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Adaptive Predictive Power Management for
Mobile LTE Devices

Peter Brand, Joachim Falk, Jonathan Ah Sue, Johannes Brendel, Ralph Hasholzner, and
Jürgen Teich

Abstract—Reducing the energy consumption of mobile phones is a crucial design goal for cellular modem solutions for LTE and 5G
standards. In addition to improving the power efficiency of components through structural and technological advances, optimizing the
energy efficiency through improved dynamic power management is an integral part in contemporary hardware design. Most techniques
targeting mobile devices proposed so far, however, are purely reactive in powering down and up system components. Promising
approaches extend this, by predicting and using information from the environment and the communication protocol to take proactive
decisions. In this paper, we propose and compare two proactive algorithmic approaches for light-weight machine learning to predict the
control information needed to allow a mobile device to go to sleep states more often, e.g., in time slots of transmission inactivity in a
cell. The first approach is based on supervised learning, the second one based on reinforcement learning. As the implementation of
learning techniques also creates energy and resource costs, both approaches are carefully evaluated not only in terms of prediction
accuracy, but also overall energy savings. Using the presented technique, we observe achievable energy savings of up to 17%.
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1 INTRODUCTION

Regarding usability and marketability of battery-
powered consumer products such as mobile phones, the
minimization of energy consumption in operation is a must.
This is especially important, as battery technology is not
advancing fast enough to cope with increased energy con-
sumption of, e.g., displays or application processors. De-
pending on various factors, the modem (as the focus of
this paper) can be a major contributor to overall energy
consumption being responsible for up to 65 % of the overall
consumed energy [1]. Apart from structural and technolog-
ical improvements aiming to lower the power consumption
of integrated circuits regardless of their operational mode,
Dynamic Power Management (DPM) [2] serves to reduce
energy consumption by switching idle components from
high power to less power-consuming modes. This is realized
via so-called policies that represent schedules of power states
for all components of a system.

In Long Term Evolution (LTE) [3] and 5G, base stations
are responsible for scheduling the traffic in a cell to and
from all mobile devices. While this scheduling is entirely
known to the base station, being the communication master,
the mobile devices have no knowledge when they will be
granted time slots for transmission (via so-called grants in
the control channel). In order to guarantee that each such
grant is received, each device would need to continuously
monitor the control channel. Due to factors like radio quality
or other mobile devices in the cell, there can be a significant
amount of time and energy spent by a modem to decode the
control channel only to realize that there was no relevant
grant transmitted.
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Therefore, we propose proactive DPM-techniques based
on machine learning that predict whether a mobile device
will receive a relevant grant at a certain time step. Con-
trary to reactive DPM techniques that take decisions only
after perceiving a grant presence or absence, our presented
proactive approach monitors the control channel only when
a grant presence is predicted. Whenever a grant absence is
predicted, distinct components of the modem can be put to
low power states significantly sooner.

Because of the possibility of a high variability in the
scheduling behavior of a base station, we argue that proac-
tive DPM needs to be capable of being trained online
without any prior experience in a cell. In this context, we
propose and compare two algorithmic approaches for light-
weight machine learning to predict the control information
needed to allow a mobile device to save energy, e.g., in time
slots of transmission inactivity in a cell.

The first approach is based on supervised learning, the
second one based on reinforcement learning. As the imple-
mentation of such learning techniques also creates energy
and resource costs, both approaches are carefully tuned and
evaluated not only in terms of prediction accuracy, but also
in terms of overall energy savings, based on both simulated
data as well as data captured in real LTE cells. From the
viewpoint of a mobile device in an LTE environment, a com-
putationally light-weight adaptive predictive DPM system
that is able to learn online to achieve net energy savings is
therefore the preferred solution.

The rest of the paper is structured as follows: First, we
discuss related work in Section 2. Next, in Section 3, we
introduce the basics of the LTE communication protocol.
Here, we introduce which control events are relevant for
adaptive DPM. Subsequently, in Section 4, we discuss the
architecture of our LTE modem as well as the different
power saving policies that can be realized by this architec-
ture. In Section 5, we propose two techniques for predictive
power management based on machine learning. Here, a
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special focus is put on data formats, input and output, and
the definition of policies. Next, in Section 6, we discuss the
applicability and advantages of different machine learning
approaches, including their capabilities for online learning
and giving a definition of classification errors. Moreover, we
formalize the prediction problem both as a reinforcement
learning problem and formulate a supervised learning prob-
lem. Based on this, a quantitative study of computational
complexity as well as resource and energy requirements
for the implementation of the discussed algorithms is given
in Section 7. Experiments are conducted to show that signif-
icant net energy savings are achievable in the steady state
of scenarios such as video download. Finally, we conclude
with an outlook on future research directions in Section 8.

