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Learning to Coordinate in a Decentralized
Cognitive Radio Network in Presence of
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Abstract—Efficient utilization of licensed spectrum in the cognitive radio network is challenging due to lack of coordination among the
Secondary Users (SUs). Distributed algorithms proposed in the literature aim to maximize the network throughput by ensuring
orthogonal channel allocation for the SUs. However, these algorithms work under the assumption that all the SUs faithfully follow the
algorithms which may not always hold due to the decentralized nature of the network. In this paper, we study distributed algorithms that
are robust against malicious behavior (jamming attack). We consider both the cases of jammers launching coordinated and
uncoordinated attacks. In the coordinated attack, the jammers select non-overlapping channels to attack in each time slot and can
significantly increase the number of collisions for SUs. We setup the problem in each scenario as a multi-player bandit and develop
algorithms. The analysis shows that when the SUs faithfully implement proposed algorithms, the regret is constant with high probability.
We validate our claims through exhaustive synthetic experiments and also through a realistic USRP based experiment.
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1 INTRODUCTION
The issue of spectrum scarcity has constantly driven re-
searchers to look for an efficient utilization of available
licensed spectrum. Among various envisioned paradigms
such as device-to-device communications and LTE-
unlicensed network, dynamic spectrum access (DSA) based
cognitive radio network (CRN) seems to be a promising
solution to deal with the problem of spectrum scarcity
incurred due to static spectrum allocation policies [1]–[3].
DARPA’s spectrum collaboration challenge 2016 and 2018
were significant steps to validate the feasibility of DSA in
real radio environment [4].

CRN consists of licensed or primary users (PUs) and
unlicensed or secondary users (SUs). The PUs coordinate
for channel assignments through central control. However,
such coordination is not feasible for SUs in many sce-
narios. Such network is referred to as infrastructure-less
CRN. To overcome lack of coordination among SUs, several
distributed algorithms like ρrand [5], multi-user ε−greedy
collision avoiding (MEGA) [6], musical chair (MC) [7] are
proposed which guarantee orthogonal channel allocation
if faithfully implemented by all the SUs. However, the
decentralized network gives rise to the possibility that some
of the SUs need not implement the algorithm faithfully, or
even worse, launch Denial-of-Service attacks and degrade
network performance. Such SUs are referred to as jammers
or malicious users (MUs). It is thus important that the
distributed algorithms for the legitimate SUs (henceforth
simply referred as SUs) identify such malicious behavior
and achieve best possible throughput in their presence. In
this work, we develop distributed algorithms that are robust
against various jamming attacks.

We consider an overlay CRN where SUs can transmit on
a channel only if it is idle, i.e., no PU is active on that chan-

• Suneet Sawant is with the Department of Electrical Engineering, IIT
Bombay, India. E-mail: suneet.sawant0308@gmail.com. Rohit Kumar is
with the Department of ECE, National Institute of Technology, Delhi,
India. E-mail: rohitkumafr@nitdelhi.ac.in. Manjesh K. Hanawal is with
IEOR, IIT Bombay, India. E-mail: mhanawal@iitb.ac.in. Sumit J. Darak
is with the Department of ECE, Indraprastha Institute of Information
Technology, Delhi, India. E-mail: sumit@iiitd.ac.in.

nel. For primary transmissions, we assume widely studied
model that each channel being idle is an independent and
identically distributed process1. Transmissions of the SUs
are time-slotted and packeted. At the end of each slot,
the receiver acknowledges successful reception of packets
through ACK/NACK signals. A transmission by the SU fails
if another SU or a jammer or both transmit on the same
channel, and we refer to this event as a collision. Otherwise,
transmission is considered to be successful.

The aggregate network throughput for the SUs is highest
if all of them select orthogonal channel from the ‘top’N
channels, where N is the number of SUs. The existing dis-
tributed algorithms thus aim to learn the channel statistics
as well as the number of SUs and then find orthogonal
channel assignments in the top N channels. In presence of
jammers, the estimation of N can be inaccurate and the
SUs may end up settling on sub-optimal channels or on
non-orthogonal channels resulting in sub-optimal network
performance. We focus on learning methods that not only
estimate the channel statistics and the number of SUs but
also the number of jammers correctly so that SUs can find
orthogonal channel assignment in the ‘appropriate’ set of
top channels. We assume that the jammers are another set
of SUs and their behavior is similar to other (legitimate)
SUs in all respects except that they do not strictly follow
the common protocol (distributed algorithm). We allow the
presence of multiple jammers who are either coordinated
or can act independently; when they coordinate, they attack
non-overlapping channels causing maximum damage. We
consider the worst possible attack by the jammers. Specif-
ically, we assume that once the jammers estimate N , they
attack only top N -channels. Our algorithms perform only
better against any weaker jamming attacks.

Some part of our distributed algorithms is similar to
the Musical Chairs (MC) algorithm [7]. MC is designed
to work in a scenario where channels are always idle and
there are no malicious users. We develop new algorithms
that are robust to malicious jamming attacks and applicable

1. More realistic Markovian channel behavior can also be studied
using Multi-Armed Bandit for Markov Chains. We leave it as future
work
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to CRN where channels are not always idle. Also, our
approach ensures fairness in channel assignment to SUs
as we allow them to use the ’top’ channels sequentially
instead of locking each SU on non-overlapping channels (see
sequential hopping later). Our algorithms run in multiple
phases; in the first phase, each SU randomly hops on all
channels and learn the channel statistics and number of
users (SUs and jammers) from the collision statistics. In the
second phase, they find non-overlapping channels. When
the jammers coordinate, they can estimate the number of
SUs through collision information, but it is not possible for
the SUs to estimate the number of SUs and the number of
jammers through the collision information. We devise a new
mechanism for SUs to get an estimate of the number of jam-
mers and SUs and then find non-overlapping channels. Our
algorithms minimize regret in a multi-player bandit where
regret is defined as the difference between best aggregate
throughput achievable when all the SUs cooperate with
prior knowledge of network parameters (channel statistic,
number of SUs and jammers) and aggregate throughput
achieved when they do not have any prior knowledge. Our
contributions can be summarized as follows:
• When the jammers coordinate and each SU can iden-

tify whether a collision is caused by the presence of
other SUs or jammers, we propose algorithm CDJ
(Coordination in presence of Distinguishable Jam-
mers) and show that it gives constant regret with
high confidence.

• When the jammers coordinate and SUs cannot iden-
tify whether a collision is caused by the presence of
other SUs or jammers, we propose algorithm CNJ
(Coordination in presence of Non-distinguishable
Jammers) which is also shown to give constant regret
with high confidence.

• When the jammers do not coordinate, we show
that a straightforward modification of CNJ, named
CUJ (Co-ordination in presence of uncoordinated
and non-distinguishable jammers) achieves constant
regret with high confidence.

• We validate our guarantees of the algorithms
through extensive simulations. We give a realistic
universal software radio peripheral (USRP) based ex-
perimental setup and demonstrate the effectiveness
of our algorithms.

The paper is organized as follows. The network
model and setup is discussed in Section 2. The proposed
algorithms, CDJ, CNJ and CUJ, along with respective
regret bounds are presented in Section A, B and C
respectively. The simulation and experimental results on
USRP testbed are discussed in Section 6.1 and Section 6.2
respectively. Section 7 concludes the paper and discusses
future directions. All the missing proof are given in the
supplementary.

Related Work: In the last decade, significant research work
has been observed in areas such as narrowband and wide-
band spectrum sensing [1]–[3], [8], DSA [2], [3]. Among
them, the DSA in a decentralized network is the most
challenging and complex due to the lack of coordination
among the SUs. Next, we discuss the papers most related to
our work.

Various algorithms [5]–[7], [9]–[13] have been proposed
to make the DSA feasible in the decentralized networks. The
decentralized auction based algorithms in [12], [13] allow
SUs to transmit on their preferred frequency channel. How-
ever, for collision free transmissions, they either need a cen-
tral controller or communication links between SUs which

may not be feasible in the decentralized infrastructure-less
CRN. The ρrand [5] employs multi-armed bandit algorithm
based channel selection for estimation of the channel rank-
ing and randomization based orthogonalization of SUs in
the top N channels and it is assumed that all SUs have prior
knowledge ofN . The ρrand is extended in [9], [10] by replac-
ing the randomization based SU orthogonalization with the
learning based scheme leading to further improvement in
regret. The channel hopping based algorithm in [11] allows
SUs to orthogonalize into collision free hopping and hence
does not need prior knowledge of N . However, SUs select
all channels in sequential hopping manner leading to higher
regret especially when some channels are significantly better
than others. In addition, the main drawback of the algo-
rithms in [5], [9]–[13] is the requirement of prior knowledge
of number of SUs, N .

In the decentralized networks, it is difficult to have
knowledge of the number of SUs, N . To the best of our
knowledge, MEGA [6] and MC [7] are the only algorithms
that allow SU to independently estimate N in the decen-
tralized network. It has been shown that MC outperforms
MEGA and it is simpler to implement. All these algorithms
guarantee good performance of the network only if they
are implemented faithfully by all the SUs, otherwise the
performance guarantee need not hold.

Various algorithms in the literature have considered
the DSA in the presence of jammers when some form of
central control is available [14]. The common observation is
that the conventional jammer avoidance strategies such as
frequency hopping or direct sequence spread spectrum may
not be efficient in CRN since they demand control channel
link between SU transmitter and receiver. In addition, the
channels over which SU transmits may change dynamically
over time. The Jammer Inference-based Jamming Defense
(jDefender) algorithm in [15] identifies the SUs acting as
jammers based on their channel access information. How-
ever, the channel allocation must be done using the central
database and hence, it is not feasible in the decentralized
network.

In [16], the PUs or central coordinator helps SUs by
transmitting specific jamming signal in the vacant channels.
The jammers will not jam such channels assuming the
presence of PUs while the SUs will detect the channel as
vacant using advanced sensing involving cancellation of
jamming signal. In addition to the need of the controller,
this algorithm demands advanced signal processing at the
SU terminals and hence, may not be suitable for battery
operated SU terminals. The algorithm in [17] employs online
learning algorithm for a transmitter receiver pair of the
SU to rendezvous on a common channel. The algorithm
incurs a significant number of collisions among SUs espe-
cially for large number of SUs. In [18], the anti-jamming
power allocation strategy for SUs based on reinforcement
learning algorithms, including Q-learning and WoLF-PHC
is proposed. It resists smart jamming in cooperative cog-
nitive radio networks but needs a high processing time.
In [19], a real-time Medium Access Control-based (MAC-
based) jamming detection scheme is proposed to meet the
requirements of safety applications in vehicular networks
(VNs). It reduces the false alarm rate and the time required
to monitor VNs but no anti-jamming solution is provided in
this work.

To the best of our knowledge, the algorithms in the
literature require some presence of central controller or prior
knowledge of network parameters to improve performance
in presence of jamming attack. This paper aims to develop
algorithms that overcome these limitations. Further, we
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consider the worst possible attack from the jammers and
hence our performance guarantees are pessimistic. They can
be improved if a specific jammer strategy is known.

2 NETWORK MODEL

Consider a decentralized network consisting of N non-
cooperative SUs competing forK(≥ N) uniform bandwidth
channels in the licensed spectrum. We assume time slotted
communication, i.e., t = 1, 2, · · ·, where each slot is further
divided into two sub-slots. In the first sub-slot, each SU
senses the channel for active PUs. In the second sub-slot,
they transmit if the channel is vacant. We assume there
are J < N malicious users (or jammers) that have similar
capability as that of SUs and follow identical process in each
time slot. For illustration, consider the network shown in
Fig.1a, consisting of the cellular base station (BS), PUs, SUs
and malicious users (MUs) or jammers. The BS provides the
data and control link only to the PUs. In case of packets
received from SUs over any of the licensed channel, BS
simply forwards the received packets to the destination
based on the information in the header of the received
packet. Such network is referred to as infrastructure-less
CRN since BSs do not provide control link to SUs. As shown
in Fig.1b, when two or more SUs or jammers transmit on the
same vacant channel, collision occurs. In case of no collision,
data transmission is assumed to be successful. For simplicity
of analysis, we assume ideal detector, i.e. no sensing error.
Also, SUs can sense only one channel in each time slot due
to hardware and delay constraints.

SU1

SU2

SU3

MU1

PU2

Base 
Station

PU1

PU4

PU3
PU Data link

SU Data link

PU Control link
MU Data link

(a)

SU1 MU1
SU2
SU3

SU1 SU3 MU1SU2

SU3
SU1
MU1 SU2

Busy bands

T=t1

T=t2

T=t3

1 2 3 K

(b)

Fig. 1: (a) The network model, and (b) Status of frequency
bands at different time instant along with various collision
events.

The occupancy of channels by PUs in each slot is ran-
dom. Let pi ∈ [0 1], i ∈ [K] denote the probability that
i-th channel is occupied by a PU (or busy) in a slot. This
process is assumed to be independently and identically
distributed across time slots and unknown to the SUs and
the jammers. The same network model is considered for the
study of non-cooperative CRN in several works including
[5], [11], [10] [13]. Other important aspects of networking
like, rendezvous, error-free sensing, time-synchronization
are important but not considered here to keep the focus of
the paper on the learning aspects as done in other papers
[5], [11], [10] [13]. They can be addressed separately and out
of scope of this work.

In the following we assume that
∑
i pi < K , otherwise

SUs cannot use the channels. This assumption also implies
that there exists an θ > 0 such that 1 −

∑
i pi/K > θ. Let

π denotes the vector of channel indices sorted according to
increasing value of {pi} (with ties broken arbitrarily). We
denote the ith component of π by πi. For later use, define
∆ = pπN − pπN+1

i.e., gap between the channel statistics of
N th and (N + 1)th best channels. We assume that ∆ > 0.

