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RSS Models for Respiration Rate Monitoring
Hüseyin Yiğitler, Ossi Kaltiokallio, Roland Hostettler, Riku Jäntti, Neal Patwari, and Simo Särkkä

Abstract—Received signal strength based respiration rate mon-
itoring is emerging as an alternative non-contact technology.
These systems make use of the radio measurements of short-range
commodity wireless devices, which vary due to the inhalation and
exhalation motion of a person. The success of respiration rate
estimation using such measurements depends on the signal-to-
noise ratio, which alters with properties of the person and with
the measurement system. To date, no model has been presented
that allows evaluation of different deployments or system config-
urations for successful breathing rate estimation. In this paper, a
received signal strength model for respiration rate monitoring
is introduced. It is shown that measurements in linear and
logarithmic scale have the same functional form, and the same
estimation techniques can be used in both cases. The implications
of the model are validated under varying signal-to-noise ratio
conditions using the performances of three estimators: batch
frequency estimator, recursive Bayesian estimator, and model
based estimator. The results are in coherence with the findings,
and they imply that different estimators are advantageous in
different signal-to-noise ratio regimes.

I. INTRODUCTION

Serious respiratory disease can be identified by continuously
monitoring variation of the respiration rate [1]. The importance
of this vital sign is well acknowledged, and both contact
and non-contact measurement systems are commercially avail-
able [2]. Non-contact respiration rate monitoring is advan-
tageous compared to contact systems in terms of improved
patient’s comfort and less patient distress, which result in
improved accuracy. Although these devices fail to provide
a measure to indicate actual respiratory gas-exchange [3],
patient’s status can be attributed as stable or as at high-risk by
continuously monitoring their respiration rate. In this paper,
we consider non-contact respiration rate monitoring using
commercially available low-cost standard wireless nodes. The
main aim of these kind of systems is to estimate the respiration
rate using the low-amplitude signal variations due to inhale
and exhale motion.

The impact of respiration on the received signal has a com-
plex relationship with the geometry and electrical properties
of the objects in the environment, which is here referred
to as the radio channel. As the granularity of the channel
measurements increases, the information about the respiration
can be better seen in the measurements. For example, high
granularity measurements of different radar systems can be
used for developing high quality monitoring systems [4]–
[6]. However, higher quality channel measurements require
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complicated and expensive measurement systems. In contrast,
monitoring systems based on commercially available narrow-
band communication systems are readily available, cheap, and
easy to deploy. For example, several studies have evaluated the
performance and different aspects of orthogonal-frequency-
division-multiplexing (OFDM) based WiFi (IEEE 802.11 a, g,
n, ac) [7], and low-power IEEE 802.15.4 compliant [8]–[10]
systems. In this paper, narrowband and low-power systems,
which provide received signal strength (RSS) measurements
to assess the state of the propagation channel, are considered.
Such measurements are the most challenging for breathing
monitoring since their measurements provide only coarse
information about the channel. However, it is possible to build
very low-cost systems using off-the-shelf components or using
already available radios of mobile devices or smart appliances.

Breathing monitoring using narrowband systems can be
efficiently realized using a single pair of transmitter (TX) and
receiver (RX) nodes [8]. The RSS measurements of the RX
can be modeled as a single tone sinusoid contaminated with
noise [9], whose maximum likelihood estimator using discrete
time observations is known to be equivalent to the peak of
discrete power spectral density of the measurements [11].
The estimation quality of such estimators, however, exhibits a
thresholding behavior depending on the signal-to-noise ratio
(SNR) of the measurements. When the SNR is low, the
mean-square-error increases very rapidly and the estimation
performance quickly degrades. To date, the SNR of RSS
measurements for breathing rate monitoring has not been
validated and no explanation of performance degradation has
been provided. In this paper, a RSS model for respiration rate
monitoring is presented, and its extensions for measurements
in logarithmic scale and under quasi-linear movements are
introduced. These allow one to predict the expected perfor-
mance for a deployment scenario and patient position, and
better assess the required system configuration for successful
breathing monitoring.

In this paper, a RSS model of narrowband communication
systems for respiration rate monitoring using the reflection
based models is presented. The reflection model, previously
explored for RSS-based localization [12], [13], is applied to
respiration rate monitoring. Based on this model, first, it is
shown that the breathing signal is frequency modulated into
the RSS in linear scale due to small periodic movements. Such
a signal exhibits relatively strong components on more than
one frequency tones so that breathing estimators making use of
this feature (see [14]) perform better in high SNR conditions.
Then, it is also shown that the RSS in logarithmic scale also
has the same form, and an explicit model is derived. The model
itself allows us to evaluate feasibility of different breathing
rate estimation techniques by enabling SNR evaluation of
any given deployment. The impact of several parameters are
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evaluated both numerically and empirically. This paper makes
the following contributions:
• A series expansion of the reflection-based RSS model is

derived. This allows one to find several approximations to
the observed RSS variations.

• A RSS model for small periodic perturbations (e.g. breath-
ing motion) is derived. It is shown that the RSS variation
due to such motions yields discrete tones at the harmonics
of the perturbation frequency.

• A RSS model for small periodic perturbations when there
is a linear movement is given. It is shown that the move-
ment itself modulates the periodic perturbation, making the
estimation a more challenging problem.

• Based on the models, various scenarios observed in empiri-
cal data are discussed and their impact on the observed RSS
is shown.

• The performance of three different estimators are compared,
and their performances are linked to the implications of the
model.
The remaining part of the paper is organized as follows.

First, the related work is summarized in Section II. The RSS
measurement model and its series expansion are derived in
Section III. The impact of small periodic movements and linear
movements are derived, and various numerical evaluations
are presented in the same section. Breathing rate estimation
techniques are introduced in Section IV, before giving empir-
ical evaluations in Section V. The conclusions are drawn in
Section VI.

II. RELATED WORK

The importance of respiration rate has resulted in devel-
opment of several respiration rate monitoring systems using
different physical parameters (e.g. temperature, chest effort
etc.) [2]. In this section, we only provide a brief review
of radio-frequency based respiration rate monitoring methods,
focusing on RSS-based approaches. The reader is referred to,
for example, the works by AL-Khalidi et al. [2] and Folke et
al. [3] for comprehensive technological overviews.

Respiration rate monitoring using radio frequency devices is
a non-contact solution that has attracted significant attention.
There are three different radar technologies that have been
used for the purpose as has been reviewed by Li et al. [15].
The first work that appeared in the literature uses continuous
wave (CW) Doppler radar system. Several studies have been
published to analyze different aspect of similar systems, which
can also estimate the heart rate along with respiration rate [16].
The impulse radio ultra wideband (IR-UWB) systems are also
used for respiration rate monitoring [5]. They radiate and
consume little power, may coexist well with other instruments,
and perform better in environments with interference and
severe multipath [17]. The characteristics of the received signal
of IR-UWB systems were investigated by Venkatesh et al. [18].
However, these systems cannot cope with the impact of other
motion or presence of more than one person [6]. Linear
frequency modulated continuous wave (LFM-CW) systems
can distinguish different reflector positions using their linearly
varying frequency. This property has been used by Adib et

al. for first estimating position of multiple persons in an
environment [19], and then estimating the vital signs of each
individual [6]. In this work, we show that indeed RSS has
similar characteristics as the measurements of radar solutions,
but require more carefully adjusted deployments.

