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HyTasker: Hybrid Task Allocation in Mobile
Crowd Sensing

Jiangtao Wang, Feng Wang, Yasha Wang, Leye Wang, Zhaopeng Qiu, Daqing Zhang, Bin Guo, Qin Lv

Abstract—Task allocation is a major challenge in Mobile Crowd Sensing (MCS). While previous task allocation approaches follow
either the opportunistic or participatory mode, this paper proposes to integrate these two complementary modes in a two-phased
hybrid framework called HyTasker. In the offline phase, a group of workers (called opportunistic workers) are selected, and they
complete MCS tasks during their daily routines (i.e., opportunistic mode). In the online phase, we assign another set of workers (called
participatory workers) and require them to move specifically to perform tasks that are not completed by the opportunistic workers (i.e.,
participatory mode). Instead of considering these two phases separately, HyTasker jointly optimizes them with a total incentive budget
constraint. In particular, when selecting opportunistic workers in the offline phase of HyTasker, we propose a novel algorithm that
simultaneously considers the predicted task assignment for the participatory workers, in which the density and mobility of participatory
workers are taken into account. Experiments on two real-world mobility datasets demonstrate that HyTasker outperforms other
methods with more completed tasks under the same budget constraint.

Index Terms—Mobile crowd sensing, task allocation, hybrid approach.
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1 INTRODUCTION

W ITH the proliferation of sensor-rich mobile devices,
Mobile Crowd Sensing (MCS) [1], [2] has emerged as

a new way of sensing, which has drawn much attention
from both academia [3], [4] and industry [5], [6]. MCS has
stimulated in a variety of environmental, commercial, and
social applications [7], [8], [9], [10], [11], [13], [14], [50],
where dynamically-moving citizens (called workers) con-
tribute urban sensing information (e.g., traffic congestion
status, air quality, and noise level) through mobile devices.

Task allocation or worker selection is one of the major
challenges in MCS [12], which has a significant impact on
the efficiency and quality of the sensing tasks [15], [18], [19],
[20], [26]. Recently, there have been many studies on MCS
task allocation, such as [21], [22], [23], [24], [25], [29], [30],
[34], [36], [37], which can be divided into two categories
based on the workers’ movement patterns and participation
mechanisms [2], [13], [15], [49]. (1) In the opportunistic mode,
an MCS system assigns tasks to a number of selected work-
ers, who will complete the tasks during their daily routines
without the need to change their routes [21], [22], [23],
[24], [25], [29], [30]. (2) In the participatory mode, however,
workers are required to change their original routes and
move specifically to certain places to complete MCS tasks
[17], [34], [36], [37]. Existing MCS solutions adopt either the
opportunistic mode or the participatory mode to tackle the
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task allocation problem. However, both modes have their
own advantages and disadvantages, which we elaborate as
follows.

The opportunistic mode does not require knowledge of the
workers’ intended travel routes, so it is less intrusive for the
workers and less costly for the task organizers. However,
the sensing quality of the assigned tasks depend heavily on
the workers’ routine trajectories. For tasks that are located
at places visited by few or even no workers, their sensing
quality can be very poor. Additionally, in order to select an
optimal set of workers, task allocation strategies based on
the opportunistic mode usually needs to predict the work-
ers’ trajectories, which significantly affects the optimality
of the task allocation plan. Although different trajectory
prediction algorithms [16], [25], [36] have been proposed
and proved to be effective to some extent, their accuracy
cannot be theoretically guaranteed due to complicated and
unpredictable real-life conditions. Thus, the final sensing
quality achieved for some tasks may be lower than expected.

The participatory mode requires workers to move specifi-
cally to task locations, which can guarantee task completion.
However, since workers need to deviate from their original
routines and travel to task locations, it incurs extra travel
cost and can be intrusive to the workers. It also increases
the task organizers’ incentive cost, since the task organizers
usually have to pay extra incentive rewards to compen-
sate for the traveling cost of the workers. Moreover, task
allocation strategies based on the participatory mode only
utilize mobile users who are willing to change their routes
and travel intentionally for the tasks. As reported by some
recent studies on human factors in MCS [18], [20], a large
proportion of mobile users are willing to contribute sensing
data but do not want to change their routine trajectories.
This group of mobile users is excluded from the candidate
workers in the participatory mode, which is a waste of
limited sensing resources.
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In this paper, motivated by the complementary nature of
these two modes, we propose a hybrid MCS task allocation
framework, called HyTasker, which effectively integrates the
opportunistic mode and the participatory mode via a two-
phased design. In the offline phase, we recruit a number
of workers (called opportunistic workers) to complete sensing
tasks during their routine trajectories. In the online phase,
we further assign some other workers (called participatory
workers) to locations where tasks cannot be completed by
the opportunistic workers alone. Specifically, we study the
typical budget-constrained MCS task allocation problem in
this paper, where one task organizer launches a certain MCS
campaign in the city with a number of location-dependent
homogenous sensing tasks, with the goal of maximizing the
number of completed tasks while keeping the total incentive
rewards under a budget constraint.

Compared with the pure opportunistic or participatory
mode, the advantage of HyTasker can be summarized in the
following two aspects.

First, from the perspective of the workers, it naturally accom-
modates the workers’ participation preferences and makes
full use of the available human sensing resources. In real-
world applications, workers’ preferred way of participation
can be different. For example, some office employees are
busy all day and do not have time to take a detour for task
completion. In this case, they only accept to complete tasks
on their daily routine trajectories. In contrast, some retired
or unemployed citizens who have plenty of leisure time
may be willing to move intentionally and complete tasks
to earn incentive rewards. HyTasker assigns tasks based on
the workers’ preferences, hence making better use of the
potential human sensing resources in the city.

Second, from the perspective of the task organizer, HyTasker
can achieve a better tradeoff between sensing quality and
cost. Compared with pure participatory-mode approaches,
it leverages some opportunistic workers to unintentionally
complete tasks, which significantly reduces the incentive
cost. In contrast to the pure opportunistic-mode approaches,
it further improves the sensing quality by assigning some
participatory workers to move and complete tasks in un-
covered locations.