We use the notation round(a) to denote that a is rounded off
to its nearest integer.

The SUs select a channel in each slot to transmit their
packets. The channel selection is done by either hopping on
to a channel randomly or sequentially. In random hopping,
a channel is selected uniformly at random in each slot.
In sequential hopping, SUs index the channels and select
a new channel in each slot from the indices sequentially.
When all the channels are selected once, they repeat the
process. If SUs know the values of N ,J and {pi} and the
jammers attack the top N channels, then SUs can hop on
top N∗=N + m, such that average throughput per channel
is maximized for each SU. Note that by hopping onN∗ ≥ N
top channels the SUs may reduce the number of collisions
with the jammer and get better throughput. For such case,
N∗=N +m is computed as follows:

OP (N, J, {pi}) :

m = arg max
w

(
N∑
i=1

1− pπi
N + w

(
1− J

N

)
+
N+w∑
i=N+1

1− pπi
N + w

)
. (1)

The first term in the summation is the probability of a
collision-free transmission on the top N channels and the
second term is the probability of a collision-free transmis-
sion on the next top w channels. Note that SUs experience
no collision from jammers on these w channels.

The jammers are assumed to transmit enough power in
each slot so that if the SU transmits on the same channel
its transmission fails due to high interference. The jammers
do not transmit on a channel if it is occupied by a PU, but
always transmit power if the selected channel is idle. The
jammers can be smart and detect transmissions from SUs on
a vacant channel. In this case, they can continuously attack
that channel till the SUs leave it. However, in our approach,
SUs hop in every slot (either randomly or sequentially),
hence sensing the presence of SUs is not useful to the
jammers. If the jammers learn channel statistics, they can
continuously attack the top J channels. However this is
not effective as the SUs can avoid the top J channels (once
they learn J ), and they will never see jamming. So, the best
strategy for the jammers is to attack the top N channels
randomly. In the following, we assume that the jammers
attack J channels in each slot selected uniformly at random
from the top N channels. Our method works without mod-
ification even if the jammers attack any J channels in each
slot selected uniformly at random.

We consider coordinated jammers in which jammers
communicate with each other and attack non-overlapping
(orthogonal) channels in each time slot, thus avoiding col-
lisions among themselves. This case arises when there is
a single jammer with multiple radios. The jammer can then
attack distinct channels in each slot. For this case, we further
consider two possible scenarios. In the first scenario, each
SU can identify whether or not a jammer is involved in
a collision experienced by it and in the second case, they
cannot do so. We develop decentralized algorithms for both
the scenarios. In the uncoordinated case where jammers
cannot communicate, jammers operate independently and
attack channels without the knowledge of the channels
attacked by other jammers.

We evaluate the performance of our algorithms in terms
of regret. Regret is defined as the difference of expected op-
timal throughput and runtime average throughput defined
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as follows:

Regret = Rop − E
[
T∑
t=1

N∑
n=1

rnt

]

= Rop −
T∑
t=1

N∑
n=1

(1− pInt )(1− E [ηIt ]). (2)

Rop is the maximum total throughput achievable for SUs. It
is achieved when each SU transmits on one of N∗ channels
and do not collide with any other SU in each slot. rnt is the
reward at time t for SU n, Int denote the channel selected
by SU n at time t, pInt and ηInt denote the busy probability
and collision indicator on channel Int . If there is collision,
collision indicator is set to 1, otherwise it is 0. The various
notations and their definitions are summarized in Table 1.

TABLE 1: Notations and Definitions

Notations Definitions
N (or N̂ ) Actual (or estimated) number of non-cooperative SUs
K No. of channels
J (or Ĵ) Actual (or estimated) number of jammers
N̂ + J Estimation of total number of SUs and jammers
t Current time slot
T Length of the time horizon
TC Time required for estimating correct channel ranking,

number of the SUs and Jammers.
pi (or p̂i) Actual (or estimated) probability that ith channel

is occupied by a PU in a slot
N∗ Optimum number for channels for maximizing SU

throughput after learning.
π Vector of channel indices sorted according to

increasing value of pi
∆ Gap between Nth and (N + 1)th best channel
Rop Maximum total throughput achievable for SUs
rnt Reward at time t for SU n

Int Channel selected by SU n at time t
ηInt Collision indicator on channel Int
i0 Index of selected channel at the end of OR phase
pInt Busy probability on channel Int
C Total number of collisions
CJ Number of collisions from jammers
Oi Number of times ith channel is selected
Bi Number of times ith channel is sensed as busy
F Number of times channel is sensed as vacant
l Indicator of successful transmission on a vacant

channel
x Index of selected channel in π
pnc Probability of no collision
pc Collision probability of a SU at any time slot t
TO Time required for orthogonalization of all SUs on K

channels with high probability
TJ Time required for estimation of J
TL Sum of TC , TO and TJ
TR Time required for ε-correct ranking of channels
TNE Time required for estimation of N
TE Time required for estimation of number of active users

3 DISTINGUISHABLE JAMMERS
In this section, we assume that the SUs can identify if a
collision is due to the presence of a jammer. We say that
collisions, in this case, are distinguishable. For illustration,
we discuss two scenarios where SU might be able to detect
a collision due to a jammer: 1) When the SUs are equipped
with in-band full-duplex radios: In this case, the SUs can
transmit and receive on the same channel. As a protocol,

all the SUs stop to transmit (back-off) if they experience a
collision. But, the jammers need not back-off and continue
to transmit. After backing-off, if the SU observes activity on
the channel, it must be the case that a jammer is present
on the channel, otherwise, collision is due to the other SUs.
2) Through acknowledgments: At the end of each time-slot,
each SU receives an ACK/NACK feedback. If a collision
happens due to other SUs but not the jammers, each SU
receives a NACK signal. However, if the collision is due to
the jammers, NACK signal is also jammed and hence, SUs
do not receive it.

Our proposed algorithm, named CDJ (Secondary User
Coordination in Network with Jammers), is run at each SU
terminal. The algorithm has two phases namely, Channel
Ranking (CR) and Orthogonalization (OR). In the CR phase,
the primary goal of each SU is to identify the channel rank-
ing and number of jammers (J ) and SUs (N ). Since each user
can identify the presence of a jammer in a collision, the total
number of collisions caused by the jammers can be known.
Using this information and the total number of collisions, N
and J are estimated. In the OR phase, SUs hop randomly till
they get a collision-free transmission on a channel and hop
sequentially thereafter. As the jammers can cause maximum
damage when they attack the top N channels, they also
learn the channel ranking and the number of SUs following
the CR phase. They attack J randomly selected channels
from the top N channels in each slot thereafter.

Algorithm 1 CDJ

Input: TC , T,K
(N̂ , Ĵ , {p̂i}) = CR1(TC ,K)
N∗ = OP (N̂ , Ĵ , {p̂i})
OR(π, N∗, T )

3.1 SU Algorithm: CDJ

CDJ described in Algorithm 1 consists of two subroutines
that run sequentially. The first subroutine named CR1 runs
for TC (see (13)) time slots. In each slot, the SU selects
a channel (It) uniformly at random. If It is idle then the
SU transmits on It and checks for collision. If a collision
occurs, the SU looks for the presence of a jammer and, if
detected, updates the count of the number of collisions from
jammer (CJ ). If no collision occurs, transmission is treated
as successful and reward (rt) of 1 unit is assigned in that
slot. The algorithm keeps track of number of times each
channel is selected (OIt ), how many times selected channels
are found busy (BIt ), total number of vacant slots (F ), total
number of collisions (C), and use it to estimate N, J and
{pi}. These estimates are then used to find N∗ from (1). The
second subroutine OR takes an array of channel indices (π)
sorted in increasing order of the estimated channel busy
probabilities, N∗, and time horizon T as inputs. In this
subroutine, each SU randomly hops on top N∗ channels till
its transmission succeeds on a vacant channel (l = 1), and
once successful on a channel, they hop sequentially from
that channel following indices from π.

3.2 Jammer Algorithm

The algorithm for the jammer is described in Algorithm 2,
which is similar to the SUs till TC . After TC , the jammer
deviates and attack any J channels from top N channels in
each slot. This results in maximum throughput loss for SUs.
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Subroutine 1: CR1

1: Input: TC , K
2: Set CJ = 0, C = 0, Oi = 0, Bi = 0 ∀i ∈ 1 . . .K
3: for t = 1 . . . TC do
4: Select It ∼ U(1 . . .K)
5: OIt ← OIt + 1
6: if selected channel It busy then
7: BIt ← BIt + 1, rt ← 0
8: else
9: Transmit on It, F ← F + 1

10: if collision then
11: C ← C + 1, rt ← 0
12: if collision from Jammer then
13: CJ ← CJ + 1
14: end if
15: else
16: rt ← 1
17: end if
18: end if
19: end for
20: set p̂i = Bi

Oi
∀i ∈ 1 . . .K and Ĵ = round (KCJ/F ))

21: N̂ = round

(
1 +

log(1−CF )−log
(
1− Ĵ

K

)
log(1− 1

K )

)

Subroutine 2: OR
1: Input: π, N∗, T
2: Set l = 0, x = 0
3: for t = TC + 1, TC + 2 . . . T do
4: if l = 1 then
5: x← (x+ 1) modulo N∗ and transmit on πx
6: if channel πx idle and no collision then
7: rt ← 1
8: end if
9: else

10: select It ∼ U(π1 . . . πN∗) and transmit on It
11: if channel πIt idle and no collision then
12: l← 1, x← index of It in π, rt ← 1
13: end if
14: end if
15: end for

Algorithm 2 Jammer Algorithm

1: Input: TC , T
2: Set C = 0, B = 0, Oi = 0, Bi = 0 ∀i ∈ 1 . . .K
3: for t = 1 . . . TC do
4: Select J orthogonal channels from [K] randomly
5: OIt ← OIt + 1 for all the selected channels
6: if any selected channel It is busy then
7: BIt ← BIt + 1, B ← B + 1
8: else
9: Attack selected J channels

10: if x collision are observed then
11: C ← C + x
12: end if
13: end if
14: end for

15: p̂i = Bi
Oi
∀i ∈ 1 . . .K and N̂ = round

(
log

(
1− C

JTC−B

)
log(1− 1

K )

)
16: for t = TC + 1 · · ·T do
17: Select J orthogonal channels from top N̂ randomly
18: end for

3.3 Analysis of CDJ Algorithm

In this subsection, we bound the regret of CDJ. We begin
with the following definition given in [6], [7].

Definition 1. An ε-correct ranking of K channels is a sorted list
of empirical mean values of channel occupancy probabilities such
that for all i, j, p̂i is listed before p̂j if pj − pi > ε.

Lemma 1. By the end of CR1 phase, all SUs have ε-correct
ranking of the channels, number of SUs (N ) and number of
Jammers (J ) with probability at least 1− δ.

Proof: The proof steps are similar to [7][Lemma 1]. If for
any user n, it is true that ∀k ∈ 1 · · ·K |p̂k − pk| ≤ ε

2 , then
the user has an ε− correct ranking. We will upper bound
the probability that no user has ε−correct ranking given
the user has S1 observations of each channel. We define the
following events :

Jn - event that an user n observed each channel j ≥ 0
times.
A - event that all users have an ε-correct ranking.
An - event that an user n has ε- correct ranking.
B - event that all users have at least S1 observations of each
channel.
Bn - event that an user n has at least S1 observations of
each channel. Let X denote complement of any event X

We first upper bound Pr(An|Bn). We have,

Pr(An|Bn) ≤ Pr
(
∃k ∈ 1 · · ·K s.t|p̂k − pk|>

ε

2
| Bn

)
≤

K∑
k=1

Pr
(
|p̂k − pk|>

ε

2
| Bn

)
(By Union Bound)

=
K∑
k=1

∞∑
j=C

Pr
(
|p̂k − pk|>

ε

2
| Jn

)
Pr (Jn| Bn)

≤
K∑
k=1

∞∑
j=C

2 exp

(−jε2
2

)
Pr (Jn| Bn)

(By Hoeffding’s Inequality)

≤
K∑
k=1

2 exp

(−S1ε
2

2

) ∞∑
j=C

Pr (Jn| Bn)

≤
K∑
k=1

2 exp

(−S1ε
2

2

)
≤ 2K exp

(−S1ε
2

2

)

We can apply Hoeffding’s inequality since each observation
of the channel is independent of the number of times we
observe that channel. This is true since each SU and jammer
is randomly selecting channels independent of the previous
rounds in each round. In order for this to be < δ

4K ,

2K exp

(−S1ε
2

2

)
<

δ

4K
=⇒ S1 > ln

(
8K2

δ

)
2

ε2

Now to show that if all users have at least S1 >

ln
(
8K2

δ

)
2
ε2 observations of each channel, then all users

have an ε−correct ranking of channels with probability at
least 1− δ

4 .
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Pr(A|B) ≥ 1− Pr
(
∨nPr(An|Bn)

)
≥ 1−

N∑
n=1

Pr(An|Bn) (By Union Bound)

≥ 1− δ

4K
(N) ≥ 1− δ

4K
K = 1− δ

4

We want to show that there exists a TS1 large enough
such that all SUs have greater than S1 observations of each
channel. Let Bn,k(t) be a random variable which indicates
that channel k is selected by SU n.

Bn,k(t) =

{
1 w.p 1

K

0 w.p 1
K .

