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Abstract—An effective way for a Mobile network operator (MNO) to improve its revenue is price discrimination, i.e., providing different
combinations of data caps and subscription fees. Rollover data plan (allowing the unused data in the current month to be used in the
next month) is an innovative data mechanism with time flexibility. In this paper, we study the MNO’s optimal multi-cap data plans with
time flexibility in a realistic asymmetric information scenario. Specifically, users are associated with multi-dimensional private
information, and the MNO designs a contract (with different data caps and subscription fees) to induce users to truthfully reveal their
private information. This problem is quite challenging due to the multi-dimensional private information. We address the challenge in two
aspects. First, we find that a feasible contract (satisfying incentive compatibility and individual rationality) should allocate the data caps
according to users’ willingness-to-pay (captured by the slopes of users’ indifference curves). Second, for the non-convex data cap
allocation problem, we propose a Dynamic Quota Allocation Algorithm, which has a low complexity and guarantees the global
optimality. Numerical results show that the time-flexible data mechanisms increase both the MNO’s profit (25% on average) and users’
payoffs (8.2% on average) under price discrimination.

Index Terms—Price discrimination, time flexibility, rollover data plan, multi-dimensional contract.
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1 INTRODUCTION

1.1 Background and Motivation

MOBILE Network Operators (MNOs) profit from the
wireless data services through carefully designing

their wireless data plans. The pricing strategy involved
in the wireless data plans has evolved from the flat-rate
scheme to the usage-based scheme in the past years [3].
Now the most widely used data plan consists of a monthly
data cap, a monthly one-time subscription fee, and a linear
price for any unit of additional data consumption beyond
the data cap. Based on this pricing strategy, MNOs usually
offer multiple data caps together with different monthly
subscription fees for users to choose from. For example,
in the US market, AT&T charges $20 for 300MB, $45 for
1GB, $55 for 2GB, and $70 for 4GB; and the linear price for
exceeding the data cap is $15/GB [4].

The purpose of MNO’s multi-cap offering is to capture
more user surplus by differentiating users based on their
preferences, also called price discrimination in economics
[5]. To make such a price discrimination scheme work, the
MNO must be able to identify the market segments by users’
preferences that are usually users’ private information, and
the MNO needs to enforce the scheme through some incen-
tive mechanism. For example, the MNO may want to offer a
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larger monthly data cap with a larger monthly subscription
fee to businessmen, who have a stronger ability to pay and a
relatively inelastic data demand comparing with other con-
sumers (such as students). However, it is a very challenging
problem to induce users to truthfully reveal their private
preferences in practice, especially when users have multi-
dimensional private preferences. This motivates us to ask
the first key question in this paper.

Question 1. How should the MNO optimize the multi-cap data
plan offering?

Recently the growing market competition forces the
MNOs to explore various innovations on their mobile data
plans. For example, the rollover data plan enables users
to enjoy the time flexibility over their data consumptions,
by allowing the unused data from the previous month to
be used in the current month. Such a rollover mechanism
is attractive to users, as a user’s data demand is often
stochastic and the rollover mechanism helps users balance
the possible data waste within the data cap and the possible
overage usage when consuming beyond the data cap.

Although based on the same rollover principle, different
rollover data plans are different in terms of the consumption
priority between the rollover data and the monthly data
cap. For example, the rollover data plan offered by AT&T
requires that the rollover data from the previous month
should be consumed after the current monthly data cap [6],
while China Mobile requires the other way around [7]. In
our previous work [8], [9], we analyzed the MNO’s optimal
data plan with time flexibility under the single-cap scheme
(without price discrimination) and found that the time flex-
ibility can increase both the MNO’s profit and users’ payoff,
hence improve the social welfare. This motivates us to ask
the second key question in this paper.
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Question 2. What is the impact of time flexibility under the
multi-cap scheme?

In this paper, we will study the MNO’s price discrimina-
tion through the multi-cap data plans, taking into account
the time-flexible data mechanisms.

1.2 Solutions and Contributions

We study how the MNO optimizes its multi-cap data
plans under different data mechanisms with time flexibility.
Specifically, we consider an asymmetric information sce-
nario, where the users’ preferences for the wireless data
plans are private and multi-dimensional. We formulate
this problem as a multi-dimensional contract design. More
specifically, the MNO needs to design a contract (with
different combinations of data caps and the corresponding
subscription fees) for users of different types, so that each
user will truthfully reveal his type (i.e., private preferences)
by selecting a contract item intended for his type.

The key results and contributions of this paper are sum-
marized as follows:
• Systematic Study on MNO’s Price Discrimination: To the

best of our knowledge, this is the first work studying
the MNO’s price discrimination through optimizing the
multi-cap wireless data plans. We take into account
both the time flexibility (of the rollover data mecha-
nisms) and the realistic asymmetric information.

• Exploring Time Flexibility in Price Discrimination: We in-
vestigate three different data mechanisms (i.e., one tra-
ditional data mechanism and two rollover data mech-
anisms) and analyze the MNO’s multi-cap data plan
optimization under the three data mechanisms in a
common design framework.

• Solving the Optimal Contract: The MNO’s contract prob-
lem involves user’s multi-dimensional private infor-
mation, hence is challenging to solve. We exploit the
separable structure (between users’ types and quota
allocation) of our problem and develop a tractable ap-
proach to solve the MNO’s contract problem. First, we
find that the slope of a user’s indifference curve on the
contract plane corresponds to his willingness-to-pay,
and a feasible contract (satisfying the incentive com-
patibility and individual rationality conditions) should
allocate the data caps according to users’ willingness-
to-pay. This enables us to obtain the optimal prices for
a particular data cap allocation in closed-form. Second,
for the non-convex data cap allocation problem, we
propose a Dynamic Quota Allocation Algorithm, which
guarantees the global optimality with a low computa-
tional complexity.

• Performance Evaluation based on Empirical Data: We eval-
uate the optimal contract under different data mech-
anisms based on the empirical data. The numerical
results show that the time-flexible data mechanisms
increase both the MNO’s profit (25% on average) and
users’ payoffs (8.2% on average) under the multi-cap
price discrimination, hence improves the social welfare.

The remainder of this paper is organized as follows. In
Section 2, we review the related works. Section 3 introduces
the system model. Section 4 analyzes the contract feasibility

TABLE 1: Comparing Related Literature.

Literature Rollover Considered? Multi-Cap Considered?

[10]-[13] No No
[8][9][14]-[16] Yes No

[17] No Yes (but limited)
This Paper Yes Yes

and Section 5 studies the contract optimality. In Section 6,
we present the numerical results. Finally, we conclude this
paper in Section 7.

2 LITERATURE REVIEW

There have been many excellent studies on the wireless
data plan optimizations (e.g., [10], [11], [12], [13]). However,
they did not take into account the recently introduced
rollover mechanism or the ubiquitous multi-cap scheme.

The rollover mechanisms have been studied in [8], [9],
[14], [15], [16]. Zheng et al. in [14] found that moderately
price-sensitive users can benefit from subscribing to the
rollover data plan compared with the traditional data plan.
Wei et al. in [15] studied the rollover period length from
a profit-maximizing MNO’s perspective. In our previous
works, we studied the optimization of the time-flexible
data plans in [8] and investigated the impact of the market
competition in [9] and the trading market in [16]. However,
all of these studies were based on the single-cap scheme
without considering the ubiquitous multi-cap adoption.

The MNO’s multi-cap offering was seldom studied in
previous literature. Dai et al. in [17] considered a case where
the MNO offers two different data caps, i.e., a cap of basic
rate and a cap of premium rate. However, the analysis was
difficult to be generalized to more than two data caps.
Therefore, there is no existing systematic study on the
MNO’s optimal multi-cap design, let alone under the time-
flexible data mechanisms. A key challenge for this problem
is that different users make their data cap choices based
on their individual preferences, which are often private
information and can be multi-dimensional. Hence the MNO
needs to properly design multiple data caps to differentiate
users without knowing their exact private information and
maximize the MNO’s profit. Such a problem naturally leads
to a contract design problem [18].

Users’ multi-dimensional private information leads to a
multi-dimensional contract design problem. Such a problem
is often very challenging, since the multi-dimensional pri-
vate information makes it difficult to achieve the global in-
centive compatibility [19]. To address this problem, McAfee
and McMillan in [20] proposed the generalized single-
crossing condition to ensure the globally incentive compati-
bility for a contract problem with multi-dimensional private
information, but such a strong condition is not satisfied in
many models (including ours). Rochet and Chone in [21]
developed a sweeping procedure which adjusts the solution
to ensure the global incentive compatibility. Such an ap-
proach requires that the dimension of the type space and
allocation space coincide (which is not applicable to the
MNO’s multi-cap data plans optimization), and cannot be
solved analytically except in very special cases. In this pa-
per, we introduce users’ willingness-to-pay by investigating
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Step I: MNO collects information from market and estimates
the statistics of users’ preferences.

Step III: MNO optimizes the multi-cap contract under
the chosen data mechanism considering  users' 
private preferences.

MNO

User Market

Time Flexibility

Step II: MNO decides the 
data mechanism.

Fig. 1: System model for the MNO’s multi-cap design.

their indifference curves, based on which we can develop
a tractable approach for the MNO to provide the global
incentive to all user types and solve its optimal contract
under multi-dimensional private information.

3 SYSTEM MODEL

We formulate the MNO’s multi-cap data plan design
as a three-step process as shown in Fig. 1. In Step I, the
MNO collects data from the user market to estimate the
statistical information of users’ individual preferences (i.e., a
user’s type), which are often private and multi-dimensional
information (hence difficult to predict on a per user ba-
sis). In Step II, the MNO chooses a data mechanism to
provide the subscribers with time flexibility. Then in Step
III, the MNO proceeds with the multi-cap contract design
to induce users truthfully revealing their types and hence
maximize the MNO’s profit. Generally speaking, the MNO
should periodically (e.g., every year) repeat the three steps
to capture users’ varying requirements (due to, for example,
technology changes).

Furthermore, the MNO should extract as many dimen-
sions of the user type as possible to characterize users’
private information precisely, which leads to a contract
problem with multi-dimensional private information. As
mentioned as Section I, a multi-dimensional contract is
challenging to solve. In this paper, we exploit the sep-
arable structure (between the user’s types and the data
cap allocation), and propose to characterize each type of
users’ willingness-to-pay by investigating their indifference
curves. To provide a clear demonstration, we use a two-
dimensional user type to illustrate our approach.1

Next we describe three data mechanisms in Section 3.1.
Then we introduce users’ two-dimensional characteristics
and derive users’ payoffs under different data mechanism
in Section 3.2. Finally, we formulate the MNO’s optimal
contract problem in Section 3.3.

3.1 Data Mechanisms
A mobile data plan can be characterized by the tuple

T = {Q,Π, π, κ}, where a subscriber pays a lump-sum
subscription fee Π for a data usage up to the monthly data
cap Q, beyond which the MNO will charge an additional
fee π for each unit of data consumption.2 Here κ ∈ {0, 1, 2}
represents different data mechanisms that offer subscribers

1. In reality, the MNO can further introduce more dimensions and
solve the multi-dimensional contract using our method if the users’
types and the data cap allocation exhibit a similar structure.

2. We assume that all data plans have the same additional unit
usage fee π. This is often true in practice. For example, for AT&T,
π = $15/GB.

TABLE 2: T , {Q,Π, π, κ}, κ ∈ {0, 1, 2}.
Plan Rollover Data τ Consumption Priority Qeκ(τ)

κ = 0 0 Cap Q
κ = 1 τ ∈ [0, Q] Cap⇒Rollover Q+ τ
κ = 2 τ ∈ [0, Q] Rollover⇒Cap Q+ τ

different time flexibilities on their data consumption over
time.