The radar based solutions require a sophisticated hardware
development for the vital sign monitoring. However, recent
works on environmental sensing motivated RSS-based respira-
tion rate monitoring using commodity wireless communication
devices. The first work studying the feasibility of such systems
makes use of multiple links formed by a mesh network of
IEEE 802.15.4 nodes to estimate the breathing rate of a
single person in the environment [9]. Later, this system was
extended to estimate the location of a breathing person [10].
Several practical problems associated with the system are
addressed in [8] by using only one pair of TX-RX nodes,
detecting the moments breathing estimation is not possible,
and using various signal processing techniques to improve
SNR of the measurements. Due to widespread availability
of WiFi, the communication channel measurements of these
systems have also been used for respiration monitoring [7],
[20]. The work by Abdelnasser et al. is based on the RSS
measurements of WiFi systems [20]. On the other hand, the
channel state information (CSI) output of OFDM-based WiFi
radios provide higher granularity measurements of the commu-
nication channel, and have been used for vital sign monitoring
purposes [21]–[23]. The CSI contains a complex channel gain
estimate at each sub-carrier. In case the transmitted power is
constant, the amplitude variation of these gains define the RSS
variation at each sub-carrier in linear scale. Therefore, it can
be argued that the RSS-based models and algorithms can be
applied directly to CSI based systems that use amplitudes of
the complex CSI vector components.

In this work, we model the RSS of narrowband communi-
cation systems for small periodic perturbations with unknown
frequency, direction, and amplitude. It is shown that, similarly
to signals in radar systems, the RF signal frequency modulate
the periodic vital signals. The resultant model shows explicit
relation between the respiration signal and initial position of
the person, her orientation with respect to link-line, amplitude
of the breathing, and the wavelength of the communication
system. The SNR depends on these parameters as well as the
noise power which dictates the performance of single tone
parameter estimation techniques [11]. This result is coherent
with empirical results of Luong et al. [24], real-time spec-
trum analyzer measurements in [8], and findings of Wang et
al. [22]. The model also shows various interesting situations
arising in practical deployments including the measurements
showing only odd or even harmonics. It is further shown that
the logarithmic transformation taking place in typical RSS
measurement systems [25] does not change the signal type.
Therefore, the developed model can be used for evaluating
various deployment conditions that enable successful breathing
rate monitoring.

III. RECEIVED SIGNAL STRENGTH MODELS

In this section, we first review the RSS model, and then
derive temporal variations of the RSS in linear scale for an
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Fig. 1. A propagation scenario for RSS modeling and considered reference
frame. The transmitter (TX) node placed on point pt emits a narrowband
signal and the receiver (RX) node placed on pr receives the signal. Incident
ray is reflected from point p on the surface of the object, which has a distance
dt = ‖pt−p‖ m to the TX and dr = ‖pr −p‖ m to the RX. The incident
ray has θi radians incidence angle. The TX and RX are separated by d =
‖pt − pr‖ m.

object1 making movements in the form

p(t) = p0 + vt+ g(t)δ, (1)

where p0 is a reference point at t = 0, v is the constant
velocity with amplitude v = ‖v‖ for Euclidean norm ‖ · ‖, t
is the time elapsed since the epoch, g(t) is the low-amplitude
movement displacement from the initial position and ‖δ‖ = 1
is the constant movement direction. We start with small
perturbation case, where v = 0 and small amplitude g(t)
is periodic with frequency f . Then, we include quasi-linear
constant velocity movements characterized by v > 0. The
obtained models are extended to RSS measurements systems
that perform logarithmic transformations and show that the
output of these systems have similar form as in the linear
scale case.

A. Background

For environmental sensing applications, the phenomenon of
interest is estimated using the variation in RSS measurements
compared to the measurement acquired when the object of
interest is not in the medium, that is, the baseline RSS. A
detailed analysis of the baseline RSS is provided in [25], and
it is concluded that if the complex channel gain α is constant,
RSS is approximately a Gaussian random variable. This result
also implies that if the medium is constant for the duration of
acquiring the baseline RSS, their population mean converges to
a constant Pr due to the strong law of large numbers (SLLN).
Then, the time average of the measurements also converges to
the same constant since the channel is mean ergodic when the
environment is static. In other words, the baseline RSS Pr is
given by

Pr = 10 log10(2σ2 + %σ2), (2)

where % is the signal-to-noise ratio (SNR) of the received
signal under static channel conditions, and σ2 is the noise
variance of the zero mean Gaussian noise in signal samples.
Therefore, a practical measurement model for environmental
sensing applications is

r[k] , P[k]− Pr ≈ 10 log10

( |α[k]|2
|αr|2

)
+ ν[k], (3)

1In this paper, we assume that the object is rigid so that any movement
affects all points in its interior and on its boundary by the same amount.

where α[k] is the channel gain when kth RSS sample is
acquired, and and αr is the constant channel gain of the
baseline RSS. The last term ν[k] is the joint noise process
of all noise sources including white noise, round-off errors,
quantization noise, and any source of uncertainty due to
modeling errors, and its variance depends also on the current
SNR value %[k], which is time varying for the non-static case.

The expression in Eq. (3) implies that the complex channel
gains α[k] and αr define the measurements. For the scenario
visualized in Fig. 1, the ratio of channel gains2 has already
been investigated in [12], [13], and it has been shown that

R ,
|α|2
|αr|2

= 1 +G2 − 2G cos

(
2π∆

λ

)
, (4)

where ∆ is excess path length traversed by the ray reflected
from the object’s surface, G is the effective reflection coeffi-
cient, λ denotes the wavelength, and we have dropped sample
index [k] from G and ∆. The effective reflection coefficient
is defined as

G ,
Γ

(1 + ∆/d)η/2
, (5)

where Γ is the Fresnel reflection coefficient and η is the path
loss exponent modeling the fading experienced by both of the
components [26, ch. 4]. The excess path length ∆ parametrizes
the ellipse tangent to the interacting object at the point p (cf.
Fig. 1), and is defined as

∆ , ‖p− pt‖+ ‖p− pr‖ − ‖pr − pt‖ = dt + dr − d, (6)

for the symbols visualized on Fig. 1.

B. Effect of Low Amplitude Periodic Perturbations

In the previous section, we analyzed the variation of RSS
when the object abruptly appears in position which yield ∆
meters of excess path length when p0 is the reflection point
shown in Fig. 1. Now, suppose the object makes a time varying
movement in a constant direction δ, that is, the reflection point
p0 moves to p(t) = p0 + g(t)δ at time instant t. At this new
position, the excess path length can be found using its Taylor
series expansion around p = p0 as

∆(p) = ∆(p0) + g(t)(∇p∆)>δ +O(g2(t)),

where ·> denotes the matrix transpose, ∇p is the gradient
with respect to position p, and we have used the fact that ∆
is a smooth function of both coordinates except at p = pr or
p = pt. If the movement has a small amplitude |g(t)| � 1, the
second and higher order terms in the Taylor series expansion
can be ignored, and one can write

∆(p) ≈ ∆0 + g(t)

[
p0 − pr
‖p0 − pr‖

+
p0 − pt
‖p0 − pt‖

]>
δ, (7)

2The channel gain ratio follows from logarithmic scale definitions. If linear
scale measurements are going to be used without calculating the amplitude
ratio, the subsequent developments are valid through the relation d−η/2(R−
1), which has the same spectral properties as R but with different DC term
and amplitude scale. See Eq. (12) and its coefficients in Eq. (13).
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where ∆0 = ∆(p0) and we have explicitly written the gradient
of ∆ with respect to p at p = p0. Let us denote the inner
product in Eq. (7) as

δ∆ ,

[
p0 − pr
‖p0 − pr‖

+
p0 − pt
‖p0 − pt‖

]>
δ. (8)

Then, Eq. (4) can be written as

R ≈ 1 +G2(p)− 2G(p) cos

(
2π
δ∆
λ
g(t) + 2π

∆0

λ

)
. (9)

It is to be noted that, for small amplitude perturbations satis-
fying |g(t)δ∆| � d, we have G(p) ≈ G(p0). Consequently,
the frequency of the cosine term in Eq. (9) is defined by
the perturbation amplitude g(t)δ∆, i.e., R is a frequency
modulated version of g(t).