We have

Pr

(
nth SU has <

1

2
TS1 E[Bn,k(t)] observations

)

= Pr

TS1∑
t=1

Bn,k(t) <
1

2
TS1 E[Bn,k(t)]


≤ exp

(
−1

8
TS1

E[Bn,k(t)]

)
( Chernoff’s Bound)

We can apply Chernoff bound here since for any n, k,Bn,k
is i.i.d across t and all SUs employ random sampling in CR
phase. We want,

Pr

∃n, k s.t. TS1∑
t=1

Bn,k(t) <
1

2
TS1

E[Bn,k(t)]

 <
δ

4

=⇒ N exp

(
−1

8
TS1

E[Bn,k(t)]

)
<

δ

4K

=⇒ TS1 > 8 ln

(
4KN

δ

)
1

E[Bn,k(t)]

=⇒ TS1
> 8 ln

(
4K2

δ

)
1

E[Bn,k(t)]

=⇒ TS1
> 8K ln

(
4K2/δ

)
The last inequality follows using E [Bn,k(t)] = 1/K. We
have shown that for TS1 > 8K ln

(
4K2/δ

)
, the number of

observations of selected channels for all SUs,
TS1∑
t=1

Bn,k(t) is

greater than 1
2TS1

E[Bn,k(t)] with probability at least 1− δ
4 .

We also want that total number of observations of each
channel be at least S1. Therefore,

TS1∑
t=1

Bn,k(t) ≥ 1

2
TS1

E[Bn,k(t)] ≥ S1

=⇒ 1

2
TS1E[Bn,k(t)] ≥ 2

ε2
ln

(
8K2

δ

)
=⇒ TS1 ≥

4

ε2E[Bn,k(t)]
ln

(
8K2

δ

)
=⇒ TS1

≥ 4K

ε2
ln

(
8K2

δ

)

Combining all, the probability that all the users will have
ε-correct ranking is given by

Pr(A) = 1− Pr(A)

= 1− Pr(A/B)Pr(B)− Pr(A/B)Pr(B)

≥ 1− Pr(A/B)− Pr(B) ≥ 1− δ

4
− δ

4
≥ 1− δ

2
.

Thus, if TR = max
(

8K ln
(
4K2

δ

)
, 4Kε2 ln

(
8K2

δ

))
, then for

any t ≥ TR all SUs will have ε-correct ranking of channels
with probability at least 1− δ

2 .

Estimation of N : Now, we compute number of slots
required to estimate N and J with high probability. We first
compute slots required to estimate N given J . We define
the following events :

Wk - event that channel k is selected by a SU
Xk - event that none of the other SUs/Jammer selects k
Uk - event that channel k is free.

Let S2 be the number of times a selected channel is found
free. Probability of collision, denoted pc, for any SU condi-
tioned on the events that the channel selected is free and the
number of Jammers is J is given by

Pr(collision) =
K∑
k=1

Pr(Wk/Uk)Pr(Xk/Uk)

pc =
K∑
k=1

1

K

(
1−

(
1− J

K

)(
1− 1

K

)N−1)

pc = 1−
(

1− J

K

)(
1− 1

K

)N−1

Solving for N, we get

N = 1 +
log (1− pc)− log

(
1− J

K

)
log
(
1− 1

K

)
Let p̂c be the estimate of pc.

N̂ = 1 +
log (1− p̂c)− log

(
1− J

K

)
log
(
1− 1

K

)
We want N̂ to be a good estimate of N . Therefore, for some
γ < 1

2 , we set
∣∣∣N̂ −N ∣∣∣ < γ

∣∣∣∣∣ log (1− p̂c)
log
(
1− 1

K

) − log (1− pc)
log
(
1− 1

K

) ∣∣∣∣∣ < γ ⇐⇒

∣∣∣∣∣∣
log
(
1−p̂c
1−pc

)
log
(
1− 1

K

)
∣∣∣∣∣∣ < γ

Let α be the difference between p̂c and pc. Substituting p̂c =
pc + α.

−γ log

(
1− 1

K

)
≤ log

(
1− pc − α

1− pc

)
≤ γ log

(
1− 1

K

)

log

(
1− 1

K

)−γ
≤ log

(
1− pc − α

1− pc

)
≤ log

(
1− 1

K

)γ
(

1− 1

K

)γ
≤
(

1− pc − α
1− pc

)
≤
(

1− 1

K

)−γ
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1− 1

K

)γ
(1− pc) ≤ (1− pc − α) ≤

(
1− 1

K

)−γ
(1− pc)

(1− pc)
(

1−
(

1− 1

K

)−γ)
≤ α ≤ (1− pc)

(
1−

(
1− 1

K

)γ)
.

If we ensure |p̂c − pc|< ε1 where

ε1 = min

{∣∣∣∣∣(1− pc)
(

1−
(

1− 1

K

)−γ)∣∣∣∣∣ ,∣∣∣∣(1− pc)(1−
(

1− 1

K

)γ)∣∣∣∣} (3)

for some γ < 1/2 then we can have N̂ = N . The number of
observations S2 required to compute p̂c such that |p̂c− pc|≤
ε1 for all SUs is given by Hoeffding’s inequality.

Pr(|p̂c − pc|> ε1) ≤ 2 exp(−2S2ε
2
1) <

δ

6K

=⇒ S2 >
1

2ε21
ln

(
12K

δ

)
Following steps in the proof of [7], we can further simplify
the expression for ε1. Substituting the value of pc, we have

ε1 = min

{∣∣∣∣∣
(

1− 1

K

)N−1 (
1− J

K

)(
1−

(
1− 1

K

)−γ)∣∣∣∣∣ ,∣∣∣∣∣
(

1− 1

K

)N−1 (
1− J

K

)(
1−

(
1− 1

K

)γ)∣∣∣∣∣
}

(4)

Using
(
1− J

K

)
≥ 1

2 as K > N > J , we have∣∣∣∣∣
(

1− 1

K

)N−1 (
1− J

K

)(
1−

(
1− 1

K

)−γ)∣∣∣∣∣ ≥ γ

2 exp(1)K∣∣∣∣∣
(

1− 1

K

)N−1 (
1− J

K

)(
1−

(
1− 1

K

)γ)∣∣∣∣∣ ≥ γ

2 exp(1)K

Combining above two, we have

ε1 ≥
γ

2 exp(1)K

If all SUs have S2 >
1

2ε21
ln
(
12K
δ

)
observations of channel

when they are free, where ε1 = γ/K
2 exp(1) , then with

probability at least 1− δ
6 , we have N̂ = N for all SUs given

J .

Estimation of J : Next we compute number of slots required
to estimate J correctly by all SUs with high probability.
We compute collision probability with jammers when the
channel is free. Let S3 be the number of times we observe
that selected channel is free. Given S3, we want to ensure
correct estimation of J with high probability.

Pr(jammer from collision) = pcj =
K∑
i=1

1

K

(
J

K

)
=⇒ J = Kpcj

Let p̂cj be the estimate of pcj . Then the estimate of J is given
by Ĵ = Kp̂cj . We want to ensure Ĵ is close to J . Therefore,
for some γ < 1/2 we set∣∣∣Ĵ − J ∣∣∣ ≤ γ ⇐⇒ |p̂cj − pcj | ≤

γ

K

The number of observations S3 required to compute p̂cj
such that |p̂cj − pcj |≤ ε2, where ε2 = γ

K for all SUs is given
by applying the Hoeffding’s inequality.

Pr(|p̂cj − pcj |> ε2) ≤ 2 exp(−2C3ε
2
2) <

δ

12K

=⇒ S3 >
1

2ε22
ln

(
24K

δ

)
Next, we find the number of time slots (TF ) required to
get the desired number of observations in which selected
channel were free. Let AIt(t) be a random variable which
indicates if selected channel k is free at round t.

AIt(t) =

{
1 if It is free
0 otherwise

(5)

We have

Pr

(
a SU has <

1

2
· TF · E[AIt(t)]observations

)
= Pr

(
TF∑
t=1

AIt(t) <
1

2
· TF · E[AIt(t)]

)

≤ exp

(
−1

8
· TF · E[AIt(t)]

)
( Chernoff’s Bound)

We set,

Pr

(
SUs do not have >

1

2
TFE[AIt(t)]observations

)
<

δ

18

=⇒ exp

(
−1

8
TFE[AIt(t)]

)
<

δ

18K

=⇒ TF > 8 ln

(
18K

δ

)
1

E[AIt(t)]

=⇒ TF >
8

θ
ln

(
18K

δ

)
,

In the last if-and-only statement we used the relation

E[AIt(t)] =
K∑
k=1

Pr(It = k)Pr(AIt(t) = 1/It = k)

=
K∑
k=1

1

K
(1− pk) ≥ θ.

We have shown that for TF > 8
θ · ln

(
18K
δ

)
, the number

of observations of selected channels being free for all SUs,
TF∑
t=1

AIt(t) is greater than 1
2 · TF · E[AIt(t)] with probability

at least 1− δ
18

We also want that total number of observations of
selected channels being free to be at least max(S2, S3).
Therefore,

TS2∑
t=1

AIt(t) ≥
1

2
· TS2 · E[AIt(t)] ≥ S2

=⇒ 1

2
· TS2

· E[AIt(t)] ≥
1

2ε21
ln

(
12K

δ

)
=⇒ TS2

≥ 1

ε21E[AIt(t)]
ln

(
12K

δ

)
=⇒ TS2

≥ 1

ε21θ
ln

(
12K

δ

)
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and

TS3∑
t=1

AIt(t) ≥
1

2
· TS3

· E[AIt(t)] ≥ S3

=⇒ 1

2
· TS3

· E[AIt(t)] ≥
1

2ε22
ln

(
24K

δ

)
=⇒ TS3 ≥

1

ε22E[AIt(t)]
ln

(
24K

δ

)
=⇒ TS3

≥ 1

ε22θ
ln

(
24K

δ

)

TE = max

(
8

θ
· ln
(

18K

δ

)
,

1

ε21θ
ln

(
12K

δ

)
,

1

ε22θ
ln

(
24K

δ

))
Let us define the following events: E - event that all SUs
have observed at least S2 times the selected channel was
free
F - event that all SUs have correct estimate of J .
D - event that all SUs have correct estimate of N .
Then, we have

Pr(DF ) ≥1− Pr(D)− Pr(F )

= 1− Pr(D|EF )Pr(EF )− Pr(D|EF )Pr(EF )−
Pr(F )

≥ 1− Pr(D|EF )− Pr(EF )− Pr(F )

≥ 1− Pr(D|EF )− Pr(E)− 2Pr(F )

≥ 1− Pr(D|EF )− Pr(E)− 2Pr(F |E)Pr(E)−
2Pr(F |E)Pr(E)

≥ 1− Pr(D|EF )− Pr(E)− 2Pr(F |E)− 2Pr(E)

≥ 1− Pr(D|EF )− 2Pr(F |E)− 3Pr(E)

≥ 1− δ

6
− 2δ

12
− 3δ

18
≥ 1− δ

2

Finally, if TE = max
(
8
θ ln

(
18K
δ

)
, 1
ε21θ

ln
(
12K
δ

)
, 1
ε22θ

ln
(
24K
δ

))
then for t ≥ TE , all SUs would have correct estimate of N
and J with probability atleast 1− δ

2 .
For A,D and F be as defined previously,

Pr(ADF ) = 1− Pr(ADF )

≥ 1− Pr(A)− Pr(DF )

≥ 1− δ

2
− δ

2
= 1− δ

Hence if TC = max(TR, TE), then with probability 1− δ, all
SUs would have ε-correct channel ranking as well as correct
estimate of N given J .

The following theorem states a high confidence bound
on the expected regret of CDJ. The expectation is over the
algorithm’s randomness.

Theorem 1. For all ∆ > ε, γ ∈ (0, 0.5) and δ ∈ [0, 1], with
probability at least 1−δ, the expected regret of N SUs using CDJ
in the presence of J jammers with TC slots of learning is upper
bounded by NTC + N2exp(1)

θ , where TC is

round
(
max

(
8

θ
· ln
(

18K

δ

)
,

1

ε21θ
ln

(
12K

δ

)
, (6)

1

ε22θ
ln

(
24K

δ

)
, 8K ln

(
4K2

δ

)
,

4K

ε2
ln

(
8K2

δ

)))

with ε1 = γ/2K exp(1) and ε2 = γ/K.

The first term (NTC ) is the total regret incurred by all users
in the CR1 phase. This phase runs for TC number of time
slots, required for estimating correct channel ranking, num-
ber of the SUs and Jammers. The second part (N2exp(1))
corresponds to regret incurred in the final OR phase.
Proof: After estimating N, J and channel ranking from
Lemma 5, all SUs run the OR subroutine for the second time.
We will compute the maximum slots required such that
all SUs get orthogonalized and start sequential hopping.
Our approach to bound regret is similar to approach in [7].
Probability of collision for any SU at any round t is given
by:

pnc =
N∑
k=1

1− pk
N +m

(
1− J

N

)(
1− 1

N +m

)N−1

+
N+m∑
k=N+1

1− pk
N +m

(
1− 1

N +m

)N−1
+
N+m∑
k=1

pk
N +m

≥
N+m∑
k=1

1− pk
N +m

(
1− J

N

)(
1− 1

N +m

)N−1

≥
(

1− J

N

)(
1− 1

N +m

)N−1 N+m∑
k=1

1− pk
N +m

≥
(
N − J
N

)(
1− 1

N +m

)N−1
θ

≥
(

1

N

)(
1− 1

N +m

)N+m−1
θ ≥ θ

Nexp(1)

Since the number of slots required to find a collision free
transmission and start sequential hopping is geometric dis-
tributed, the expected number of slots for first success,
denoted by TSH , is bounded by :

TSH <
1

pnc
=⇒ TSH <

Nexp(1)

θ
.