To illustrate how HyTasker works and further highlight
the research challenges, we present a motivating example as
follows. The city government launches an MCS campaign,
called AirSense, for collecting real-time air quality informa-
tion in different regions from 8:00am to 6:00pm every day
in the city with a total budget constraint (e.g., 2000 USD
per day). As the entire sensing area can be divided into 20
subareas (or called task locations), we can view the AirSense
campaign as 20 homogenous sensing tasks in the same
sensing period (e.g., from 8:00am to 6:00pm). 500 mobile
users have registered as candidate workers in AirSense, and
their historical records of connections to the cell towers are
utilized by AirSense only for the purpose of task allocation
after proper anonymization. According to their declared
participation preferences on a specific day, 350 workers are
candidate opportunistic workers, while 150 are candidate
participatory workers. As the budget is limited, AirSense
cannot recruit all candidates to complete all tasks, and its
goal is to design an effective task allocation mechanism to
maximize the number of completed tasks. Hence, AirSense

adopts the HyTasker framework for task allocation, which
has the following two phases. First, in the offline phase,
HyTasker selects a set of opportunistic workers from 350
candidates, and each of them is given a fixed reward (e.g., 10
USD per worker) for the entire sensing period [22], [25]. The
selected opportunistic workers will collect sensing data for
all tasks during their routine trajectories when they connect
to the cell towers. Then, in the online phase (e.g., one hour
before the end of sensing period), HyTasker spends the rest
of the budget to assign another set of participatory workers
from 150 candidates with uncompleted tasks so far. The
participatory workers will change their daily routes to move
intentionally for task completion, and the incentive reward
each worker gets is in proportion to his/her travel distance
(e.g., 2 USD per kilometer) [34], [36].

Given the basic design of HyTasker in the motivating
example above, we can see at least the following research
challenges. First, the two types of workers (i.e., oppor-
tunistic workers and participatory workers) share a total
incentive budget, thus we cannot consider them separately.
A naı̈ve solution is to try different proportions of the budget
division, and then directly adopt the state-of-the-art task al-
location methods for opportunistic mode and participatory
mode, respectively. However, as we cannot determine an
optimal budget division plan, such a naı̈ve solution may
not perform well. Therefore, more sophisticated methods
are needed to jointly optimize the offline and online phases.
Second, in the offline phase of opportunistic worker selec-
tion, we need to consider possible online task assignments
for the participatory workers in the future, which is chal-
lenging since we cannot foresee the precise locations of the
participatory workers and the completion status of tasks in
the online phase.

In an effort to address the objectives and challenges men-
tioned above, our work makes the following contributions:

(1) By analyzing the complementary nature of the
participatory-mode and opportunistic-mode MCS,
we propose a two-phased hybrid task allocation
framework, called HyTasker. It effectively integrates
the two modes by selecting opportunistic workers
in the offline phase and participatory workers in
the online phase, via a joint optimization process.
To the best of our knowledge, we are the first to
combine these two modes in the MCS task allocation
problem.

(2) We propose a nested-loop greedy process to select
the opportunistic workers by pre-considering future
online task assignment of the participatory workers,
which consists of two key mechanisms that are
not adopted in the state-of-the-art MCS solutions.
First, by considering the historical density of the
participatory workers, HyTasker assigns higher pri-
ority to the opportunistic workers who are not only
capable of completing more tasks but also can com-
plete uncovered tasks in areas with fewer participa-
tory workers. Second, it records each local-optimal
subsets obtained during the greedy process, and
further selects the optimal one by simultaneously
predicting the task assignments of the participatory
workers.
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(3) We evaluate HyTasker extensively using D4D [40]
and Gowalla [52], two real-world open datasets
with a large number of users’ mobility traces. The
experimental results demonstrate that HyTasker
outperforms other methods with more completed
tasks under the same budget constraint.

2 RELATED WORKS
A number of research works exist for selecting MCS work-
ers, who can complete MCS tasks during their daily routines
without the need to change their original trajectories. One
group of studies considered the worker selection of a single
MCS task with certain goals and constraints [21], [22], [23],
[24], [25], [27], [29]. For example, the authors studied worker
recruitment for a single MCS task, and they proposed dif-
ferent recruitment strategies to select a predefined number
of workers so as to maximize the task’s sensing quality [21],
[22], [23], [24], or select a minimum number of workers to
ensure a certain level of sensing quality [25], [29]. Another
group of studies attempted to optimize the overall utility of
multiple concurrent sensing tasks in a multi-task-oriented
MCS platform, where tasks share the limited resources [30],
[31], [32], [53]. For example, both [30] and [31] proposed
multi-task allocation algorithms to maximize overall system
utility when the tasks share a limited incentive budget.
The multi-task allocation strategy proposed in [32] aims to
optimize the overall utility when multiple tasks share a pool
of workers with a sensing bandwidth constraint.

Another category of MCS tasks require workers to
change their original routes and specifically move to cer-
tain places. There are two models for task publishing, i.e.,
worker selected tasks (WST) [33] and server assigned tasks
(SAT) [34], [36], [35], [37], [38], in which tasks are selected by
workers themselves or automatically assigned by the server,
respectively. Our hybrid task allocation problem follows the
SAT model. Prior studies in the SAT model [34], [36], [37],
[38] assigned existing workers to tasks in the MCS system
with various optimizing goals and constraints. For instance,
the authors of [34], [36] aimed to maximize the number of
completed tasks or overall task quality on the server side,
while ensuring constraints on workers’ maximum number
of accepted tasks and task completion regions. The objective
of [38] is to minimize the traveling cost for completing a set
of given tasks while seeking solutions that are socially fair.

The above studies adopt either opportunistic or partici-
patory mode for MCS task allocation, while our work pro-
poses a hybrid solution to achieve a better tradeoff between
sensing quality and cost. Technically, our defined problem
is more challenging, as we have to jointly optimize these
two modes of task allocation with a shared incentive budget
constraint. Different from existing MCS worker selection
approaches, we develop a novel opportunistic worker se-
lection algorithm with two unique mechanisms. First, in-
stead of selecting workers who can only complete more
tasks or cover larger areas [22], [25], [31], [30], HyTasker
assigns higher priority to those who can complete more
tasks in participatory-worker-sparse areas. Second, while
existing worker selection approaches commonly end when
the total budget has been used up and output the final set
of selected workers [22], [25], [31], [30], HyTasker further

records, estimates, and selects the best set of workers by
simultaneously considering the predicted task assignments
of the participatory workers.