The amplitude ratio R can be further simplified when g(t)
is a periodic function3. Suppose that g(t) = A sin(2πft), so
that the affective amplitude of the periodic movement Ã, and
constant phase ψ can be defined as

Ã , 2πA
δ∆
λ
, ψ , 2π

∆0

λ
. (10)

Then, the Fourier series expansion of the cosine terms in
Eq. (9) are given by

cos
(
Ã sin(2πft) + ψ

)
=

∞∑
m=−∞

Jm(Ã) cos(2πmft+ ψ),

where Jm(·) is the Bessel function of the first kind [28, ch. 9].
Substituting this into Eq. (9) yields

R1 ≈ 1 +G2 − 2G

∞∑
m=−∞

Jm(Ã) cos(2πmft+ ψ), (11)

which has the form of demodulated and low-pass filtered
version of the respiration signal of IR-UWB systems derived
by Venkatesh et al. [18].

Using the properties of Bessel function, the expression in
Eq. (11) can be written in the form

R1 ≈ c0 +

∞∑
m=1

(
c2m−1 sin(2π(2m− 1)ft)

+ c2m cos(2π2mft)

)
,

(12)

where coefficients are given by

cm =


1 +G2 − 2GJ0(Ã) cos(ψ), m = 0,

4GJm(Ã) sin(ψ), m is odd,
− 4GJm(Ã) cos(ψ), m is even.

(13)

C. Effect of Quasi-linear Movements

Let us suppose that the object shown in Fig. 1 makes small
periodic movements (g(t)) in addition to a constant velocity
movement in another direction so that at time instant t, the
initial point p0 moves to p(t) = p0 +g(t)δ+vt. If g(t) has a

3The form of g(t) is selected for simplicity. The analysis can be straightfor-
wardly extended to any periodic function using their Fourier series expansion
as it is shown in [27, ch. 5].

small amplitude and t is close enough to the time epoch, the
Taylor series expansion of the excess path length ∆ is valid,
and for this case Eq. (7) can be written as

∆(p)−∆0 ≈
[
p0 − pr
‖p0 − pr‖

+
p0 − pt
‖p0 − pt‖

]>
[g(t)δ + vt] .

Similar to the definition in Eq. (8), let us denote the second
inner product as

δv =

[
p0 − pr
‖p0 − pr‖

+
p0 − pt
‖p0 − pt‖

]>
v,

so that ∆(p)−∆(p0) ≈ g(t)δ∆ + δvt. Then, Eq. (4) becomes

R(p) ≈1 +G2(p)−

2G(p) cos

(
2π

1

λ
(δ∆g(t) + δvt) + ψ(p)

)
,

(14)

where the position dependence of R and phase ψ defined in
Eq. (10), which cannot be ignored for this case, are explicitly
written.

In case g(t) is a sinusoidal in the form g(t) = A sin(2πft),
as in the previous subsection, then Eq. (14) can be written as

R2 ≈ 1 +G2(t)−

2G(t)

∞∑
m=−∞

Jm(Ã) cos

(
2π

(
δv
λ

+mf

)
t+ ψ

)
.

(15)

Therefore, linear movements shift the frequency of the peri-
odic movement and make the effective reflection coefficient G
defined in Eq. (5) a time varying quantity since δvt/d term in
∆(p) cannot be neglected.

It is to be noted that the expression in Eq. (15) has the
same form as in Eq. (11), but the tones have δv/λ Hz shifted
frequency. The coefficients are the same as in Eq. (13).

D. RSS in Logarithmic Scale
Let us define the amplitude ratio R in Eq. (4) in logarithmic

scale as
R ,10 log10(e) ln(R)

= 10 log10(e) ln
(
1 +G2

)
+ 10 log10(e) ln (1− κ cos (2πβ∆)) ,

(16)

where e is the base of the natural logarithm and we have
defined

β ,
1

λ
, κ , 2

G

1 +G2
. (17)

It can easily be verified that G < 1 for Γ < 1 so that
0 < κ < 1 and the power series expansion of the second term
in Eq. (17) is given by

ln
(

1− κ cos(2πβ∆)
)

= −
∞∑
l=1

1

l

(
κ cos(2πβ∆)

)l
= b0 +

∞∑
i=1

bi cos(2πi∆β),

where the coefficients are given by

bi = −∆

1
2∆∫

− 1
2∆

∞∑
l=1

κl

l
cosl(2π∆β) cos(2πi∆β)dβ,
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for all i ∈ {0, 1, 2, . . . }. In addition, the cosine powers can be
expanded as harmonics,

cosl(φ) =


2
2l

l−1
2∑
i=0

(
l
i

)
cos
(
(l − 2i)φ

)
, l odd,

1
2l

(
l
l
2

)
+ 2

2l

l−2
2∑
i=0

(
l
i

)
cos
(
(l − 2i)φ

)
, l even,

where φ is an arbitrary argument of cos(·). Due to orthogonal-
ity of the sinusoidal functions, bi are polynomials of κ which
can be written as

bi =



−
∞∑
l=1

κ2l

2l22l

(
2l
l

)
, i = 0,

−
∞∑

l= i+1
2

2κ2l−1

(2l−1)22l−1

( 2l−1
2l−i−1

2

)
, i odd,

−
∞∑
l= i

2

2κ2l

(2l)22l

(
2l

2l−i
2

)
, i even.

Note that bi < 0 for all i = 0, 1, 2, · · · , and for κ < 1 and i >
0 we have |bi| > |bi+1|. The partial sums of the coefficients are
convergent, and after simplification and substituting definition
of κ in Eq. (17) into this result yields

bi =

{
− ln

(
1 +G2

)
, i = 0,

−2G
i

i , i > 0.

One important consequence is that b0 is equal to the additive
inverse of the first term in Eq. (16), and they cancel out.
Therefore, the RSS measurement model in Eq. (16) can be
written as

R = −20 log10(e)

∞∑
i=1

Gi

i
cos

(
2π

i

λ
∆

)
. (18)

The series in Eq. (18) implies that the periodic sinusoidal
perturbation in Eq. (11) after logarithmic transformation reads
as

R1 ≈ −20 log10(e)

∞∑
m=−∞

∞∑
i=1

{
Jm(iÃ)

Gi

i

cos(2πmft+ iψ)

}
,

(19)

where ψ = 2π∆(p0)/λ. Similarly, the impact of quasi-linear
movement given in Eq. (15) for logarithmic scale is given by

R2 ≈ −20 log10(e)

∞∑
m=−∞

∞∑
i=1

{
Jm(iÃ)

Gi(t)

i

cos

(
2π

(
i
δv
λ

+mf

)
t+ iψ

)}
.

(20)

The series in Eq. (19) can be written in the form in Eq. (12),

R1 ≈ c0 +

∞∑
m=1

(
c2m−1 sin(2π(2m− 1)ft)

+ c2m cos(2π2mft)

)
,

(21)

where, for this case, the coefficients are given by

cm =


−20 log10(e)

∞∑
i=1

J0(iÃ)G
i

i cos(iψ), m = 0,

40 log10(e)
∞∑
i=1

Jm(iÃ)G
i

i sin(iψ), m odd,

−40 log10(e)
∞∑
i=1

Jm(iÃ)G
i

i cos(iψ), m even.