2 RELATED WORK

A comprehensive overview of DPM is provided in [2]. Here,
DPM techniques are grouped into (i) adaptive predictive and
(ii) stochastic approaches.

Stochastic control problems are characterized by their
power state transition times being non-deterministic and
more than two power states (i.e., not only on/off) available
to components. Most related and relevant to our work
are adaptive predictive approaches: Predictive power manage-
ment [4], [5], [6], [7] uses machine learning techniques
to predict, e.g., the length of idle intervals. This informa-
tion can be used to choose an optimal timeout policy or
to define suitable power management policies of when
to power down/up individual components. Workload-
dependent DPMs for, e.g, multi-processor systems [7], [8],
often act event-triggered. Here, the DPM system receives a
signal indicating that a component is idle and only then has
to perform a prediction of an optimal time-out length.

In contrast to this, in the LTE context and for mobile
devices, suitable control signals have to be determined first
to trigger dynamic power management actions. Second, in
order to save considerable amounts of energy, such con-
trol signals themselves must be predicted. Finally, instead
of event-triggering, we rather encounter a periodic, time-
triggered control problem.

In this paper, we base our modeling of the LTE environ-
ment and LTE-compliant behavior on [3] and [9]. For LTE
or wireless networks in general, there exist only very few
approaches to predictive DPM that can be distinguished by
the location where predictions are performed: (i) the core
network or (ii) the individual mobile device.

In case of the core network, research work has focused on
the question of how to save power by optimizing resource
block allocation, see e.g. [10], [11], [12]. These works aim
to reduce power consumption of the average power of
all devices registered in a cell by optimizing scheduling
decisions from the base station through machine learning.
In contrast to this, our approach is employed on the side of
the mobile device in such a network, unaware of the often
dynamic scheduling policy of a base station and without
any global knowledge on the number of devices in a cell
and the number and types of current requests.

Two main challenges have to be coped with in this con-
text: Scarcity of global knowledge available to the predictor
in the device as well as scarcity of computational resources

available in the modem. A further difference is the strict
requirement of reduced computational complexity for our
use-case, as a mobile device is both battery-powered and
severely constrained in computational power.

Despite these huge challenges, both approaches might
be applied hand-in-hand, as our approach described in the
following does not assume any knowledge given on the
scheduling techniques used in a base station.

Finally, there also exist a few approaches on adaptive
power management on mobile devices that can be dis-
tinguished by their adaptiveness to new situations, e.g.,
number of devices, in a cell and the required additional
interaction with the core network. For example, the work
in [13] examines how mobile device receiver behavior can
be adapted to increase energy efficiency. However, the pro-
posed solution requires to extend the protocol by additional
signals that indicate superfluous computations in order to
notify the system in advance of opportunities to switch
components to low-power states. Although requiring no
forecast, this technique would only be applicable in case
the full LTE communication protocol would be extended
by the proposed signaling mechanism. The authors of [14]
use machine learning to predict when data transmissions
are sparse enough to be delayed without the user noticing.
Upon prediction of such an opportunity, the mobile device
then signals to the base station to defer the communication,
leading to more bursts in traffic, reducing the amount of
time data has to be received. In contrast, our approach
proposed in this paper works on top of any MAC layer
communication protocol without any change, and requiring
no additional control signals.

In [15], an approach for grant prediction in LTE is intro-
duced and shown in theory to be beneficial for predictive
DPM, but no actual prediction technique is proposed and
only ideal energy savings are reported. Additionally to [16],
where a solution to the prediction problem is proposed, this
paper presents an in-depth investigation of the impact of
trace characteristics on theoretically as well as realistically
achievable energy savings for a representative application
model from [30]. Finally, [17] presents an approach to the
problem of grant prediction based on a supervised learning
with impressive false negative prediction rates of only about
2 %. However, all training there is performed offline on pre-
recorded communication traces as presented in [18] and
without any online validation or training, thus neglecting
the dynamic behavior in a cell caused by changes in the
number of active mobile devices and their requests as well
as adaptive scheduling behavior of the corresponding base
station. As a result, no margins of achievable net energy
savings for real environments are known. To the best of our
knowledge, this is the first paper to (i) present and compare
different approaches for LTE grant prediction for DPM in
mobile devices that (ii) may be applied in any LTE network
without (iii) any prior training, and (iv) analyzes net energy
savings in (v) real environments on the basis of sound power
and energy models of modem and predictor components.