In summary, although classifying workers into oppor-
tunistic and participatory group is common in MCS, Hy-
Tasker is novel in the following aspects: (1) Difference in
basic idea. The basic idea of HyTasker is to utilize these
two groups to achieve a good trade-off between sensing
quality and cost, as they are complementary. (2) Difference
in overall framework. State-of-the-art research works pro-
posed task allocation methods for two types of workers
separately. In contrast, HyTasker designs a two-phased ap-
proach by leveraging two types of supporters, where the
online and offline phases are jointly considered as a total
budget is shared. (3) Difference in core algorithm. Different
existing work, the key technical challenge of HyTasker lies
in the offline opportunistic worker selection, which requires
the joint consideration of future possible task assignment
of the participatory workers. To address this challenge, we
propose a nested-loop process, which is the key technical
contribution of HyTasker.

3 HYTASKER: SYSTEM OVERVIEW
In this section, we first analyze and formulate the hybrid
task allocation problem, then describe the proposed Hy-
Tasker framework to solve this problem.

3.1 Problem Analysis and Formulation

Similar to some previous studies such as [15], [25], [27],
this paper focuses on the task allocation of homogenous
MCS tasks for urban environmental sensing. Specifically, the
application scenario is that one organizer launches a certain
type of MCS campaign (e.g., air quality sensing) during a
certain period of time under a total budget constraint B.
The entire sensing area can be divided into n subareas, and
the data collection mission in each subarea is defined as
a ”task” in this paper. Thus, the MCS campaign consists
of n location-dependent homogenous sensing tasks T =
{t1, t2, . . . , ti, . . . , tn} during the same sensing period (e.g.,
8:00am-6:pm). A task can be completed once a recruited
worker moves into the corresponding subarea during the
sensing period. The goal of HyTasker is to maximize the
number of completed tasks by recruiting both opportunistic
and participatory workers. In fact, sensing quality of MCS
tasks is actually influenced by many factors (e.g., the quality
of workers and number of reports for each task). Since the
focus of our work does not lie in the design of task quality
model, we follow the assumption of many existing works
[17], [22], [25], [29], [34] to simplify the problem formulation,
that is, we assume that the worker’s quality is equal and one
report means that a task is completed. Thus, our objective
is to maximize the number of completed task with a pre-
defined budget constraint.

We divide the candidate workers into two disjoint
categories OW = {ow1, ow2, ...owj ...owl} and PW =
{pw1, pw2, ...pwk...pwm} based on their self-defined pref-
erences of participation mode. 1)The candidate opportunistic
workers, denoted as OW , would complete sensing tasks
during their routine trajectories. 2)The candidate participatory
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workers. This group of workers, denoted as PW , are more
active and are willing to change their routes to complete
sensing tasks. They actively report the participation infor-
mation to the cloud server, including their current online
location P = {p1, p2, ...pk...pm}, spatial region RW =
{rw1, rw2, ...rwk...rwm} within which they are willing to
travel. Each of them can get incentive rewards in proportion
to the actual travel distance online, which is denoted as
I ∗ Distance(pwk, PTk), where I is the proportion and
Distance(pwk, PTk) is the length of the shortest path for
pwk to complete assigned task set PTk. The maximum
number of tasks pwk can be assigned is denoted as L.

Based on the problem analysis above, we formally define
the hybrid task allocation problem as follows. 1)In the offline
phase, our objective is to select a subset of candidate oppor-
tunistic workers OWf ⊆ OW and pay each of them a fixed
and equal incentive reward Ic. Similar to [25], [15], [27],
[32], HyTasker adopts a piggyback MCS paradigm for the
opportunistic workers, in which the workers will complete
sensing tasks online when they connect to corresponding
cell towers or perform check-in in certain subareas. 2)In
the online phase, at timestamp TS, we aim to assign the
participatory workers some tasks that are not completed by
the opportunistic workers so far. We denote the full set of
task-and-worker pairs as V = PW × T = {(pwk, ti)|pwk ∈
PW, ti ∈ T}. So the objective of online task assignment is
to select a subset Vf of V subject to the constraints (i.e.,
spatial region and maximum number of assigned tasks).
Here, similar to previous studies such as [45], [46], [47], we
assume that once a participatory worker pwk is assigned a
task, the probability (called task acceptance rate) that s/he
will accept the task is ack, which has already been learned
from his/her previous participation history.

It is important to note that the online phase and the
offline phase are correlated, because they share a total
budget constraint. Specifically, for the MCS platform, the
optimization goal is to maximize the total number of com-
pleted task set, denoted as Tc(Tc ⊆ T ), while keeping the
total incentive reward under the budget constraint. The
optimization problem can be formulated as follows:

Maximize |Tc| (1)

Subject to : Ic∗|OWf |+
∑

pwk∈PW
I∗Distance(pwk, PTk) ≤ B

(2)

3.2 HyTasker Overview Design

As illustrated in Fig. 1. the design of HyTasker mainly
includes two phases: In the offline phase, it selects a set of
opportunistic workers, and each of them is paid with a fixed
reward for the entire sensing period. These workers will
complete sensing tasks online during their daily routine.
In the online phase, HyTasker further spends the rest of
the budget by assigning another set of participatory workers
with certain tasks that have not been completed by the
opportunistic workers. The participatory workers will move
intentionally to the sensing locations to finish the tasks and
get incentive rewards in proportion to their travel distances.
The key points of these two phases are summarized as
follows, respectively.

HyTasker Server

Task	Assignment	for	
Participatory	Worker	(online)

Mobility	Prediction

Opportunistic	Worker	
Selection	(offline)

t1

t2
t4

t3

t6
t5

Task execution on 
daily routes

t1

t2
t3

t6
t5Selected opportunistic workers

completed tasksuncompleted tasksopportunistic workers participatory workers

Fig. 1. The overview design of HyTasker. In the offline phase, a group of
workers (called opportunistic workers) are selected, and they complete
MCS tasks during their daily routines; In the online phase, we assign
another set of workers (called participatory workers) and require them
to move specifically to perform tasks that are not completed by the
opportunistic workers.