(22)
Similar to Eq. (15), Eq. (20) can be written in the same form
with coefficients in Eq. (22).

E. Discussion

Suppose that the periodic movement represents respiration
of a person, which is monitored by a TX-RX pair operating
at 2.4 GHz ISM band so that λ = 0.125 m. Although the
respiration has a non-trivial relation between sex, age, and
posture [29], on average, it is a small quantity, for example,
A = 1 centimeter maximum displacement4. An example
deployment of such a system is expected to yield RSS mea-
surements shown in Fig. 2.

A closer look at the coefficients in Eq. (22) reveals that
when ∆ ≈ nλ/2 for any integer n, all odd order harmonics
c2m−1 get closer to 0 due to sin(nπ) product. Similarly, when
∆ ≈ nλ/4 for odd n, all even order harmonics c2m get closer
to 0. Therefore, for some special values of initial excess path
value ∆0, the breathing of a stationary person may exhibit only
even or odd harmonics in their measurement signal. The same
argument is true for RSS measurements in linear scale (see
Eq. (13)), and it is independent of the actual periodic breathing
signal function. In Fig. 2b, Eq. (16) is used for calculating the
RSS values for different ∆0 values. It can be seen that when
∆0 = 3λ/2, the RSS has a smaller amplitude but double
perturbation frequency. At these distances, it can be observed
from Fig. 3a that the signal energy is very small.

The respiration signal in Eq. (12) (and Eq. (21)), is series
expansion of a frequency modulated signal. For frequency
modulated signals, the number of terms in their series ex-
pansion can found by Carson’s bandwidth rule [27, ch. 5],
which states that it is enough to consider only 2(Ã/2π + f)
harmonics of the Fourier series in Eq. (11) and Eq. (15). Since
the maximum displacement due to respiration can be assumed
to satisfy A = 0.01 m, and its frequency can be assumed to be
less than 30 breaths per minute (0.5 Hz), as it has been done
earlier [8], [9], Carson’s rule imply that only two harmonics
are needed to represent most of the signal. Consequently, a
conservative approximation of the amplitude ratio in linear
scale R and in logarithmic scale R is obtained by truncating
the series in Eq. (12) at the second term. For lower respiration
rates, it is possible to truncate the series after the first term
and obtain a single tone approximation which was used in
previous works [9].

The infinite series in Eq. (18) can be truncated at lower
orders if the total signal energy is concentrated greatly in lower
order harmonics. For this purpose, one can invoke Parseval’s

4This is an example value, and may not correspond to any specific
combination of sex, age, and posture for a chest or abdominal movement
associated with the respiration [29].
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Fig. 2. The RSS variation of a link with TX node at pt = [−1, 0]> and RX node at pr = [1, 0]> operating with wavelength λ = 0.125 m in an environment
with path-loss exponent η = 2 when a circular object of radius 0.3 m and relative permittivity εr = 1.5 moves to different positions. In (a), the variation
of RSS with object’s position. In (b), the variation of RSS when the object perturbs the RSS with a sinusoidal movement in direction δ = [0,−1]> and
amplitude A = 0.01, and the object’s initial positions yield specified excess path lengths ∆0. In (c), the variation of RMS error between the model output
in Eq. (16) and approximation using two harmonics and Ith order series in coefficients in Eq. (22).

Theorem to find the signal energy of R from the periodic
series expansion in Eq. (18) as

ER ,
∞∑
i=1

G2i

i2
= Li2(G2),

where Li2(·) is the di-logarithm function [30]. Then, the total
signal power is monotonically increasing with G. Since G,
defined in Eq. (5), is decreasing function of ∆ and increasing
function of Γ, it attains its maximum when ∆ = 0 so
that Li2(G2) ≤ Li2(Γ2). This implies that the signal energy
concentrated at lower order harmonics if Γ is lower than 1,
which is defined by the incidence angle θi (cf. Fig. 1) and
the object’s relative permittivity. When the reflector object is
close to the link line, θi approaches to 0 radians making Γ very
close to 1. In this case, high number of terms are needed to
reach a good approximation of the series in Eq. (22). However,
when the object is sufficiently far away from the link-line, Γ
assumes smaller values and ∆ increases, making G a small
quantity. When G is smaller than 0.7, first two harmonics in
Eq. (18) contain 96.76% of total signal energy ER, making
two term approximation a reasonable choice. The variation of
root-mean-square error (RMSE) with excess path length ∆ is
depicted in Fig. 2c for different truncation orders of the series
in Eq. (22) while using only first two harmonics in Eq. (21).
As shown, even for small ∆, the two term series truncation
yields small error.

The observed breathing signal amplitude depends on the
effective amplitude of the breathing displacement Ã defined
in Eq. (??), effective reflection coefficient G defined in Eq. (5),
and the excess path length when the person is in the initial
position p0. The effect of position displacement on θi can be
seen by inspecting its definition shown in Fig. 1, which yields

θi =
π

2
− 1

2
arccos(p),

p(p) ,

(
p− pr
‖p− pr‖

)>(
p− pt
‖p− pt‖

)
.

(23)
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Fig. 3. In (a), the variation of signal energy E1 with excess path length
∆. In (b), the relative contribution of harmonics to the signal energy for the
object in Fig. 2 moving on the mid-line between TX and RX (x = 0) and on
the specified y-axis values. In the plots, the coefficients are normalized with
ĉ2m = c2m

/
E1. Dots are coefficient square values for 16 frequency channels

separated by 5 MHz, and solid lines are their means.

Then, it follows from the definition of Fresnel reflection
coefficient that its first order Taylor series expansion reads
as

Γ ≈ Γ0 − Γ0
p(p)− p(p0)√

(p2(p0)− 1) + 2(p(p0) + 1)εr
, (24)

where Γ0 is the coefficient at initial position p0, and εr is the
relative permittivity. When the object is between the nodes,
and as it gets closer to the link-line p gets closer to −1, the rate
of change of Γ increases so that small amplitude perturbations
may significantly alter Γ.

Consider the signal energy of the approximate (two harmon-
ics and two terms in coefficient series) signal, which is given
by

E1 , c2
1 + c2

2 . (25)

Its variation with ∆ for the scenario used in generating the
results in Fig. 2 is depicted in Fig. 3a. As shown, the energy
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(a)

(b)

Fig. 4. In (a), relations between various parameters introduced in Sec. III,
and in (b), preprocessing of the RSS measurements

may significantly change with the object’s position only. One
consequence of this result is there are certain positions where
small changes drastically degrades the SNR. For example,
when the object in Fig. 2 is moving on the mid-line between
TX and RX nodes, at certain y-axis values, the relative
importance of the second harmonic exceeds the first harmonic
as shown in Fig. 3b. When excess path length is close to such
a value, even small wavelength variations may change SNR of
the measurements as can be observed from the dot plots in the
figure. Furthermore, any uncertainty in electrical parameters
of the object or its geometry increases the uncertainty further.
Therefore, the SNR is statistical, and it is a very tedious task to
accurately compare the model output with measurement data.