The key differences among the three data mechanisms
are the rollover data and consumption priority, both of which
will affect the subscriber’s expected overage data consump-
tion [8]. First, the rollover data from the previous month can
enlarge a user’s effective data cap of the current month, within
which no additional fee involved. Second, the consumption
priorities of the rollover data and the monthly data cap
further affect how much the effective cap is enlarged. In
Table 2, we use τ to denote a user’s rollover data from the
previous month. More specifically,
• The case of κ = 0 denotes the traditional data plan. The

subscriber has no rollover data, and the effective cap of
each month is Qe0(τ) = Q;

• The case of κ = 1 denotes the rollover data plan
offered by AT&T. The rollover data τ ∈ [0, Q] from the
previous month is consumed after the current monthly
data cap Q. Thus the effective cap of the current month
is Qe1(τ) = Q+ τ ;

• The case of κ = 2 denotes the rollover data plan offered
by China Mobile. The rollover data τ ∈ [0, Q] from
the previous month is consumed prior to the current
monthly data cap Q. Thus the effective cap of the
current month is Qe2(τ) = Q+ τ ;

As we mentioned above, the time flexibility can enlarge
the subscriber’s effective data cap. According to Table 2, the
effective data cap of the traditional data mechanism κ = 0
is always Q. However, for κ ∈ {1, 2}, the effective data
cap is Q + τ , which is no smaller than Q in the traditional
data mechanism. Although κ = 1 and κ = 2 lead to the
same expression Q + τ , the stationary distribution of τ is
different for κ ∈ {1, 2}.3 Intuitively, the larger the effective
data cap is, the less additional payment is incurred, which
will further change users’ subscription choices.

3.2 User Model
3.2.1 User Characteristics

Next we introduce users’ stochastic data demand d and
the two-dimensional preferences: θ for the valuation of unit
data and β for the network substitutability.

To capture the stochastic nature of a user’s data demand
over time, we model a user’s data demand as a discrete
random variable with a probability mass function f(d), a
mean value of d̄, and a finite integer support {0, 1, 2, ..., D}.4

3. We refer interested readers to Section 4 of [8] for more details.
Moreover, when we consider the K-month rollover period, the rollover
data has an even larger range, i.e., τ ∈ {0, 1, 2, ...,KQ}.

4. In practice, the MNO can estimate users’ demand distributions
based on their historical data usage, and incorporate such a difference
among users into the user type modeling. In this paper, we focus on
the user differences in data evaluation and network substitutability,
and assume homogeneous demand distribution [22], [23]. Notice that
users’ demand realizations can still be different.
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Here the data demand d is measured in the minimum
data unit (e.g, 1KB or 1MB according to the MNO’s billing
practice). Accordingly, we denote θ as a user’s utility from
one unit of data consumption, i.e., his valuation for unit data
[10], [24].

Furthermore, a user’s data consumption behavior might
change after exceeding the effective cap, since it incurs ad-
ditional payment. Intuitively, the user will still continue
to consume data in this case, but may reduce his data
consumption by utilizing alternative networks (e.g., Wi-Fi)
instead. Therefore, we follow [25] by incorporating users’
network substitutability β as one of the user’s characteris-
tics. Mathematically speaking, β ∈ [0, 1] denotes the fraction
of overage usage shrink. A larger β value represents more
overage usage cut (thus, a better substitutability). A user’s
mobility pattern can significantly influence the availability
of alternative networks, which will further change a user’s
data plan choice. For example, a businessman who is always
on the road may have a poor network substitutability (hence
a small value of β), hence prefers to a large data cap; while
a student can take advantage of the school Wi-Fi network
(hence a large value of β), hence will be fine with a small
data cap.

Different from our previous works in [8], [9], in this
paper, we consider a more realistic asymmetric information
scenario, i.e., the parameters θ and β are each user’s private
information that the MNO does not know precisely. As a
result, we propose to use a contract-theoretic approach to
cope with users’ multi-dimensional private information and
optimize the MNO’s multi-cap data plans.

3.2.2 User Payoff
A user’s payoff is defined as the difference between

his utility and payment. Specifically, for a type-(β, θ) user
with d units data demand and an effective cap Qeκ(τ), his
realized data consumption is d − β[d − Qeκ(τ)]+ where
[x]+ = max{0, x}. Hence a type-(β, θ) user’s utility is
θ(d− β[d−Qeκ(τ)]+). In addition, the user’s total payment
consists of the monthly subscription fee Π and the overage
charge π(1−β)[d−Qeκ(τ)]+. Therefore, the (monthly) payoff
of the type-(β, θ) user with a data demand d and an effective
cap Qeκ(τ) is

S(T , β, θ, d, τ) =θ
(
d− β [d−Qeκ(τ)]

+
)

− π(1− β) [d−Qeκ(τ)]
+ −Π.

(1)

Here both d and τ are random variables, and we take the
expectation over them to obtain a user’s expected payoff as

S̄(T , β, θ) = Ed,τ
{
S(T , β, θ, d, τ)

}
= θ

[
d̄− βAκ(Q)

]
− π(1− β)Aκ(Q)−Π,

(2)

where Aκ(Q) is the type-(0, θ) subscriber’s expected over-
age data consumption, as follows:

Aκ(Q) =Ed,τ
{

[d−Qeκ(τ)]+
}

=
D∑
d=0

Q∑
τ=0

[d−Qeκ(τ)]
+
f(d)pκ(τ).

(3)

Note that the differences among the three data mech-
anisms are entirely captured by Aκ(Q) in (3). Specifically,
pκ(τ) in (3) represents the distribution of the subscriber’s

rollover data under data mechanism κ, which is the key
difference among the three data mechanisms. In our previ-
ous work, we have introduced how to compute pκ(τ) and
Aκ(Q) in details (see Section 4 of [8]). In this paper, we di-
rectly summarize the key conclusion from [8] in Proposition
1.

Proposition 1. For an arbitrary data demand distribution f(d),
A0(Q) > A1(Q) > A2(Q) for any Q ∈ (0, D).

Proposition 1 indicates that a user incurs less overage
data consumption under the rollover mechanism κ ∈ {1, 2}
than the traditional one κ = 0. Moreover, among the two
rollover mechanisms κ ∈ {1, 2}, κ = 2 is more time-flexible
than κ = 1, since A1(Q) > A2(Q). This is why we say that
the rollover mechanism κ = 2 offers the best time flexibility,
while κ = 0 offers the worst.

The above discussion indicates that a user’s expected
payoffs under different mechanisms have a similar expres-
sion. The difference is only in terms of the expected overage
usage Aκ(Qκ). Thus, for notation simplicity, we will focus
on a generic data mechanism and express the expected
payoff of a type-(β, θ) user as

S̄(Q,Π, β, θ) = V (Q, β, θ)− P (Q, β)−Π, (4)

where V (Q, β, θ) , θ[d̄−Aκ(Q)β] is the subscriber’s utility,
and P (Q, β) , π(1 − β)Aκ(Q) is the overage payment. In
economics, the subscription fee is a user’s sunk cost (incurred
in advance and often independent of the user’s actual con-
sumption), while the overage payment is the prospective cost
(depending on the user’s actual consumption). Therefore,
we call the user’s payoff without the sunk cost as the
“virtual payoff”, defined as

L(Q, β, θ) , V (Q, β, θ)− P (Q, β), (5)

which will be used in Section 4 and Section 5.
So far we have generalized the users’ expected payoffs

under different data mechanisms into a unified expression.
Our later analysis for the MNO’s optimal contract problem
is based on this general framework.

3.3 MNO’s Contract Formulation
Next we formulate the MNO’s optimal contract problem.

3.3.1 Feasible Contract
The MNO offers a contract (with different combinations

of data caps and corresponding subscription fees) to a
group of users who are distinguished by two-dimensional
private information: the data valuation θ and the network
substitutability β. Recall that in Step I (of Fig. 1), the MNO
collects the statistical information from the user market. For
example, we consider a set Θ = {θk : 1 ≤ k ≤ K} of K
data valuation types and a set B = {βm : 1 ≤ m ≤ M} of
M network substitutability types. Hence there are a total of
KM types of users in the market, characterized by a joint
probability mass function qm,k for each type-(βm, θk) user.5

Without loss of generality, we assume that users’ types are

5. The MNO can flexibly divide users’ into several categories through
some data mining techniques such as k-means [26], [27]. The choices
of parameters K and M determine the trade-off between contract
complexity and profit.
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indexed in the ascending sort order in both dimensions, i.e.,
θ1 < θ2 < ... < θK and β1 < β2 < ... < βM .

According to the revelation principle [28], it is enough
for the MNO to consider a class of contracts that enables
users to truthfully reveal their types. In other words, it
is enough for the MNO to design a contract, denoted by
Φ(B,Θ) = {φm,k, 1 ≤ m ≤ M, 1 ≤ k ≤ K} that consists
of KM contract items φm,k = {Qm,k,Πm,k}, one for each
user type. Formally, a contract is feasible if and only if it
ensures that each user selects the contract item intended for
this type. It is obvious that a contract is feasible if and only
if it satisfies the Individual Rationality (IR) and Incentive
Compatibility (IC) conditions, defined as follows:

Definition 1 (Individual Rationality). A contract is individ-
ually rational if for all 1 ≤ m ≤ M and 1 ≤ k ≤ K , the
type-(βm, θk) user achieves a non-negative payoff by choosing
the contract item φm,k intended for this user type, denoted by
φm,k < 0, i.e.,

S̄(φm,k, βm, θk) ≥ 0. (6)

Definition 2 (Incentive Compatibility). A contract is incentive
compatible if for all 1 ≤ m ≤ M and 1 ≤ k ≤ K, the type-
(βm, θk) user maximizes its payoff by choosing the contract item
φm,k intended for this user type, i.e.,

S̄(φm,k, βm, θk) ≥ S̄(φn,l, βm, θk), ∀ (n, l) 6= (m, k). (7)

Our later analysis for the contract feasibility in Section
4 involves the concept of Pairwise Incentive Compatibility
(PIC) in Definition 3. Basically, PIC consists of the all IC
conditions in the two-user scenario. That is, the KM(KM−
1) IC conditions are equivalent to the KM(KM − 1)/2 PIC
conditions for all the two-user pairs.

Definition 3 (Pairwise Incentive Compatibility). The contract
items φm,k and φn,l are pairwise incentive compatible, denoted by
φm,k

IC⇐⇒ φn,l, if and only if{
S̄(φm,k, βm, θk) ≥ S̄(φn,l, βm, θk),

S̄(φn,l, βn, θl) ≥ S̄(φm,k, βn, θl).
(8)

3.3.2 MNO’s Profit
Next we derive the MNO’s revenue, cost, and profit

under a feasible contract Φ.
The MNO’s revenue from a subscriber consists of the

subscription fee and the overage fee. Based on the above
discussion of the feasible contract, the MNO’s expected
revenue R(Φ) under a feasible contract Φ is

R(Φ) =
K∑
k=1

M∑
m=1

qm,k
[

Πm,k︸ ︷︷ ︸
subscription

+P (Qm,k, βm)︸ ︷︷ ︸
overage

]
. (9)

Furthermore, we consider two kinds of costs experienced
by the MNO, i.e., the capacity cost and operational cost.

The MNO’s capital expenditure is mainly due to its
investment on the network capacity [3]. Imposing the data
cap would help manage the network congestion and ar-
range the scarce network capacity [17]. Motivated by this
phenomenon, we model the MNO’s capacity cost caused by
a type-(βm, θk) subscriber as an increasing function J(Q) in
his data capQ [24]. Intuitively, a larger data cap corresponds

to a severer network congestion on average that requires the
MNO’s more investment on the network in advance.