• Opportunistic workers selection (offline). To solve the
above-defined hybrid task allocation problem, the
biggest challenge lies in the offline selection of the
opportunistic workers. Since the opportunistic work-
ers and the participatory workers share a total bud-
get constraint, we cannot consider them separately.
Instead, when selecting the opportunistic workers
offline, we must consider the future online task
assignments for the participatory workers. But the
challenge is that, during the offline phase of op-
portunistic worker selection, we cannot foresee the
precise locations of the participatory workers and
the completion status of tasks in the online phase.
To address this, we propose a heuristic greedy based
opportunistic worker selection algorithm by simul-
taneously considering the online task assignments
of the participatory workers. The main process and
basic idea of this phase will be presented in Section
3.3, and the detailed algorithms will be illustrated in
Section 4.

• Task assignment for the participatory workers (online).
Note that when selecting the opportunistic workers
offline, the task assignments of the participatory
workers are predicted but are not actually delivered
to the workers. Thus, in the online phase, we will re-
do the task assignments based on real-time location
information reported by the candidate participatory
workers and the actual task completion status. The
goal is to cover locations where the tasks are not
completed by the opportunistic workers. Since the
online task assignment problem for the participatory
workers is well studied in [34], [15], we directly
adopt the maximum-flow based algorithms in [34],
[15] and focus the remaining text on the offline phase
above.
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Fig. 2. Opportunistic worker selection in the offline phase: Main process)

3.3 Opportunistic Worker Selection: Main Process and
Basic Idea
The key technical challenge of HyTasker lies in offline
opportunistic worker selection, which requires the joint
consideration of future possible task assignment of the par-
ticipatory workers. To address this challenge, we propose a
nested-loop process (as shown in Fig. 2).In this process, the
inner-loop searches for and determines which opportunistic
worker should be selected, while the outer-loop process de-
termines the best set of workers by estimating the number of
completed tasks for a given subset of opportunistic workers
and predicting the task assignments of the participatory
workers. Finally, the output is the subset of opportunistic
workers that achieves the maximum estimated number of
completed tasks.

The proposed process above is more technically chal-
lenging and complicated than the state-of-the-art studies for
opportunistic worker selection (such as [22], [25], [31], [30])
in the following two aspects.

First, for the inner loop, the challenge is how to select
the most beneficial opportunistic workers. Existing studies
incrementally select workers with the highest estimated cov-
erage gain [22], [25], [31], [30]. However, HyTasker should
further consider the future online task assignments of the
participatory workers.

Specifically, this inner-loop process is designed based
on a key idea, that is, we prefer to select opportunistic
workers with two characteristics: (1) workers who can com-
plete more tasks; (2) workers who can complete tasks lo-
cated in areas where the participatory workers are sparsely
distributed according to their historical mobility records.
As illustrated by the example in Fig. 3, we assign higher
priority to the opportunistic worker B than A, because B is
more likely to complete tasks within areas with fewer partic-
ipatory workers. In this paper, we introduce the concept of
location entropy [41] in social network community to realize
this idea, which will be described in Section 4.2 with more
details.

Second, for the existing work [22], [25], [31], [30], the
worker selection process ends when the total budget has
been used up, and the finally obtained set of workers is
the output. However, in our problem, it is not optimal
if we spend all the budget on the opportunistic workers.
Therefore, after adding and selecting one worker, we record
the obtained subset of opportunistic workers as a snapshot.

Fig. 3. An example to illustrate the priority of opportunistic workers (We
assign higher priority to worker B than A, because B is more likely to
complete tasks in areas where the participatory workers are sparsely
distributed)

Ultimately, we determine which subset (snapshot) should
be selected by simultaneously considering the predicted
task assignments of the participatory workers online. This
component will be illustrated with more details in section
4.3.

4 CORE SUPPORTING ALGORITHMS

To implement the opportunistic worker selection process in
Fig. 2, we need to further design three supporting algo-
rithms. First, we need to profile and predict the mobility
of all candidate workers (Section 4.1). Second, for the inner
loop, we should determine which worker should be selected
(Section 4.2). Third, as the execution of each iteration forms
a feasible solution (one snapshot), we should further deter-
mine which one is optimal (section 4.3). Finally, we present
the algorithm complexity analysis in Section 4.4.

4.1 Mobility Profiling and Prediction

Similar to [25], [31], [32], this paper assumes that the oppor-
tunistic workers will complete tasks when they connect to
the cell tower or perform check-in. Thus, this algorithm pre-
dicts the probability of each worker connecting to different
towers at least once during the sensing period. We count
the average number of connections by each worker wu at
each cell tower (or check-in by each worker at each subarea)
li, which is denoted as λu,i. For example, we set the entire
sensing period as one day. To estimate λu,i for of a specific
day, we count the average number of connections or check-
ins by wu at li during each day in the historical mobility and
connection records. Assuming that the connection or check-
in sequence follows an inhomogeneous Poisson process [25],
[31], [32], the probability of worker wu connecting to cell
tower (or performing check-in at the subarea) li for h times
during a specific day can be modeled as:

ϕu,i(h) = λhu,i ∗ e−λu,i/h! (3)
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Therefore, we can estimate the probability of worker wu
connecting or checking in at least once during a day at li as
follows:

Prou,i =
∞∑
h=1

ϕu,i(h) = 1− e−λu,i (4)

Thus we predict the probability of a candidate oppor-
tunistic worker wu completing task at li as:

αi(wu) = 1− e−λu,i (5)

4.2 Utility-based Candidate Solution Generation

HyTasker iteratively selects the most beneficial opportunis-
tic worker, and the pseudocode of this process is presented
in Algorithm 1. First of all, HyTasker prefers to select
opportunistic workers who will visit as many task locations
(subareas) as possible, which is similar to traditional worker
selection studies. Besides this criteria, with the hybrid task
allocation paradigm that we propose, HyTasker also prefers
to select opportunistic workers who will visit locations
that are far from the participatory workers, because this
reduces the traveling cost of online task allocation for the
participatory workers. For example, if two opportunistic
workers are predicted to visit the same number of locations,
we will prefer the one who can visit locations where the
participatory workers are sparsely distributed.

