0

For a T = {Q,Π, π, 0} subscriber, there is no special data
to use, i.e., τ = 0 and Qe0(τ) = Q. Thus we only need to take
the expectation over the data demand d. Thus A0(Q) is

A0(Q) =
D∑
d=0

[d−Q]
+
f(d). (11)

4.1.2 Rollover Data Mechanism κ = 1

For a T = {Q,Π, π, 1} subscriber, the special data is the
rollover data from the previous month, which is consumed
after the current monthly data cap. Therefore, the effective
data cap consists of the monthly data cap and the rollover
data surplus τ ∈ [0, Q], i.e., Qe1(τ) = Q + τ . Fig. 2(a) plots
the rollover data to the next month, denoted by τ ′, versus
the subscriber’s data demand d in the current month. Thus
we know

τ ′ =

{
Q− d, if d < Q,

0, if d ≥ Q.
(12)

Note that the rollover data to the next month τ ′ only
depends on the subscriber’s monthly data cap Q and the
data demand d, and is independent of the data surplus τ
from the previous month. Therefore, the probability mass
function p1(τ) is

p1(τ) =

{
f(Q− τ), if τ ∈ (0, Q],∑D

d=Q f(d), if τ = 0.
(13)

Then we need to take the expectation over the data
demand d and the rollover data surplus τ to compute the
expected overage usage A1(Q), as follows:

A1(Q) =
Q∑
τ=0

D∑
d=0

[d−Qe1(τ)]+f(d)p1(τ). (14)

4.1.3 Rollover Data Mechanism κ = 2

For a T = {Q,Π, π, 2} subscriber, the special data is the
rollover data from the previous month, which is consumed
prior to the current monthly data cap. Therefore, the effective
data cap is the same as that for κ = 1, i.e., Qe2(τ) = Q + τ .
However, the rollover data is consumed prior to the monthly
cap. As showed in Fig. 2(b), we know

τ ′ =


Q, if d ∈[0, τ ],

Q+ τ − d, if d ∈(τ,Q+ τ),

0, if d ∈[Q+ τ,D].

(15)

It is notable that the rollover data to the next month τ ′

depends on the monthly data capQ, data demand d, and the
rollover data surplus τ from the previous month, resulting
in a Markov property on the rollover data surplus τ . The
one-step transition probability of the rollover data surplus τ
is given by

p2(τ, τ ′) =


∑τ
d=0 f(d), if τ ′ = Q,

f(Q+ τ − τ ′), if τ ′ ∈ (0, Q),∑D
d=Q+τ f(d), if τ ′ = 0.

(16)

Then we can derive the stationary distribution of the
rollover data surplus τ , denoted by p2(τ), according to the
above transition probability [26]. Thus A2(Q) is given by

A2(Q) =
Q∑
τ=0

D∑
d=0

[d−Qe2(τ)]
+
f(d)p2(τ). (17)

4.1.4 Credit Data Mechanism κ = 3

For a T = {Q,Π, π, 3} subscriber, the special data is the
credit data borrowed from the next month, which is used
after the current monthly data cap. Therefore, the effective
data cap of a subscriber with a data deficit τ ∈ [−Q3, 0]
consists of the remaining current monthly data cap (with a
deficit τ ) and the maximum credit data that he can borrow
from the next month (which is Q), i.e., Qe3(τ) = 2Q + τ .
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According to Fig. 2(c), the data deficit in the next month,
denoted by τ ′, is given by

τ ′ =


0, if d ∈[0, Q+ τ ],

Q+ τ − d, if d ∈(Q+ τ, 2Q+ τ),

−Q, if d ∈[2Q+ τ,D].

(18)

Similar to the case when κ = 2, we note that the
data deficit τ ′ in the next month depends on the monthly
data cap Q, the data demand d, and the data deficit τ in
the current month, which indicates a Markov property on
the data deficit τ for κ = 3. The corresponding one-step
transition probability of the data deficit τ is

p3(τ, τ ′) =


∑Q+τ
d=0 f(d), if τ ′ = 0,

f(Q+ τ − τ ′), if τ ′ ∈ (−Q, 0),∑D
d=2Q+τ f(d), if τ ′ = −Q.

(19)

Similarly we can derive the stationary distribution p3(τ)
of the data deficit τ and compute A3(Q) as follows

A3(Q) =
0∑

τ=−Q

D∑
d=0

[d−Qe3(τ)]+f(d)p3(τ). (20)

Now that we have demonstrated how to computeAκ(Q)
under the four data mechanisms, next we will compare the
degree of time flexibility based on Aκ(Q).

4.2 Time Flexibility

In the following we compare the degrees of time flexibil-
ity among the four data mechanisms and answer Question
2.

Definition 1 (Time Flexibility). Consider two data mech-
anisms i, j ∈ {0, 1, 2, 3}. The data mechanism i has
a better time flexibility than the data mechanism j,
denoted by Fi > Fj , if and only if for an arbitrary data
demand distribution f(d), we have Ai(Q) < Aj(Q) for
all Q ∈ (0, D).

Definition 1 uses the type-(θ, 0) subscriber’s expected
overage data consumption Aκ(Q) to indicate the time flex-
ibility of the data mechanism κ. Intuitively, the better time
flexibility the data mechanism offers, the less overage usage
is incurred by its subscribers under the same data cap Q for
an arbitrary data demand distribution f(d). Note that we
require Q ∈ (0, D) in the definition, this is because that
the three-part tariff with time flexibility degenerates into
the pure usage-based data plan if Q = 0 or the flat-rate
data plan if Q ≥ D. In these two extreme cases, any data
mechanism κ has no impact.

Lemma 1 summarizes the time flexibility of the four data
mechanisms. The proof is given in Appendix A.

Lemma 1. For an arbitrary data demand distribution f(d),
we have A0(Q) > A1(Q) > A2(Q) = A3(Q) for all Q ∈
(0, D). Therefore, the four data mechanisms’ degrees of
time flexibility satisfy F0 < F1 < F2 = F3.

Lemma 1 provides the answer to Question 2 that we
mentioned in Section 1. The rollover data mechanism of-
fered by China Mobile (i.e., κ = 2) and our proposed credit
data mechanism (i.e., κ = 3) are both the most time-flexible.
The traditional data mechanism (i.e., κ = 0) is the least time-
flexible.

The reason why F2 = F3 is twofolds. First, the two data
mechanisms can expand the effective data cap with the same
intensity, i.e., Qeκ(τ) ∈ [Q, 2Q] for κ ∈ {2, 3}. Second, the
consumption priorities of the two data mechanisms specify
that subscribers should first consume the earlier data, i.e.,
the rollover data prior to the current monthly data cap for
κ = 2, and the current monthly data cap prior to the credit
data for κ = 3.

The reason why F1 < F2 is because of the irregular
consumption priority for κ = 1. Recall that the rollover data
mechanism offered by AT&T (i.e., κ = 1) requires that the
current monthly data cap is consumed prior to the rollover
data from the previous month, which means the later data
(i.e., current monthly data cap) would be consumed prior to
the earlier data (i.e., rollover data from the previous month).
Such an irregular consumption priority prevents subscribers
from fully utilizing their data quota in the long run, hence
reduces the degree of time flexibility. Nevertheless, it is still
time flexible than the traditional data mechanism, i.e., F0 <
F1.