The MNO’s operational cost is mainly due to the system
management [29]. After the MNO decides which data plan
to implement, the subscribers’ total data consumption will
influence the MNO’s operational expense. Therefore, the
MNO’s operational cost caused by a type-(βm, θk) sub-
scriber with data cap Q can be formulated as c · U(Q, βm),
where c is the MNO’s marginal cost for the system manage-
ment [17], and U(Q, βm) = d̄−βmA(Q) is the type-(βm, θk)
subscriber’s expected data consumption.6

Therefore, the MNO’s expected costC(Φ) under a feasible
contract Φ can be calculated as

C(Φ) =
K∑
k=1

M∑
m=1

qm,k
[
c · U(Qm,k, βm)︸ ︷︷ ︸

Operational cost

+ J(Qm,k)︸ ︷︷ ︸
Capacity cost

]
.

(10)
The MNO’s expected profit under a feasible contract Φ is

the difference between its revenue and cost, given by

W (Φ) = R(Φ)− C(Φ). (11)

3.3.3 MNO’s Multi-dimensional Contract Problem
Based on the above discussion, we formulate the MNO’s

contract problem as follows:

Problem 1 (Optimal Contract Design).

max
Φ

W (Φ)

s.t. (6), (7).
(12)

The key idea of the contact design problem is to ensure
the individual rationality and the incentive compatibility of
all user types, so that each user is willing to participate
and truthfully reveals his type by selecting the contract
item intended for this type of users. Problem 1 makes it
clear, where the MNO needs to address a total of KM IR
constraints (condition (6)) and a total of (KM − 1)KM IC
constraints (condition (7)).

The main difficulty of Problem 1 is twofold:
1) The non-monotonicity of the allocation rule. A monotonic

allocation rule usually requires the satisfaction of the
single-crossing property, under which two indifference
curves of any two different user types cross only once
[18]. That is, the user’s marginal utility should be
monotone increasing (or monotone decreasing) in the
user type. When this condition holds, an allocation rule
is incentive compatible only if the rule is monotonic in
the user type [32]. In Problem 1, we have

∂2S̄(Q,Π, β, θ)

∂Q∂θ
= −∂A(Q)

∂Q
· β ≥ 0, ∀β ∈ [0, 1], (13)

which indicates that the marginal utility increases in the
data valuation θ for any β ∈ [0, 1]. Therefore, the higher
valuation user deserves a larger allocation for any β ∈
[0, 1]. However, for the network substitutability β, we
have

∂2S̄(Q,Π, β, θ)

∂Q∂β
= −∂A(Q)

∂Q
· (θ − π) , (14)

6. Such a linear-form cost has been widely used to model an opera-
tor’s operational cost, e.g., [30], [31].
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TABLE 3: Key Notation

Symbol Physical Meaning

Q The monthly data cap.
Π The fixed monthly subscription fee.
π The overage usage fee when exceeding the data cap.
κ The data mechanism κ ∈ {0, 1, 2}.

θ The user’s data valuation.
β The user’s network substitutability.
Θ A total of K different θ, i.e., Θ = {θk, 1 ≤ k ≤ K}.
B A total of M different β, i.e., B = {βm, 1 ≤ m ≤M}.
Λi The i-th (1 ≤ i ≤ KM ) user type after sorting as (17).
Λε The smallest-payoff user type defined in (21).
σ The user’s willingness-to-pay, defined in (16).
S̄ The user’s monthly expected payoff, defined in (4).
L The user’s virtual payoff, defined in (5).

η+, η− The user’s virtual payoff increment, defined in (26).
ρ+, ρ− The user’s virtual payoff differences, defined in (32).

R MNO’s expected revenue, defined in (9).
C MNO’s expected cost, defined in (10).
W MNO’s expected profit, defined in (11).
Φ MNO’s contract Φ = {φm,k, 1 ≤ m ≤M, 1 ≤ k ≤ K}.

φm,k Contract item {Qm,k,Πm,k} for type-(βm, θk) user.
φi Contract item {Qi,Πi} for type-Λi user after sorting.

which can be positive or negative, depending on the
relationship between the data valuation θ and the per-
unit fee π. Therefore, the allocation rule in terms of the
network substitutability β is not monotonic and hence
is challenging to analyze.

2) Two-dimensional user types. A contract design involving
multi-dimensional user types is also very challeng-
ing in general. For contract problems involving only
one-dimensional user types, the satisfaction of single-
crossing condition guarantees a monotone allocation
rule. Therefore, the approach used in [33], [34], [35], [36]
can significantly reduce the unbinding IC and IR con-
straints so that the contract problem is more tractable.
However, the approach in [33], [34], [35], [36] cannot
be easily generalized to the two-dimensional user type
case, even if the allocation rule is consistent (and we
have shown that it is not in our problem).

Next we will exploit the special structure in Problem 1
and propose a new approach of solving the problem. This
is a key contribution of this paper. Specifically, we will
investigate the contract feasibility and optimality in Section
4 and Section 5, respectively. Table 3 summarizes the key
notation in this paper.

4 CONTRACT FEASIBILITY

To study the feasibility of the two-dimensional contract,
we will first introduce a user’s marginal rate of substitution
(which also represents the user’s willingness-to-pay) and
the new user ordering in Section 4.1 and Section 4.2, re-
spectively. Then we investigate the necessary and sufficient
conditions for a feasible contract in Section 4.3 and Section
4.4, respectively.

4.1 Marginal Rate of Substitution (Willingness-to-Pay)
In economics, a consumer’s indifference curve connects

those good bundles that achieve the same consumer sat-
isfaction (payoff). In our problem, we can plot a user’s

ΔΠ = 2

Q

Π

O

← S̄ = 3

S̄ = 1 →

Fig. 2: Two indifference curves of the same user type with
two different expected payoffs, i.e., S̄ = 1 and S̄ = 3.

indifference curve over the contract plane (i.e., the data cap
Q and the subscription fee Π) as in Fig. 2. On the (Q,Π)
plane, a type-(β, θ) user’s indifference curve with a fixed
payoff S̄ satisfies

S̄ = θ[d̄− βA(Q)]− π(1− β)A(Q)−Π. (15)

Fig. 2 shows that the indifference curve is increasing
and concave7 in the data cap Q, which indicates that
the subscription fee would increase (with a diminishing
marginal increment) as the data cap increases to maintain
the same payoff. Moreover, as a user’s indifference curve
shifts downward, his payoff increases because of the de-
creasing subscription fee.

The slope of an indifference curve is called the marginal
rate of substitution (MRS), which is the rate at which a con-
sumer is ready to give up one good in exchange for another
good, while maintaining the same level of satisfaction. In
our problem, we denote the MRS of a type-(β, θ) user on a
data cap Q as

σ(Q, β, θ) ,
∂Π

∂Q
= − [θβ + π(1− β)]

∂A(Q)

∂Q
, (16)

which depends on the user’s private information (β, θ) and
the data cap Q. The MRS σ(Q, β, θ) indicates a type-(β, θ)
user’s willingness-to-pay for an additional unit of data on a
data cap Q. In the rest of the paper, we will use the three
phrases “marginal rate of substitution”, “slope of the indif-
ference curve”, and “willingness-to-pay” interchangeably.

4.2 User Ordering Based on Willingness-to-Pay
Without loss of generality, now we sort and index

the KM user types (βm, θk) based on the corresponding
willingness-to-pay σ(Q, βm, θk) in an ascending order as
follows:

Λ1(Q), Λ2(Q), ..., ΛKM (Q), (17)

where Λi(Q) , {βm, θk} for some k and m. In this case,
under the data cap Q, we have

σ(Q,Λ1) ≤ σ(Q,Λ2) ≤ ... ≤ σ(Q,ΛKM ). (18)

Lemma 1. The new user ordering in (17) does not depends on
the data cap. That is, for any Q 6= Q′, we have

Λi(Q) = Λi(Q
′), ∀ 1 ≤ i ≤ KM. (19)

Lemma 1 indicates that the user ordering in (17) does not
change, even though the value of σ(Q,Λi) would change

7. Showing the increasing and concave property for the indifference
curve is equivalent to showing that A(Q) is decreasing and convex in
Q, which has been proved in our previous work (see Section 5.2 of [8]).
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(a) θ1 < θK < π (b) θ1 < π < θK (c) π < θ1 < θK

Fig. 3: Three market modes.

with the data cap Q. Intuitively, this is because that a user’s
willingness-to-pay σ(Q,Λi) in (16) has a separable structure
between the user types (i.e., θ and β) and the data cap Q.
The proof of Lemma 1 is given in Appendix A.

For notation simplicity, in the following, we will directly
use Λi to denote a user type under the ordering specified in
(18), and denote φi = {Qi,Πi} the contract item intended
for the type-Λi users.

To have a better understanding on the new user or-
dering, we use Fig. 3 to illustrate how (βm, θk) maps to
Λi. There are three different market modes depending on
the relationship between the extreme valuations (θ1 and
θK ) and the overage fee π, i.e., θK < π as in Fig. 3(a),
θ1 < π < θK as in Fig. 3(b), and π < θ1 as in Fig. 3(c).
Specifically, the arrows in Fig. 3 point to the direction where
the user’s MRS σ(Q, β, θ) increases, the blue square denotes
the minimum willingness-to-pay user type-Λ1, and the red
star denotes the largest willingness-to-pay user type-ΛKM .
The following proposition summarizes the mapping from
(βm, θk) to Λ1 and ΛKM . The proof is given in Appendix A.

Proposition 2. Under the three market modes, the type-Λ1 and
type-ΛKM users have their private information as follows:

Λ1 = {βM , θ1},ΛKM = {β1, θK}, if θ1 < θK < π,

Λ1 = {βM , θ1},ΛKM = {βM , θK}, if θ1 < π < θK ,

Λ1 = {β1, θ1}, ΛKM = {βM , θK}, if π < θ1 < θK .
(20)

Furthermore, the green triangles in Fig. 3 denote the
smallest-payoff user type Λε(Q,Π) given the contract item
(Q,Π), defined as follows

Λε(Q,Π) , arg min
Λi

S̄(Q,Π,Λi). (21)

Lemma 2 indicates that the smallest-payoff user type
Λε(Q,Π) does not change with data cap or subscription fee.
Similar to Lemma 1, this is because the separable structure
between the user types (i.e., θ and β) and the contract item
(i.e., Q and Π). For notation simplicity, we will use Λε in the
following. The proof of Lemma 2 is in Appendix A.

Lemma 2. The smallest-payoff user defined in (21) does not
depends on the data cap or the subscription fee, i.e.,

Λε(Q,Π) = Λε(Q
′,Π′), ∀(Q′,Π′) 6= (Q,Π). (22)

Proposition 3 presents the mapping from (βm, θk) to Λε.
The proof is in Appendix A.

Proposition 3. Under the three market modes, the type-Λε user
has the private information as follows:

Λε = {β1, θ1}, if θ1 < θK < π,

Λε = {β1, θ1}, if θ1 < π < θK ,

Λε = {βM , θ1}, if π < θ1 < θK .

(23)

Next we study the necessary conditions for a contract to
be feasible based on users’ willingness-to-pay.

4.3 Necessary Conditions
Lemmas 3 and 4 present two necessary conditions for a

contract to be feasible (satisfying IC and IR conditions). The
proofs are given in Appendix B.

Lemma 3. For any feasible contract Φ(B,Θ), Qi < Qj if and
only if Πi < Πj .

Lemma 4. For any feasible contract Φ(B,Θ), if σ(Q,Λi) >
σ(Q,Λj) for all Q, then Qi ≥ Qj .