We will now bound the expected regret due to users when
running the OR subroutine for second time.

E

 T∑
t=TC+1

N∑
i=1

rnt


≤ E

 T∑
t=TC+1

N∑
i=1

1{SUs not orthogonalized in round t}


≤ E

 T∑
t=TC+1

N1{SUs not orthogonalized in round t}


≤ NTSH ≤

N2exp(1)

θ
.

Using Lemma 5 and the above we prove that channel
ranking, number of SUs and jammers can be estimated
with probability 1 − δ and total regret is bounded by
NTC + N2exp(1)

θ . Hence completing proof of Theorem 4.

4 NON-DISTINGUISHABLE JAMMERS
In this section, we remove the requirement that the SUs
can identify whether or not a collision happened due to
the presence of a jammer using either hardware capability
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or a signaling scheme. We say collisions, in this case, are
indistinguishable.

The main difficulty in this scenario is one cannot esti-
mate N and J using the collision information. To see this,
notice that the expression for collision probability when all
SUs and jammers hop randomly and conditioned on the
event that channels are vacant, given by

Pr(collision) =
(

1− (1− J/K) (1− 1/K)
N−1

)
(7)

cannot be inverted to get the value of N or J without
knowing the value of other. But both the values are un-
known a priori. So, the empirical estimates of collisions are
not useful to get estimates of J and N as in the previous
section where collisions are distinguishable. Our next algo-
rithm CNJ (Secondary User Coordination in a Network with
Jammers 2) given in Algorithm 3 overcomes this difficulty
by first allowing the SUs to orthogonalize and then count the
collisions. After orthogonalization, collisions are only due to
the jammers as there are no collisions among SUs. From the
information on collision caused by the jammers the SUs can
estimate J , and use it in turn to find an estimate for N using
(7) and the estimate of collision probability obtained before
orthogonalization where collisions are due to both SUs and
jammers.

The CNJ algorithm has three phases. The two phases
CR and OR are as in the previous section. The third phase
is named Jammer Estimation (JE) phase. The OR phase
occurs two times, one before JE phase and one after it.
The OR phase before the JE phase allows SUs to find non-
overlapping channels. Then, any collisions seen in the JE
phase are only due to the jammers. In the JE phase, the
SUs use collision count from the jammers to estimate their
number. Once J is estimated with good accuracy, OR phase
is again applied so that the SUs orthogonalize on the top N∗
channels.

4.1 SU Algorithm: CNJ
The CNJ algorithm consists of four subroutines that run
sequentially as shown in Fig. 2. The first subroutine named
CR2 runs for TC number of time slots (given in (17)). It
is similar to CR1 subroutine in CDJ except that SUs can
only keep a track of the total number of collisions (C) but
cannot identify in how many of these collisions jammers
are involved. At the end of CR2, SUs get an estimate
of {pi}. The second subroutine named OR runs for TO
(specified in (18)) time slots and end at slot TC + TO. This
subroutine is the same OR subroutine in CDJ except that
it ends after TO time slots by the end of which the SUs
find non-overlapping channels from K channels. The third
subroutine named JE (Jammer Estimation) runs for TJ slots
(given in (19)) and keeps count of collisions from jammers
(Cπi) on each channel. The jammers could be attacking any
subset of K channels, hence it is important here that we
count the collisions on each channel separately2 to get a
correct estimate of J .

The initial value of i0 in the Subroutine 4: JE denotes
the channel on which it is operated at the end of previous
OR phase. Note that only one SU is operating on i0 as all
SUs orthogonalized (with high probability) at the end of the
previous OR subroutine. At the end, JE subroutine gives an
estimate of J . Using this value and the collision information
from subroutine CR2, an estimate for N is obtained. Now

2. If the jammers are attacking a subset of channels (selected uni-
formly at random), collisions occur only on these channels in JE phase.
Hence the collision information we get across channels is asymmetric.

Algorithm 3 CNJ

Input: TC , TO, TJ , T,K
(C/F,π, {p̂i}) = CR2(TC ,K)
OR(π,K, TC + TO)
(N̂ , Ĵ) = JE(π, TJ , C/F )
N∗ = OP (N̂ , Ĵ , {p̂i})
OR(π, N∗, T )

t = 0

CR Phase (TC) OR Phase (TO) JE Phase (TJ)

TL

OR Phase till t=T

ΔT

Channel 
Sensing

Transmission

ΔT

Fig. 2: Phases in CNJ algorithm at different instants of
horizon.

Subroutine 3: CR2

1: Input: TC ,K
2: Set rt = 0, F = 0, C = 0, Oi = 0, Bi = 0 ∀i ∈ 1..K
3: for t = 1 . . . TC do
4: Select It ∼ U(1 . . .K) and sense
5: OIt ← OIt + 1
6: if selected channel It busy then
7: BIt ← BIt + 1, rt ← 0
8: else
9: Transmit on It, F ← F + 1

10: if collision then
11: C ← C + 1, rt ← 0
12: else
13: rt ← 1
14: end if
15: end if
16: end for
17: Set p̂i = Bi

Oi
∀i ∈ 1 · · ·K

18: π ← indices in [K] sorted according to p̂i

Subroutine 4: JE
1: Input: π, TJ , C/F
2: Fi = 0, Ci = 0, Oi = 0, i = i0 ∀ i ∈ 1 · · ·K
3: for t = TC + T0 + 1, . . . , TC + T0 + TJ do
4: i = (i+ 1) modulo K and transmit on πi
5: Oπi = Oπi + 1
6: if selected channel πi free then
7: Fπi = Fπi + 1
8: if collision from Jammer then
9: Cπi = Cπi + 1

10: else
11: rt ← 1
12: end if
13: end if
14: end for
15: Ĵ = round

(∑K
i=1K

Oi
TJ

Cπi
Fπi

)
16: N̂ = round

(
1 +

log(1−CF )−log
(
1− Ĵ

K

)
log(1− 1

K )

)

OP (1) is used to find N∗ using all the estimates of N, J
and {pi} as in CDJ. The last subroutine is again OR, but
this time it finds non-overlapping channels on the top N∗

channel and runs until the end of horizon T .
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4.2 Jammer Algorithm

The jammers use Algorithm 2 as in the previous section and
estimates the number of SUs after TC time slots. Then, it
continuously attacks the top N channel. We note that our
method to estimate number of the jammers works as long
as they are hopping randomly on any number of channels,
not necessarily only top N channels. So our algorithm need
not know which channels the jammers are attacking. Since
we consider a worst possible attack, we consider that the
jammers also learn N and channel ranking so that it can
attack the top N channels to cause maximum damage.

4.3 Analysis of CNJ

Lemma 2. For any δ > 0, all SUs will have ε-correct ranking of
channels and N̂ = N given J with probability at least 1− δ/3 if
CR2 subroutine is run for TC number of time slots.

The proof of this lemma is similar to that of Lemma 5 and
can be found in the supplementary.

Lemma 3. For any δ > 0, all SUs will find non-overlapping
channels with probability at least 1− δ/3 if OR subroutine is run
for TO number of time slots.

Proof: We want to compute TO such that all SUs are orthog-
onalized on K channels with high probability within TO.
If pc is the collision probability of a SU at any time slot t,
and if none of the other SUs are orthogonalized (worst-case)
then probability that a SUs will find a an orthogonal channel
within TO is given by

TO∑
t=1

pt−1c · (1− pc).

We want this probability to be at least 1 − δ2
K for every

SU to ensure all SUs are orthogonalized within TO with
probability 1− δ2.

TO∑
t=1

pt−1c · (1− pc) ≥ 1− δ2
K

Simplifying the summations, we get the following relations

1− pTOc ≥ 1− δ2
K

=⇒ TO log pc ≤ log

(
δ2
K

)

yielding TO ≥
log( δ2K )
log pc

. We next obtain an upper bound
on pc. For notational convenience define the following: pns
denote the probability of no collision due to non-settled SUs
ps= probability of no collision due to settled SUs. Probability

of collision can be bounded as follows:

pnc = Pr(no collision)

=
N∑
k=1

1

K
(1− pk) (pns + ps)

(
1− J

N

)

+
K∑

k=N+1

1

K
(1− pk) (pns + ps) +

K∑
k=1

pk
K

≥
K∑
k=1

1

K
(1− pk) (pns + ps)

(
1− J

N

)

≥
K∑
k=1

1

K
(1− pk)pns

(
1− J

N

)

≥
K∑
k=1

1

K
(1− pk)

(
1− 1

K

)N−1 (
1− J

N

)

≥
(

1− 1

K

)N−1 (N − J
N

)
θ

≥
(

1− 1

K

)K−1 ( 1

N

)
θ ≥

(
1− 1

K

)K−1 ( θ

K

)

In the second last inequality we used the relations
K∑
K=1

1
K (1 − pk) ≥ θ and N > J . Note that when we lower

bound pnc, we consider the worst case that all SUs are not
settled. We get the following upper bound on pc

pc = 1− pnc

pc ≤ 1− θ

K

(
1− 1

K

)K−1
.

Using this bound we get TO, we get that

TO ≥
log
(
δ2
K

)
log
(

1− θ
K

(
1− 1

K

)K−1) .
This implies that if OR phase is run for at least

log( δ2K )
log

(
1− θ

K (1− 1
K )

K−1
) number of time slots, a SU will find a

collision free slot and orthogonalize with probability at least
1− δ2.

Lemma 4. For any δ > 0, all SUs will estimate number of
jammers correctly (Ĵ = J ) with probability at least 1− δ/3 if JE
subroutine is run for TJ number of time slots.

The proof of this lemma is again based on careful appli-
cations of Hoeffding’s inequality and Chernoff bound and
appropriately bounding the collision probabilities as done
in the proof of Lemma 5. Detailed proof is given in the
supplementary.

The following theorem states the expected regret of the
CNJ against the jammers who employs Algorithm 2. Again
the expectation is over the randomness of the algorithm.

Theorem 2. For all ∆ > ε, γ ∈ (0, 0.5) and 0 < δ ≤ 1, with
probability at least 1 − δ, the expected regret of SUs using CNJ



11

in the presence of J jammers after TL = TC + TO + TJ slots of
learning is upper bounded by NTL +N2exp(1), where

TC = round
(

max

(
8

θ
ln

(
12K

δ

)
,

1

ε21θ
ln

(
24K

δ

)
,

8K ln

(
12K2

δ

)
,

4K

ε2
ln

(
24K2

δ

)))
(8)

TO = round
(

log
(
δ

3K

)
log
(

1− θ
K

(
1− 1

K

)K−1)) (9)

TJ = round
(
max

(
8

θ
ln

(
6K

δ

)
,

1

ε22θ
ln

(
12K

δ

)))
(10)

with ε1 = γ
2 exp(1).K and ε2 = γ

K .

The terms NTC , NTO, NTJ correspond to the total regret
incurred by all the users in the first three subroutines, i.e.,
CR2, OR and JE respectively. The last term corresponds to
the OR subroutine that runs till the end of time horizon. The
proof of this theorem is similar to proof of theorem 4 and it
is given in the supplementary.

5 UNCOORDINATED AND NON-DISTINGUISHABLE
JAMMERS
In this section, we consider the case where jammers cannot
communicate with each other and attack channels indepen-
dently. This attack is more practical as the jammers can
simply use multiple SU terminals and tune them to behave
maliciously. However, the downside is that multiple jam-
mers may attack the same channel in a slot, thus reducing
their effectiveness. We consider indistinguishable collisions
here, if they are distinguishable we can directly apply CDJ.

For the case of uncoordinated jammers where the col-
lisions cannot be distinguished, it turns out that one can
directly estimate the total number of users in the network,
i.e., N + J from an estimate of collision probability. To see
this, note that collision probability conditioned on the event
that channels are idle is given by

Pr(collision) =
(

1− (1− 1/K)
N+J−1

)
. (11)

One can get an estimate for N + J from an estimate of
collision probability from the above relation. Though the
SUs still cannot know the values of N and J , but knowing
N + J , they can find non-overlapping channels on the top
N + J channels and then estimate J from the collision
information. Note that in the previous case where jammers
coordinated, the SUs cannot know N + J , so we took a pes-
simistic approach and orthogonalized SUs over K channels.
Once the SUs orthogonalize on the N + J they can estimate
J and subsequently get an estimate of N . We next give
CUJ (Co-ordination in presence of uncoordinated and non-
distinguishable jammers) given in Algorithm 4 which is a
modification of CNJ algorithm for the case of uncoordinated
jamming attack.

Algorithm 4 CUJ

Input: TC , TO, TJ , T,K
(N̂ + J, {p̂i}) = CR2(TC ,K);
OR(π, N̂ + J, TO)
(Ĵ , N̂) = JE(π, TJ)
N∗ = OP1(N̂ , Ĵ , {p̂i})
OP (π, N∗, T )

5.1 SU Algorithm: CUJ

CUJ algorithm also has four subroutines as in CNJ and
they run sequentially. The CR2, OR and JE subroutines
are the same as in the CNJ algorithm. At the end of CR2
subroutine, using values of C and F each SU finds an

estimate for N + J as N̂ + J = round

(
1 +

log(1−CF )
log(1− 1

K )

)
.