So far we have compared the degree of time flexibility
among the four data mechanisms. Next in Section 5, we
analyze the three-stage game.

5 BACKWARD INDUCTION OF THE THREE-STAGE
STACKELBERG GAME

In this section, we study the Subgame Perfect Equi-
librium (SPE, or simply referred to as equilibrium in this
paper) of the three-stage Stackelberg game by backward
induction.

5.1 User’s Subscription in Stage III
In Stage III, each user makes his subscription choice

given the data plan T = {Q,Π, π, κ} offered by the MNO.
The type-(θ, β) user has two choices. If he does not

subscribe, his payoff will be zero.8 Hence the user will
subscribe to the MNO if and only if T = {Q,Π, π, κ}
brings him a non-negative expected monthly payoff, i.e.,
S̄(T , θ, β) ≥ 0. Theorem 1 presents the MNO’s market share
under the data plan T . The proof is given in Appendix B.
Theorem 1 (Market Share). The MNO’s market share under

data plan T = {Q,Π, π, κ} is

Ψ(T ) = {(θ, β) : Θ(T , β) ≤ θ ≤ θmax, 0 ≤ β ≤ 1}, (21)

where Θ(T , β) is referred to as the threshold valuation
under T and β, which is given by

Θ(T , β) ,
1

ρ

[
π +

π
[
d̄−Aκ(Q)

]
−Π

βAκ(Q)− d̄

]
. (22)

Based on Theorem 1, we further summarize the impacts
of users’ characteristics θ and β on their subscription deci-
sions in Corollary 1 and Corollary 2, respectively.
Corollary 1. [Impact of Data Valuation] Given the network

substitutability β, it is more likely for a user to subscribe
to the MNO as his data valuation θ increases.

8. Here we normalize the non-subscription payoff to be zero. If the
user has other options, for example, relying purely on Wi-Fi networks,
the non-subscription payoff can be positive. Our analysis will still go
through in that case with a simple constant shift.
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(a) Case 1: π
[
d̄−Aκ(Q)

]
> Π (b) Case 2: π

[
d̄−Aκ(Q)

]
< Π (c) Case 3: π

[
d̄−Aκ(Q)

]
= Π

Fig. 3: Illustration of different market partitions. Gray region: the subscribers Ψ(T ).

Corollary 1 indicates that higher valuation users are more
likely to subscribe to the MNO. However, Corollary 2 shows
that the impact of network substitutability is more compli-
cated.
Corollary 2. [Impact of Network Substitutability] Given the

data valuation θ, there are three possibilities for the
impact of network substitutability β:

• Case 1 (π[d̄ − Aκ(Q)] > Π): As the network substi-
tutability improves, users are more likely to subscribe
to the MNO.

• Case 2 (π[d̄ − Aκ(Q)] < Π): As the network substi-
tutability improves, users are less likely to subscribe
to the MNO.

• Case 3 (π[d̄ − Aκ(Q)] = Π): The network substi-
tutability does not affect the subscription decision.

In Corollary 2, d̄ − Aκ(Q) represents the total data con-
sumption of a type-(θ, 1) subscriber. This type of subscriber
has so good a network substitutability that he stops using
mobile data after his effective data cap is used up. Thus he
only needs to pay the subscription fee Π in each month. Ac-
cordingly, Π/

[
d̄−Aκ(Q)

]
represents the average payment

per unit data that he uses in each month.
Therefore, Case 1 in Corollary 2 represents that the per-

unit fee π is more expensive compared with the subscription
fee Π in terms of the average rate of a type-(θ, 1) subscriber;
Case 2 is the opposite of Case 1; Case 3 represents that the
per-unit fee π, and the subscription fee Π are comparable
for type-(θ, 1) subscribers.

Now we illustrate Corollary 2 in Fig. 3, where the two
axises correspond to the user’s network substitutability β
and data valuation θ, respectively. The gray region denotes
the subscriber set Ψ(T ). The red arrow represents the direc-
tion where the network substitutability β increases.

• Fig. 3(a): If the per-unit fee π is more expensive
than the average payment per unit data, i.e., π[d̄ −
Aκ(Q)] > Π, then the red arrow shows that the users
with a better network substitutability are more likely
to become subscribers, since they incur less overage
usage and thus less additional payment.

• Fig. 3(b): If the average payment for unit data is more
expensive than the per-unit fee π, i.e., π[d̄−Aκ(Q)] <
Π, then the red arrow shows that the users with
a better network substitutability are less likely to
become subscribers. This is because that they are
not willing to pay for an expensive subscription fee,

considering the cheap per-unit fee and their good
alternative networks.

• Fig. 3(c): If the average payment for unit data and
the per-unit fee π are comparable and satisfy π[d̄ −
Aκ(Q)] = Π, then the network substitutability does
not change users’ subscription decisions.

Later on we will show that under the MNO’s optimal
pricing strategy, the market partition is Fig. 3(c).

Considering the subscription choice derived from Theo-
rem 1, the MNO’s expected total profit is given by

W̃ (T ) =

∫ 1

0

∫ θmax

Θ(T ,β)

{
π(1− β)Aκ(Q) + Π︸ ︷︷ ︸

Revenue

− c
[
d̄− βAκ(Q)

]︸ ︷︷ ︸
Operational cost

}
h(θ)g(β)dθdβ − J(Q).︸ ︷︷ ︸

Capacity cost

(23)
Next we will further analyze the MNO’s optimal data

cap and pricing strategy in Stage II.

5.2 Optimal Data Cap and Pricing Strategy in Stage II
In Stage II, the MNO determines the profit-maximizing

data cap Q∗ and the pricing strategy {Π∗, π∗} considering
users’ subscription decisions from Stage III, given the data
mechanism κ obtained in Stage I.

To make the presentation clear and reveal the key in-
sights, we first present the MNO’s optimal pricing strategy
{Π∗, π∗} given the data cap Q in Section 5.2.1, and then we
introduce the MNO’s optimal data cap Q∗ in Section 5.2.2.
9

5.2.1 Optimal Pricing Strategy
Given the data cap Q, the objective of MNO is to find

the optimal subscription fee Π∗ and per-unit fee π∗ that
maximize its expected total profit, that is,
Problem 1 (Optimal Pricing Strategy).{

Π∗, π∗
}

= arg max
Π,π≥0

W̃ (Q,Π, π, κ). (24)

Before analyzing Problem 1, we need to introduce the
following assumption on the MNO’s QoS ρ and marginal
operational cost c.

9. The two-step presentation enables us to illustrate the key insights
of the optimal pricing strategy for a particularly data cap. This is
practically important, since the MNO usually adopt integral data caps
for simplicity, e.g., 1GB, 2GB, and 3GB.
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Assumption 1. The MNO’s QoS ρ and marginal operational
cost c satisfy c < ρ · θmax.