Lemma 3 reveals that a larger data cap corresponds to
a higher subscription fee in the feasible contract, which
is intuitive. Lemma 4 shows that a user with a stronger
willingness-to-pay for the data cap deserves a larger data cap
in the feasible contract. Next we provide a proof sketch for
Lemma 4 to show the key insights.

Proof Sketch of Lemma 4. We illustrate the key insights of
Lemma 4 based on the contract plane in Fig. 4.
• For a type-Λj user, we assume that the red dot in Fig. 4

is the contract item φj intended for this user type, and
the red circle curve lj represents his indifference curve
with a payoff equal to that of selecting φj .

• For a type-Λi user, the blue square curve li is his indif-
ference curve with a payoff equal to this user choosing
the red dot contract item φj (not intended for his type).

It is obvious that li is steeper than lj ; mathematically
speaking, σ(Q,Λi) > σ(Q,Λj) for all Q (which is the
condition in Lemma 4). That is, comparing with the type-
Λj users, the type-Λi users have a stronger willingness-to-
pay under any data cap. Moreover, as a user’s indifference
curve shifts downward, his payoff increases because of the
decreasing subscription fee.

Next we will show that to ensure the PIC condition φi
IC⇐⇒

φj , the contract item φi (intended for the type-Λi users) must
locate below (or on) the blue square curve li and above (or on)
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li
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Q

Π

O

Fig. 4: An illustration for Lemma 4.

the red circle curve lj , i.e., in the blue region of Fig. 4. We prove
this by contradiction. Assuming that this is not true, then
we need to consider the following two scenarios:
• Scenario 1: The contract item φi is above the blue

square curve li, such as the green squares labeled 1, 2,
3 in Fig. 4. In this case, the indifference curve li for the
type-Λi should shift upward (with a decreasing payoff)
to touch one of the three green squares. However, the
type-Λi user can achieve a higher payoff (comparing
with selecting φi) by selecting the red dot contract item
φj , which violates the PIC condition for the type-Λi
user.

• Scenario 2: The contract item φi is below the red circle
curve lj , such as the green squares labeled 4 and 5
in Fig. 4. In this case, the indifference curve lj for the
type-Λj user should shift downward (with an increas-
ing payoff) to touch one of the three green squares.
Therefore, the type-Λj user can achieve a higher payoff
by selecting the green square contract item φi, which
violates the PIC condition for the type-Λj users.

The above discussion indicates that the contract item φi
must locate in the blue area, which is on the right of the
dash line. Thus Qi ≥ Qj , as Lemma 4 implies.

According to Lemma 3 and Lemma 4, we summarize the
necessary conditions for a feasible contract as follows:

Theorem 1 (Necessary Conditions for Feasibility). The feasi-
ble contract Φ(B,Θ) has the following structure{

Q1 ≤ Q2 ≤ ... ≤ QKM ,
Π1 ≤ Π2 ≤ ... ≤ ΠKM .

(24)

4.4 Sufficient Conditions

Next we derive the sufficient conditions for the feasible
contract though the following two transitivity properties
for Pairwise Incentive Compatibility (PIC) and Individual
Rationality (IR). The proofs are given in Appendix C.

Lemma 5 (PIC-Transitivity). Suppose the necessary conditions
in Theorem 1 hold, then for any i1 < i2 < i3, the following is
true

if φi1
IC⇐⇒ φi2 and φi2

IC⇐⇒ φi3 , then φi1
IC⇐⇒ φi3 . (25)

The above PIC transitivity property makes the contract
problem (i.e., Problem 1) more tractable. It shows that we
can reduce a total of KM(KM − 1)/2 PIC conditions to a
total of KM − 1 PIC conditions for the neighbor user type
pairs, i.e., φi

IC⇐⇒ φi+1, i = 1, 2, ...,KM − 1.

We presents the IR transitivity in Lemma 6.

Lemma 6 (IR-Transitivity). Suppose the necessary conditions in
Theorem 1 and all PIC conditions hold, then the following is true,

if φε < 0, then φi < 0, ∀ i 6= ε.

Recall that the user type-Λε, defined in (21), achieves
the smallest payoff among all the user types for any given
contract item. Lemma 6 implies that once we can guarantee
all the PIC conditions, then we only need to further ensure
that the IR constraint for the smallest-payoff type-Λε users.
This allows us to reduce a total of KM IR conditions to one
IR condition φε < 0.

Before we present the sufficient conditions for the fea-
sible contract, we first introduce a user’s virtual payoff
increment. Recall that L(Q,Λi) defined in (5) denotes the
type-Λi user’s virtual payoff. We define η−(Λi, Qi, Qi−1)
and η+(Λi, Qi, Qi+1) as the type-Λi user’s virtual payoff
increments between selecting the contract item φi and the
contract items intended for his neighbor user types (i.e.,
φi−1 and φi+1), as follows

η−(Λi, Qi, Qi−1) = L(Qi,Λi)− L(Qi−1,Λi), (26a)

η+(Λi, Qi, Qi+1) = L(Qi,Λi)− L(Qi+1,Λi). (26b)

Based on Lemmas 3∼6, we derive the following sufficient
conditions for a contract to be feasible.

Theorem 2 (Sufficient Conditions for Feasibility). The con-
tract Φ(B,Θ) is feasible if all the following conditions hold,

1) Q1 ≤ Q2 ≤ ... ≤ QKM ,
2) for i = ε,

Πε ≤ L(Qε,Λε), (27)

3) for all i = 1, 2, ..., ε− 1,

Πi ≤ Πi+1 + η+(Λi, Qi, Qi+1), (28a)

Πi ≥ Πi+1 − η−(Λi+1, Qi+1, Qi). (28b)

4) for all i = ε+ 1, ε+ 2, ...,KM ,

Πi ≤ Πi−1 + η−(Λi, Qi, Qi−1), (29a)

Πi ≥ Πi−1 − η+(Λi−1, Qi−1, Qi), (29b)

Now we discuss the intuitions of Theorem 2. Condition
1) satisfies the necessary conditions in Theorem 1. Condition
2) guarantees the IR condition for the type-Λε users, i.e.,
φε < 0, which is sufficient for the IR conditions of all other
user types according to Lemma 6. Condition 3) and Condition
4) guarantee the PIC condition for the neighbor user types,
i.e., φi

IC⇐⇒ φi+1, ∀ 1 ≤ i ≤ KM − 1, which is sufficient for
the global IC condition according to Lemma 5. Specifically,
the inequality (28a) ensures that the type-Λi user will not
select the contract item φi+1, i.e., S̄(φi,Λi) ≥ S̄(φi+1,Λi);
the inequality (28b) ensures the type-Λi+1 user will not
select the contract item φi, i.e., S̄(φi+1,Λi+1) ≥ S̄(φi,Λi+1).
Similar intuitions apply to (29).

So far we have derived the necessary and sufficient
conditions for a feasible contract. Next we will analyze the
optimality of the contract.
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5 CONTRACT OPTIMALITY

We will study the MNO’s optimal contract problem (i.e.,
Problem 1) based on the necessary and sufficient conditions
for a feasible contract. To reveal the key insights, we will
investigate the contract optimality in the following two
steps.

• First, in Problem 2, we derive the MNO’s optimal prices
{Π∗i (Q), 1 ≤ i ≤ KM} given a feasible choice of data
caps Q = {Qi, 1 ≤ i ≤ KM} where Q1 ≤ Q2 ≤ ... ≤
QKM .

• Second, in Problem 3, we substitute the optimal prices
{Π∗i (Q), 1 ≤ i ≤ KM} to the MNO’s profit function
and derive the optimal data cap Q∗ = {Q∗i , 1 ≤ i ≤
KM}.

5.1 Optimal Pricing

In Problem 2, we compute the MNO’s optimal prices,
denoted by {Π∗i (Q), 1 ≤ i ≤ KM}, given a feasible data
cap allocation Q, i.e., Q1 ≤ Q2 ≤ ... ≤ QKM . Note that the
constraints (27), (29), and (28) are the sufficient conditions
in Theorem 2. Hence the solution {Π∗i (Q), 1 ≤ i ≤ KM}
together with the given data cap Q must be a feasible
contract.

Problem 2 (Optimal Prices).

max
KM∑
i=1

q(Λi)
[
Πi + P (Qi,Λi)− c · U(Qi,Λi)− J(Qi)

]
s.t. (27), (28), (29)

var. Πi, 1 ≤ i ≤ KM.
(30)

Next we characterize the optimal prices {Π∗i (Q), 1 ≤ i ≤
KM} in Theorem 3. The proof is given in Appendix D.

Theorem 3 (Optimal Pricing Policy). Given a set of feasible
data caps Q satisfying Q1 ≤ Q2 ≤ ... ≤ QKM . The optimal
pricing policy for the MNO, denoted by {Π∗i (Q), 1 ≤ i ≤ KM},
is

Π∗i (Q) = L (Qi,Λi) , if i = ε, (31a)

Π∗i (Q) = Π∗i+1(Q) + η+ (Λi, Qi, Qi+1) , if i < ε, (31b)

Π∗i (Q) = Π∗i−1(Q) + η− (Λi, Qi, Qi−1) , if i > ε. (31c)

Comparing Theorem 2 and Theorem 3, we notice that,
given a set of feasible data caps Q, the MNO should charge
the highest prices satisfying the IC and IR conditions.

Next we further study the MNO’s optimal data caps Q
based on the optimal prices {Π∗i (Q), 1 ≤ i ≤ KM} in (31).

5.2 Optimal Data Caps

For notation simplicity, we first introduce the concept
of virtual payoff difference. For a given data cap Q, the
virtual payoff differences between the type-Λi user and his
neighbor user types (i.e., Λi−1 and Λi+1) are defined as

ρ−i (Q) , L(Q,Λi)− L(Q,Λi−1), (32a)

ρ+
i (Q) , L(Q,Λi)− L(Q,Λi+1). (32b)

We substitute the optimal prices (31) derived in Theorem
3 into the objective function of Problem 2, and write the
MNO’s objective function (i.e., the total profit) as follows:

KM∑
i=1

Gi (Qi) , (33)

where Gi(·) is given by (34), and hi =
∑i−1
t=1 q(Λt) and hi =∑KM

t=i+1 q(Λt) are two constants related to the distribution
of the user types. Thus we get the following optimization
problem over the KM data caps.

Problem 3 (Optimal Data Caps).

max
KM∑
i=1

Gi (Qi) (35a)

s.t. Q1 ≤ Q2 ≤ ... ≤ QKM ≤ D (35b)
Qi ∈ N, ∀ i ∈ {1, 2, ...,KM} (35c)

var. Qi, 1 ≤ i ≤ KM. (35d)

Problem 3 is a nonlinear integer programming with
two special structures. First, the objective function has a
separable structure over each decision variable Qi. Second,
the decision variables are monotonic. Moreover, the con-
vexity of Problem 3 depends on all user types Λi for all
1 ≤ i ≤ KM and the corresponding distribution q(Λi) for
all 1 ≤ i ≤ KM .

In previous literature (e.g., [33], [34], [35], [36]), the com-
monly used approach to solving Problem 3 is monotonicity
relaxation. The main idea is to first relax the monotonicity
constraints (35b) and maximize each Gi(·) over the cor-
responding decision variable Qi. If the solution obtained
under the relaxation violates the monotonicity constraints
(35b), then one needs to adjust the solution according to
the algorithm proposed in [33] to become feasible. We refer
interested readers to Appendix E for more details. In gen-
eral, the monotonicity relaxation approach is very efficient,
since it only needs to deal with several single-variable opti-
mization problems. However, the adjusted solution is only
a locally optimal solution when the problem is not convex
[1]. Moreover, it is difficult to analytically characterize the
sub-optimality gap of the solution. To obtain the globally
optimal solution of Problem 3 efficiently, in Section 5.3,
we will propose the Dynamic Quota Allocation Algorithm,
which is one of the major contributions in this paper.