The SUs then find non-overlapping channels on the top
N̂ + J channels using the OR subroutine. In the JE sub-
routine, any collision SUs observe are necessarily from the
jammers. JE subroutine is run for TJ number of time slots
and collisions observed in this period is used to estimate J
using relation Ĵ = round

(∑K
i=1K

Oi
TJ

Cπi
Fπi

)
(see Line 15 of

subroutine 4: JE). Then an estimate for N is obtained from
N̂ = N̂ + J − Ĵ . Using estimates of N, J and {pi}, SUs
compute N∗=N +m using the program OP1(N, J, {pi}) :

m = arg max
w



N+w∑
i=1

1−pπi
N+w

(
1− 1

N+J−1

)J
if w ≤ J − 1

N+J−1∑
i=1

1−pπi
N+w

(
1− 1

N+J−1

)J
+
N+w∑
i=N+J

1−pπi
N+w

if K −N ≥ w > J − 1.
(12)

Note that (12) is different from (1). In the case of coordinated
jammers, jammers know how many jammers are present
(J ), whereas it is unknown to them when they are not
coordinating. Hence in the latter case after estimatingN+J ,
each jammer attacks N + J − 1 channels. (12) gives m
for which average throughput is maximum for a SU with
jammers attacking as in this case. Finally, OR subroutine
is again used to find orthogonal channel assignment from
top N∗ channels. SUs then continue to hop sequentially
according to the indices in π till the end.

Each Jammer independently runs the CR2 module to get
an estimate of N and J and attacks the top N + J − 1
channels continuously after that.

5.2 Analysis of CUJ

The regret of the CUJ algorithm is same as the CNJ al-
gorithm. Please refer to supplementary for proof of the
Theorem 3.

Theorem 3. For all ∆ > ε and 0 ≤ δ ≤ 1, with probability at
least 1−δ, the expected regret of N SUs using the CUJ algorithm
in the presence of J Jammers after TL = TC + TO + TJ time
slots of learning is upper bounded by NTL + N2exp(1), where
the values of TC , TO, and TJ are given in (17), (18), and (19),
respectively with ε1 = ε2 = γ

exp(1).K .

Discussion:We only considered the static case in this paper,
i.e., the number of SUs and the jammers remains fixed
throughout. However, in practice the network may be
dynamic, where the number of SUs may changes as SUs
can enter and leave the network at any time. Our work can
be extended for the dynamic case as done in the Dynamic
Musical Chairs (DMC) in [7]. Specifically, if all the SUs
share a global clock then they can restart the algorithms
for their static counterparts periodically in run it in epochs.
One can show that the regret with this approach results in
regret of at most O(

√
T ) with high probability by carefully

tuning the length of epochs. Due to lack to space we skip
these details.
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6 SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, the functionality of the proposed algorithms
is validated using synthetic experiments in MATLAB and
USRP based experiments in real radio environment. Please
refer to supplementary for additional results.

6.1 Synthetic Experiment
For synthetic experiments, we consider three algorithms,
CDJ, CNJ and CUJ, separately. For each algorithm, the
comparison with the respective myopic algorithm, ρrand [5]
and MC [7] algorithm in terms of regret and throughput
is shown. Then, the effect of N , K and J on the regret
and throughput of the proposed algorithms is analyzed.
The channel busy probability for each K is given by
pdK2 e

= 0.5 and for i > K
2 and i < K

2 , the gap between
the channel busy probability of the ith and (i+ 1)th channel
should be at least 0.06. For instance, for K = 16, we set
pi = {0.08, 0.14, 0.20, 0.26, 0.32, 0.38, 0.44, 0.5, 0.56, 0.62,
0.68, 0.74, 0.80, 0.86, 0.92, 0.98}. For these pi, the values of
TJ and TO are fixed and equal to 1000 and 50, respectively.
The value of the TC for CDJ algorithm is 13000 for K = 16
and is incremented by 2000 for each increase inK . The value
of TC for CNJ and CUJ algorithms are 10000 and the values
for TC + TO + TJ and TC + TO is 13000 for CNJ and CUJ
algorithm, respectively. The length of learning stage in MC
[7] is 3000. Each numerical result shown here is the average
of the values obtained over 50 independent experiments and
each experiment considers a time horizon of 30000 slots.
Note that the solid line in all the figures correspond to
the average regret while the dashed lines correspond to the
average throughput.

6.1.1 Average Regret & Throughput for fixed N , K and J
We compare the average regret and throughput of the
proposed algorithms with that of the myopic, ρrand [5]
and MC [7] algorithm. The corresponding plots for CDJ
algorithm, CNJ algorithm and CUJ algorithm are shown in
Fig. 3 (a), (b) and (c), respectively. In Fig. 3a, we consider the
CDJ algorithm designed for the scenario where the SUs can
distinguish the collisions with other SUs from the collisions
with jammers. In case of myopic algorithm, the SUs select
the channel via random hopping till TC followed by orthog-
onalization and sequential hopping among top N channels
till the end of the horizon. In the ρrand [5] algorithm which
assumes that all SUs have prior knowledge of N , each SU
is randomly assigned a rank, R ∈ 1, ..., N + J . In the sub-
sequent time slots, SU with rank R selects the channel with
the Rth best quality index based on the characterization by
the UCB algorithm. When SUs collide, the rank is randomly
and independently recalculated at the colliding SUs. The
MC algorithm [7] divides the time horizon into two stages:
1) Learning stage, 2) MC stage. In the learning stage, the SUs
select the channel via random hopping till TC followed by
orthogonalization on one of the top N channels in the MC
stage and then get locked on it till the end of the horizon.
Jammer algorithm is same in all algorithms except ρrand
where jammers have prior knowledge of N and hence, they
attack best J channels as per ρrand algorithm.

As shown in from Fig. 3a, the average regret incurred by
CDJ, myopic and MC algorithms is identical till TC due to
identical channel selection approach whereas regret of the
ρrand algorithm is lower in this duration due to learning
based channel selection. After TC time slots, the SUs in the
CDJ algorithm sequentially hops among top N∗ channels
leading to fewer number of collisions with jammers and

hence, lower average regret, than the myopic algorithm,
ρrand and MC algorithm where SUs have considerable
number of collisions with jammer and thus, higher regret.

Next, we consider the CNJ algorithm designed for the
scenario where the SUs can not distinguish between the
collisions with other SUs and the collisions with jammers.
Also, it considers coordinating jammers. The Fig. 3b com-
pares the regret of the CNJ algorithm with myopic, ρrand
and MC algorithm. It can be observed that these algorithms
incur the same regret till TC due to random hopping. After
TC , the SUs in myopic algorithm orthogonalize on the top
N+J channels followed by sequential hopping. Whereas in
the MC algorithm, the SUs orthogonalize on the top N + J
channels and get locked on it. In the CNJ algorithm, the SUs
orthogonalizes in the K channels followed by sequential
hopping till TC + TO + TJ time slots. Thus, the myopic and
MC algorithm incurs lower regret than the CNJ algorithm
during this phase. After TC + TO + TJ time slots, the SUs
in CNJ algorithm sequentially hops in the top N∗ channels
and hence, does not incur any regret leading to the constant
average regret. Its regret is lower since N∗ ≤ N + J and it
guarantees the same value ofN∗ at each SUs. This is not true
for myopic and MC algorithm leading to non-zero regret
even after TC + TO + TJ slots. Whereas ρrand algorithm
performs similar to Fig. 3a.

At the end, we consider the CUJ algorithm designed for
the scenario where the SUs can not distinguish collisions
with other SUs from the collisions with jammers and non-
coordinating jammers. As shown in Fig. 3c, the regret plots
are similar to the plots in Fig. 3b except TJ phase where
these algorithms have identical regret. This is because the
SUs in the CUJ algorithm sequentially hops in the top N +
J channels compared to K channels in the CNJ algorithm
leading to lower regret in former.

For all plots, the upper and lower bounds on the re-
gret are tight and do not overlap with that of the other
algorithms. This validates the superiority of the proposed
algorithms.

6.1.2 Average Regret for variable N with fixed K and J
In Fig. 4, we compare the average regret and the throughput
of the proposed algorithms for N = {7, 8, 9} with K = 16
and J = 6. Since the probability of collision in random
hopping increases with the increase in N , the average regret
also increases with increase in N . After orthogonalization
in top N∗ channels, proposed algorithms do not incur any
regret leading to the constant average regret. As expected,
the average regret of the CUJ algorithm is highest followed
by CNJ algorithm with the CDJ algorithm having the lowest
regret. This is because expected throughput in case of non-
coordinating jammers increases due to collisions among
jammers but expected throughput of the CUJ algorithm is
same as that of CDJ and CNJ algorithms due to identical
random hopping approach. The CDJ algorithm has lowest
regret due to the capability to distinguish between the
collisions from other SUs from the collisions with jammers.
With fixed J , jammers can attack only J out of the top
N channels. Therefore with increase in value of N , the
remaining N + m − J channels are always available for
transmission leading to increase in the system throughput.
Thus, the average throughput increases with increase in N .

6.1.3 Average Regret for variable K with fixed N and J
In Fig. 5, we compare the average regret and the throughput
of the proposed algorithms for K = {8, 10, 12, 14} with
N = 4 and J = 2. Higher the value of K , higher is the
orthogonalization time and hence, higher is the average
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regret. Thus, the average regret increases till orthogonal-
ization in top N∗ channels after which there is no further
increase in regret. The average throughput also increases
with the increase in value of K due to high transmission
opportunities on the optimal channels.

6.1.4 Average Regret for variable J with fixed N and K
In Fig. 6, we compare the average regret and the throughput
of the proposed algorithms for J = {4, 5, 6, 7} with N = 8
and K = 16. The average regret decreases with the increase
in the value of J . This is because, the number of sub-
optimal channels decreases as J increases. Fewer the num-
ber of sub-optimal channels, lower is the regret. The average
throughput also decreases with the increase in value of J
due to lesser opportunities of transmission with increase in
J . In case of CUJ algorithm, the expected throughput also
increases as the number of jammers increases due to non-
coordinating jammers. Hence, the decrease in the average
regret and throughput as the value of J increases is not
substantial. Next, experimental results on USRP testbed are
discussed.

6.2 USRP Experiment
The USRP based testbed has been developed to validate the
functionality of the proposed work in real radio environ-
ment and compare it with the myopic algorithm. Due to
limited page constraints, we restrict the discussion to the
CNJ algorithm and corresponding myopic algorithm since
they consider the most challenging scenario of coordinating
jammers with the SUs not capable of distinguishing between
the collisions from other SUs and collisions from jammers.

The testbed consists of primary user traffic generator de-
signed using OFDM based transmitter realized in LabView
and USRP-2922 from National Instruments for over-the-air
transmission as shown in Fig. 7. It transmits the signal in
one or multiple channels based on their statistics. The first
channel is dedicated for synchronization and hence, it is
not used by the PUs/SUs/jammers for the transmission.
The synchronization has been achieved by switching the
corresponding channel from occupied to vacant states or
vice-versa in each time slot. Each slot duration (∆t) is 0.1
second so that channel status can be followed by human
eye. For experiments, the transmission parameters such as
the number of OFDM sub-carriers, number of channels,
center frequency, and bandwidth are 1024, 8, 935 MHz and
2 MHz, respectively. At the receiver side, SUs and jammers
are implemented using MATLAB and USRP N200 from
Ettus Research. At each SU or jammer, the channel selected

by the underlining algorithm is passed through non-ideal
energy detector to check whether it is vacant or occupied.
When the channel is vacant and it is not selected by other
SUs and jammers, it is assumed that the SU transmits over
the channel and transmission is successful. The size of the
horizon, T , is limited to 7000 due to large ∆t and each result
is averaged over 15 independent experiments.

Consider N = {4, 5}, J = 2 and pi =
{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The values of TC , TO
and TJ are 3000, 50 and 1000, respectively. The Fig. 8 (a)
and (b) show the comparison of total throughput, i.e. total
number of successful transmissions, at different instants of
horizon for N=4 and N=5, respectively. As expected, all
algorithms have same throughput till TC slots. From TC
till TC + TO + TJ slots, the myopic algorithm may offer
higher throughput than the proposed algorithm as dis-
cussed above. Thereafter, the proposed algorithms outper-
form myopic algorithm. Here, CNJ∗ refers to the proposed
algorithm without the optimization function in (1) and
hence, the SUs sequentially hops among top N channels af-
ter TC+TO+TJ time slots. The difference in the throughput
of the CNJ and CNJ∗ algorithms show that identifying the
subset size of optimum channels is as important as accurate
estimation of N , J and pi to achieve higher throughput. As
evident from the slope of the plots after TC +TO +TJ slots,
the difference in the throughput between the proposed and
myopic algorithms increases with time. Similar behavior can
also be seen in the simulation results presented in previous
section.

The Fig. 8 (c) shows the total number of collisions faced
by the SUs at the end of horizon. As expected, the SUs using
CNJ∗ algorithm suffer highest number of collisions due to
sequential hopping in top N channels out of which J chan-
nels are jammed by jammers. The number of collisions in
myopic algorithm are slightly more than the CNJ algorithm
though the SUs in latter sequentially hops in the top N + J
channels compared to the CNJ algorithm where the SUs
sequentially hops in top N + m channels, where m ≤ J .
This is because, N + J estimation in the myopic algorithm
may not be same at all SUs leading to frequent collisions
among the SUs. The proposed algorithm guarantee accurate
estimation of N and J with a high probability and hence,
offers superior performance in terms of throughput as well
as number of collisions (hence, longer battery life at SUs).

7 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented three distributed algorithms to
aid secondary users (SUs) for dynamic spectrum access in
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Fig. 3: The comparison of average regret and average throughput of the Myopic, ρrand and MC algorithms with (a) CDJ
algorithm, (b) CNJ algorithm and (c) CUJ algorithm at different instants of the horizon. Here, we fix N = 8, K = 16, J = 4.
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Fig. 4: The plots showing the effect of N = {7, 8, 9} on the average regret and average throughput of (a) CDJ algorithm,
(b) CNJ algorithm, and (c) CUJ algorithm, at different instants of the horizon. Here, we fix K = 16 and J = 6.
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Fig. 5: The plots showing the effect of K = {8, 10, 12, 14} on the average regret and average throughput of (a) CDJ
algorithm, (b) CNJ algorithm, and (c) CUJ algorithm, at different instants of the horizon. Here, we fix N = 4 and J = 2.
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Fig. 6: The plots showing the effect of J = {4, 5, 6, 7} on the average regret and average throughput of (a) CDJ algorithm,
(b) CNJ algorithm, and (c) CUJ algorithm, at different instants of the horizon. Here, we fix N = 8 and K = 16.