Thus, HyTasker assigns priority to each task location
by considering the past visits of participatory workers.
Intuitively, the higher the number of visits to a task location,
the lower the priority we assign to that task location. One
naı̈ve method is to set the priority of each task location
as inversely proportional to the total number of historical
visits of all participatory workers. However, this naı̈ve mea-
surement neglects the distribution of visits among different
participatory workers, which should also be considered.
The reason is that, if the visits belong to a small set of
users, it is a bit risky for the online task allocation to
count on this small proportion of frequently-visiting users.
During the online phase, these users may be too far away
or even decline to accept tasks. In summary, we should
assign higher priority to task locations with fewer total visits
and more concentrated (less uniform) distribution of visits.
Based on the above observation, we introduce the concept
of location entropy to characterize the priority of each task
location, which considers both the total number and the
distribution of the visits among participatory workers. A
location would have higher entropy (lower priority) if there
are many visits and the visits are distributed more evenly
among participatory workers. In contrast, a location will
have lower entropy (higher priority) if there are fewer total
visits or the distribution of the visits is restricted to only a
few participatory workers.

The location entropy of a task ti is defined as follows:

Entropy(ti) = −
∑

pw∈PWi

|Countpw,ti |
|Countti |

× log |Countpw,ti |
|Countti |

(6)
where PWi denotes the set of participatory workers visited
the tower which ti belongs to, Countti denotes the times
of the tower which ti belongs to was visited by PWi, and

Countpw,ti denotes the times of worker pw visited the tower
which ti belonged to.

Inspired by this concept, we formally define the priority
of each task based on its location entropy as follows:

Weight(ti) =
1/Entropy(ti)∑
t∈T (1/Entropy(t))

(7)

Then, the utility increase of adding one candidate oppor-
tunistic worker is calculated as follows:

Utility(OWf ∪ {owj})− Utility(OWf ) =∑
ti∈T

Weight(ti)× Φ(i, OWf ∪ {owj})

−
∑
ti∈T

Weight(ti)× Φ(i, OWf )

(8)

where Φ(j,OWf ) will be illustrated with more details in
Eq.(9).

Algorithm 1 Utility-based candidate solution generation
Input: candidate opportunistic workers OW ; candidate

participatory workers PW ; total budget constraint B.
Output: the set of candidate opportunistic worker set SS.

1: set OW
′

f = ∅
2: while |OW ′

f | ∗ Ic < B do
3: set MaxUtility = 0
4: for each owj ∈ OW/OW

′

f do
5: if Utility(OW

′

f ∪ {owj}) > MaxUtility then
6: MaxUtility = Utility(OW

′

f ∪ {owj}) I
Utility is be defined in Eq.(8)

7: BestW = owj
8: end if
9: end for

10: OW
′

f = OW
′

f ∪ {owj}
11: OW = OW − {owj}
12: append OW

′

f to SS
13: end while

return SS

4.3 Solution Estimation and Decision Making
At the end of each iteration, we record a snapshot, i.e., a sub-
set of candidate opportunistic workers(see line 12 in Algo-
rithm 1). Since we assume that each selected opportunistic
worker will be given the same reward, the total number of
iterations will be bBIc c. In other words, we get bBIc c possible
solutions for the opportunistic worker selection. We can
then compare the optimality of those bBIc c solutions based
on the following steps:

First, we predict the probability of each task to be
completed by a given subset of opportunistic workers. In
Eq.(5), we have already obtained the probability of an
opportunistic worker completing a given task. Thus, the
probability that a task ti can be completed by a set of
selected opportunistic workers OWf is defined as:

Φ(i, OWf ) = 1−
∏

owi∈OWf

(1− αi(owi)) (9)

Second, we predict the optimal task assignments of the
participatory workers by leveraging the maximum-flow-
based algorithms [15], [34]. In [15], [34], the assumption
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Fig. 4. The structure of maximum-flow network in a certain round
of Monte-Carlo simulations (blue nodes: participatory workers; green
nodes: task sets; orange nodes: tasks.)

is that the locations of workers are known and no task
is completed . In contrast, in the offline worker selection
phase of HyTasker, we only know the prediction probabil-
ity of workers’ locations and the task completion status.
Therefore, we cannot directly adopt existing participatory
worker assignment algorithm to address this issue. Hence,
we adopt multiple rounds of Monte-Carlo simulations to
tackle it. Specifically, in each round of simulation, we first
generate the completion status of each task and the location
of each participatory worker based on the probability. Then,
we construct the network of the maximum-flow based algo-
rithm based on the generated worker location and task com-
pletion status, and sequentially adopt the maximum-flow-
based algorithm in [15] to perform task assignment. The
average number of completed tasks for multiple rounds of
simulations is regarded as the final results. Fig. 4 shows the
network structure of the maximum-flow based algorithm.
This network contains three levels of nodes: participatory
workers, task sets, and tasks, and the edges linking different
nodes are associated with specific capacity and cost of the
flow. On the edges linking the blue and green nodes, the
cost is the total distance of the shortest path for a specific
participatory worker to complete a certain task set. For
details about how the shortest path is obtained and how
the maximum flow algorithm is executed, interested readers
can refer to [15]. The pseudocode of the above predicted
task assignment of participatory workers is presented in
Algorithm 2.

Third, we estimate the total number of completed tasks
by both the opportunistic workers and the participatory
workers. The subset of opportunistic workers with max-
imum estimated total number of completed tasks will be
selected as the final output of the offline phase.

4.4 Algorithm Complexity Analysis

In this section, we analyze the time complexity of the pro-
posed opportunistic worker selection algorithm. The inner-
loop process needs to estimate the utility increase of all
unselected opportunistic workers can make. The running
time complexity of the inner-loop process of each iteration
will be O(|T | × |OW |). After each iteration selects the best

Algorithm 2 Task Assignment of Participatory Workers
(offline prediction)
Input: candidate participatory workers PW ; budget con-

straint Bp; tasks T ; selected opportunistic workers OW
Output: the selected subset Vf ; number of complete tasks

TW
1: calculate probability of ti ∈ T completed by OW
2: CompletedTasks = 0
3: for i=0;i¡Rounds;i++ do
4: simulate to generate the completed task CT ⊆ T
5: simulate to generate participatory workers’ location
6: simulate if pwk ∈ PW is wiling to accept tasks based

on the acceptance rate ack.
7: select CL|CT | task-task sets from task set T − CT
8: calculate the shortest paths and travel cost
9: construct the flow network G = (V,E,C,W )

10: initialize flow f to 0
11: while t dohere exists an augmenting path in the

residual network Gf
12: select the augmenting path p∗ with minimum

cost
13: cf (p

∗) = L
14: augment flow f along p∗ with cf (p∗)
15: end while
16: CompletedTasks = CompletedTasks+ f + |CT |
17: end for

return CompletedTasks/Rounds

opportunistic worker, the task assignment of the participa-
tory workers will consume O(|PW | × L × (|PW | + |T | +
CL|T |))[15]. The outer-loop process will be run bBIc c times, so
the time complexity is O(bBIc c× (|T | × |OW |+ |PW | ×L×
(|PW |+ |T |+ CL|T |))).