5.3 Dynamic Quota Allocation (DQA) Algorithm
5.3.1 Basic Idea

The basic idea of the DQA Algorithm comes from dy-
namic programming, i.e., breaking the original problem
down into simpler sub-problems in a recursive manner [37].
Specifically, we will decompose Problem 3 by utilizing the
separability of objective (35a) and the monotonicity con-
straints (35b). Next we introduce how to define the proper
sub-problems.

5.3.2 Level-(n, q) Subproblem
In the DQA Algorithm, we refer to Problem 4 as the

level-(n, q) sub-problem of Problem 3. Basically, the level-
(n, q) sub-problem focuses on the optimal data caps for the
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Gi(Q) =


q(Λi)V (Q,Λi)− q(Λi) [c · U(Q,Λi) + J(Q)] , if i ∈ {1,KM},
q(Λi)V (Q,Λi) + hiρ−i (Q)− q(Λi) [cU(Q,Λi) + J(Q)] , if i ∈ {2, 3, ..., ε− 1},
q(Λi)V (Q,Λi) + hiρ−i (Q) + hiρ

+
i (Q)− q(Λi) [cU(Q,Λi) + J(Q)] , if i = ε,

q(Λi)V (Q,Λi) + hiρ
+
i (Q)− q(Λi) [cU(Q,Λi) + J(Q)] , if i ∈ {ε+ 1, ε+ 2, ...,KM − 1},

(34)

smallest n user types (i.e., type-1 to type-n, where 1 ≤ n ≤
KM ) under the data cap upper bound q (0 ≤ q ≤ D). Recall
that there are a total of KM types of users and D is users’
maximal possible monthly data demand. The special case of
the level-(KM,D) sub-problem is equivalent to Problem 3,
since the MNO does not need to offer any data cap larger
than D.

Problem 4 (Level-(n, q) Sub-problem). Given 1 ≤ n ≤ KM
and 0 ≤ q ≤ D, the level-(n, q) sub-problem is

H(n, q) , arg max
n∑
i=1

Gi(Qi) (36a)

s.t. Q1 ≤ Q2 ≤ ... ≤ Qn ≤ q (36b)
Qi ∈ N, ∀ i ∈ {1, 2, ..., n} (36c)

var: Qi, 1 ≤ i ≤ n. (36d)

Here we denote H(n, q) and Q?(n, q) = {Q?i (n, q), 1 ≤
i ≤ n} as the optimal value and the optimal solution of the
level-(n, q) sub-problem (36), respectively. Since the level-
(KM,D) sub-problem is equivalent to Problem 3, we have
• The optimal value of Problem 3 is H(KM,D).
• The optimal data caps in Problem 3 is Q?(KM,D), i.e.,
Q∗i = Q?i (KM,D) for all 1 ≤ i ≤ KM .

In the following, we will show that if we know H(n, q)
for all 1 ≤ n ≤ KM and 0 ≤ q ≤ D, then we can directly
find Q?(KM,D). To present this connection clearly, we first
introduce some properties of H(n, q) in Propositions 4 and
5. The proofs are given in Appendix F.

Proposition 4. For any 2 ≤ n ≤ KM and 0 ≤ q ≤ D,
H(n, q) has the following recursive relation

H(n, q) = max
x∈N

H(n− 1, x) +Gn(x) (37a)

s.t. x ≤ q. (37b)

The proof of Proposition 4 follows the definition of the
level-(n, q) sub-problem in (36).

Proposition 5. Given any n ∈ {1, 2, ...,KM}, we have
• Function H(n, q) is non-decreasing in the data cap q.
• There exists a critical point q̂n such that H(n, q) does not

change for any q ≥ q̂n.

The intuitions behind Proposition 5 are two-fold.
• First, the non-decreasing property of H(n, q) results

from the constraints (36b). Mathematically, q in (36b)
defines the domain upper bound of the level-(n, q) sub-
problem. That is, a larger q in (36b) corresponds to
a larger feasible domain, hence a no smaller optimal
value H(n, q).

• Second,H(n, q) will not increase in q anymore if the op-
timal solution of the level-(n, q) sub-problem is smaller
than the domain upper bound q. Basically, q̂n equals to

the n-th element of the optimal solution Q?(n,D) for
the level-(n,D) sub-problem, i.e.,

q̂n = Q?n(n,D). (38)

Based on the recursiveness shown in Propositions 4 and
the critical points {q̂i, 1 ≤ i ≤ KM} shown in Proposition 5,
we are able to find the optimal solution of the level-(KM,D)
sub-problem (which is the same as Problem 3) according to
Theorem 4. The proof is given in Appendix F.

Theorem 4. The optimal solution {Q?i (KM,D), 1 ≤ i ≤
KM} of the level-(KM,D) sub-problem is

Q?i (KM,D) =

{
q̂i, if i = KM,

min{q̂i, Q?i+1(KM,D)}, if i < KM.
(39)

We elaborate Theorem 4 as follows:
• For i = KM , according to (38), we know that the opti-

mal data cap Q?KM (KM,D) is the same as the critical
point mentioned in Proposition 5, i.e.,Q?KM (KM,D) =
q̂KM .

• For the other user types, i.e., i < KM , according to
(37b) in Proposition 4, the optimal data capQ?i (KM,D)
is the smaller one between the critical point q̂i and the
optimal data cap for the next user type Q?i+1(KM,D).

Here we want to emphasize that (39) only needs the
KM critical points {q̂i, 1 ≤ i ≤ KM}, which can be easily
obtained from the table of H(n, q) for all 1 ≤ n ≤ KM
and 0 ≤ q ≤ D. In Appendix G, we provide a numerical
example to demonstrate how to find the optimal data caps
based on the table H(n, q).

The remaining question is how to compute the table
of H(n, q). We solve this problem by proposing the DQA
Algorithm next.

Algorithm 1: Dynamic Quota Allocation (DQA)

Input : All user types Λi and the distribution q(Λi).
Output: H(n, q) for all 1 ≤ n ≤ KM and 0 ≤ q ≤ D.

1 Initial H(n, q) = 0, ∀ 1 ≤ n ≤ KM and 0 ≤ q ≤ D.
2 for n = 1 to KM do
3 for q = 0 to D do
4 if n = 1 then
5 H(n, q) := max

x≤q
Gn(x).

6 else
7 H(n, q) := arg max

x≤q
H(n− 1, x) +Gn(x).

5.3.3 DQA Algorithm
To compute H(n, q) efficiently, we need to take the

advantage of its recursiveness (in Proposition 4) again. The



11

0

0.03

0.06

0.09

0.12

0.15

0.18

β1 β2 β3 β4

PMF

θ1
θ2
θ3
θ4

Fig. 5: User type distribution.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

← f(d)

Q (GB) d (GB)

f(d) (×10−3)Aκ(Q) (GB)

0

2

4

6

8

10

A0(Q)
A1(Q)
A2(Q)

Fig. 6: f(d) vs. d and Aκ(Q) vs. Q.

Λ1Λ2Λ3Λ4

Λ5 Λ6 Λ7 Λ8

Λ9 Λ10 Λ11 Λ12

Λ13 Λ14 Λ15 Λ16

β1 β2 β3 β4

θ1

θ2

θ3

θ4

Fig. 7: Structure of optimal contract.

detailed process is shown in Algorithm 1. Specifically, the
input of Algorithm 1 includes all of the user types Λi and
the corresponding distribution (probability mass function)
q(Λi). The output of this algorithm is the table of H(n, q)
for all 1 ≤ n ≤ KM and 0 ≤ q ≤ D. In Line 5, we
compute H(1, q) for all q ∈ {0, 1, 2, ..., D}. In Line 7, we
compute H(n, q) for all n ≥ 2 by utilizing the recursiveness
in Proposition 4.

Algorithm 1 has a computational complexity of
O(KM |Q|2), where KM is the number of user types and
the set Q consists of all the possible data caps. It is actually
quite efficient in the implementation process, since the MNO
usually set the data caps to be the nearest hundreds of MB
(e.g., 100MB, 500MB, and 1GB). For example, suppose that
the maximal data demand is D = 10GB (which is large
enough in most cases). If the MNO would optimize the
data cap with 1MB as the minimal unit, then there are a
total of |Q| = 10001 possible data caps (i.e., Q = {0MB,
1MB, 2MB, 3MB,..., 10000MB}) to be considered in this
algorithm. If the MNO would optimize the data cap with
100MB as the minimal unit, then there are only a total of
|Q| = 101 possible data caps (i.e., Q = {0MB, 100MB,
200MB, 300MB,..., 10000MB}). Hence the algorithm is effi-
cient in the implementation progress.

So far, we have completely solved the optimal contract.
Next we evaluate the proposed multi-dimensional contract.

6 NUMERICAL RESULTS

We evaluate the performance of the optimal contract
based on some empirical data. Specifically, we first illustrate
the optimal contract structure in Section 6.1, then investigate
how the price discrimination and the time flexibility affect
the MNO’s profit and users’ payoffs in Section 6.2.

6.1 Optimal Contract

Next we introduce the estimated user types, data de-
mand distribution, and the MNO’s cost. Then we illustrate
the optimal contract structure.

Estimated User Types: According to the market survey
results (based on over two thousand users of mainland
China) in [8], a large proportion of users’ data valuations θ
is within the interval of [15, 65] (in RMB/GB); most people
would like to shrink approximately 70% ∼ 100% overage
data consumption through alternative networks (β value).
We follow [26] by using the k-means clustering method to

partition the empirical data valuation θ into four clusters
with mean values Θ = {16.2, 36.1, 61.9, 96.3}, and partition
the empirical network substitutability β into four clusters
with mean value B = {0.51, 0.71, 0.84, 0.95}8. Therefore,
we consider a total of KM = 16 user types,9 and the
corresponding distribution extracted from empirical data is
shown in Fig. 5.

Data Demand Distribution: We set the minimum data
unit as 1MB. Following the data analysis results in [22],
[23], we suppose that users’ monthly data demand follows
a truncated log-normal distribution over the support of
[0, 104] with a mean d̄ = 103, i.e., the average data demand
d̄ = 1GB and the maximal potential data demandD = 10GB
[8]. Fig. 6 shows the PMF f(d) and the expected overage
data consumption Aκ(Q) under different data mechanisms
κ ∈ {0, 1, 2}, which indicates thatA0(Q) ≥ A1(Q) ≥ A2(Q)
for any Q.

MNO’s Cost: As mentioned in (10) of Section 3.3, we
take account of the capacity cost and the operational cost
for the MNO. To be consistent with our previous work [8],
we suppose that the capacity cost takes a linear form, i.e.,
J(Q) = z · Q, where z represents the MNO’s marginal ca-
pacity cost.10 In addition, c represents the MNO’s marginal
operational cost. Next we will vary the two parameters (i.e.,
c and z) to illustrate their effects on the optimal contract and
the corresponding MNO profit and user payoff.

Furthermore, we use the per-unit fee in the telecommu-
nication market of China, i.e., π = 30 RMB/GB. Based on
the above setting, we will evaluate the optimal contract in
the following three steps.

6.1.1 Contract Structure

We take the data mechanism κ = 1 as example to
visualize the contract structure based on the users’ types.

Fig. 7 shows some properties of the optimal contract item
for each user type, given the MNO’s cost c = 5RMB/GB,
z = 0.9RMB/GB. Specifically, the markers represent all
the user types Λi = (βm, θk), each of which corresponds

8. Our previous work in [8] shows that the data valuation θ and the
network substitutability β can be treated as independent with a Pearson
correlation coefficient less than 0.05.