Fig. 7: Proposed USRP based experimental testbed.

infrastructure-less cognitive radio network where some SUs
can be malicious (i.e., jammers). The novel contribution of
the proposed algorithms is to enable coordination of SUs
in the network of unknown number of SUs and jammers
without the need of a common communication link or a

central controller. The proposed algorithms achieve optimal
throughput in the secondary network after a bounded num-
ber of time slots with high probability when all the legit-
imate SUs implement them faithfully. We have validated
the functionality of the proposed algorithm via extensive
synthetic experiments and USRP experiments in the real ra-
dio environment. The comparisons with Myopic algorithms
show that the proposed algorithm offers superior perfor-
mance in terms of total throughput (and regret) as well as
the number of collisions. The higher throughput leads to
better spectrum utilization while fewer collisions leads to
longer battery life at SU terminals. Future works include
analysis and validation for the case where channels busy
periods follow Markovian property and dynamic networks
where SUs can enter or leave the network anytime.
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Fig. 8: Experimental results on USRP testbed for J=2 and K=8: a) Total throughput of SUs for N=4, b) Total throughput of
SUs for N=5, and c) Total number of times in % the SUs face collision with other SUs and jammers for N=4 and N=5.
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SUPPLEMENTARY FOR LEARNING TO COORDINATE IN A
DECENTRALIZED COGNITIVE RADIO NETWORK IN PRES-
ENCE OF JAMMERS

APPENDIX A
ANALYSIS OF CDJ ALGORITHM

In this section, we bound the regret of CDJ. We begin with the following definition given in [6], [7].

Definition 2. An ε-correct ranking of K channels is a sorted list of empirical mean values of channel occupancy probabilities such
that for all i, j, p̂i is listed before p̂j if pj − pi > ε.

Lemma 5. By the end of CR1 phase, all SUs have ε-correct ranking of the channels, number of SUs (N) and Jammer J with probability
at least 1− δ.

Theorem 4. For all ∆ > ε, γ ∈ (0, 0.5) and δ ∈ [0, 1], with probability at least 1 − δ, the expected regret of N SUs using CDJ in
the presence of J jammers with TC slots of learning is upper bounded by NTC +N2exp(1), where TC is

round
(
max

(
8

θ
· ln
(

18K

δ

)
,

1

ε21θ
ln

(
12K

δ

)
,

1

ε22θ
ln

(
24K

δ

)
, 8K ln

(
4K2

δ

)
,

4K

ε2
ln

(
8K2

δ

)))
(13)

with ε1 = γ/2K exp(1) and ε2 = γ/K.

APPENDIX B
ANALYSIS OF CNJ ALGORITHM

Lemma 6. For any δ > 0, all SUs will have ε-correct ranking of channels and N̂ = N given J with probability at least 1 − δ/3 if
CR2 subroutine is run for TC number of time slots.

Proof: Channel Ranking Estimation If for any user n it is true that ∀k ∈ 1 · · ·K |p̂k − pk| ≤ ε
2 then the user has an

ε−correct ranking.
We will upper bound the probability that no user has ε−correct ranking given the user has S1 observations of each

channel. We define the following events :

Jn - event that an user n has observed each channel j ≥ 0 times.
A - event that all users have an ε-correct ranking.
An - event that an user n has ε-correct ranking.
B - event that all users have at least S1 observations of each channel.
Bn - event that an user n has at least S1 observations of each channel.

Note*: X denotes complement of any event X

We want to compute,

Pr(An|Bn) <
δ1
4K
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Also, we know ,

Pr(An|Bn) ≤ Pr
(
∃k ∈ 1 · · ·K s.t|p̂k − pk|>

ε

2
| Bn

)
≤

K∑
k=1

Pr
(
|p̂k − pk|>

ε

2
| Bn

)
(By Union Bound)

=
K∑
k=1

∞∑
j=C

Pr
(
|p̂k − pk|>

ε

2
| Jn

)
Pr (Jn| Bn)

≤
K∑
k=1

∞∑
j=C

2 · exp

(−j · ε2
2

)
Pr (Jn| Bn) (By Hoeffding’s Inequality)

≤
K∑
k=1

2 · exp

(−S1 · ε2

2

) ∞∑
j=C

Pr (Jn| Bn)

≤
K∑
k=1

2 · exp

(−S1 · ε2

2

)
≤ K · 2 · exp

(−S1 · ε2

2

)
We can apply Hoeffding’s Inequality since each observation of the channel is independent of the number of times we

observe that channel. This is true since each SU is randomly selecting channels in CR phase, which is independent of the
previous rounds. In order for this to be < δ1

4K ,

K · 2 · exp

(−S1 · ε2

2

)
<

δ1
4K

=⇒ S1 > ln

(
8 ·K2

δ1
·
)

2

ε2

Now, to show that if all users have at least S1 > ln
(
8·K2

δ1
·
)

2
ε2 observations of each channel, then all users have an

ε−correct ranking of channels with probability at least 1− δ1
4 .

Pr(A|B) ≥ 1− Pr
(
∨nPr(An|Bn)

)
≥ 1−

N∑
n=1

Pr(An|Bn) (By Union Bound)

≥ 1− δ1
4K
· (N)

≥ 1− δ1
4K
·K

= 1− δ1
4

We want to show that there exists a TS1
large enough such that all SUs have greater than S1 observations of each

channel. Let Bn,k(t) be a random variable which indicates that channel k is selected by an user n.

Bn,k(t) =

{
1 w.p 1

K

0 w.p 1
K

E [Bn,k(t)] =
1

K

Pr

(
A SU has <

1

2
· TS1

· E[Bn,k(t)observations

)

= Pr

TS1∑
t=1

Bn,k(t) <
1

2
· TS1

· E[Bn,k(t)]


≤ exp

(
−1

8
· TS1

·Bn,k(t)]

)
(Using Chernoff’s Bound)



19

We want,

Pr

∃n, k s.t. TS1∑
t=1

Bn,k(t) <
1

2
· TS1

· E[Bn,k(t)]

 <
δ1
4

=⇒ N exp

(
−1

8
· TS1

· E[Bn,k(t)]

)
<

δ1
4K

=⇒ TS1
> 8 · ln

(
4K2

δ1

)
· 1

E[Bn,k(t)]

=⇒ TS1
> 8K ln

(
4K2

δ1

)

We have shown that for TS1 > 8K ln
(
4K2

δ1

)
, the number of observations of selected channels for all SUs,

Tc∑
t=1

Bn,k(t) is

greater than 1
2 · TS1

· E[Bn,k(t)] with probability at least 1− δ1
4

We also want that total number of observations of each channel be at least S1. Therefore,

TS1∑
t=1

Bn,k(t) ≥ 1

2
· TS1

· E[Bn,k(t)] ≥ S1

=⇒ 1

2
· TS1

· E[Bn,k(t)] ≥ ln

(
8 ·K2

δ1

)
2

ε2

=⇒ TS1
≥ 4

ε2E[Bn,k(t)]
ln

(
8 ·K2

δ1

)

=⇒ TS1
≥ 4K

ε2
ln

(
8 ·K2

δ1

)

Pr(A) = 1− Pr(A)

= 1− Pr(A/B)Pr(B)− Pr(A/B)Pr(B)

≥ 1− Pr(A/B)− Pr(B)

≥ 1− δ1
4
− δ1

4

≥ 1− δ1
2

If TR = max
(

8K ln
(
4K2

δ1

)
, 4Kε2 ln

(
8·K2

δ1

))
, then for t ≥ TR all SUs will have ε-correct ranking of channels with probability

at least 1− δ1
2 .

Estimation of N: Now, we compute number of slots required to estimate N with high probability given J . We define the
following events:
Wk = event that channel k is selected by a SU
Xk = event that none of the other SUs/Jammer selects k
Uk = event that channel k is free
Let S2 be the number of times a selected channel is found free. Probability of collision, denoted pc, for any SU conditioned
on the events that the channel selected is free and the number of Jammers is J is given by

Pr(collision) =
K∑
k=1

Pr(Wk/Uk)Pr(Xk/Uk)

pc =
K∑
k=1

1

K

(
1−

(
1− J

K

)(
1− 1

K

)N−1)

pc = 1−
(

1− J

K

)(
1− 1

K

)N−1

Solving for N , we get

N = 1 +
log (1− pc)− log

(
1− J

K

)
log
(
1− 1

K

)
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Let p̂c be the estimate of pc.

N̂ = 1 +
log (1− p̂c)− log

(
1− J

K

)
log
(
1− 1

K

)
We want N̂ to be a good estimate of N . Therefore, for some γ < 1

2 , we set
∣∣∣N̂ −N ∣∣∣ < γ

∣∣∣∣∣ log (1− p̂c)
log
(
1− 1

K

) − log (1− pc)
log
(
1− 1

K

) ∣∣∣∣∣ < γ∣∣∣∣∣∣
log
(
1−p̂c
1−pc

)
log
(
1− 1

K

)
∣∣∣∣∣∣ < γ

Let α be the difference between p̂c and pc. Substituting, p̂c = pc + α.

∣∣∣∣∣∣
log
(
1−pc−α
1−pc

)
log
(
1− 1

K

)
∣∣∣∣∣∣ < γ

−γ log

(
1− 1

K

)
≤ log

(
1− pc − α

1− pc

)
≤ γ log

(
1− 1

K

)
log

(
1− 1

K

)−γ
≤ log

(
1− pc − α

1− pc

)
≤ log

(
1− 1

K

)γ
(

1− 1

K

)γ
≤
(

1− pc − α
1− pc

)
≤
(

1− 1

K

)−γ
(

1− 1

K

)γ
(1− pc) ≤ (1− pc − α) ≤

(
1− 1

K

)−γ
(1− pc)

(1− pc)
(

1−
(

1− 1

K

)−γ)
≤ α ≤ (1− pc)

(
1−

(
1− 1

K

)γ)
If we ensure |p̂c − pc|< ε1 where

ε1 = min

{∣∣∣∣∣(1− pc)
(

1−
(

1− 1

K

)−γ)∣∣∣∣∣ ,
∣∣∣∣(1− pc)(1−

(
1− 1

K

)γ)∣∣∣∣} (14)

for some γ < 1/2 then we can have N̂ = N . The number of observations S2 required to compute p̂c such that |p̂c− pc|≤ ε1
for all SUs is given by Hoeffding’s inequality.

Pr(|p̂c − pc|> ε1) ≤ 2 exp(−2 · S2 · ε21) <
δ1
4K

=⇒ S2 >
1

2ε21
ln

(
8K

δ1

)
We can further simplify our expression for ε1. Substituting the value of pc, we have

ε1 = min

{∣∣∣∣∣
(

1− 1

K

)N−1 (
1− J

K

)(
1−

(
1− 1

K

)−γ)∣∣∣∣∣ ,
∣∣∣∣∣
(

1− 1

K

)N−1 (
1− J

K

)(
1−

(
1− 1

K

)γ)∣∣∣∣∣
}

(15)

Using the results in [7] and
(
1− J

K

)
≥ 1

2 as K > N > J ,we have∣∣∣∣∣
(

1− 1

K

)N−1 (
1− J

K

)(
1−

(
1− 1

K

)−γ)∣∣∣∣∣ ≥ γ

2 exp(1)K∣∣∣∣∣
(

1− 1

K

)N−1 (
1− J

K

)(
1−

(
1− 1

K

)γ)∣∣∣∣∣ ≥ γ

2 exp(1)K

Therefore, combining above two, we have

ε1 ≥
γ

2 exp(1).K
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If all SUs have S2 > 1
2ε21

ln
(
8K
δ1

)
observations that the selected channel was free, where ε1 = γ

2 exp(1).K then with

probability at least 1− δ1
4 , we have N̂ = N for all SUs given J .

We want to show that there exists a TF large enough such that all SUs have greater than S2 observations of selected
channel were free. Let AIt(t) be a random variable which indicates if selected channel k is free at round t. We have

AIt(t) =

{
1 if It is free
0 otherwise

(16)

E[AIt(t)] =
K∑
k=1

Pr(It = k)Pr(AIt(t) = 1/It = k)

=
K∑
k=1

1

K
(1− pk)

≥ θ

We have

Pr

(
A SU has <

1

2
· TF · E[AIt(t)]observations

)
= Pr

(
TF∑
t=1

AIt(t) <
1

2
· TF · E[AIt(t)]

)

≤ exp

(
−1

8
· TF · E[AIt(t)]

)
(Using Chernoff’s Bound)

We set,

Pr

(
SUs do not have >

1

2
TFE[AIt(t)]observations

)
<
δ1
4

=⇒ exp

(
−1

8
TFE[AIt(t)]

)
<

δ1
4K

=⇒ TF > 8 ln

(
4K

δ1

)
1

E[AIt(t)]

=⇒ TF >
8

θ
ln

(
4K

δ1

)
,

We have shown that for TF > 8
θ · ln

(
4K
δ1

)
, the number of observations of selected channels being free for all SUs,

TF∑
t=1

AIt(t) is greater than 1
2 · TF ·E[AIt(t)] with probability at least 1− δ1

4 . We also want that total number of observations

of selected channels being free to be at least S2. Therefore,

TS2∑
t=1

AIt(t) ≥
1

2
· TS2 · E[AIt(t)] ≥ S2

=⇒ 1

2
· TS2

· E[AIt(t)] ≥
1

2ε21
ln

(
8K

δ1

)

=⇒ TS2
≥ 1

ε21E[AIt(t)]
ln

(
8K

δ1

)

=⇒ TS2
≥ 1

ε21θ
ln

(
8K

δ1

)

We define two more events: E - event that all SUs have observed at least S2 times the selected channel was free
D - event that all SUs have correct estimate of N given J
We have
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Pr(D) = 1− Pr(D)

= 1− Pr(D/E)Pr(E)− Pr(D/E)Pr(E)

≥ 1− Pr(D/E)− Pr(E)

≥ 1− δ1
4
− δ1

4

≥ 1− δ1
2

If TNE = max
(
8
θ ln

(
4K
δ1

)
, 1
ε21θ

ln
(
8K
δ1

))
then for t ≥ TNE , all SUs would have correct estimate of N given J with

probability atleast 1− δ1
2

For A and D as defined previously,

Pr(AD) = 1− Pr(AD)

≥ 1− Pr(A)− Pr(D)

≥ 1− δ1
2
− δ1

2
≥ 1− δ1

If TC = max(TNE , TR), then with probability 1 − δ1, all SUs would have ε-correct channel ranking as well as correct
estimate of N given J .