The analysis in the previous subsection and discussions
above imply that:
i. The RSS measurements in linear scale Eq. (12) and loga-

rithmic scale Eq. (21) have similar forms.
ii. When the object moves even with a constant velocity, the

perturbation spectrum shifts depending on the speed and
direction of the movement. In this case, the perturbation
frequency estimate has a different nature and it is required
to first estimate the center frequency δv/λ (see Eq. (20)).
The other option is to stop estimating breathing rate when
a movement is detected, as it has been done in [8].

iii. The signal energy can be estimated using Eq. (25) as the
higher order terms introduce small modeling error.

iv. The breathing signal’s energy has a non-trivial relation with
breathing direction with respect to the link-line, breathing
amplitude, initial position of the person, her geometry, and
electrical properties of her clothes. Therefore, the SNR of
the breathing signal is statistical, and some diversity mech-
anism is needed to improve breathing estimation quality.
For example in [8] frequency diversity and in [9] spatial
diversity are used. In works using CSI output of WiFi
devices, the channel gains are estimated for large number of
subcarriers, which yields improved breathing rate estimation
quality.

IV. BREATHING RATE ESTIMATION

The analysis in the previous section conclude that the
effect of respiration on RSS can be modeled in terms of the
amplitude ratio in linear scale R defined in Eq. (4) and in

logarithmic scale R defined in Eq. (16) along with the additive
noise ν as shown in Fig. 4a.

In this section, we discuss three approaches to estimate the
respiration rate f . The estimators given in this section do
not use the RSS measurements r[k] directly, but its bandpass
filtered version y[k] or low-pass filtered P[k], denoted as
z[k]. These processing steps are visualized in Fig. 4b. The
breathing rate estimation problem can be casted as single tone
parameter estimation of a deterministic sinusoid using discrete
observations as has been done in the related works [8]–
[10]. The problem has been extensively studied due to its
importance in various application areas [31, ch. 13]. In the first
subsection, we give an overview of the batch-based frequency
estimation technique. Then, we discuss a Bayesian formulation
of the same approach, and summarize its recursive solution
from the work by Qi et al. [32]. Finally, we review a recently
introduced model-based approach [14].

A. Batch Spectral Analysis

The most straight forward and standard approach in the
literature is to use spectral analysis using a batch of measure-
ment data. It is well established that the maximum likelihood
estimate of the frequency of an unknown sinusoid is the
frequency of the peak of the periodogram [11]. The peak of the
periodogram can be calculated using the fast Fourier transform
(FFT). However, this method requires significant frequency
resolution and high SNR for good performance since it is
subject to thresholding effects. Here, we summarize the DFT-
based method in a practical perspective.

For the DFT-based method, the maximum and minimum
breathing rates (perturbation frequencies) can be used for
bandpass filtering the measurements r[k] as shown in Fig. 4b.
Then, the output signal y[k] is split into M windows of length
Nw with overlap No such that the data for the mth window
(for m = 1, . . . ,M ) is given by

ym =
[
y[n+ 1] yj [n+ 2] . . . y[n+Nw]

]>
, (26)

where the offset n = (m−1)(Nw−No). Then, from Eq. (26),
the power spectral density (PSD) is estimated as

Sm[l] = |Y m[l]|2, (27)

where Y m[l] is the DFT of ym and the lth frequency is given
by

fl =
lfs
Nw

, (28)

for l = 0, . . . , Nw−1 and where fs is the sampling frequency.
Eq. (27) naturally yields the whole spectrum for all frequen-

cies fl. In order to obtain a point estimate f̂ , the frequency
corresponding to the maximum of the PSD is chosen, that is

l̂ = argmax
l

Sm[l], f̂DFT =
l̂fs
Nw

, (29)

excluding the DC component.
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B. Recursive Bayesian Spectral Analysis

Rather than processing entire overlapping windows at a
time, the spectrum can also be estimated by using a recursive
Bayesian spectrum estimation approach [32]. This method can
cope with the DC term since it is possible to choose the
resolution and sampling rate. However, once these parameters
are selected, the measurements must be low-pass filtered in
order to keep the dimension of the state low. In other words,
low-pass filtered RSS data z[k] (see Fig. 4b) can be used for
estimating the perturbation frequency.

The Bayesian recursive method starts with writing z[k] in
terms of its Fourier series expansion as

z[k] = a0[k] +

NKF∑
n=1

an[k] sin(2πfntk)

+ bn[k] cos(2πfntk) + ν̃[k]

(30)

where NKF is the number of frequency bins, a0[k], an[k],
and bn[k] are the time-varying Fourier coefficients with slight
abuse of notation, fn are the frequency bins, and ν̃[k] ∼
N (0, σ2

ν) is the measurement noise which is a filtered version
of ν[k], but still assumed to be white.

Let x[k] =
[
a0[k] . . . aN [k] b1[k] . . . bN [k]

]>
be

the vector of the Fourier coefficients, which are assumed to
evolve as a Gaussian random walk according to

x[k] = x[k − 1] +w[k] (31)

where w[k] ∼ N (0,Cw) is the process noise with covariance
matrix Cw. Furthermore, assume that the initial state x[k] is
distributed according to x[0] ∼ N (m0,P 0).

Combining Eq. (30) and Eq. (31), the following linear state
space model is obtained

x[k] = Fx[k − 1] +w[k], (32a)
z[k] = Gx[k] + ν[k], (32b)

where F = I2N+1 is the 2N + 1 × 2N + 1 identity matrix
and G is the 1× 2N + 1 dimensional observation matrix with
the ith component gi defined as

gi =


1, i = 1,

sin(2πfi−1tk), 1 < i ≤ NKF + 1,

cos(2πfi−NKF−1tk), NKF + 1 < i ≤ 2NKF + 1.

The linear model in Eq. (32) can then be used in a
Kalman filter [33] to obtain recursive estimates of the Fourier
coefficients x[k] at each time tk. Finally, a point estimate of
the breathing frequency is obtained in the same way as for
the spectrum based method, that is, by selecting the frequency
with highest magnitude such that

f̂KF = argmax
n

√
a2
n + b2n, n > 0. (33)

Note that this method has all the advantages of recursive im-
plementations including decreased computational and memory
requirements. In addition to these, an important advantage
of this method compared to the DFT-based approach is its
capability of working with unevenly sampled data.

C. Model-based Estimation

In principle, the model of the RSS measurements in Eq. (12)
and Eq. (21) could be exploited to improve the perturbation
frequency estimation or to relax the requirements of the DFT
based (both batch or recursive) estimators. However, since the
small perturbations depend on many different parameters such
as the breathing direction with respect to link-line, breathing
amplitude, initial position of the person, their geometry, and
electrical properties of their clothes this is non-trivial. Instead,
non-parametric statistical models can be used for capturing
these effects. This approach has recently been used in [14] by
modeling the underlying signal as a quasi-periodic Gaussian
process. Here, we just summarize the main results of this
model-based method, and the reader is referred to [14] for
related discussions and a detailed derivation.

The low-pass filtered RSS z[k] (see Fig. 4b) can be modeled
as a quasi-periodic Gaussian process [34], [35], such that

z[k] = g[k] + ν[k], (34a)
g(t) ∼ GP(0,K(τ)), (34b)

where g[k] , g(tk) is the kth sample acquired at time tk,
and GP(m(t),K(t, t′)) denotes a Gaussian process prior with
mean function m(t) and covariance kernel K(t, t′) = K(t −
t′), and τ = t− t′ [34]. For a temporal Gaussian process with
the canonical periodic covariance function given by

K(τ) = σ2
K exp

−2 sin2
(

2πfτ
2

)
`2

 , (35)

it can be shown that the following equivalent discrete-time
state-space formulation

u0[k] = u0[k − 1] + w0[k], (36a)
un[k] = F nun[k − 1] +wn[k − 1], (36b)

g[k] = u0[k] +

∞∑
n=1

Hnun[k] (36c)

can be obtained [14], [35]. In Eq. (35) σ2
K (variance), ` (length

scale), and f (perturbation frequency) are hyperparameters. In
Eq. (36), u0[k] is the DC component, un[k] (for n > 0) is
a 2 × 1 vector containing the instantaneous value of the nth

harmonic and its derivative, w0[k] ∼ N (0, Cw0
) and wn[k] ∼

N (0,Cwn
) are the corresponding process noises, and

F n =

[
cos(2πfnδt) − sin(2πfnδt)
sin(2πfnδt) cos(2πfnδt)

]
, (37a)

Hn =
[
1 0

]
, (37b)

Cwn = 4δtσ
2
K exp(−`−2)In(`−2)I2, (37c)

Cw0 = 2δtσ
2
K exp(−`−2)In(`−2), (37d)

where In(·) is the nth order modified Bessel function of the
first kind, and δt = tk − tk−1. The initial states are given by
γ0[0] ∼ N (0, P0,γ0

) and un[0] ∼ N (0,P 0,un
).