Assumption 1 is made to avoid a trivial case, where the
MNO offers very poor wireless service such that it cannot
benefit from the market. It is not a technical assumption that
limits our analysis and results.

Now we characterize the MNO’s profit-maximizing sub-
scription fee Π∗ and per-unit fee π∗ in Theorem 2.

Theorem 2 (Optimal Pricing Strategy). Given the data cap
Q ≥ 0 and the data mechanism κ, the MNO’s profit-
maximizing subscription fee Π∗ and per-unit fee π∗

satisfying the following conditions:H

(
π∗

ρ

)
+
π∗ − c
ρ
· h
(
π∗

ρ

)
= 1,

Π∗ = π∗
[
d̄−Aκ(Q)

]
,

(25)

where h(·) and H(·) are the PDF and CDF of the data
valuation θ. Furthermore, π∗ is unique for an arbitrary θ
distribution with an increasing failure rate (IFR).10

The proof of Theorem 2 is given in Appendix C.
Based on Theorem 2, we summarize the impact of sev-

eral parameters on the optimal per-unit fee π∗ and the
optimal subscription fee Π∗ in Proposition 1 and Proposition
2, respectively.

Proposition 1. The optimal per-unit fee π∗ increases in the
MNO’s QoS ρ and marginal operational cost c. It dose
not depend on the data mechanism κ or how large the
data cap Q is.

Proposition 2. The optimal subscription fee Π∗(Q, κ) is
related to the data cap Q and the data mechanism κ in
the following ways,

• Π∗(Q, κ) increases in the data cap Q,
• a better time flexibility corresponds to a higher sub-

scription fee, i.e., Π∗(Q, 0) < Π∗(Q, 1) < Π∗(Q, 2) =
Π∗(Q, 3) for all Q ∈ (0, D).

Recall that Corollary 2 summarizes three possibilities
for the impact of network substitutability β. Moreover, the
optimal subscription fee Π∗ and the per-unit fee π∗ derived
in Theorem 2 satisfy Π∗ = π∗

[
d̄−Aκ(Q)

]
, which is the

same as Case 3 discussed in Corollary 2. In this case, the
threshold valuation (defined in (22)) is

Θ(Q,Π∗, π∗, κ, β) = π∗

ρ , (26)

which is independent of β. This naturally leads to the fol-
lowing corollary on the market partition under the optimal
pricing strategy.

Corollary 3. Under the optimal pricing strategy specified
in Theorem 2, the network substitutability β does not
affect the subscription decision. That is, the type-(θ, β)
user will subscribe to the MNO if and only if θ > π∗/ρ.
The MNO obtains the market of

Ψ (Q,Π∗, π∗, κ) =
{

(θ, β) : π
∗

ρ ≤ θ ≤ θmax, 0 ≤ β ≤ 1
}
.

(27)

10. The increasing failure rate condition refers to h(θ)/ [1−H(θ)]
increasing in θ. Many commonly used distributions, such as uniform
distribution, gamma distribution, and normal distribution, satisfy this
condition [27].

Corollary 3 reveals that the MNO tends to select its sub-
scribers based only on their data valuations, while ignoring
the network substitutability. The intuition behind such a
pricing strategy is that the MNO can benefit from good
network substitutability users’ subscription fee and poor
network substitutability users’ overage fee. Therefore, there
is no incentive for the MNO to exclude either type of users.

Furthermore, according to Corollary 3, the MNO’s mar-
ket share under the optimal pricing strategy is fixed for any
data cap Q and data mechanism κ. However, different data
caps and data mechanisms bring the MNO different profit.
Substitute Π∗(Q, κ) and π∗ into the MNO’s expected total
profit, then we obtain

W̃ (Q,Π∗(Q, κ), π∗, κ)

=

[
d̄− β̄Aκ(Q)

]
(π∗ − c)2

ρ
h

(
π∗

ρ

)
− J(Q),

(28)

where β̄ is the mean of the network substitutability among
the whole user market, which is given by

β̄ =

∫ 1

0
βg(β)dβ. (29)

Next we move on to analyze the MNO’s optimal data
cap, considering the pricing strategy derived in Theorem 2.

5.2.2 Optimal Data Cap

The MNO needs to select a data cap Q to maximize
its expected total profit W̃ (Q,Π∗(Q, κ), π∗, κ). That is, the
MNO needs to solve the following problem

Problem 2 (Optimal Data Cap).

Q∗ = arg max
Q≥0

W̃ (Q,Π∗(Q, κ), π∗, κ), (30)

where Π∗(Q, κ) and π∗ are the MNO’s profit-maximizing
subscription fee and per-unit fee obtained from Theorem 2,
respectively.

Problem 2 is not difficult to solve, since it is a single
variable problem and is convex if J(Q) is convex. To il-
lustrate the key insights of the optimal data cap, hereafter,
we follow [8] by making the following assumption on the
MNO’s capacity cost J(Q) throughout the rest of the paper.

Assumption 2. The MNO’s capacity cost takes a linear form,
i.e., J(Q) = z ·Q where z is the marginal capacity cost.

Before analyzing the MNO’s optimal data cap, recall
that the differences among the four data mechanisms κ ∈
{0, 1, 2, 3} is entirely captured in Aκ(Q), the expected over-
age data consumption. To facilitate our later analysis, we
refer to |A′κ(Q)| as the marginal overage data consumption,
which is the absolute value of the derivative of Aκ(Q)
with respect to Q. Specifically, the marginal overage data
consumption |A′κ(Q)| measures the overage data usage
decrement for a unit data cap increment on the data cap
Q under the data mechanism κ.

Now we characterize the MNO’s optimal data cap in
Theorem 3. The proof of Theorem 3 is given in Appendix D.

Theorem 3 (Optimal Data Cap). Given the data mechanism
κ, the MNO’s optimal data cap Q∗(κ) satisfies

|A′κ (Q∗(κ)) | = Ω(ρ, c, z), (31)
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where Ω(ρ, c, z) is given by

Ω(ρ, c, z) =
z · h

(
π∗

ρ

)
β̄ρ
[
1−H

(
π∗

ρ

)]2 . (32)

Theorem 3 indicates that no matter which data mech-
anism κ that the MNO adopts, the MNO should always
choose a data cap such that the corresponding marginal over-
age data consumption equals to Ω(ρ, c, z). Therefore, we refer
to Ω(ρ, c, z) as the target marginal overage data consump-
tion that the MNO must achieve to maximize its profit. Note
that the target marginal overage data consumption Ω(ρ, c, z)
is related to the MNO’s QoS ρ, marginal operational cost
c, and the marginal capacity cost z. Therefore, we further
summarize how the three parameters affect the optimal data
cap in Proposition 3.

Proposition 3. The MNO’s optimal data cap Q∗ increases in
the QoS ρ, meanwhile decreases in the MNO’s marginal
operational cost c and marginal capacity cost z.

Now we have characterized the optimal data cap in
Theorem 3, and revealed how the MNO’s QoS (i.e., ρ) and
marginal costs (i.e., c and z) affect it. Next we analyze the
impact of the data mechanism κ on the optimal data cap,
which is related to Question 4 mentioned in Section 1.