5 EXPERIMENTAL EVALUATION
5.1 Experimental Purposes and Baselines

The goal of our experiments is to compare the performance
of HyTasker and other baseline methods under different sit-
uations, such as different number of tasks, different number
of workers, different total incentive budget, and so on. The
performance comparison metric is the number of completed
tasks.

Specifically, we provide the following baseline task allo-
cation methods for comparative studies.

OPP-Greedy and OPP-GA (two opportunistic-mode-based
approaches): They only use opportunistic mode to maximize
the number of completed tasks while keeping the budget
constraint. They spend all budget to select the opportunistic
workers. Here, we implement two representative algorithms
as baselines, that is, OPP-Greedy and OPP-GA. Similar
to [22], [25], [27], OPP-Greedy iteratively selects workers
offline with the maximum utility increase until the total
budget is used up, and the selected workers will complete
tasks online during their daily routines. Similar to [26],
OPP-GA use genetic algorithm (GA) to select the best set
of opportunistic workers. These two baseline methods are
used to test whether the hybrid approach is more effective
than the pure opportunistic-mode approach.
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PAR-Greedy and PAR-MaxFlow (two participatory-mode-
based approaches): They only use participatory mode to max-
imize the number of completed tasks while keeping the
budget constraint. They spend all budgets to allocate the
participatory workers online, and the workers will inten-
tionally move to the task locations. Here, we select two rep-
resentative algorithms as baselines, that is, PAR-Greedy and
PAR-MaxFlow. Specifically, similar to [33], [37], PAR-Greedy
iteratively selects worker-task pairs with the maximum util-
ity increase until the total budget is used up. PAR-MaxFlow
adopts the maximum-flow based algorithm in [34] to select
the optimal set of task-worker pairs. These two baselines are
designed to evaluate whether the hybrid approach is better
than the pure participatory-mode approach.

BP-Hybrid (budget-partition-based hybrid approach): This
algorithm tries to divide the budget into different pro-
portions, and then directly adopts the state-of-the-art task
allocation methods for opportunistic mode and participa-
tory mode, respectively. For each round, it first randomly
generates the proportion of the budget division. Then, it
uses the greedy algorithm in [25] to select the opportunistic
workers and adopts the maximum-flow based algorithm
in [34] to perform online task assignment for the partici-
patory workers. BP-Hybrid repeats the above process for
bBIc c rounds, and the maximum number of completed tasks
achieved is chosen as the final result.

5.2 Datasets and Experimental Setups

Two open mobility datasets, i.e., D4D [40] and Gowalla [52],
are used to in the evaluations.

D4D Dataset. It contains two types of data records in
Ivory Coast. One contains the information about cell towers,
including tower id, latitude and longitude. The other one
contains 50,000 users’ phone call records. We select users
randomly every 2 weeks (for weekdays) with anonymized
ids and in total 10 sets of ten-day period of records are stored
in the dataset. Here, for each set of ten-day records, we use
the first nine-day records to model users’ mobility patterns
(described in Section 4.1), and use the 10th day as the test
sensing period to execute the task assignment algorithm
and evaluate the number of completed tasks. Specifically,
we extracted records of the downtown area (100 cell towers
with 1000 mobile users), as shown in Fig. 5.

Gowalla Dataset. It contains the check-in records of large
number of users, including user-id, check-in-time, latitude,
longitude, and location-id. To make sure the users’ move-
ments are correctly detected, we employ part of the original
Gowalla dataset. In the employed dataset, the users are
distributed in 20km × 30km rectangle regions except those
in the sea (see Fig. 5.). Besides, we assume that the entire
sensing area is divided into 150 equal-length virtual subar-
eas (i.e., 2km2km per subarea). By removing the subareas in
the sea, there are 128 subareas considered in the experiment.
As the mobility trajectory in the Gowalla dataset is sparser
than that of D4D dataset, we need longer time span to model
the mobility pattern. Here, we divide the entire dataset
into multiple subsets, and each subset contains one-month
check-in records. For each subset, we use the last day of
the month to test task assignment algorithm and evaluate
the number of completed tasks, while using records of other

prior days in this month to model workers’ mobility pattern.
The average performance for all subsets is the experimental
results.

We need to set a number of parameters in the exper-
iments, which are divided into task-relevant and worker-
relevant as follows.

For the tasks, their locations are randomly distributed
to a group of subareas within the target area, and there
may be several tasks located in the same subarea. In the
experiments, the sensing range of each task is within its
deployed subarea’s range. Similar to [25], [31], [32], the
selected opportunistic workers can complete tasks in piggy-
back manner [28] when they connect to the cell towers (for
D4D dataset) or perform a check-in (for Gowalla dataset).
Moreover, each task is assumed to last for one day from
8:00am to 6:00pm and can be completed at any time within
this period. Here, to simplify the problem, we assume that
the online task assignment for the participatory workers is
executed one hour before the end of the sensing period, and
the participatory workers can complete all assigned tasks
before the end of the sensing period.

For the workers, the settings are different for the op-
portunistic workers and the participatory workers. Each
mobile user is set as either a candidate opportunistic worker
or a candidate participatory worker with a certain prob-
ability (i.e., opportunistic worker: γ, participatory worker:
1 − γ).The opportunistic workers are selected from candi-
dates who make phone calls near these cell towers (for D4D)
or perform check-ins within certain subareas (for Gowalla).
For the participatory workers, the maximum number of
tasks they can perform is randomly set to be between 2 to
5. Their initial locations, when the online task assignment
is performed, are set as the most frequently-visited places
in their historical mobility records. Moreover, the spatial
region of each participatory worker is set as a rectangular
region bounded by his/her historically-visited areas. Similar
to [46], [47], we also simulate the acceptance rate of each
participatory worker with a Gaussian distribution (with
mean value µ), and further test the performance of different
approaches by varying µ.