Additionally, the logarithm of the breathing frequency
s[k] = log(f [k]) is modeled as a geometric Brownian motion
which yields [36]

s[k] = s[k − 1]− 1

2
S2
fδt + ws[k], (38)
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where Sf is the spectral density of the underlying white
noise process and ws[k] ∼ N (0, Sfδt).By introducing a time-
varying frequency as in Eq. (38), this assumption is violated
for the covariance kernel in Eq. (35). However, since the
breathing rate varies relatively slowly, the process is consid-
ered locally stationary.

Finally, combining Equations (34), (36), and (38), and
truncating the series in Eq. (36c) at some upper bound NGP,
the following nonlinear state-space model is obtained

s[k]
u0[k]
u1[k]

...
uNGP [k]

 =


s[k − 1]− 1

2S
2
fδt

u0[k − 1]
F 1u1[k − 1]

...
FNGPuNGP [k − 1]

+


ws[k]
w0[k]
w1[k]

...
wNGP [k]

 , (39a)

z[k] = u0[k] +

NGP∑
n=1

Hnun[k] + ν[k], (39b)

where the dependence of the matrices F n on s[k] is implicit.
The model Eq. (39) can now readily be used in a (nonlinear)
Kalman filter such as the unscented Kalman filter or extended
Kalman filter [33]. In this paper, we use Rao–Blackwellized
unscented Kalman Filter presented earlier in [14]. Finally, the
frequency estimate is given by

f̂GP = exp(ŝ), (40)

where ŝ is the first component of the latest state estimate.

V. EXPERIMENTAL RESULTS

In this section, the developments of the paper are evaluated
using experimental data. In the following, we present the
experimental setup and overview of the experiments before
introducing the evaluation metrics. Then, the results are given.

A. Experimental Setup and Experiments

The experiments are conducted using the nodes with the
hardware and software platform described in [37]. A TX node
is programmed to transmit packets over 16 frequency channels
at the 2.4 GHz ISM band5. After each transmission, the
frequency channel of communication is changed sequentially
to cover the 80 MHz spectrum. The RX nodes are programmed
to listen for ongoing transmissions. Upon reception, the pack-
ets are timestamped at the start of frame delimiter with a
resolution of 1/32 microseconds, and the received frames are
stored to a non-volatile memory.

The first experiment aims at evaluating the accuracy of
the estimators and the experimental procedure follows that
of experiment no. 1 in [8]. The RSS measurements are
acquired by a single RX node, which is 2 m away form the
TX node. The transmission interval is set to 2 milliseconds.
Thus, fs = 31.25 Hz for each frequency channel, which is
considerably higher than the breathing frequencies of interest.

5The developments presented thus far consider a stream of RSS measure-
ments with constant wavelength. In this section, the acquired measurements
from different frequency channels are considered as different measurements
with different wavelengths.

TABLE I
EVALUATION PARAMETERS

Symbol Value Appearance Explanation
f Varying Sec. V-A Breathing frequency in bpm
fs Varying Sec. V-A Sampling frequency in Hz
NDFT 2048 Eq. (27) Number of FFT points
Nw 30 s data Eq. (26) FFT window length
No Nw − 1 Eq. (26) FFT window overlap
NKF 75 Eq. (30) Number of frequency bins

in KF
Cw 0.01I2N+1 Eq. (32) Process noise covariance

m0,KF


z[0]
0
...
0

 Eq. (32) Initial estimate of KF

P 0,KF I2N+1 Eq. (32) Covariance of the initial es-
timate

NGP 2 Eq. (30) GP Truncation Order
σ2
K 0.01 Eq. (35) Covariance kernel variance
` 0.9 Eq. (35) Covariance kernel length

scale
Sf 10−4 Eq. (38) White noise process PSD
δt 1/fs Eq. (37) Time difference between

samples in seconds
P0,u0

√
0.1I2 Eq. (37) Covariance of the initial

state estimate components
corresponding to DC terms

P 0,un
1

2nn!
I2 Eq. (37) Covariance of the initial

state estimate components
corresponding to non-DC
terms

m0,GP


ln (15/60)

z[0]
0
...
0

 Eq. (39) Initial estimate of GP

σ2
ν 1 Various Measurement noise variance

for KF and GP models

During the experiments the person is lying on a bed, where his
chest is approximately 25 cm away from the link-line while
breathing at a constant rate set by a metronome. The person
breaths at 5 different rates: 12, 14, 16, 18 and 20 breaths-per-
minute (bpm). In total 80 time series are recorded and used
for evaluation purposes. We refer to this experiment as bed
experiment.

The second experiment aims at evaluating how the SNR
impacts estimation performance. The TX node emits frames
every 1.92 milliseconds, and 11 RX nodes acquire the RSS
variation when the person is standing in four different positions
as shown in Fig. 6a. At each position, the person is standing
still while breathing at a constant rate of 12 bpm. The
setup is also used for acquiring RSS measurements when the
environment is empty. In total 176 time series are recorded
for each position so that the evaluation is based on 704 data
series. We refer to this experiment as room experiment.

The acquired RSS data is preprocessed as shown in Fig. 4b.
The bandpass filtered data y[k] is obtained as output of two
processing stages: first the mean is calculated and removed
from measurement P[k], and then the result is low-pass
filtered. The low-pass filtered data z[k] is obtained by just
low-pass filtering P[k]. The used low pass filter is a 5th order
elliptic filter that has passband frequency of 2 Hz and stop
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(a) RSS on channel 3 (b) GP state estimates (c) Spectrograms (d) Breathing rate estimates

(e) RSS on channel 10 (f) GP state estimates (g) Spectrograms (h) Breathing rate estimates

Fig. 5. Bed experiment: breathing monitoring on two different frequency channels using the presented methods. In (a) and (e), the breathing affected RSS
signal. In (b) and (f), state estimates of the GP method (NGP = 2). Spectrograms of the spectral estimation techniques illustrated in (c) and (g). The breathing
rate estimates on the two channels are shown in (d) and (h).

frequency of 3 Hz, 0.05 dB maximum ripple in the pass band,
and 40 dB stop band attenuation.

B. Evaluation Methodology

During the evaluation, we refer to the output of the batch
estimator summarized in Sec. IV-A as DFT estimate, the
recursive Bayesian estimator presented in Sec. IV-B as Kalman
Filter (KF) estimate, and finally, the model-based estimator
presented in Sec. IV-C output is referred to as Gaussian
Process (GP) estimate. These methods are implemented using
the parameters tabulated in Table I.