Intuitively, we would think that the MNO can set a
smaller cap under a data mechanism with a better time
flexibility (to reduce the capacity cost), since it is more time-
flexible for subscribers. In the following, however, we will
reveal a counter-intuitive insight, i.e., a better time flexibility
does not necessarily correspond to a smaller data cap.

To fully reveal this counter-intuitive insight, we need to
know the detail mathematical expression of Aκ(·) according
to (31) in Theorem 3. Even though we cannot analytically
compute Aκ(·) due to the complexity of the Markov transi-
tion matrix, we are able to characterize some properties of
Aκ(·) in Lemma 2. The proof is given in Appendix E.

Lemma 2. For an arbitrary data demand distribution
f(d), Aκ(Q) is decreasing and convex in Q. Moreover,
Aκ(0) = d̄, Aκ(D) = 0, A′κ(0) = −1, and A′κ(D) = 0 for
all κ ∈ {0, 1, 2, 3}.

To illustrate the counter-intuitive insight, let us consider
two data mechanisms i, j ∈ {0, 1, 2, 3}, where j offers a
better time flexibility, i.e., Fi < Fj .

Based on Lemma 2 and Definition 1, we can plot Ai(Q)
and Aj(Q) versus the data cap Q in Fig. 4(a), and the corre-
sponding marginal overage data consumptions |A′i(Q)| and
|A′j(Q)| in Fig. 4(b).11

According to Theorem 3, the optimal data cap must
make the corresponding marginal overage data consump-
tion equal to the target marginal overage data consumption,
i.e., |A′κ (Q∗(κ)) | = Ω(ρ, c, z). In Fig. 4(b), we consider two
different target marginal overage data consumptions Ω1 and
Ω2, which correspond to different values of ρ, c, and z.

11. Note that in Fig. 4(b) there is only one crossing point for |A′i(Q)|
and |A′j(Q)| when Q ∈ (0, D). Basically, Lemma 2 cannot imply the
uniqueness of the crossing point for an arbitrary demand distribution
f(d). Nevertheless, it does not affect the counter-intuitive insight, i.e., a
better time flexibility does not necessarily correspond to a smaller data cap.

(a) Aκ(Q) vs Q. (b) |A′κ(Q)| vs Q.

Fig. 4: Illustration for Aκ(Q) and |A′κ(Q)|.

• To achieve a small target marginal overage data
consumption Ω1, the corresponding optimal data
caps satisfy Q∗(j) < Q∗(i), indicating that the data
mechanism j (with a better time flexibility) leads to
a smaller data cap;

• To achieve a large target marginal overage data
consumption Ω2, the corresponding optimal data
caps satisfy Q∗(j) > Q∗(i), indicating that the data
mechanism j (with a better time flexibility) leads to
a larger data cap.

Later we will further illustrate this counter-intuitive
insight in Section 6.2.

So far we have fully characterized the optimal data cap
Q∗ together with the impact of the data mechanism as well
as the MNO’s QoS and costs. Next we will move on to study
the MNO’s optimal data mechanism in Stage I.

5.3 Optimal Data Mechanism in Stage I

In Stage I, the MNO determines the optimal data mecha-
nism κ∗ to maximize its expected total profit, which answers
Question 3 mentioned in Section 1.

Problem 3 (Optimal Data Mechanism).

κ∗ = arg max
κ∈{0,1,2,3}

W̃ (Q∗(κ),Π∗(Q∗(κ)), π∗). (33)

Lemma 3 reveals that a better time flexibility can always
bring the MNO a higher profit under the optimal pricing
strategy specified in Theorem 2 and the optimal data cap
specified in Theorem 3, which naturally leads to Theorem 4.

Lemma 3. Consider two data mechanism i, j ∈ {0, 1, 2, 3},
and the data mechanism i has a better time flexibility
than j, i.e., Fi > Fj . Then the following is true

W̃ (Q∗(i),Π∗(Q∗(i)), π∗) ≥ W̃ (Q∗(j),Π∗(Q∗(j)), π∗),
(34)

where the equality holds if and only if Q∗(i) = Q∗(j) =
0 or Q∗(i) = Q∗(j) = D.

Theorem 4 (Optimal Data Mechanism). Among the four
data mechanisms {0, 1, 2, 3}, the MNO’s optimal data
mechanism is κ∗ = 2 and 3.

Theorem 4 shows that the MNO should adopt the
rollover mechanism offered by China Mobile or the credit
mechanism proposed in this paper to maximize its profit.

Next, we examine the conditions of the system param-
eters under which the optimal three-part tariff data plan
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(a) θ ∼ Gamma(4.5, 0.11) (b) β ∼ TN(0.91, 0.22, 0, 1)

Fig. 5: Fitting the PDF of θ and β.

Fig. 6: Aκ(Q) vs Q and f(d) vs d. Due to space limit,
we only show the part on the interval [0, D/2].

degenerates into the pure usage-based plan or the flat-
rate plan, in which case the choice of data mechanism
κ ∈ {0, 1, 2, 3} has no effect on the subscribers.

Corollary 4 (Pure Usage-Based Plan). If the target marginal
overage data consumption Ω(ρ, c, z) ≥ 1, then the MNO
maximizes its expected total profit by offering the pure
usage-based data plan Tp = {0, 0, π∗, Na}.

The condition in Corollary 4 is satisfied when the MNO

• provides poor services, i.e., ρ is small, or
• experiences a large cost, i.e., c or z is large.

The above insight is consistent with the reality. From the
users’ perspective, they are not willing to pay for any cap
if the MNO’s QoS is poor. From the MNO’s perspective, it
is not beneficial for it to incentivize more data consumption
through a large data cap, if it experiences a large cost from
network investment or system management.

As we mentioned in Section 1, the flat-rate data plan
appears earliest in the telecommunication market. However,
most MNOs do not offer the flat-rate data plan anymore.
The following corollary can provide an explanation for this
phenomenon.

Corollary 5 (Flat-Rate Plan). If the marginal capacity cost
z = 0, then the MNO maximizes its expected total profit
by offering the flat-rate data plan Tf = {D, d̄π∗, Na, Na}.

Obviously, the condition in Corollary 5 corresponds to an
extreme case that does not approximate the current reality
well [28], which explains why the flat-rate data plan has
ended in the past.

6 NUMERICAL RESULTS

To examine the performance of different data mecha-
nisms, we collected some real data from the telecommunica-
tion market in mainland China12. In Section 6.1, we analyze
the distributions of the data valuation and the network
substitutability. In Section 6.2, we simulate the optimal data
plan and investigate the effect of the time flexibility on
users’ payoffs and the MNO’s profit.

12. The related data is obtained through a survey, and the question-
naire is available through https://www.wjx.cn/jq/16895923.aspx.

6.1 Empirical Results
To estimate the statistic information of users’ data val-

uation θ and network substitutability β, we collected some
mobile users’ behavioral data from the telecommunication
market in mainland China. The PDFs of these two param-
eters θ and β are shown by the green bars in Fig. 5(a) and
Fig. 5(b), respectively. We observe that a large proportion
of users’ data valuations θ falls into the range between 10
RMB/GB to 60 RMB/GB, and most people would like to
shrink 70% ∼ 100% of their overage data demand. More-
over, we also find that the Pearson correlation coefficient
between θ and β is less than 0.05, which allows us to fit the
two distributions independently.