Lemma 7. For any δ > 0, all SUs will find non-overlapping channels with probability at least 1 − δ/3 if OR subroutine is run for
TO number of time slots.

Lemma 8. For any δ > 0, all SUs will estimate Ĵ = J with probability at least 1 − δ/3 if JE subroutine is run for TJ number of
time slots.

Proof: Given that SUs are orthogonalized on K channels we want to compute number of slots required to estimate J
correctly with high probability for all SUs. We will compute collision probability only when the channel is free. Let S3 be
the number of times we observe that selected channel is free after orthogonalization. Given S3, we want to ensure correct
estimation of J with high probability. We also assume that jammer is hitting top N channels.

Pr(collision) = pc =
N∑
i=1

1

K

(
1− 1− J

N

)

pc =
N∑
i=1

1

K

J

N

pc =
J

K
=⇒ J = Kpc

Let p̂c be the estimate of pc. Then estimate of J is given by,

Ĵ = Kp̂c

We want to ensure Ĵ is close to J . Therefore, for some γ < 1/2∣∣∣Ĵ − J ∣∣∣ ≤ γ
|p̂c − pc| ≤

γ

K

The number of observations S3 required to compute p̂c such that |p̂c − pc|≤ ε2, where ε2 = γ
K for all SUs is given by

Hoeffding’s inequality.

Pr(|p̂c − pc|> ε2) ≤ 2 exp(−2 · S3 · ε22) <
δ3
2K

=⇒ S3 >
1

2ε22
ln

(
4K

δ3

)
To ensure we have S3 observations of selected channels being free for all users, we define AIt(t) and E[AIt(t)] ≥ θ as

defined in proof of Lemma 5 used for N and J estimation.
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We set,

Pr

(
SUs do not have >

1

2
TJE[AIt(t)]observations

)
<
δ3
2

=⇒ exp

(
−1

8
TJE[AIt(t)]

)
<

δ3
2K

=⇒ TJ > 8 ln

(
2K

δ3

)
1

E[AIt(t)]

=⇒ TJ >
8

θ
ln

(
2K

δ3

)
where TJ is the number of slots for Jammer Estimation. We also want that total number of observations of selected

channels being free to be at least S3. Therefore,

TJ∑
t=1

AIt(t) ≥
1

2
· TJ · E[AIt(t)] ≥ S3

=⇒ 1

2
· TJ · E[AIt(t)] >

1

2ε22
ln

(
4K

δ3

)

=⇒ TJ >
1

ε22E[AIt(t)]
ln

(
4K

δ3

)

=⇒ TJ >
1

ε22θ
ln

(
4K

δ3

)

TJ = max

(
8

θ
· ln
(

2K

δ3

)
,

1

ε22θ
ln

(
4K

δ3

))
We define two more events:

G - event that all SUs have observed at least S3 times the selected channel was free
H - event that all SUs have correct estimate of J

We have

Pr(H) = 1− Pr(H)

= 1− Pr(H/G)Pr(G)− Pr(H/E)Pr(E)

≥ 1− Pr(H/G)− Pr(G)

≥ 1− δ3
2
− δ3

2
≥ 1− δ3

The following theorem states the expected regret of the CNJ against the jammers who employs the jamming strategy as
in CDJ. Again the expectation is over the randomness of the algorithm.

Theorem 5. For all ∆ > ε, γ ∈ (0, 0.5) and 0 < δ ≤ 1, with probability at least 1− δ, the expected regret of SUs using CNJ in the
presence of J jammers after TL = TC + TO + TJ slots of learning is upper bounded by NTL +N2exp(1), where

TC = round
(

max

(
8

θ
ln

(
12K

δ

)
,

1

ε21θ
ln

(
24K

δ

)
, ln

(
12K2

δ

)
,

4K

ε2
ln

(
24K2

δ

)))
(17)

TO = round
(

log
(
δ

3K

)
log
(

1− θ
K

(
1− 1

K

)K−1)) (18)

TJ = round
(
max

(
8

θ
ln

(
6K

δ

)
,

1

ε22θ
ln

(
12K

δ

)))
(19)

with ε1 = γ
2 exp(1).K and ε2 = γ

K .

The terms NTC , NTO, NTJ correspond to the total regret incurred by all the players in the first three subroutines, i.e., CR2,
OR and JE respectively. The last term corresponds to the OR subroutine that runs till the end of time horizon.
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Proof: Let Y be an event that all SUs have correct estimate of N and J as well as they are orthogonalized and have correct
channel ranking after TL learning rounds. Let M be an event that all SUs have correct estimate of N . A,D,F,H are as defined
in proof of lemmas 6, 7, 8

Pr(Y ) ≥ Pr(Y/AMFH) · Pr(AMFH)

≥ Pr(Y/AMFH) · Pr(AM/FH) · Pr(FH)

≥ Pr(Y/AMFH) · Pr(AD) · PR(H/F ) · Pr(F )

(event M given H is D)

Using Lemmas 6,7,8 , we have,

Pr(Y ) ≥ Pr(Y/AMFH)Pr(AD)PR(H/F )Pr(F )

Pr(Y ) ≥ (1− δ1)(1− δ3)(1− δ2)

Setting δ1 = δ2 = δ3 = δ
3

Pr(Y ) ≥
(

1− δ

3

)3

Pr(Y ) ≥ 1− 3
δ

3

Pr(Y ) ≥ 1− δ
Setting TL = TC + TO + TJ , with probability at least 1− δ, all SUs have correct estimate of N and J as well as they are

orthogonalized and have correct channel ranking.
Substituting value of δ1, δ2, δ3, we have,

TC = max

(
8

θ
ln

(
12K

δ

)
,

1

ε21θ
ln

(
24K

δ

)
, 8K ln

(
12K2

δ

)
,

4K

ε2
ln

(
24 ·K2

δ

))

TO =
log
(
δ

3K

)
log
(

1− θ
k

(
1− 1

K

)K−1)
TJ = max

(
8

θ
· ln
(

6K

δ

)
,

1

ε22θ
ln

(
12K

δ

))
Regret bounds proof is similar to proof of Theorem 1.

APPENDIX C
ANALYSIS OF CUJ ALGORITHM
The regret of the CUJ algorithm is same as the CNJ algorithm.

Theorem 6. For all ∆ > ε and 0 ≤ δ ≤ 1, with probability at least 1− δ, the expected regret of N SUs using the CUJ algorithm in
the presence of J Jammers after TL = TC + TO + TJ time slots of learning is upper bounded by NTL +N2exp(1), where the values
of TC , TO, and TJ are given in (17), (18), and (19), respectively with ε1 = ε2 = γ

exp(1).K .

Proof: Channel Ranking Estimation This part is similar to channel ranking estimation of Section 6. We have, If

TR = max

(
8K ln

(
4K

δ1

)
,

4K

ε2
ln

(
8 ·K2

δ1

))
,

then for t ≥ TR all SUs will have ε-correct ranking of channels with probability at least 1− δ1
2 .

Estimation of N + J : Now, we compute number of slots required to estimate N + J with high probability. We define the
following events:
Wk = event that channel k is selected by a SU
Xk = event that none of the other SUs/Jammer selects k
Uk = event that channel k is free
Let S2 be the number of times we observe that selected channel is free. Probability of collision, denoted pc, for any user
conditioned on the events that the channel selected is free is given by

Pr(collision) =
K∑
i=1

Pr(Wk/Uk)Pr(Xk/Uk)

pc =
K∑
i=1

1

K

(
1−

(
1− 1

K

)N+J−1
)

pc = 1−
(

1− 1

K

)N+J−1
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Solving for N + J , we get

N + J = 1 +
log (1− pc)
log
(
1− 1

K

)
Let p̂c be the estimate of pc.

N + J = 1 +
log (1− p̂c)
log
(
1− 1

K

)
We want to make N̂ + J as close to N + J . Therefore, for γ < 1

2∣∣∣N̂ + J −N + J
∣∣∣ < γ

∣∣∣∣∣ log (1− p̂c)
log
(
1− 1

K

) − log (1− pc)
log
(
1− 1

K

) ∣∣∣∣∣ < γ∣∣∣∣∣∣
log
(
1−p̂c
1−pc

)
log
(
1− 1

K

)
∣∣∣∣∣∣ < γ

Let α be the difference between p̂c and pc. Substituting, p̂c = pc + α.

∣∣∣∣∣∣
log
(
1−pc−α
1−pc

)
log
(
1− 1

K

)
∣∣∣∣∣∣ < γ

−γ log

(
1− 1

K

)
≤ log

(
1− pc − α

1− pc

)
≤ γ log

(
1− 1

K

)
log

(
1− 1

K

)−γ
≤ log

(
1− pc − α

1− pc

)
≤ log

(
1− 1

K

)γ
(

1− 1

K

)γ
≤
(

1− pc − α
1− pc

)
≤
(

1− 1

K

)−γ
(

1− 1

K

)γ
(1− pc) ≤ (1− pc − α) ≤

(
1− 1

K

)−γ
(1− pc)

(1− pc)
(

1−
(

1− 1

K

)−γ)
≤ α ≤ (1− pc)

(
1−

(
1− 1

K

)γ)
If we ensure |p̂c − pc|< ε1 where

ε1 = min

{∣∣∣∣∣(1− pc)
(

1−
(

1− 1

K

)−γ)∣∣∣∣∣ ,
∣∣∣∣(1− pc)(1−

(
1− 1

K

)γ)∣∣∣∣} (20)

for some γ < 1/2 then we can have N̂ + J = N + J . The number of observations S2 required to compute p̂c such that
|p̂c − pc|< ε1 is given by Hoeffding’s inequality.

Pr(|p̂c − pc|> ε1) ≤ 2 exp(−2 · S2 · ε21) <
δ1
4K

=⇒ S2 >
1

2ε21
ln

(
8K

δ1

)
We can further simplify our expression for ε1. Substituing the value of pc, we have

ε1 = min

{∣∣∣∣∣
(

1− 1

K

)N+J−1
(

1−
(

1− 1

K

)−γ)∣∣∣∣∣ ,
∣∣∣∣∣
(

1− 1

K

)N+J−1 (
1−

(
1− 1

K

)γ)∣∣∣∣∣
}

(21)

Using the results in [7], we have ∣∣∣∣∣
(

1− 1

K

)N+J−1
(

1−
(

1− 1

K

)−γ)∣∣∣∣∣ ≥ γ

exp(1).K∣∣∣∣∣
(

1− 1

K

)N+J−1 (
1−

(
1− 1

K

)γ)∣∣∣∣∣ ≥ γ

exp(1).K
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Therefore, combining above two, we have

ε1 ≥
γ

exp(1).K

If all SUs have S2 > 1
2ε21

ln
(
8K
δ1

)
observations that the selected channel was free, where ε1 = γ

exp(1).K then with

probability at least 1 − δ1
4 , we have N̂ + J = N + J for all SUs. We want to show that there exists a TF large enough

such that all SUs have greater than S2 observations of selected channel were free. Let AIt(t) be a random variable which
indicates if selected channel k is free at round t. We have

AIt(t) =

{
1 if It is free
0 otherwise

(22)

E[AIt(t)] =
K∑
k=1

Pr(It = k)Pr(AIt(t) = 1/It = k)

=
K∑
k=1

1

K
(1− pk)

≥ θ

Pr

(
A SU has <

1

2
· TF · E[AIt(t)]observations

)
= Pr

(
TF∑
t=1

AIt(t) <
1

2
· TF · E[AIt(t)]

)

≤ exp

(
−1

8
· TF · E[AIt(t)]

)
(Using Chernoff’s Bound)

We set,

Pr

(
SUs do not have >

1

2
TFE[AIt(t)]observations

)
<
δ1
4

=⇒ exp

(
−1

8
TFE[AIt(t)]

)
<

δ1
4K

=⇒ TF > 8 ln

(
4K

δ1

)
1

E[AIt(t)]

=⇒ TF >
8

θ
ln

(
4K

δ1

)
,

We have shown that for TF > 8
θ · ln

(
4K
δ1

)
, the number of observations of selected channels being free for all SUs,

TF∑
t=1

AIt(t) is greater than 1
2 · TF · E[AIt(t)] with probability at least 1− δ1

4

We also want that total number of observations of selected channels being free to be at least S2. Therefore,

TF∑
t=1

AIt(t) ≥
1

2
· TF · E[AIt(t)] ≥ S2

=⇒ 1

2
· TF · E[AIt(t)] >

1

2ε21
ln

(
8K

δ1

)

=⇒ TF >
1

ε21E[AIt(t)]
ln

(
8K

δ1

)

=⇒ TF >
1

ε21θ
ln

(
8K

δ1

)
We define two more events: E - event that all SUs have observed at least S2 times the selected channel was free
D - event that all SUs have correct estimate of N given J
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We have

Pr(D) = 1− Pr(D)

= 1− Pr(D/E)Pr(E)− Pr(D/E)Pr(E)

≥ 1− Pr(D/E)− Pr(E)

≥ 1− δ1
4
− δ1

4

≥ 1− δ1
2

If TE = max
(
8
θ ln

(
4K
δ1

)
, 1
ε21θ

ln
(
8K
δ1

))
then for t ≥ TE , all SUs would have correct estimate of N + J with probability

at least 1− δ1
2

For events A and D as defined previously, we have

Pr(AD) = 1− Pr(AD)

≥ 1− Pr(A)− Pr(D)

≥ 1− δ1
2
− δ1

2
≥ 1− δ1

If TC = max(TE , TR), then with probability 1−δ1, all SUs would have ε-correct channel ranking as well as correct estimate
of N given J .