The evaluation in this section is based on mean absolute
error (MAE) calculations. For the breathing frequency estima-
tion, the MAE in bpm is defined as

εf ,
60

K

K∑
k=1

|f̂ [k]− f |, (41)

where f is the true rate, and f̂ [k] is the kth frequency estimate
out of K total estimates. This metric fails to provide a measure
of dispersion in the estimates. For this purpose, we use the
ratio of estimates within 1 bpm neighborhood of the true
frequency f

ε% ,
# of f̂ in 1 bpm neighborhood of f

# of estimates
· 100. (42)

In order to quantify the convergence speed of the methods, we
calculate εf for the data in the first 30 seconds and for the data
afterwards separately. We refer to the former as εf (t ≤ 30 s)
and the latter as εf (t > 30 s). When the estimates have some

outliers, e.g. they converge to the second harmonic frequency,
we also calculate εf by excluding those outliers, and refer the
result with εf w/o outliers.

In high SNR conditions, the εf performance of all the
estimators are similar. In this case, the MAE of the estimated
signal and the estimator input can be used for evaluation, since
the estimator outputs also imply a signal in a specific form.
Let us denote the model output of any estimator6 as R̂. Then,
we define the modeling MAE as

εz =
1

K

K∑
k=1

|z[k]− R̂[k]|, (43)

where for DFT-based method we add the mean value sub-
tracted in the preprocessing stage.

The room experiment is used for evaluating the performance
of the estimators under varying SNR conditions. The SNR of
the signal is estimated using the PSD estimate in Eq. (27),
using the actual breathing frequency. Let set L(f) contain the
indices of the bins that are in a neighborhood of the harmonics
of the true breathing frequency, excluding the DC term, and S
denote the bins within interval 0.1 and 3 Hz, which define the
frequency range we are interested in. Then, an SNR estimate
is given by

%̂ , 10 log10

 ∑
l∈L(f)

S[l]

/ ∑
l∈S/L(f)

S[l]

 , (44)

6Although the state space models in Sec. IV are different, all of these yield
the same output form as in Eq. (21) only with different number of harmonics.
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TABLE II
RESULTS OF THE BED EXPERIMENT

GP KF DFT
ε% [%] 97.50 88.75 87.50
εf (t ≤ 30 s) [bpm] 1.06 5.10 -
εf (t > 30 s) [bpm] 0.25 1.44 1.41
εf w/o outliers [bpm] 0.15 0.25 0.26
εz [dB] 0.16 0.32 0.28

where the sets are disjoint. In the following, we use only the
first two harmonics when forming the set L(f), and all other
spectral bins contribute to the noise power.

C. Results

1) Bed experiment: In Fig. 5, breathing estimation is illus-
trated on two different frequency channels when the person
is breathing at a constant rate of 0.2 Hz, that is, 12 bpm.
The signal shown in Fig. 5a contains a strong first harmonic
at the breathing frequency and all methods are capable of
estimating the true frequency correctly as illustrated in Fig. 5d.
The recursive GP and KF methods converge to the true
frequency in approximately 15 s, whereas the DFT method
requires 30 s because of the time window used to calculate
the DFT. The breathing induced changes are not as evident
for the signal shown in Fig. 5e since it contains higher order
harmonics as proposed by the model and as illustrated in
Fig. 5g. The KF and DFT methods estimate the breathing
frequency using the peak of the spectrum, resulting in an
incorrect estimate of f ≈ 24 bpm which corresponds to the
second harmonic. The higher order harmonics are taken into
account in the GP-based estimator when truncation order is
higher than 1, NGP > 1. As a result, the method can correctly
estimate the true breathing frequency as illustrated in Fig. 5h.
The state estimates of the GP are illustrated in Fig. 5f and
clearly, the method is able to track the DC-component and the
harmonics accurately resulting in an improvement with respect
to the spectral estimation techniques. For clarity, the second
component of uj is omitted from Figs. 5b and 5f.

The measurement setup of the bed experiment is a realiza-
tion of the measurement setup evaluated in Fig. 3b. Thus, small
displacements of the person, as can be observed in Fig. 3b,
causes drastic changes in the SNR. Furthermore, different
frequency channel measurements may have different behavior
as the spread of the dots in the figure imply. For the acquired
80 signals, there are 8 signals having higher energy in the
second harmonic. According to the evaluation in Fig. 3b, a
particular y value (between 0.24 and 0.26 m) can yield such
measurements. Therefore, the model correctly resembles this
important scenario.

Performance of the estimators is summarized in Table II
and on average, the spectral estimation techniques yield com-
parative accuracy while the GP-based estimator outperforms
them. The ratio of valid estimates is summarized by ε% and
the 10% difference in favor of the GP method originates from
the fact that the second harmonic has the highest amplitude
in 8 out of 80 signals resulting incorrect estimates with
the spectral techniques. The recursive GP and KF methods

TABLE III
TRUNCATION ORDER

Truncation order NGP 1 2 3 4
ε% [%] 97.50 97.50 97.50 97.50
εf (t > 30 s) [bpm] 0.28 0.29 0.25 0.25
εz [dB] 0.19 0.17 0.16 0.16

typically converge in the first 30 s and 75% of the estimates
converge to within 1 bpm of the true rate in 15.8 s with GP
and in 17.6 s with KF. However, the GP attains a significantly
lower εf (t ≤ 30 s) compared to KF, since the KF errors are
typically very large due to the jumpy behavior as observed
in Fig. 5d. After the transient period (0 − 30 s), the GP
achieves a lower MAE than the spectral estimation techniques
as given by εf (t > 30 s). However, these results are severely
affected by the experiments that resulted in incorrect estimates
due to measurements not showing the first harmonic, but the
second one. Neglecting these outliers, one can observe that all
methods yield comparative accuracy as given in the fifth row
of Table II. The steady-state accuracy of the spectral methods
is mainly affected by the frequency bin size, whereas the GP
accuracy could be improved by selecting the spectral density
Sf smaller. However, this would also decrease responsiveness
of the filter to possible breathing rate changes. Lastly, εz
is given in the last row of Table II. Clearly, the GP model
estimates correspond more closely to the measured RSS since
the higher order harmonics are taken into account.

The development in Sec. III concludes that the RSS is
composed of more than one harmonics. However, the relative
importance of higher order harmonics depend on several
factors, which include actual breathing function (in this regard
it is evident that natural breathing is not a sinusoid) and effect
of quantization in typical RSS measurement systems [25]. In
order to quantify the importance of higher order harmonics,
one may investigate the estimated energy in harmonics for all
80 time series.

Since the model in Eq. (36c) is composed of Fourier series
coefficients (and their derivatives), the relative energy in the
mth harmonic can be defined as

E(m) = u2
m,1

/ 4∑
n=1

u2
k,1,

where um,1 denotes the first component of um.
Averaging E(m) across the 80 experiments results to E(1) =

86.62%, E(2) = 11.00%, E(3) = 2.13% and E(4) = 0.25%,
thus the first two harmonics contain approximately 98% of
the energy. This value is very close to the value predicted
by the Carson’s rule of thumb, and implies that the actual
breathing signal is a smooth function, not containing any
jumps. Typically E(1) ≈ 93%, but it can be as low as 36%
validating the importance of having an estimator that takes
into account the higher harmonics. The accuracy of the GP
with different truncation orders is given in Table III. In terms
of estimation accuracy, higher truncation order yields slightly
better performance as indicated by εf (t > 30 s). In addition,
εz is reduced with higher truncation order.
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(a) (b) (c)

Fig. 6. In (a), layout of the room experiment, where © is the position number of the person while facing to the direction shown with an arrow,
e

is the
receiver node identifier between 1 and 11, and finally

`
is the transmitter node. CDF of link SNRs in different positions, including empty room (None) and

bed experiment (Bed), are shown in (b). In (c), the variation of ε% with SNR for the different estimators is shown.