Next we estimate the data valuation θ PDF by assuming
a gamma distribution, which satisfies the increasing failure
rate (IFR). The PDF of a gamma distribution in the shape-
rate parametrization is

h(θ, k, r) =
rkθk−1e−rθ

Γ(k)
, (35)

where Γ(k) is a complete gamma function. We choose the
parameters k = 4.5 and r = 0.11 by minimizing the least-
squares divergence between the estimated and empirical
PDF. In Fig. 5(a), the black curve is the estimated PDF.
Visually, it is qualitatively similar to the empirical PDF.
To further investigate the goodness-of-fit statistically, we
use the Kolmogorov-Smirnov test on the null hypothesis
that the data valuation comes from the gamma distribution,
at the significance level of 0.05 (i.e., if the Kolmogorov-
Smirnov test returns a p-value less than 0.05, then we need
to reject this hypothesis) [29]. The test shows a p-value of
0.31, hence the hypothesis that the data valuation follows
the gamma distribution is valid.

Next we estimate the network substitutability β PDF by
assuming a truncated normal distribution, since the network
substitutability β has a concrete upper bound and lower
bound, i.e., 0 ≤ β ≤ 1. The PDF of a normal distribution
N(µ, σ2) truncated between [a, b] is

g(β;µ, σ, a, b) =
φ
(
β−µ
σ

)
σ
[
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)] , (36)

where φ(·) is the probability density function of the stan-
dard normal distribution, and Φ(·) is its cumulative distri-
bution function. Similarly, we find the truncated normal dis-
tribution β ∼ TN(0.91, 0.22, 0, 1) by minimizing the least-
squares divergence between the estimated and empirical

https://www.wjx.cn/jq/16895923.aspx
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(a) Optimal cap Q∗(κ) vs ρ (b) Optimal cap Q∗(κ) vs c (c) Optimal cap Q∗(κ) vs z

Fig. 7: The optimal data cap Q∗(κ) under different data mechanisms κ ∈ {0, 1, 2}.

(a) Π∗(κ) vs ρ (b) Π∗(κ) vs c (c) Π∗(κ) vs z

Fig. 8: The optimal subscription fee Π∗(κ) under different data mechanisms κ ∈ {0, 1, 2}.

PDFs. The corresponding Kolmogorov-Smirnov test shows
a p-value of 0.38, hence the hypothesis of the truncated
normal distribution is valid.

6.2 Performance Evaluation
Next we will use the fitted market distribution to in-

vestigate how the MNO’s QoS and marginal costs affect its
optimal data plan, and examine the impact of time flexibility
on the users’ payoff and the MNO’s profit.

We set the minimum data unit to 1MB. Following the
data analysis results in [20], [21], we assume that users’
monthly data demand follows a truncated log-normal distri-
bution with a mean d̄ = 103 on the interval [0, 104], i.e., the
mean value is d̄ = 1GB and the maximal usage isD = 10GB.
Fig. 6 shows the PMF f(d) and the expected monthly over-
age usage Aκ(Q) under the four data mechanisms, which
indicates that A0(Q) > A1(Q) > A2(Q) = A3(Q) for all
Q ∈ (0, D). Since the degree of time flexibility under κ = 2
and κ = 3 is equivalent, in the following we will neglect
κ = 3 and only plot the results for κ = 0, 1, 2.

6.2.1 Optimal Data Plan
We investigate the impact of QoS ρ, marginal operational

cost c, and the marginal capacity cost z individually.
In Fig. 7, we use three sub-figures to plot the optimal

data cap Q∗(κ) versus the MNO’s QoS ρ, marginal opera-
tional cost c, and the marginal capacity cost z, respectively.
In addition, the three curves in each sub-figure correspond
to the three data mechanisms κ ∈ {0, 1, 2}.

Overall, the optimal data capQ∗(κ) increases (from zero)
as the MNO becomes stronger, in terms of

• a better QoS ρ, as shown in Fig. 7(a),
• a smaller operational cost c, as shown in Fig. 7(b),
• a smaller capacity cost z, as shown in Fig. 7(c).

Particularly, the pure usage-based data plan appears
when the MNO’s QoS ρ < 0.35 in Fig. 7(a), marginal opera-
tional cost c > 62 RMB/GB in Fig. 7(b), or marginal capacity
cost z > 8.5 × 10−3 RMB/GB in Fig. 7(c). In addition,
Fig. 7(c) shows that the flat-rate data plan appears when
z = 0, since the corresponding data cap is the maximal data
demand 10GB.

As we mentioned in Section 5.2.2, a better time flexibility
does not necessarily correspond to a smaller data cap. By
comparing the three curves in each sub-figure of Fig. 7, we
find that a better time flexibility would lead to an even larger
data cap if the MNO is weak in terms of

• a poor QoS, e.g., ρ = 0.4 in Fig. 7(a),
• a large marginal operational cost, e.g., c = 50

RMB/GB in Fig. 7(b),
• a large marginal capacity cost, e.g., z = 6 × 10−3

RMB/GB in Fig. 7(c).

The intuitions behind the counter-intuitive result include

• When the MNO is weak, it chooses a small data cap,
under which the main revenue comes from users’
overage payments. In this case, offering a better time
flexibility can significantly reduce its revenue from
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(a) Impact of ρ (b) Impact of c (c) Impact of z

Fig. 9: MNO’s profit gain and users’ payoff gain with κ = 0 as the benchmark.

users’ overage payments. Therefore, the MNO will
increase the data cap and the subscription fee to
compensate its revenue loss.

• When the MNO is strong, it chooses a large data cap,
under which its main revenue comes from users’
subscription fee. In this case, offering a better time
flexibility does not reduce its revenue too much, and
the MNO will decrease the data cap to further reduce
its cost.

Next we examine the impact of the time flexibility on the
monthly subscription fee.

Fig. 8 plots the optimal subscription fee Π∗(κ) under
different data mechanisms. By comparing the three curves
in each sub-figure, we observe that a higher subscription
fee is always associated with a data mechanism with better
time flexibility, even though it may correspond to a smaller
or larger data cap as shown in Fig. 7.

The above discussions together with Proposition 1 pro-
vide answers to Question 4 mentioned in Section 1: a better
time flexibility corresponds to a smaller data cap Q∗ if the
MNO is strong or a larger data cap if the MNO is weak.
Meanwhile, a better time flexibility always leads to a higher
subscription fee Π∗. Finally, it does not affect the optimal
per-unit fee π∗.

6.2.2 Users’ Payoffs and MNO’s Profit
We investigate the performance of different data mech-

anisms in terms of all users’ payoffs and the MNO’s profit.
Specifically, we set the traditional data mechanism κ = 0
as the benchmark, and plot the performance gain of other
schemes comparing to the benchmark. The three sub-figures
in Fig. 9 plot the performance gains versus the MNO’s QoS
ρ, marginal operational cost c, and the marginal capacity
cost z, respectively. The two solid curves in each sub-figure
correspond to the MNO’s profit gains for κ ∈ {1, 2},
the other two dash curves represent users’ payoff gains for
κ ∈ {1, 2}.