9. In practice, the MNO can partition the empirical data into more
clusters to increase the accuracy at the expense of additional complexity.
Nevertheless, the MNO usually offers no more than ten data caps for
implementation simplicity [3].

10. Note that our method of solving the optimal contract is not
limited to a specific form of the capacity cost J(Q).
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Fig. 8: Optimal contract under the three data mechanisms κ ∈ {0, 1, 2}.

to a network substitutability βm and a data valuation θk
in the horizontal and vertical axis, respectively. Moreover,
the arrows point to the non-decreasing direction of users’
willingness-to-pay as defined in (17). The markers of the
same shape and color represent that the corresponding users
types have the same contract item (i.e., pooling contract).
Therefore, the optimal contract contains seven different
contract items for a total of KM = 16 types of users.

6.1.2 Impact of Data Mechanisms
Next we compare the optimal contract under different

data mechanisms κ ∈ {0, 1, 2}.
Fig. 8 plots the optimal data caps (i.e., Figs. 8(a), 8(b),

8(c)) under the three data mechanisms and the correspond-
ing subscription fees (i.e., Figs. 8(d), 8(e), 8(f)). We have the
following observations:
• For all three data mechanisms, the optimal contract

offers some low valuation users (e.g., Λ1) a zero data
cap (e.g., pure usage-based plan in Fig. 8(a)), together
with a negative price (e.g., the five negative bars in Fig.
8(d)). The pure usage-based plan reduces the MNO’s
capacity cost due to the zero data cap. Meanwhile, the
negative price serves as a price discount, which ensures
the subscription of these users (still satisfying the IR
condition)11.

• For each data mechanism κ, the optimal contract tends
to offer the users who have small β values hence
poor alternative network choices (e.g., the type-(β1, θ3)
users) a small data cap (e.g., 0.9GB in Fig. 8(a)) together

11. In practice, the MNO may allow users to pay 100RMB and enjoy
the usage-based data service that is equivalent to 120RMB, which is
actually similar to the −20RMB subscription fee. On the other hand,
the MNOs can also directly subsidize 20RMB for the usage-based
subscribers. The current wireless data market is based on real-name
registration, hence the negative subscription fee (or discount) is not a
concern.

a low subscription fee (e.g., 12RMB in Fig. 8(d)). As a
result, these users will end up paying a lot of overage
fee. However, the optimal contract offers the users who
have high β values hence good alternative network
choices (e.g., the type-(β4, θ4) users) a large data cap
(e.g., 2.8GB in Fig. 8(a)) together with a high subscrip-
tion fee (e.g., 30RMB in Fig. 8(d)).

• Under the optimal contract, the better time flexibility
(i.e., a larger value of κ) enables the MNO to offer
a smaller data cap for the same type of users. For
example, the optimal data cap for type-(β4, θ4) users
is 2.8GB, 2.5GB, and 2.2GB in Fig. 8(a), 8(b), and 8(c),
respectively. The MNO reduces its capacity cost by
offering a better time flexibility (i.e., κ = 0→ 1→ 2).

6.1.3 Impact of MNO’s Costs

We take the data mechanism κ = 1 as an example to
investigate how the MNO’s costs (i.e., both c and z) affect
the optimal contract items.

Fig. 9 shows the impact of the MNO’s operational cost
c. Specifically, there are a total of seven different contract
items in the optimal contract. The seven curves in Fig. 9(a)
represent the different data caps. We note that overall the
optimal data caps (except the zero cap) decreases as the
MNO’s operational cost increases. Fig. 9(b) plots the cor-
responding subscription fees versus the MNO’s operational
cost. We find that

• The subscription fee of the zero-cap contract item (i.e.,
the bottom blue circle curve in Fig. 9(b)) does not
change in the operation cost c. This results from the
individual rationality condition as in (31a).

• The subscription fees of small-cap contract items (e.g.,
the orange triangle and yellow cross curves in Fig.
9(b)) decrease as the MNO’s costs increase. While the
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TABLE 4: Four scenarios.
Scenario Multi-cap or Single-cap Data Mechanism

(i) Single κ = 0
(ii) Multiple κ = 0
(iii) Multiple κ = 1
(iv) Multiple κ = 2

subscription fees of the large-cap contract items (the re-
maining curves) increase in the MNO’s costs. Therefore,
the large-cap contract items become less economical
to the users (in terms of the average price Π/Q) as
the MNO’s costs increase. This means that a profit-
maximizing MNO tends to compensate its operational
cost by charging those users who are willing to pay for
the large-cap contract items.

We also investigate the impact of the MNO’s capacity
cost z. The insights are similar to those from Fig. 9. We refer
interested readers to Appendix H for more details.

6.2 Impact of Price Discrimination and Time Flexibility
We evaluate the effect of the price discrimination and the

time flexibility on the MNO’s profit and users’ payoffs.
We consider four scenarios as shown in Table 4. Scenario

(i) represents the benchmark single-cap scheme under the
traditional data mechanism κ = 0 (studied in our previous
work [8]). Scenarios (ii), (iii), and (iv) represent the multi-
cap scheme under different data mechanisms (studied in
this paper).

Fig. 10 plots the MNO’s profit and user’s payoffs in the
four scenarios under different operational cost c.
• Fig. 10(a) plots MNO’s profits in the four scenarios.

Overall, the MNO’s profits decrease in its operational
cost c. By comparing the single-cap traditional pric-
ing benchmark and the multi-cap traditional pricing
scheme, we note that the price discrimination under our
optimal contract can significantly increase the MNO’s
profit (180% on average). By comparing the three multi-
cap curves, we find that the MNO obtains a higher
profit under a more time-flexible data mechanism.
Specifically, compared with Scenario (ii) (i.e., the black
circle curve), MNO’s profits increases by 15% on av-
erage in Scenario (iii) (i.e., the red triangle curve) and
25% on average in Scenario (iv) (i.e., blue square curve).
This implies that under the multi-cap scheme, offering
a better time flexibility can further improve the MNO’s
profit.

• Fig. 10(b) plots the users’ total expected payoff in
four scenarios. First, we observe that users’ payoff
decreases in the MNO’s operational cost. By comparing
the single-cap traditional pricing benchmark and the
multi-cap traditional pricing scheme, we notice that
the price discrimination under our optimal contract
reduces users’ expected payoff (23% on average), which
means that the MNO captures more consumer surplus
through the price discrimination. Comparing the three
multi-cap schemes, we find that the time-flexible data
mechanisms can improve the users’ payoff. Specifically,
compared with Scenario (ii) (i.e., the circle curve), users’
payoff increases by 5.1% on average in Scenario (iii)
(i.e., the triangle curve) and 8.2% on average in Scenario
(iv) (i.e., square curve).

We also evaluate the performance under different capac-
ity cost z, which leads to similar insights. We refer interested
readers to Appendix H for more details. Furthermore, we
also evaluate the impact of the number of user types on the
optimal contract performance. Due to page limit, we refer
interested readers to Appendix I for more details.

7 CONCLUSION AND FUTURE WORKS

In this paper we studied how the MNO optimizes its
multi-cap data plans under the time-flexible data mecha-
nisms. Specifically, we consider an asymmetric information
scenario, where each use is associated with two-dimensional
private information, i.e., his data valuation and network
substitutability. We formulate the MNO’s optimal multi-cap
design as a multi-dimensional contract problem and derive
the optimal contract under different data mechanisms. Our
analysis revealed that the slope of a user’s indifference curve
on the contract plane corresponds to his willingness-to-pay,
and the feasible contract (satisfying IC and IR conditions)
would offer a larger data cap to the user with the stronger
willingness-to-pay. Moreover, we proposed an efficient al-
gorithm to solve the contract problem optimally.

In the future, we have two directions to extend the
results of this paper.

• First, we will collect more empirical data related to
users’ data demand distributions and try to relax the
current homogeneous assumption of the data demand
distribution. This will lead to a new contract problem
with three-dimensional private information, which will
be much more challenging to solve.
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• Second, we will consider the competitive market. So far
we have shown that the time flexibility increases the
MNO’s profit and users’ payoffs under the multi-cap
scheme, it is still necessary to analyze the role of price
discrimination and time flexibility on MNOs’ market
competition. This will build upon our previous analysis
of the competitive market under the single-cap scheme.
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APPENDIX A

Proof of Lemma 1. We prove this lemma by showing that
if σ(Q,Λi) < σ(Q,Λj), then σ(Q′,Λi) < σ(Q′,Λj) for any
i, j ∈ {1, 2, ...,KM} and any Q′ 6= Q.

In this paper, we take into account two-dimensional user
type. For a type-Λi user, we denote βi and θi as his network
substitutability and data valuation, respectively. That is,
Λi = {βi, θi}. Similarly, we have Λj = {βj , θj} for the type-
Λj user.

Recall that the user’s willingness-to-pay σ(Q, β, θ) is

σ(Q, β, θ) = − [θβ + π(1− β)]
∂A(Q)

∂Q
, (40)

which has a separable structure between user’s private
information (β, θ) and the data capQ. Therefore, σ(Q,Λi) <
σ(Q,Λj) implies that

−
[
θiβi + π(1− βi)

] ∂A(Q)

∂Q
<

−
[
θjβj + π(1− βj)

] ∂A(Q)

∂Q
,

(41)

which means that

θiβi + π(1− βi) < θjβj + π(1− βj). (42)

Multiply both sides of (42) by −∂A(Q′)
∂Q , we obtain

−
[
θiβi + π(1− βi)

] ∂A(Q′)
∂Q < −

[
θjβj + π(1− βj)

] ∂A(Q′)
∂Q ,

(43)
which implies that σ(Λi, Q

′) < σ(Λj , Q
′).

Proof of Proposition 2. We prove this proposition based on
Lemma 1.

Recall that we consider a set Θ = {θk : 1 ≤ k ≤ K} of
K data valuation types and a set B = {βm : 1 ≤ m ≤ M}
of M network substitutability types. According to the proof
of Lemma 1, we find that the new user order (based on their
willingness-to-pay) only depends on the order of

θβ + π(1− β) = π + (θ − π)β. (44)

The expression in (44) monotonically increases in θ. How-
ever, it increases in β if θ > π and decreases in β if θ < π.
Therefore, we have three cases depending on the relation
between π, θ1, and θK .
• Fig. 3(a): The case of θK < π corresponds to Λ1 =
{βM , θ1} and ΛKM = {β1, θK}.

• Fig. 3(b): The case of θ1 < π < θK corresponds to Λ1 =
{βM , θ1} and ΛKM = {βM , θK}.

• Fig. 3(c): The case of π < θ1 corresponds to Λ1 =
{β1, θ1} and ΛKM = {βM , θK}.

Proof of Lemma 2. We prove this lemma together with
Proposition 3 based on the user’s payoff. Recall that the
type-(β, θ) user’s payoff is

S̄(Q,Π, β, θ) = θ
[
d̄− βA(Q)

]
− π(1− β)A(Q)−Π. (45)

Take the derivative of (45) with respect to the user’s data
valuation θ, and we obtain

∂S̄(Q,Π, β, θ)

∂θ
= d̄− βA(Q) ≥ 0, ∀ Q, (46)

which means that the user’s payoff increases in the data
valuation θ.

Take the derivative of (45) with respect to the user’s
network substitutability β, and we obtain

∂S̄(Q,Π, β, θ)

∂β
= [π − θ]A(Q), (47)

which means that the user’s payoff decreases in β if θ < π
and increases in β if θ > π.

Therefore, we have three cases depending on the relation
between π, θ1, and θK .
• Fig. 3(a): The case of θ1 < θK < π corresponds to Λε =
{β1, θ1}.

• Fig. 3(b): The case of θ1 < π < θK corresponds to Λε =
{β1, θ1}.