TABLE IV
ε% [%] WITH DFT METHOD IN ROOM EXPERIMENT

Receiver number
pos. 1 2 3 4 5 6 7 8 9 10 11

1 6 0 13 0 6 19 19 19 25 19 6
2 0 6 75 44 13 31 6 6 38 6 13
3 0 0 6 6 25 13 6 25 6 6 25
4 0 0 0 6 19 0 13 0 6 0 31

2) Room experiment: CDFs of link SNRs for the room
experiment are illustrated in Fig. 6b. The maximum SNR
value for the empty room measurements is −12.42 dB and
7.4−25.0% of link SNRs exceeds this value when a breathing
person is present. Thus, all positions clearly contain informa-
tion regarding respiration rate of the person. However, SNR
in the room experiments is typically much lower than in the
bed experiment as shown in Fig. 6b.

The SNR of a link is defined by the signal energy E1 given in
Eq. (25) for which the coefficients cm can be calculated using
Eq. (22). The coefficients cm are functions effective reflection
coefficient G, defined in Eq. (5), and effective amplitude of the
periodic movement Ã given in Eq. (10). The signal energy E1
increases as G increases, and G has its maximum when Γ is at
its maximum on the link line. In the room experiment, when
the person is on position 1, G is in the interval [0.02, 0.09]
for nodes 1 to 5 (1 − 5), whereas for nodes 7 − 11, G ∈
[0.11, 0.23]. As a result, the calculated signal energy E1 =
[0.02, 0.16] for RX nodes 1 − 5 and E1 ∈ [0.19, 0.23] for
nodes 7−11. With nodes 1−5, the average SNR is −18.22 dB
and ε% = 5.0% whereas with RX nodes 7 − 11, the average
SNR is −16.24 dB and ε% = 17.5%. Thus, in position 1, it is
expected that successful breathing monitoring is more likely
with nodes 7 − 11. The estimation results given in Table IV
are in accordance with this statement.

The effective reflection coefficient G is not the only pa-
rameter that affects the signal energy. In position 2, G is
in [0.21, 0.33] for nodes 3 − 4, whereas for nodes 7 − 8,
G ∈ [0.70, 0.94]. Respectively, the effective perturbation

amplitude Ã ∈ [0.30, 0.54] for nodes 3−4, it is in [0.02, 0.12]
for 7 − 8. Position 2 does not favor breathing monitoring
using nodes 7 − 8 despite that G is three times larger than
with nodes 3 − 4. The reason for this short coming is that
breathing causes very small changes in the RSS of nodes
7 − 8 and E1 ∈ [0.00, 0.11], whereas for nodes 3 − 4 the
signal energy is E1 ∈ [0.30, 0.86] due to orientation of the
person. Correspondingly, the average SNR of RS nodes 3− 4
is −10.53 dB and ε% = 59.4%, whereas for RX nodes 7− 8
the average SNR is −15.88 dB and ε% = 6.3%. Again, the
experimental results support the implications of the model.

It is important to keep in mind that a slight change in
position or orientation can have a significant impact on the
signal energy of the links and therefore, spatial diversity or fre-
quency channel diversity must be used to increase likelihood
of successful breathing monitoring. Results for the different
receivers and positions are summarized in Table IV and it
can be concluded that successful breathing monitoring is very
likely across a large area as long as the position and orientation
of the person yield SNR higher than −5 dB as in the bed
experiment.

In Fig. 6c, the variation of ε% as a function of SNR using the
different estimators is depicted. As shown, estimation accuracy
improves with every estimator when the SNR increases and
ε% = 100% with all methods when SNR ≥ −4 dB. Although
for the bed experiment GP outperforms the other estimators,
its performance is lower when the SNR is low. In this region,
the second and higher order harmonics have lower power
than the noise so that they are not as important as they are
under high SNR conditions. Correspondingly, the batch DFT
method and recursive spectral estimators outperform GP. This
result suggests that for low SNR operating region batch DFT
estimator is better whereas for high SNR conditions GP is
better in terms of accuracy. It is also to be noted that GP has
other advantages, most notably it relaxes data acquisition re-
quirements by not requiring uniform sampling, operating with
occasional packet losses, and better fusing the measurements
from different communication channels [14]. Therefore, it has
an utmost importance to investigate achievable performance,
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and to select an appropriate estimator.

VI. CONCLUSIONS

Breathing rate is an important vital sign of which continuous
monitoring may help to identify serious problems before they
actually occur. In this paper, a signal model for received
signal strength based non-contact respiration rate monitoring
systems using commodity wireless devices is presented. It
is shown that the signal model for low-end communication
devices has the same form as the one in high-end radar
based solutions. The effect of linear movement has also been
derived, and significance of physical parameters are shown and
discussed. Real world measurements are used for evaluating
the performances of three previously presented estimators,
and the result is compared with the implications of the
model. The model implications are in coherence with the
findings, and show that respiration rate monitoring systems
must be evaluated before deployment. The estimator must
be selected according to expected signal-to-noise ratio of the
measurements and the constraints imposed by the hardware
and software implementations of the wireless nodes.
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based respiratory rate monitoring using periodic Gaussian processes
and Kalman filtering,” in 25th European Signal Processing Conference
(EUSIPCO), Kos, Greece, August 2017.

[15] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent
advances in doppler radar sensors for noncontact healthcare monitoring,”
IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5,
pp. 2046–2060, May 2013.

[16] J. Salmi, O. Luukkonen, and V. Koivunen, “Continuous wave radar
based vital sign estimation: Modeling and experiments,” in IEEE Radar
Conference (RADAR), 2012, 2012, pp. 0564–0569.

[17] A. Lazaro, D. Girbau, and R. Villarino, “Analysis of vital signs moni-
toring using an ir-uwb radar,” Progress In Electromagnetics Research,
vol. 100, pp. 265–284, 2010.

[18] S. Venkatesh, C. R. Anderson, N. V. Rivera, and R. M. Buehrer, “Im-
plementation and analysis of respiration-rate estimation using impulse-
based UWB,” in IEEE Military Communications Conference, 2005.
MILCOM 2005. IEEE, 2005, pp. 3314–3320.

[19] F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller, “3D tracking via body
radio reflections.” in NSDI, vol. 14, 2014, pp. 317–329.

[20] H. Abdelnasser, K. A. Harras, and M. Youssef, “UbiBreathe: A ubiq-
uitous non-invasive WiFi-based breathing estimator,” in Proceedings of
the 16th ACM International Symposium on Mobile Ad Hoc Networking
and Computing. ACM, 2015, pp. 277–286.

[21] J. Liu, Y. Wang, Y. Chen, J. Yang, X. Chen, and J. Cheng, “Tracking
vital signs during sleep leveraging off-the-shelf WiFi,” in Proceedings of
the 16th ACM International Symposium on Mobile Ad Hoc Networking
and Computing. ACM, 2015, pp. 267–276.

[22] H. Wang, D. Zhang, J. Ma, Y. Wang, Y. Wang, D. Wu, T. Gu, and
B. Xie, “Human respiration detection with commodity WiFi devices:
do user location and body orientation matter?” in Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 2016, pp. 25–36.

[23] X. Liu, J. Cao, S. Tang, J. Wen, and P. Guo, “Contactless respiration
monitoring via off-the-shelf WiFi devices,” IEEE Transactions on Mo-
bile Computing, vol. 15, no. 10, pp. 2466–2479, 2016.

[24] A. Luong, A. S. Abrar, T. Schmid, and N. Patwari, “RSS step size: 1
dB is not enough!” in Proceedings of the 3rd Workshop on Hot Topics
in Wireless. ACM, 2016, pp. 17–21.
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