Overall, Fig. 9 show that the users’ payoff gains (i.e., the
dash curves) decrease as the MNO’s QoS ρ increases as in
Fig. 9(a) or the MNO’s marginal costs c and z decrease as in
Fig. 9(b) and Fig. 9(c). In this process, however, the MNO’s
profit gains (i.e., the solid curves) first increase then decrease
in all three sub-figures.

From the two solid curves in each sub-figure of Fig. 9, we
find that the MNO’s profit gains under κ = 1 and κ = 2

are both non-negative, thus the time flexibility can increase
the profit of MNO compared with the benchmark κ = 0.
From the two dash curves in each sub-figure of Fig. 9, we
find that the users’ payoffs gains under κ = 1 and κ = 2
are both non-negative, thus the time flexibility increases the
users’ payoffs as well. Moreover, we also note that κ = 2
always outperforms κ = 1 in terms of both MNO’s profit
gain and users’ payoffs gain, which indicates that a better
time flexibility leads to a larger improvement.

Now we know that both the MNO and the users can
benefit from the time flexibility, a natural question is who
will benefit more? By comparing the two red curves with
squares (or the two blue curves with triangles) in each sub-
figure, we find that the MNO benefits more from the time
flexibility than users if the MNO is strong, in terms of

• a good QoS, e.g., ρ > 0.43 in Fig. 9(a),
• a small marginal operational cost, e.g., c < 50

RMB/GB in Fig. 9(b),
• a small marginal capacity cost, e.g., z < 4 × 10−4

RMB/GB in Fig. 9(c).

Intuitively, a stronger MNO has a larger pricing power,
thus the strong MNO can benefit more than users from
adding time flexibility. However, a weaker MNO has to
leave users more benefits to maintain its market, thus users
benefit more than a weaker MNO from time flexibility.

Furthermore, we also investigate the impact of the vari-
ances of the demand distribution, which indicates that the
performance gain of the MNO’s profit and users’ payoff will
increase in the variance. Due to the space limit, please refer
to Appendix F for more detailed discussions.

The above discussions answer Question 1 in Section 1.
In a monopoly market, both the MNO and users can benefit
from a better time flexibility. Moreover, the MNO benefits
more if the MNO offers good services and experiences small
costs. Otherwise, the users benefit more.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we study the MNO’s optimal three-part
tariff plan with time flexibility. Specifically, we consider four
data mechanisms, and formulate the MNO’s optimal data
plan design problem as a three-stage Stackelberg Game.
Through backward induction, we analytically characterize
the users’ subscription choices in Stage III, the MNO’s
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optimal data cap and corresponding pricing strategy in
Stage II, and the MNO’s optimal data mechanism in Stage
I. Moreover, we conduct a market survey to estimate the
distribution of users’ data valuation and the network sub-
stitutability. Then we evaluate the performance of different
data mechanisms using the real data.

In the future work, we want to collect more empirical
data to estimate the MNO’s cost and users’ data demand
distributions, and validate the insights obtained based on
the current linear costs model and homogeneous data de-
mand distribution. Moreover, we will consider a more gen-
eral competitive market, and analyze the impact of time
flexibility on multiple MNOs’ competition.
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APPENDIX A
PROOF OF LEMMA 1

In order to prove Lemma 1, in the following three
subsections, we prove A0(Q) ≥ A1(Q), A2(Q) = A3(Q),
and A1(Q) ≥ A2(Q), respectively.

A.1 Proof of A0(Q) ≥ A1(Q)

We prove A0(Q) ≥ A1(Q) by computing the weighted
summations in two steps. Specifically, A0(Q) and A1(Q) are
given by

A0(Q) =
D∑
d=0

[d−Q]
+
f(d),

A1(Q) =
D∑
d=0

Q∑
τ=0

[d−Q− τ ]
+
p1(τ)f(d).

(37)

It is obvious that the following inequality is true

[d−Q]
+ ≥ [d−Q− τ ]

+
, ∀ τ ∈ {0, 1, 2, ..., Q}. (38)

Now we compute the weighted summation over the
weight p1(τ) for (38), and we obtain

Q∑
τ=0

[d−Q]
+
p1(τ) ≥

Q∑
τ=0

[d−Q− τ ]
+
p1(τ), (39)

which is equivalent to

[d−Q]
+ ≥

Q∑
τ=0

[d−Q− τ ]
+
p1(τ), ∀ d ∈ {0, 1, ..., D}.

(40)
Then we further compute the weighted summation over

the weight f(d) for (40), and we obtain
D∑
d=0

[d−Q]
+
f(d) ≥

D∑
d=0

Q∑
τ=0

[d−Q− τ ]
+
p1(τ)f(d), (41)

which implies A0(Q) ≥ A1(Q).

A.2 Proof of A2(Q) = A3(Q)

Second, we prove A2(Q) = A3(Q) through transform-
ing their mathematical expressions. Specifically, A2(Q) and
A3(Q) are given by

A2(Q) =
D∑
d=0

Q∑
τ=0

[d−Q− τ ]
+
p2(τ)f(d),

A3(Q) =
D∑
d=0

0∑
τ=−Q

[d− 2Q− τ ]
+
p3(τ)f(d).

(42)

As mentioned in Section 4.1, for κ = 3, the data deficit
of the next month τ ′3 is

τ ′3 =


0, if d ∈[0, Q+ τ3],

Q+ τ3 − d, if d ∈(Q+ τ3, 2Q+ τ3),

−Q, if d ∈[2Q+ τ3, D].

(43)

Here we further define µ = τ3 +Q and µ′ = τ ′3 +Q, thus

µ′ =


Q, if d ∈[0, Q+ τ3],

2Q+ τ3 − d, if d ∈(Q+ τ3, 2Q+ τ3),

0, if d ∈[2Q+ τ3, D].

(44)

Now we substitute τ3 = µ−Q into (44), and get

µ′ =


Q, if d ∈[0, µ],

Q+ µ− d, if d ∈(µ,Q+ µ),

0, if d ∈[Q+ µ,D].

(45)

Therefore, the transition matrix from µ to µ′ is

pµ(µ, µ′) =


∑µ
d=0 f(d), if µ′ = Q,

f(Q+ µ− µ′), if µ′ ∈ (0, Q),∑D
d=Q+µ f(d), if µ′ = 0,

(46)

which is the same as the transition matrix of the data
mechanism κ = 2 derived in (16). Thus they have the same
stationary distribution, i.e., pµ(µ) = p2(τ) for any µ = τ .