The reward for each opportunistic worker is set to 10 US
dollars for the entire sensing period (i.e., one day), while the
reward per kilometer for the participatory workers is set to
10 US dollars. Here we use the Manhattan Distance [42] to
measure the travel distance between two locations.

The aforementioned parameter settings are summarized
in Table 1. We carried out the experiments using a laptop
computer with an Intel Core i7-4710HQ Quad-Core CPU
and 16GB memory. HyTasker and other baseline methods
were implemented with the Java SE platform on a Java
HotSpotTM 64-Bit Server.

5.3 Experimental Results

In this section, we first report the experimental results
of different methods and compare their performance with
regard to the number of completed tasks.

5.3.1 Different value of total budget
In Fig. 6, we compare the performance of different methods
under various settings of the total budget. In order to control



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 5. Entire sensing area and the distribution of cell towers or subareas
in our experiment (left for D4D, right for Gowalla)

TABLE 1
Summary of Experimental Parameter Settings

Parameters Settings
Total budget 200,400,600,800,1000
Number of workers 100,200,300,400,500
Number of tasks 30,60,90,120,150
Percentage of OW (γ) 0.1,0.2,...,0.9
Mean value of accep-
tance rate µ

0.2,0.4,0.6,0.8,1.0

Maximum number of
tasks for PW

Random generate be-
tween 2 and 5

reward per kilometer
for PW

10

reward for each oppor-
tunistic worker

10

other variables, we fix the number of tasks at 90, the number
of workers at 300, and the value of γ at 0.6. Here, we
assume that the participatory workers will always accept the
assigned tasks. From Fig. 6, we can see that the number of
completed tasks increases with the total incentive budget for
all methods, because a higher budget allows more workers
to be recruited to complete more tasks. For the number
of completed tasks, HyTasker outperforms other baseline
methods in all budget settings and on both two datasets.

5.3.2 Different number of tasks
In Fig. 7, we compare the performance of different methods
under different number of tasks. Here we fix the total
incentive budget at 800 US dollars, the number of workers
at 300, and the value of γ at 0.6. Here, we assume that the
participatory workers will always accept the assigned tasks.
From Fig. 7, we can see that HyTasker outperforms other
baseline methods in all settings of the number of tasks and
on both two datasets.

Fig. 6. Performance comparison under different settings of total budget

Fig. 7. Performance comparison under different number of tasks

Fig. 8. Performance comparison under various number of workers

5.3.3 Different number of workers
In Fig. 8, we present the performance comparison under
different number of workers. Here we fix the total incentive
budget at 800 US dollars, the number of tasks at 90, and the
value of γ at 0.6. From Fig. 8, we can see that the number
of completed tasks increase when there are more candidate
workers for all methods, because the task allocation algo-
rithms have more candidate workers to choose from and
can generate a better allocation plan. We can also see that
HyTasker outperforms other baseline methods in all settings
of the number of workers and on both two datasets.

5.3.4 Different value of γ
In Fig. 9, we illustrate the performance comparison under
different values of γ. Here we fix the total incentive budget
at 800 US dollars, the number of tasks at 90, and the
number of workers at 300. We assume that the participatory
workers will always accept the assigned tasks. From Fig. 9,
we can also see that HyTasker outperforms other baseline
methods in all settings and on both two datasets. We can
also see that with the increase of γ, OPP-Greedy and OPP-
GA can achieve a better performance for the number of
completed tasks, while the performance of PAR-Greedy and
PAR-MaxFlow become worse. This is because, with the fixed
total number of candidate workers, there are more candidate
opportunistic workers to choose from, while the number of
candidate participatory workers becomes fewer.

5.3.5 Different value of µ
Similar to [46], [47], we assume that the acceptance rate of
each participatory worker follows a Gaussian distribution
with a mean value of µ, and present the performance of
different approaches in Fig 10 by varying µ. Here we fix the
total incentive budget at 800 US dollars, the number of tasks
at 90, the number of workers at 300, and the value of γ at
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Fig. 9. Performance comparison under various percentage of oppor-
tunistic workers

Fig. 10. Performance comparison under different values of µ (the mean
value of task acceptance rate of PW )

0.6. From Fig. 10, we can also see that HyTasker consistently
outperforms other methods in all settings of µ and on both
two datasets.

5.3.6 Detailed Analysis and Implications

The experimental results above show an overall comparison
of different methods under various parameter settings. In
this subsection, we will further present some details and
corresponding analysis, which can verify some of our ob-
servations and intuitions. Due to the limited space, we only
report the analysis result on D4D dataset.

Fig. 11 (a)-(f) visualize the distribution of tasks, historical
locations of workers and final task completion status under
a specific setting (i.e., number of workers is 300, number
of tasks is 60, total budget is 800, and γ is 0.6) for D4D
dataset. For the completed tasks achieved by BP-Hybrid,
and HyTasker, we further use different legends to show
whether they are completed by participatory workers or
opportunistic workers.

From Fig. 11 (a) (b) (f), we can see that compared
with opportunistic-mode-based approaches, the advantage
of HyTasker is that it can complete some tasks in the
worker-sparse areas, thus the number of completed tasks is
increased. The comparison of Fig. 11(e) and Fig. 11(f) further
demonstrates why HyTasker outperforms BP-Hybrid. From
the distribution visualization of two types of workers, we
can see that compared with BP-Hybrid, HyTasker can better
leverage the opportunistic workers to complete tasks in
areas where participatory workers are sparsely distributed.
This indicates that: 1) the joint optimization of offline and
online phase is more beneficial than considering them sepa-
rately, and 2) it is effective to consider the density of partic-
ipatory workers when selecting the opportunistic workers.

Fig. 11. Worker distribution and task completion status for a sin-
gle round: (a) OPP-Greedy; (b) OPP-GA; (c) PAR-Greedy; (d) PAR-
MaxFlow; (e) BP-Hybrid; (f) HyTasker.

In addition, to test whether the use of location entropy is
beneficial, we further compare HyTasker with two variants
of HyTasker without using location entropy. One variant
(called ”Equal-Weight”) sets equal weight for each task
location, and the other variant (called ”Visiting Frequency
as Weight”) sets the priority to be inversely proportional
to the total number of past visits. Fig. 12 presents the
average number of completed tasks among multiple rounds
of experiments on D4D dataset when the total number of
tasks is fixed at 90. We can see that with the adoption
of location entropy, HyTasker can achieve more completed
tasks than the two variants.