• Fig. 3(c): The case of π < θ1 corresponds to Λε =
{βM , θ1}.

Now we have proved the independence of Λε on the
contract item (Q,Π) in Lemma 2 and the mapping relation
in Proposition 3.

APPENDIX B

Proof of Lemma 3. We prove this lemma based on the IC
condition in Definition 2.

First, we prove that if Qi < Qj , then Πi < Πj . For any
feasible contract, we have the following IC condition for the
type-Λi user

L(Qi,Λi)−Πi ≥ L(Qj ,Λi)−Πj , (48)

which is equivalent to

Πi −Πj ≤ L(Qi,Λi)− L(Qj ,Λi). (49)

Since Qi < Qj , we have L(Qi,Λi) − L(Qj ,Λi) < 0, which
implies that Πi < Πj .

Second, we prove that if Πi < Πj , then Qi < Qj . For any
feasible contract, we have the following IC condition for the
type-Λj user:

L(Qj ,Λj)−Πj ≥ L(Qi,Λj)−Πi, (50)

which is equivalent to

L(Qj ,Λj)− L(Qi,Λj) ≥ Πj −Πi. (51)

Since Πj > Πi, we have L(Qj ,Λj) − L(Qi,Λj) > 0, which
implies that that Qj > Qi.

Proof of Lemma 4. We prove the lemma by contradic-
tion. Assume that the lemma is not true and there exist
σ(Q,Λi) > σ(Q,Λj) and Qi < Qj in a feasible contract.

According to the PIC condition in Definition 3, for the
type-Λi and type-Λj users, we have

L(Qi,Λi)−Πi ≥ L(Qj ,Λi)−Πj , (52a)
L(Qj ,Λj)−Πj ≥ L(Qi,Λj)−Πi. (52b)

Combining the two inequalities in (52), we have

L(Qi,Λi)− L(Qj ,Λi) ≥ L(Qi,Λj)− L(Qj ,Λj), (53)

where Qi < Qj .
Next we introduce Claim 1.
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Claim 1. For any feasible contract, consider two user types Λi
and Λj with σ(Q,Λi) > σ(Q,Λj), we have

L(Qi,Λi)− L(Qj ,Λi) < L(Qi,Λj)− L(Qj ,Λj),∀Qi < Qj .
(54)

Proof of Claim 1. We compute the difference of the two
sides in (54) as follows,

L(Qi,Λi)− L(Qj ,Λi)− L(Qi,Λj) + L(Qj ,Λj)

=

∫ Qi

Qj

∂L

∂Q

∣∣∣∣
(q,Λi)

dq −
∫ Qi

Qj

∂L

∂Q

∣∣∣∣
(q,Λj)

dq

=

∫ Qi

Qj

σ(q,Λi)dq −
∫ Qi

Qj

σ(q,Λj)dq

=

∫ Qi

Qj

[σ(q,Λi)− σ(q,Λj)] dq < 0,

(55)

where the last line follows σ(Q,Λi) > σ(Q,Λj) for any Q
and Qi < Qj .

Based on Claim 1, we can find the contradiction between
(53) and (54), which proves Lemma 4.

APPENDIX C

Proof of Lemma 5. We prove this lemma based on the PIC
conditions in Definition 3.

• According to the PIC conditions, for type-Λi1 and type-
Λi2 users, we have the following two inequalities,

L(Qi1 ,Λi1)−Πi1 ≥ L(Qi2 ,Λi1)−Πi2 , (56a)
L(Qi2 ,Λi2)−Πi2 ≥ L(Qi3 ,Λi2)−Πi3 . (56b)

Based on the necessary conditions in Theorem 1 and
the relation i2 < i3, we have Qi3 ≥ Qi2 . Accordingly,
Claim 1 indicates

L(Qi3 ,Λi2)− L(Qi2 ,Λi2) ≥ L(Qi3 ,Λi1)− L(Qi2 ,Λi1).
(57)

Combining the three inequalities in (56) and (57), we
obtain

L(Qi1 ,Λi1)−Πi1 ≥ L(Qi3 ,Λi1)−Πi3 . (58)

• Based on the PIC conditions for type-Λi3 and type-Λi2
users, we have

L(Qi3 ,Λi3)−Πi3 ≥ L(Qi2 ,Λi3)−Πi2 , (59a)
L(Qi2 ,Λi2)−Πi2 ≥ L(Qi1 ,Λi2)−Πi1 . (59b)

Based on the necessary conditions in Theorem 1 and the
relation i1 < i2, we have Qi2 ≥ Qi1 . Similarly, Claim 1
implies that

L(Qi2 ,Λi3)− L(Qi1 ,Λi3) ≥ L(Qi2 ,Λi2)− L(Qi1 ,Λi2).
(60)

Combining the three inequalities in (59) and (60), we
obtain

L(Qi3 ,Λi3)−Πi3 ≥ L(Qi1 ,Λi3)−Πi1 . (61)

Equations (58) and (61) indicate that φi1
IC⇐⇒ φi3 .

Proof of Lemma 6. We prove this lemma by showing the
following inequalities:

S̄(φi,Λi) ≥ S̄(φε,Λi), ∀ i 6= ε,

≥ S̄(φε,Λε),

≥ 0,

(62)

where the first inequality comes from the IC condition for
type-Λi users, the second inequality is due to the definition
of the smallest-payoff user type Λε in (21), and the last
inequality is from the condition φε < 0 of this lemma. This
completes the proof of Lemma 6.

APPENDIX D

Proof of Theorem 3. We prove this theorem by showing that
the subscription fees {Π∗i , 1 ≤ i ≤ KM} specified in (31) is
feasible and optimal.

First, the feasibility of {Π∗i , 1 ≤ i ≤ KM} is obvious,
since Π∗i takes the maximal value satisfying the sufficient
conditions in Theorem 2 for all i ∈ {1, 2, ...,KM}.

Second, we show that the subscription fees {Π∗i , 1 ≤ i ≤
KM} maximize the profit of the MNO by contradiction.
Assume that this is not true and there exists another feasible
subscription fee assignment {Π̃i, 1 ≤ i ≤ KM} such that

KM∑
i=1

[
Π̃i + P (Qi,Λi)− c · U(Qi,Λi)− J(Qi)

]
>

KM∑
i=1

[Π∗i + P (Qi,Λi)− c · U(Qi,Λi)− J(Qi)] ,

(63)

which is equivalent to

KM∑
i=1

Π̃i >
KM∑
i=1

Π∗i . (64)

Equation (64) implies that there exists at least a t ∈
{1, 2, ...,KM} such that Π̃t > Π∗t . Recall that Λε is the
smallest user type. Next we discuss two cases based on the
relation between t and u.
• Case I (t ≥ u): Based on the PIC condition for type-Λt

and type-Λt−1 users, we have

Π̃t ≤ Π̃t−1 + L(Qt,Λt)− L(Qt−1,Λt). (65)

Furthermore, Theorem 3 indicates that

Π∗t = Π∗t−1 + L(Qt,Λt)− L(Qt−1,Λt). (66)

Combining (65) and (66), we have Π∗t−1 < Π̃t−1. Con-
tinuing the above process, eventually we obtain

Π̃ε > Π∗ε = L(Qε,Λε), (67)

which means that {Π̃i, 1 ≤ i ≤ KM} violates the IR
condition for the type-Λε users, hence it is not feasible.

• Case II (t < u): Based on the PIC condition for type-Λt
and type-Λt−1 users, we have

Π̃t ≤ Π̃t+1 + L(Qt,Λt)− L(Qt+1,Λt). (68)

Furthermore, Theorem 3 indicates that

Π∗t = Π∗t+1 + L(Qt,Λt)− L(Qt+1,Λt). (69)
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Combining (68) and (69), we have Π∗t+1 < Π̃t+1. Con-
tinuing the above process, eventually we obtain

Π̃ε > Πε = L(Qε,Λε), (70)

which indicates that {Π̃i, 1 ≤ i ≤ KM} violates the IR
constraint for type-Λε users, hence it is not feasible.

Both cases above lead to the contradiction, hence the
MNO’s profit is maximized by {Π∗i , 1 ≤ i ≤ KM}.

APPENDIX E
MONOTONICITY RELAXATION

To take advantage of the separable structure in the objec-
tive function, we can first relax the monotonicity constraints
and maximize each Gi(·) over Qi separately as follows:

Q̃i = arg max
Q∈N

Gi(Q), ∀ i ∈ {1, 2, ...,KM}. (71)

If the solution {Q̃i, 1 ≤ i ≤ KM} obtained from
(71) is feasible, i.e., satisfying the monotonicity constraints
Q̃1 ≤ Q̃2 ≤ ... ≤ Q̃KM , then we obtain the optimal
solution of Problem 3. If not, however, we will use the
Dynamic Algorithm first proposed in [33] to adjust the
solution {Q̃i, 1 ≤ i ≤ KM} to make it feasible and generate
a new adjusted solution {Q̄i, 1 ≤ i ≤ KM}. The intuition
behind the Dynamic Algorithm is to first

1) Find a consecutive infeasible subsequence, e.g., Q̃n ≥
Q̃n+1 ≥ ... ≥ Q̃m where n < m and Q̃n > Q̃m, then
generate the adjusted solution {Q̄i, 1 ≤ i ≤ KM} as
follows:

Q̄i =


arg max

Q∈N

m∑
j=n

Gj(Q) if n ≤ i ≤ m,

Q̃i otherwise.

(72)

2) If the adjusted solution {Q̄i, 1 ≤ i ≤ KM} is not
feasible, then return to Step 1). If the adjusted solution
{Q̄i, 1 ≤ i ≤ KM} is feasible, then terminate.

The above two steps run iteratively until there is no
infeasible subsequence. Such an adjusted solution {Q̄i, 1 ≤
i ≤ KM} must be feasible. When Problem 3 is convex,
the adjusted solution produced by the algorithm must be
globally optimal as it satisfies the KKT condition [33]. When
Problem 3 is non-convex, then the adjusted solution is a
locally optimal solution (but may not be globally optimal).

APPENDIX F

Proof of Proposition 4. We prove this proposition based on
the definition of Problem 4. Recall thatH(n, q) is the optimal
value of the level-(n, q) sub-problem, defined as follows:

H(n, q) = max
n∑
i=1

Gi(Qi) (73a)

s.t. Q1 ≤ Q2 ≤ ... ≤ Qn−1 ≤ Qn ≤ q, (73b)
Qi ∈ N, ∀ i ∈ {1, 2, ..., n}, (73c)

var. Qi, 1 ≤ i ≤ n. (73d)

Here the decision variables are Qi for all i ∈ {1, 2, ..., n}.

For notation clarity, we express H(n, q) as

H(n, q) = max
n−1∑
i=1

Gi(Qi) +Gn(x) (74a)

s.t. Q1 ≤ Q2 ≤ ... ≤ Qn−1 ≤ x, (74b)
Qi ∈ N, ∀ i ∈ {1, 2, ..., n− 1}, (74c)
x ≤ q, (74d)
x ∈ N, (74e)

var. x and Qi, ∀ i ∈ {1, 2, ..., n− 1}. (74f)

Furthermore, the optimal value H(n− 1, x) of the level-
(n− 1, x) sub-problem is

H(n− 1, x) = max
n−1∑
i=1

Gi(Qi) (75a)

s.t. Q1 ≤ Q2 ≤ ... ≤ Qn−1 ≤ x, (75b)
Qi ∈ N, ∀ i ∈ {1, 2, ..., n− 1}, (75c)

var. Qi,∀ i ∈ {1, 2, ..., n− 1}. (75d)

We note from (74) and (75) that

• The first term
∑n−1
i=1 Gi(Qi) in (74a) is the objective

function in (75a).
• The constraint (74b) is the same as (75b).
• The constraint (74c) is the same as (75c).