Now we substitute τ3 = µ−Q into (42), and obtain

A3(Q) =

Q∑
µ=0

D∑
d=0

[d−Q− µ]+f(d)pµ(µ) = A2(Q). (47)

A.3 Proof of A1(Q) ≥ A2(Q)

Now we prove A1(Q) ≥ A2(Q). Specifically, A1(Q) and
A2(Q) are given by

A1(Q) =
D∑
d=0

Q∑
τ=0

[d−Q− τ ]
+
p1(τ)f(d). (48)

A2(Q) =
D∑
d=0

Q∑
τ=0

[d−Q− τ ]
+
p2(τ)f(d). (49)

The only difference between (48) and (48) lies in the sta-
tionary distribution p1(τ) and p2(τ). Due to the complexity
of the Markov chain specified in (16), we are not able to
compute the closed-form expression for A1(Q) and A2(Q).
Nevertheless, we will prove A1(Q) ≥ A2(Q) by showing
that for an arbitrary realized data demand sequence, the
overage data consumption under κ = 1 is larger than that
under κ = 2.

We consider T months, i.e., t = 1, 2, ..., T . We denote d =
{d1, d2, ..., dT } as the realized data demand sequence, where
dt denotes the realized data demand in month t. Moreover,
we denote τ t1 and τ t2 as the subscriber’s data surplus under
the data mechanism κ = 1 and κ = 2 at the beginning of
month t.

Therefore, given the realized data usage sequence d, the
subscriber’s overage data consumption in month t is

Atκ(Q,d) =
[
dt −Q− τ tκ

]+
. (50)

Next we first introduce Lemma 4.

Lemma 4. For any realized data demand sequence d, we
have At1(Q,d) ≥ At2(Q,d) and τ t1 ≤ τ t2 for any t =
1, 2, ..., T .

Proof of Lemma 4: We prove Lemma 4 by induction.
First, if t = 1, then τ1

1 = τ1
2 = 0, thus we know

A1
1(Q,d) = A1

2(Q,d) =
[
d1 −Q

]+. Hence, Lemma 4 is true
when t = 1.

Second, we assume that Lemma 4 is true for t = k, and
consider the case of t = k + 1.

We first show that τk+1
0 ≤ τk+1

1 . According to we
consumption priority, we know that τk+1

1 is

τk+1
1 =

[
Q− dk

]+
, (51)
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and τk+1
2 is

τk+1
2 =

Q, if dk < τk2 ,[
Q+ τk2 − dk

]+
, if dk ≥ τk2 .

(52)

Based on (51) and (52), we know that

• If τk2 = 0, then τk+1
1 = τk+1

2 for any dk.
• If τk2 > 0, then we have the following relation

between τk+1
1 and τk+1

2 ,{
τk+1
1 < τk+1

2 , if dk ∈ (0, Q+ τk2 ),

τk+1
1 = τk+1

2 , if dk ∈ {0} ∪ [Q+ τk2 ,+∞).
(53)

Therefore, we find that τk+1
0 ≤ τk+1

1 . Next we show
that Ak+1

1 (Q,d) ≥ Ak+1
2 (Q,d). According to the following

formulation
Ak+1

1 (Q,d) =
[
dk+1 −Q− τk+1

1

]+
,

Ak+1
2 (Q,d) =

[
dk+1 −Q− τk+1

2

]+
,

(54)

we know that

• If τk+1
1 = τk+1

2 , then we have Ak+1
1 (Q,d) =

Ak+1
2 (Q,d) for any realized data demand sequence

d.
• If τk+1

1 < τk+1
2 , then we have the following relation

between Ak+1
1 (Q,d) and Ak+1

2 (Q,d),{
Ak+1

1 (Q,d) = Ak+1
2 (Q,d) if dk+1 ≤ Q+ τk+1

1 ,

Ak+1
1 (Q,d) > Ak+1

2 (Q,d) if dk+1 > Q+ τk+1
1 .

(55)

Therefore, we obtain Ak+1
1 (Q,d) ≥ Ak+1

2 (Q,d), which
implies that Lemma 4 is true for t = k+ 1. Hence, Lemma 4
is true.

According to Lemma 4, we can conclude that
T∑
t=1

Ak+1
1 (Q,d) ≥

T∑
t=2

Ak+1
1 (Q,d), (56)

which implies that for any realized data demand sequence
d, the overage data consumption under κ = 1 is larger than
that under κ = 2. Hence, it also holds when we take the
expectation over the stochastic data demand d, i.e.,A1(Q) ≥
A2(Q). This completes the proof of Lemma 1.

APPENDIX B
PROOF OF THEOREM 1

A type-(θ, β) subscriber’s expected monthly payoff is

S̄(T , θ, β) = ρθ
[
d̄− βAκ(Q)

]
− π(1− β)Aκ(Q)−Π, (57)

by solving S̄(T , θ, β) ≥ 0, we obtain

θ ≥ Θ(T , β) ,
1

ρ

[
π +

π
[
d̄−Aκ(Q)

]
−Π

βAκ(Q)− d̄

]
, (58)

thus the market share of the MNO under the data plan T =
{Q,Π, π, κ} is

Ψ(T ) = {(θ, β) : Θ(T , β) ≤ θ ≤ θmax, 0 ≤ β ≤ 1}. (59)

APPENDIX C
PROOF OF THEOREM 2

We prove Theorem 2 by deriving the MNO’s profit-
maximizing subscription fee and per-unit fee. Recall that
the profit of the MNO is given by

W̃ (T ) =

∫ 1

0

∫ θmax

Θ(T ,β)

{
π(1− β)Aκ(Q) + Π

− c ·
[
d̄− βAκ(Q)

] }
h(θ)g(β)dθdβ − J(Q).

(60)

Since we consider a fixed Q in Theorem 2, then Aκ(Q) is
a constant, and we denote it as Aκ. Accordingly, we obtain

W̃ (Π, π) =

∫ 1

0

∫ θmax

Θ(T ,β)

{
π(1− β)Aκ + Π

− c ·
[
d̄− βAκ

] }
h(θ)g(β)dθdβ

=

∫ 1

0

{
π(1− β)Aκ + Π− c ·

[
d̄− βAκ

] }
[1−H (Θ(T , β))] g(β)dβ,

(61)
where Θ(T , β) is given by

Θ(T , β) =
π(1− β)Aκ + Π

ρ
(
d̄− βAκ

) . (62)

Therefore, we can write π(1− β)A+ Π as

π(1− β)Aκ + Π = Θ(T , β) · ρ
(
d̄− βAκ

)
. (63)

When substituting (63) into (61), we can write the MNO’s
profit as follows:

W̃ (Π, π) =

∫ 1

0
ρ
(
d̄− βAκ

) [
Θ(T , β)− c

ρ

]
·
[
1−H

(
Θ(T , β)

)]
g(β)dβ,

(64)

Note that, under the assumption that θ distribution
satisfies the increasing failure rate (i.e., h(x)/ [1−H(x)]
increases in x), we have the following inequality(

x− c

ρ

)[
1−H(x)

]
≤ [1−H (x∗)]

2

h (x∗)
, (65)

where x∗ is uniquely determined by
1−H (x∗)

h (x∗)
= x∗ − c

ρ
, (66)

since [1−H(x)] /h(x) decreases in x and x− c/ρ increases
in x.