We further compare the performance between HyTasker
and the optimal solution called OPT in a small search space.
First, we significantly narrow the scale of sensing areas
(only with 20 cell towers in D4D dataset and 20 subareas
in Gowalla). Second, we set the total budget to be small to
control the search space, which varies as 50, 75, 100, 125
and 150. OPT enumerates all possible sets of opportunistic
worker. For each set, it then enumerates all possible com-
binations for task assignment regarding participatory work-
ers. Fig. 13 shows the performance of HyTasker and OPT
on two datasets, and HyTasker can averagely achieve 77.9%
coverage compared to OPT. To some degree, this indicates
that our approach achieves a relatively good approximation
to the optimal solution of the original problem.
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Fig. 12. Demonstrating the effectiveness of location entropy by compar-
ing HyTasker with other two variants

Fig. 13. Performance comparison in a small search space (left: D4D
dataset; right: Gowalla dataset)

6 LIMITATION AND DISCUSSION
This section discusses other issues that are not addressed in
this work due to space and time constraints, which we plan
to investigate in our future work.

Task type and heterogeneity. Although the current imple-
mentation of HyTasker is for environmental sensing tasks,
the idea of the hybrid task allocation can be extended to
other types of tasks if supported by the mobility data. As an
example, for traffic status monitoring tasks, the subareas are
divided based on the road sections rather than cell towers.
Theoretically, if we use more precise trajectory data (e.g.,
GPS readings) to model more fine-grained mobility pat-
tern of users (e.g., within the granularity of road sections),
HyTasker can support the traffic status monitoring tasks.
However, there are several challenges when extending Hy-
Tasker to such type of tasks in real-world settings, which can
be added into our future work. For example, fine-grained
localization raises the concerns of energy consumption and
privacy leaking. How to balance the mobility prediction
accuracy and these concerns is a challenging research ques-
tion. Besides, in the current version of HyTasker, we assume
that multiple tasks are homogenous but distributed in differ-
ent locations (e.g., with the same sensing duration). It would
be useful to further study if HyTasker can be extended to an
MCS platform with multiple heterogeneous sensing tasks.

Dynamic arrival of new tasks and workers. In this paper, we
assume that all tasks have been pre-published before the

worker selection phase, so that the number of tasks and
the distribution of task locations are already known and
fixed. However, for a multi-task-oriented MCS platform,
new tasks may be published anytime online. Moreover, new
workers may also come to the platform continuously. Thus,
how to tackle the dynamic arrival of new tasks and workers
is a key challenge, which is not addressed in this paper. This
challenge could lead to new research issues, such as how to
predict the dynamic arrival of new tasks and workers, which
will be added as our future work to extend the functionality
of HyTasker.

Timing for online task assignment. In the online phase of
HyTasker, we assign a set of participatory workers and
require them to move specifically to perform tasks that
are not completed by the opportunistic workers. Here we
assume that the participatory workers can complete the
assigned tasks before the end time, and do not vary the
timing of task assignment in this paper. In the experiments,
we set this timing to one hour before the end of sensing
period (e.g, 17:00 when the sensing period is 8:00-18:00).
However, the best timing for online allocation still deserves
further research in our future work. If the timing is too early,
the participatory workers would complete more tasks which
may be finished by opportunistic workers latter on, thus the
total cost is higher. On the other hand, if the participatory
workers are allocated too late, then they may not have
enough time to travel and complete the tasks before the
deadline.

Different incentive models. In HyTasker, the opportunistic
workers get the same fixed reward for the entire sensing
period, while the participatory workers get incentive re-
wards in proportion to their travel distances. In the MCS
research community, there are actually a variety of incentive
models [43], which are more complicated by considering
multiple factors such as fairness, economic feasibility and
data quality. In our future work, we plan to extend HyTasker
by adopting more sophisticated incentive mechanisms (e.g.,
auction-based incentive models).

Learning of task acceptance rate. In this work, we assume
that the task acceptance rate of each participatory worker
has already been learned, which is simulated in the ex-
periments [45], [46], [47]. To extend HyTasker to a wider
range of application scenarios, we need to further improve
it by learning and predicting the workers’ task acceptance
rate. For example, the authors in [47] presented a learning
framework based on workers’ previous participation his-
tory with the consideration of incentive reward and task
distance. However, several challenges exist to achieve a
good prediction accuracy, which can be the direction of our
future work. First, factors affecting users’ decisions is very
complex [48] (e.g., task type, time availability, task distance,
incentives, and even some emotional factors), and how to
extract these features is non-trivial. Second, there are no
historical participation records for new candidate workers,
thus the prediction for their acceptance rate is challenging.

Spatial correlation among tasks. The goal of HyTasker is
to maximize the number of completed tasks for a certain
MCS campaign, in which we consider each task as equally
important. Actually, the sensor readings in different sub-
areas can be spatially correlated. For example, we can use
the air quality information in one subarea to infer that
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of a nearby subarea. In our future work, we attempt to
integrate mechanisms such as sparse crowd sensing [29] into
HyTasker to further reduce the sensing cost.

More complex task quality metric. Actually, many factors
could affect sensing task quality, including quality of work-
ers, number of reports for each task, task type, availability
of sensors, proximity of sensors to task locations, and so
forth. Hence, establishing a sophisticated and practical task
quality model is a very complex research issue itself, and
several literatures such as [51] start to touch this issue
but no perfect model exist yet. In the future work, we
attempt to investigate if HyTasker can be extended with
more sophisticated task quality metrics, which may result
in a completely new research work.

7 CONCLUSION
In this paper, we proposed a two-phased hybrid MCS
task allocation framework, called HyTasker. In the offline
phase, HyTasker selects a group opportunistic workers and
requires them to complete MCS tasks during their daily
routines. In the online phase, HyTasker assigns another set
of participatory workers and requires them to move specif-
ically to perform tasks that are not yet completed. Since the
two types of workers share a total budget, we proposed
a greedy based opportunistic worker selection process by
simultaneously considering the predicted task assignments
for the participatory workers. Experiments on two real-
world mobility datasets show that HyTasker outperforms
other baseline methods.
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