Orthogonalization We want to compute TO such that all SUs are orthogonalised on N + J channels with high probability
within TO. If pc is the collision probability of a SU at any time slot t, and if none of the other SUs are orthogonalized
(worst-case) then probability that a SUs will find a an orthogonal channel within TO is given by

TO∑
t=1

pt−1c · (1− pc)

We want this probability to be at least 1− δ2
K to ensure all SUs are orthogonalised within TO .

TO∑
t=1

pt−1c · (1− pc) ≥ 1− δ2
K

1− pTOc ≥ 1− δ2
K

TO log pc ≤ log

(
δ2
K

)

TO ≥
log
(
δ2
K

)
log pc

Consider pns be the probability of no collision due to non-settled SUs and ps be the probability of no collision due to settled
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SUs. Then,

Pr(no collision) =
N+J∑
k=1

1

N + J
(1− pk) (pns + ps)

(
1− 1

N + J

)J

+
N+J∑
k=1

pk
N + J

pnc ≥
N+J∑
k=1

1

N + J
(1− pk) (pns + ps)(

1− 1

N + J

)J
≥
N+J∑
k=1

1

N + J
(1− pk)pns

(
1− 1

N + J

)J

≥
N+J∑
k=1

1

N + J
(1− pk)

(
1− 1

N + J

)N+J−1

≥ θ
(

1− 1

N + J

)N+J−1

≥ θ
(

1− 1

K

)K−1
pc ≤ 1− θ

(
1− 1

K

)K−1
=⇒ TO ≥

log
(
δ2
K

)
log
(

1− θ
(
1− 1

K

)K−1)
We define an event F such that all SUs are orthogonalised given all SUs have correct estimate of N + J . We just showed
that Pr(F ) ≥ 1− δ2.
Jammer Estimation The SUs are orthogonalised and locked themselves on top N + J channels. We want to compute TJ ,
slots required to estimate J correctly with high probability. Let S3 be the number of observations that the channel was free.
Then, SUs will estimate J by computing collision probabilities only when the channel is free.

Pr(collision) = pc = 1−
(

1− 1

N + J

)J

Solving for J , we get

J =
log (1− pc)

log
(

1− 1
N+J

)
Let p̂c be the estimate of pc.

Ĵ =
log (1− p̂c)

log
(

1− 1
N+J

)
We want to make Ĵ as close to J . Therefore, for γ < 1

2∣∣∣Ĵ − J ∣∣∣ < γ

∣∣∣∣∣∣ log (1− p̂c)
log
(

1− 1
N+J

) − log (1− pc)
log
(

1− 1
N+J

)
∣∣∣∣∣∣ < γ

∣∣∣∣∣∣
log
(
1−p̂c
1−pc

)
log
(

1− 1
N+J

)
∣∣∣∣∣∣ < γ
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Let α be the difference between p̂c and pc. Substituting, p̂c = pc + α.

log

(
1− 1

N + J

)−γ
≤ log

(
1− pc − α

1− pc

)
≤ log

(
1− 1

N + J

)γ
(

1− 1

N + J

)γ
≤
(

1− pc − α
1− pc

)
≤
(

1− 1

N + J

)−γ
(

1− 1

N + J

)γ
(1− pc) ≤ (1− pc − α) ≤

(
1− 1

N + J

)−γ
(1− pc)

(1− pc)
(

1−
(

1− 1

N + J

)−γ)
≤ α ≤ (1− pc)

(
1−

(
1− 1

N + J

)γ)
(23)

If we ensure |p̂c − pc|< ε2 where

ε2 = min

{∣∣∣∣∣(1− pc)
(

1−
(

1− 1

N + J

)−γ)∣∣∣∣∣ ,
∣∣∣∣(1− pc)(1−

(
1− 1

N + J

)γ)∣∣∣∣} (24)

for some γ < 1/2 then we can have Ĵ = J . The number of observations S3 required to compute p̂c such that |p̂c − pc|≤ ε2
is given by Hoeffding’s inequality.

Pr(|p̂c − pc|> ε2) ≤ 2 exp(−2 · S3 · ε22) <
δ3
2K

=⇒ S3 >
1

2ε22
ln

(
4K

δ3

)
We can further simplify our expression for ε1. Substituing the value of pc, we have

ε2 = min

{∣∣∣∣∣
(

1− 1

N + J

)J (
1−

(
1− 1

N + J

)−γ)∣∣∣∣∣ ,
∣∣∣∣∣
(

1− 1

N + J

)J (
1−

(
1− 1

N + J

)γ)∣∣∣∣∣
}

(25)

Using the results in [7], we have ∣∣∣∣∣
(

1− 1

N + J

)J (
1−

(
1− 1

N + J

)−γ)∣∣∣∣∣ ≥ γ

exp(1).K∣∣∣∣∣
(

1− 1

N + J

)J (
1−

(
1− 1

N + J

)γ)∣∣∣∣∣ ≥ γ

exp(1).K

Therefore, combining above two, we have
ε2 ≥

γ

exp(1).K

If SUs have S3 >
1

2ε22
ln
(
4K
δ3

)
observations that the selected channel was free, where ε2 = γ

exp(1).K then for all SUs with

probability at least 1− δ3
2 , we have Ĵ = J

To ensure we have S3 observations of selected channels being free for all SUs, using similar approach as in proof of
Lemma 5 used for N + J estimation, we can say ,

Pr

(
all SUs has <

1

2
· TJ · E[AIt(t)]observations

)
<
δ3
2

=⇒ exp

(
−1

8
· TJ · E[AIt(t)]

)
<

δ3
2K

=⇒ TJ > 8 · ln
(

2K

δ3

)
· 1

E[AIt(t)]

where TJ is the number of slots for Jammer Estimation. In this case, E[Ak(t)] = 1− pk. We also want that total number
of observations of selected channels being free to be at least S3. Therefore,

TJ∑
t=1

AIt(t) ≥
1

2
· TJ · E[AIt(t)] ≥ S3

=⇒ 1

2
· TJ · E[AIt(t)] >

1

2ε22
ln

(
4K

δ3

)
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=⇒ TJ >
1

ε22E[AIt(t)]
ln

(
4K

δ3

)

We now define following events:
G - event that all SUs have observed at least S3 times the selected channel was free
Gn - event that nth SU has observed at least S3 times the selected channel was free
H - event that all SUs have correct estimate of J given all SUs are orthogonalised when selected channel was free
Hn - event that nth SU has correct estimate of N given all SUs are orthogonalised when selected channel was free

Pr(H) = 1− Pr(H)

= 1− Pr(H/G)Pr(G)− Pr(H/E)Pr(E)

≥ 1− Pr(H/G)− Pr(G)

≥ 1−
N∑
n=1

Pr(Hn/Gn)−
N∑
n=1

Pr(Gn) (Union Bound)

≥ 1−
N∑
n=1

δ3
2K
−

N∑
n=1

δ3
2K

≥ 1− δ3
K
N

≥ 1− δ1
K
K

≥ 1− δ3

Let Y be an event that all SUs have correct estimate of N and J as well as they are orthogonalised and have correct channel
ranking.

Pr(Y ) ≥ Pr(Y/ADFH) · Pr(ADFH)

≥ Pr(Y/ADFH) · Pr(H/ADF ) · Pr(ADF )

≥ Pr(Y/ADFH) · Pr(H/ADF ) · Pr(F/AD) · Pr(AD)

We have,

≥ Pr(Y/ADFH) · Pr(H/ADF ) · Pr(F/AD) · Pr(AD)

Pr(Y ) ≥ (1− δ3)(1− δ2)(1− δ1)

Setting δ1 = δ2 = δ3 = δ
3

Pr(Y ) ≥
(

1− δ

3

)3

Pr(Y ) ≥ 1− 3
δ

3

Pr(Y ) ≥ 1− δ

After estimating N, J and channel ranking, all SUs run the OR subroutine for the second time. We will compute the
maximum slots required such that all SUs get orthogonalized and start sequential hopping. Our approach to bound regret
is similar to approach in [7]. We next derive the probability of collision for any SU at any round t.
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Now, to bound regret consider following: if (m <= J):

Pr(no collision) =
N+m∑
k=1

(1− pk)

N +m
(pns + ps)

(
1− 1

N + J

)J

+
N+m∑
k=1

pk
N +m

pnc ≥
N+m∑
k=1

(1− pk)

N +m
(pns + ps)

(
1− 1

N + J

)J

≥
N+m∑
k=1

(1− pk)

N +m
pns

(
1− 1

N + J

)J

≥
N+m∑
k=1

(1− pk)

N +m

(
1− 1

N +m

)N−1 (
1− 1

N + J

)J
≥ θ

(
1− 1

N + J

)N+J−1

≥ θ
(

1− 1

K

)K−1

if (m > J):

Pr(no collision) =
N+J∑
k=1

(1− pk)

N +m
(pns + ps)

(
1− 1

N + J

)J

+
N+m∑

k=N+J+1

(1− pk)

N +m
(pns + ps)

+
N+m∑
k=1

pk
N +m

pnc ≥
N+m∑
k=1

(1− pk)

N +m
(pns + ps)

(
1− 1

N + J

)J

≥
N+m∑
k=1

(1− pk)

N +m
pns

(
1− 1

N + J

)J

≥
N+m∑
k=1

(1− pk)

N +m

(
1− 1

N +m

)N−1
(

1− 1

N + J

)J
≥ θ

(
1− 1

N +m

)N+J−1

≥ θ
(

1− 1

K

)K−1
≥ θ

exp(1)

Combining above two cases, we can say

pnc ≥
θ

exp(1)

Since the number of slots required to find a collision free transmission and start sequential hopping is geometric distributed,
the expected number of slots for first success, denoted by TSH , is bounded by :

TSH <
1

pnc
=⇒ TSH <

Nexp(1)

θ
.

Regret will again be bounded as NTSH , i.e., N
2exp(1)
θ . Hence proving theorem 6
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APPENDIX D
ADDITIONAL SIMULATION RESULTS
In Figures 1-5, we compare the performance of proposed CDJ, CNJ and CUJ algorithms with the respective myopic
algorithm, ρrand [5] and MC [7] algorithms in terms of regret and throughput for various combinations of K,N , J and
{pi}. It can be observed that proposed algorithms offer lower regret and higher throughput in all cases. Furthermore,
the difference between the throughput of the proposed algorithms and other algorithms increases as T increases. Few
observations which support simulation results in main papers are:

1) For a given values of K and J (as shown in Fig. 11 and 13 where K = 16 and J = 4 ), the average regret increases
with increase in N from 8 to 10 as discussed in Fig. 4 of the main manuscript.

2) From Fig. 11 and 12 where K = 16 and N = 8, the average regret decreases with the increase in the value of J
from 4 to 6 as discussed in Fig. 6 of the main manuscript.

3) With increase in value of K for a given N and J , the average regret increases as depicted in Fig. 10 and 11.
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Fig. 9: The comparison of average regret of the Myopic algorithm with (a) CDJ algorithm, (b) CNJ algorithm and (c) CUJ
algorithm at different instants of the horizon. Here, we fix K = 8, N = 4, J = 2 with pi = {0.2, 0.3, 0.4, ..., 0.9}.
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Fig. 10: The comparison of average regret of the Myopic algorithm with (a) CDJ algorithm, (b) CNJ algorithm and (c) CUJ
algorithm at different instants of the horizon. Here, we fix K = 12, N = 8, J = 4 with pi = {0.8, 0.16, 0.24, ..., 0.96}.
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Fig. 11: The comparison of average regret of the Myopic algorithm with (a) CDJ algorithm, (b) CNJ algorithm and (c) CUJ
algorithm at different instants of the horizon. Here, we fix K = 16, N = 8, J = 4 with pi = {0.06, 0.12, 0.18, ..., 0.96}.
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Fig. 12: The comparison of average regret of the Myopic algorithm with (a) CDJ algorithm, (b) CNJ algorithm and (c) CUJ
algorithm at different instants of the horizon. Here, we fix K = 16, N = 8, J = 6 with pi = {0.06, 0.12, 0.18, ..., 0.96}.
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Fig. 13: The comparison of average regret of the Myopic algorithm with (a) CDJ algorithm, (b) CNJ algorithm and (c) CUJ
algorithm at different instants of the horizon. Here, we fix K = 16, N = 10, J = 4 with pi = {0.06, 0.12, 0.18, ..., 0.96}.
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