Based on (65) and (66), we know that when the subscrip-
tion fee Π∗ and the per-unit fee π∗ satisfy

H

(
π∗

ρ

)
+
π∗ − c
ρ
· h
(
π∗

ρ

)
= 1,

Π∗ = π∗
[
d̄−A

]
,

(67)

we always have the following inequality

ρ
(
d̄− βA

) [
Θ(T , β)− c

ρ

] [
1−H

(
Θ(T , β)

)]

≤ρ
(
d̄− βA

)
·

[
1−H

(
Θ(Q,Π∗, π∗, κ, β)

)]2
h
(

Θ(Q,Π∗, π∗, κ, β)
) , ∀ β ∈ [0, 1].

(68)
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By computing the integration over β ∈ [0, 1] on (68), we
have∫ 1

0
ρ
(
d̄− βA

) [
Θ(T , β)− c

ρ

] [
1−H

(
Θ(T , β)

)]
g(β)dβ

≤
∫ 1

0
ρ
(
d̄− βA

)
·

[
1−H

(
Θ(Q,Π∗, π∗, κ, β)

)]2
h
(

Θ(Q,Π∗, π∗, κ, β)
) g(β)dβ,

(69)
which indicates W̃ (Π, π) ≤ W̃ (Π∗, π∗). Moreover, π∗ is
unique according to (65) and (66).

APPENDIX D
PROOF OF THEOREM 3

We prove Theorem 3 by deriving the MNO’s profit-
maximizing data cap. Under the optimal pricing strategy,
the MNO’s expected total profit is given by

W̃ (Q,Π∗(Q, κ), π∗, κ)

=

[
d̄− β̄Aκ(Q)

]
(π∗ − c)2

ρ
h

(
π∗

ρ

)
− z ·Q,

(70)

which is concave on the data cap Q, since Aκ(Q) is convex
on Q and z · Q is linear on Q. We take the derivative of
(70) with respect to the data cap Q, and obtain the following
optimality condition

−β̄A′κ(Q∗) (π∗ − c)2

ρ
h

(
π∗

ρ

)
− z = 0, (71)

which is equivalent to

−A′κ(Q∗) =
z · ρ

β̄ · (π∗ − c)2 · h
(
π∗

ρ

) . (72)

Recall that the optimal per-unit fee π∗ satisfies

H

(
π∗

ρ

)
+
π∗ − c
ρ
· h
(
π∗

ρ

)
= 1, (73)

which means that

π∗ − c = ρ ·
1−H

(
π∗

ρ

)
h
(
π∗

ρ

) . (74)

We substitute (74) into (72), then obtain

A′κ (Q∗) = Ω(ρ, c, z), (75)

where Ω(ρ, c, z) is given by

Ω(ρ, c, z) =
z · h

(
π∗

ρ

)
β̄ρ
[
1−H

(
π∗

ρ

)]2 . (76)

APPENDIX E
PROOF OF LEMMA 2

We prove Lemma 2 by computing Aκ(0), Aκ(D), A′κ(0),
and A′κ(D), and showing the convexity of Aκ(Q) on Q.
Recall that the mathematic expression of Aκ(Q) is

Aκ(Q) =Ed,τ
{

[d−Qeκ(τ)]
+ }

=
∑
τ

∑
d

[d−Qeκ(τ)]+f(d)pκ(τ). (77)

E.1 Compute Aκ(0) and Aκ(D)

When substituting Q = 0 and Q = d̄ into Aκ(Q),
respectively, we obtain

Aκ(0) =
∑
d

[d− 0]+f(d) = d̄,

Aκ(D) =
∑
τ

∑
d

0 · f(d)pκ(τ) = 0.
(78)

E.2 Compute A′κ(0), and A′κ(D)

We compute the derivative of Aκ(Q) with respect to Q
as follows:

A′κ(Q) = lim
∆Q→0+

Aκ(Q+ ∆Q)−Aκ(Q)

∆Q
. (79)

When substituting Q = 0 into (79), we obtain A′κ(0) as
following

A′κ(0) = lim
∆Q→0+

Aκ(∆Q)− d̄
∆Q

. (80)

Now we can compute A′0(0) by substituting A0(∆Q)
into (80), as follows

A′0(0) = lim
∆Q→0+

∑D
d=0 [d−∆Q]

+
f(d)− d̄

∆Q
= −1. (81)

Similarly, we are able to show that Aκ(0) = −1 for any
κ ∈ {0, 1, 2, 3}.

Furthermore, when substituting Q = D into (79), we
obtain A′κ(D) as follows

A′κ(D) = lim
∆Q→0−

Aκ(D + ∆Q)

∆Q
(82)

Now we can compute A′0(D) by substituting A0(D +
∆Q) into (82), as follows

A′0(D) = lim
∆Q→0−

D∑
d=0

[d−D −∆Q]
+
f(d)

∆Q
= 0.

(83)

Similarly, we are able to show that Aκ(D) = 0 for any
κ ∈ {0, 1, 2, 3}.

E.3 Convexity

According to (77), Aκ(Q) is the nonnegative weighted
summation over [d − Qeκ(τ)]+. Specifically, [d − Qeκ(τ)]+ is
given by

[Q−Qeκ(τ)]
+

=


[d−Q]

+
, if κ = 0,

[d−Q− τ ]
+
, if κ ∈ {1, 2},

[d− 2Q− τ ]
+
, if κ = 3,

(84)

which indicates that [d−Qeκ(τ)]+ is always convex in Q for
any κ ∈ {0, 1, 2, 3}. Considering the nonnegative weighted
summation is a convexity-preserving operation, thus Aκ(Q)
is convex in Q.

APPENDIX F
VARIANCE OF DEMAND DISTRIBUTION

We investigate the impact of the demand distribution
variance by considering two different values. Specifically,
we consider two log-normal distributions, which have the
same mean value of 1GB but different variances (i.e., σ =
0.8, 0.4). In the following, we first show the distributions
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(a) σ = 0.8 (b) σ = 0.4

Fig. 10: Aκ(Q) vs Q and f(d) vs d under different variances.

(a) σ = 0.8 (b) σ = 0.4

Fig. 11: Performance gain under different variances.

and the expected overage payments, then compare the
performance gains under the two values of variances.

Fig. 10 shows the demand distributions and the corre-
sponding expected overage payment. The horizontal axis in
each sub-figure corresponds to the MNO’s QoS. By compar-
ing Fig. 10(a) and Fig. 10(b), we note that given the same
data mechanism (e.g., κ = 1 with two red curves in the
two sub-figures), a larger demand variance leads to higher
expected overage payments. The impact of time-flexible
data mechanism on reducing overage payment is stronger
under a larger variance, since the differences among the
three curves with markers in Fig. 10(a) is larger than that
in Fig. 10(b).

Fig. 11 plots the performance gain of the time-flexible
data mechanisms (compare with the traditional data mech-
anism) under the two values of variance. We note that a
larger variance leads to a higher gain for both MNO’s profit
gain and users’ payoff gain.

Based on the above discussions, we find that the time-
flexible data mechanism plays a significant role, especially
when the users’ demand variance is relatively large.
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