Therefore, combining (74) and (75), we obtain

H(n, q) = max H(n− 1, x) +Gn(x)

s.t. x ≤ q,
x ∈ N,

(76)

which completes the proof.

Proof of Proposition 5. We prove the two properties of
H(n, q) based on the definition in Problem 4.

First, it is easy to see that H(n, q) is non-decreasing in
q, since the parameter q in Problem 4 represents the upper
bound of the feasible domain.

Next we prove the existence of the critical point q̂n.
Recall that H(n,D) and Q?(n,D) = {Q?i (n,D), 1 ≤ i ≤ n}
represent the optimal value and the optimal solution of
the level-(n,D) sub-problem, respectively. Then the n-th
element of the optimal solution Q?(n,D) is the critical point
q̂n, i.e.,

q̂n , Q?n(n,D). (77)

In this case, we have

H(n, q) = H(n,D), ∀q ≥ q̂n. (78)

Proof of Theorem 4. We prove this theorem based on the
definition of the level-(n, q) sub-problem (in Problem 4) and
the critical point (77).
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According to Problem 4, we have the following level-
(KM,D) sub-problem, which is equivalent to Problem 3.

max
KM∑
i=1

Gi(Qi) (79a)

s.t. Q1 ≤ Q2 ≤ ... ≤ QKM ≤ D (79b)
Qi ∈ N, ∀ i ∈ {1, 2, ...,KM} (79c)

var: Qi, 1 ≤ i ≤ KM. (79d)

Next we explain the optimal solution {Q?i (KM,D), 1 ≤ i ≤
KM} of the above level-(KM,D) sub-problem (79).

First, for the KM -th element Q?KM (KM,D), according
to the definition of the critical point (77), we have

Q?KM (KM,D) = q̂KM . (80)

Substituting {Q?i (KM,D), 1 ≤ i ≤ KM} into (37), we
obtain

H(KM,Q?KM ) = H (KM − 1, Q?KM ) +GKM (Q?KM ) ,
(81)

where H (KM − 1, Q?KM ) is the optimal value of the level-
(KM − 1, Q?KM ) sub-problem. Based on the non-decreasing
property and the critical point in Proposition 5, we know
that

Q?KM−1(KM,D) = min{q̂KM−1, Q
?
KM (KM,D)}. (82)

Continuing the above process, we can show that for all i ∈
{1, 2, ...,KM − 1}, we have

Q?i (KM,D) = min{q̂i, Q?i+1(KM,D)}, (83)

which completes the proof.

APPENDIX G
A NUMERICAL EXAMPLE FOR THE DQA ALGO-
RITHM

Next we provide a numerical example to demonstrate
the computation of the optimal data caps based on H(n, q).

For illustration simplicity, we let KM = 4 and D = 9.
Accordingly, we denote Q∗1, Q∗2, Q∗3, and Q∗4 as the optimal
data caps in Problem 3.

As shown in Fig. 11, the horizontal axis represents q ∈
{0, 1, ..., 9}, the vertical axis represents n ∈ {1, 2, 3, 4}, and
the value in each box represents H(n, q). In this numerical
example, the optimal value of Problem 3 is H(4, 9) = 90.
Furthermore, we will show that the optimal data caps of
Problem 3 is {Q∗1, Q∗2, Q∗3, Q∗4} = {3, 5, 5, 7}, as follows:
• For Q∗4 = 7: In Fig. 11, H(4, 8) = H(4, 9) indicates that

the optimal data cap Q∗4 is no larger than the domain
upper bound 8, i.e., Q∗4 ≤ 8. Otherwise, H(4, 8) must
be smaller than H(4, 9). Similarly, H(4, 7) = H(4, 8)
implies Q∗4 ≤ 7 as well. However, H(4, 6) < H(4, 7)
reveals that Q∗4 = 7. Otherwise, if Q∗4 < 7, then we
would have H(4, 6) = H(4, 7). Furthermore, according
to Proposition 4, we have

H(4, 9)︸ ︷︷ ︸
90

= H(3, Q∗4)︸ ︷︷ ︸
87

+G4(Q∗4), (84)

which shows that G4(Q∗4) = 3 according to Fig. 11.

32 43 50 66 70 74 83 90 90 90

12 32 44 49 65 87 87 87 87 87

8 12 20 28 33 40 56 60 68 68

12 18 22 35 35 35 35 35 35 35

Fig. 11: An example of computing {Q∗1, Q∗2, Q∗3, Q∗4} based
on the table of H(n, q) for all 1 ≤ n ≤ 4 and 0 ≤ q ≤ 9.

• For Q∗3 = 5: Given Q∗4 = 7, we know that Q∗3 ≤ Q∗4 = 7
considering the monotonic constraints (35b) in Problem
3. Similarly, the equality H(3, 6) = H(3, 7) implies
Q∗3 ≤ 6 and H(3, 5) = H(3, 6) implies Q∗3 ≤ 5.
Then the inequality H(3, 4) < H(3, 5) implies Q∗3 = 5.
Furthermore, according to Proposition 4, we have

H(4, 9)︸ ︷︷ ︸
90

= H(2, Q∗3)︸ ︷︷ ︸
40

+G3(Q∗3) +G4(Q∗4)︸ ︷︷ ︸
3

, (85)

which indicates that G3(Q∗3) = 47 according to Fig. 11.
• For Q∗2 = 5: Given Q∗3 = 5, we know Q∗2 ≤ Q∗3 = 5

considering the monotonic constraints. Similar to the
above argument, the inequality H(2, 4) < H(2, 5) im-
plies Q∗2 = 5. Moreover, we have the following equality

H(4, 9)︸ ︷︷ ︸
90

= H(1, Q∗2)︸ ︷︷ ︸
35

+G2(Q∗2) +G3(Q∗3)︸ ︷︷ ︸
47

+G4(Q∗4)︸ ︷︷ ︸
3

,

(86)
which leads to G2(Q∗2) = 5.

• For Q∗1 = 3: Given Q∗2 = 5, we know Q∗1 ≤ Q∗2 =
5. The inequality and equalities H(1, 2) < H(1, 3) =
H(1, 4) = H(1, 5) implies Q∗1 = 3 and G1(Q∗1) = 35.

APPENDIX H

Similar as Section 6.1.3, we take the data mechanism κ =
1 as an example to investigate how the MNO’s capacity cost
z affects the optimal contract items.

Fig. 12 shows the impact of the MNO’s capacity cost
z. Specifically, there are a total of seven different contract
items in the optimal contract. The seven curves in Fig. 12(a)
represent the corresponding different data caps. We note
that the optimal data caps (except the zero cap) decrease in
the MNO’s capacity cost. Fig. 12(b) plots the corresponding
subscription fees in the optimal contract. We find that
• The subscription fee of the zero-cap contract item (i.e.,

the bottom blue circle curve in Fig. 12(b)) does not
change in the capacity cost z. This results from the
individual rationality condition in (31a).

• The subscription fees of small-cap contract items (e.g.,
the cross and triangle curves in Fig. 12(b)) decrease in
the MNO’s costs. While the subscription fees of the
large-cap contract item (e.g., the diamond curves in
Fig. 12(b)) increases in the MNO’s costs. Therefore, the
large-cap contract item becomes less economical to the
users (in terms of the average price Π/Q) as the MNO’s
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(b) Optimal subscription fees.

Fig. 12: Impact of MNO’s capacity cost z.
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Fig. 13: Impact of the MNO’s capacity cost z.

capacity cost increases. That is, the profit-maximizing
MNO tends to compensate its capacity cost by charging
those users who are willing to pay for the large-cap
contract item.

Next we evaluate the MNO’s profit and user’s payoffs in
the four scenarios of Table 4 under different capacity cost. In
Fig. 13, the horizontal axises in the two sub-figures represent
the MNO’s marginal capacity cost.

• Fig. 13(a) plots MNO’s profits in the four scenarios.
Overall, the MNO’s profits decrease in its capacity cost
z. By comparing single-cap traditional pricing bench-
mark and the multi-cap traditional pricing scheme, we
note that the price discrimination under our optimal
contract can significantly increase the MNO’s profit
(176% on average). By comparing the three multi-cap
curves, we find that the MNO obtains a higher profit
under a more time-flexible data mechanism. Specifi-
cally, compared with Scenario (ii) (i.e., the circle curve),
MNO’s profits increases by 12% on average in Scenario
(iii) (i.e., the triangle curve) and 23% on average in
Scenario (iv) (i.e., square curve). This implies that under
the multi-cap scheme, offering a better time flexibility
can further improve the MNO’s profit.

• Fig. 13(b) plots the users’ total expected payoff in
four scenarios. First, we observe that users’ payoff
decreases in the MNO’s capacity cost. By comparing
the single-cap traditional pricing benchmark and the
multi-cap traditional pricing scheme, we notice that
the price discrimination under our optimal contract
reduces users’ expected payoff (20% on average), which
means that the MNO captures more consumer surplus
through the price discrimination. Comparing the three

TABLE 5: Four cases of user type cluster.

Case Data valuation Network substitutability

2×2 {24.6, 63.4} {0.60, 0.87}
3×3 {18.3, 44.4, 80.7} {0.48, 0.72, 0.90}
4×4 {16.2, 36.1, 61.9, 96.3} {0.51, 0.71, 0.84, 0.95}
5×5 {14.4, 32.2, 48.9, 76.1, 103.9} {0.40, 0.58, 0.71, 0.82, 0.94}

0

3

6

9

12

15

M
N

O
 P

ro
fit

2×2 3×3 4×4 5×5

κ = 0
κ = 1
κ = 2

(a) MNO’s profit.

6

9

12

15

18

21

24

U
se

r 
P

ay
of

f

2×2 3×3 4×4 5×5

κ = 0
κ = 1
κ = 2

(b) All users’ expected payoff.

Fig. 14: Impact of the number of clustered user types.

multi-cap schemes, we find that the time-flexible data
mechanisms can improve the users’ payoff. Specifically,
compared with Scenario (ii) (i.e., the circle curve), users’
payoff increases by 3.1% on average in Scenario (iii)
(i.e., the triangle curve) and 5.2% on average in Scenario
(iv) (i.e., square curve).

APPENDIX I

In Section 6, we cluster the empirical data valuation
and network substitutability into four groups, respectively.
We then proceed the contract design based on the method
in Section 5 for a total of sixteen user types. Next we
investigate the impact of the number of clustered user types
on the performance of the optimal contract.

We will compare four scenarios, where the users’ each
characteristic is clustered into two groups, three groups,
four groups, and five groups, respectively. Table 5 shows
the corresponding mean values of the users types in the four
cases. Fig. 14 shows the performance of the optimal contract
in the four cases under three data mechanisms. Here we let
the operational cost be c = 6RMB/GB and the capacity cost
be z = 1.3RMB/GB.
• Fig. 14(a) plots the MNO’s profits in the four cases

under three different data mechanisms. Overall, the
MNO’s profit increases in the number of clustered user
types. Moreover, the time-flexible data mechanism can
further increase the MNO’s profit given the number of
user types.

• Fig. 14(b) plots all users’ average payoff in the four
cases under three data mechanisms. Overall, all users’
average payoff decreases in the number of user types
considered by the MNO. But a more time-flexible data
mechanism increases the users’ payoff given the num-
ber of user types.

Based on the above discussion, we conclude that when
the MNO divides the users into more types, the MNO’s
profit increases but the users’ average payoff decreases. It
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means that a finer granularity price discrimination reduces
the consumer surplus. In all cases, the time-flexible data
mechanisms can increase both the MNO’s profit and users’
payoff, leading to a win-win situation.
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