3 LTE PROTOCOL

This section presents an overview of the key control sig-
nals of LTE. With an appropriate level of abstraction, we



3

introduce (i) key layers in LTE communication, (ii) radio
transmission and reception concepts, and finally (iii) both
uplink and downlink control signals. Later sections will
use these signals to motivate DPM strategies and design
predictors to realize these strategies. For a more in-depth
and complete LTE overview, we refer the reader to [3].

3.1 LTE Base Terminology

An LTE network consists of two major parts: (i) the access
network and (ii) the core network. The access network is a cell-
structured network of evolved Base Stations (eNodeBs) that
communicate with mobile devices (i.e., User Equipments
(UEs)) via radio transmission. As the UE modem compo-
nents – responsible for radio transmission and reception
– are the focus of this work, our explanation of the LTE
protocol layers will be focused on the layers that either
realize or directly affect the communication between the
UEs and eNodeBs. This abstract network view is shown
in Fig. 1 with the relevant layers – application layer, Access
Stratum (AS)/Non Access Stratum (NAS) layers, and Radio
Frequency (RF) layer – highlighted.

(i) The application layer executes user applications,
e.g., video streaming, that connect a UE with a
service provider, like an internet server, through the
core network. A functional model of such commu-
nication on application level is given in Section 7.2.

(ii) The AS/NAS layers generate and process LTE-
conform control signals as outlined in Sections 3.3
and 3.4.

(iii) The RF layer realizes the radio signal transmission
and reception. Analog radio signals are sent be-
tween UE and eNodeB aligned to channels divided
in frequency into uplink and downlink regions as
detailed in Section 3.2.

Predictive DPM

AS/NAS AS/NAS

Application Application

Access
Network

Core
Network

Internet

UE eNB

RF RF
f

t

f

t

Downlink

Uplink

Fig. 1: Overview of an LTE network with the functional
division into access network with UEs and eNodeBs, here
only hinted at core network, and a service provider, i.e., an
internet server. The red arrow connects two communicating
applications and shows how data is sent and received
through the protocol stacks. For the sake of brevity, we only
highlight those protocol layers that are directly responsible
for the RF traffic between UEs and eNodeBs. For more
details, see [3].

TTI

14 OFDM symbols
TTI

f [PRB]

t [TTI]

··
·

Uplink

Downlink

Fig. 2: LTE communication. Depicted is one Transmission
Time Interval (TTI)) which has the duration of 1 ms com-
prising 14 OFDM symbols, subdivided in frequency into
Physical Resource Blocks (PRBs).

3.2 Communication Channels

RF communication in LTE between a UE and an eNodeB
is aligned in time to so-called Transmission Time Inter-
vals (TTIs), as shown in Fig. 2, which are 1 ms in length.
Moreover, each TTI itself is divided into 14 Orthogonal
Frequency-Division Multiplexing (OFDM) symbols of equal
length, each of length 1

14 ms. In the frequency domain, all
communication is aligned to so-called Physical Resource
Blocks (PRBs) of size 180 kHz. Furthermore, downlink (sent
from the eNodeB to the UE) and uplink (sent from the UE
to the eNodeB) are separated in frequency.

To make sure transmissions are free of interference, an
eNodeB schedules all uplink and downlink data in fre-
quency and time and sends this schedule information to
all UEs. As the target of the discussed predictive DPM
(see Section 4.1) are the components of the modem radio
frequency reception chain, an in-depth understanding of
the downlink (Section 3.3) and uplink (Section 3.4) region
is necessary.

3.3 Downlink

The downlink region of a TTI is divided (in time) into the
control channel (first 3 OFDM-Symbols) and the data channel
(remaining 11 OFDM-Symbols), see Fig. 3. As is implied
by the names, the data channel is reserved for actual user
data, while the control channel holds all relevant protocol
information.

Section 4.1 will show how a prediction of the information
contained here can be leveraged to obtain energy savings
compared to a state-of-the-art DPM.

3.3.1 Grant Signaling
Grant signaling is used to notify the UEs of scheduling
opportunities with (i) Downlink Grants (DLGs) and (ii)
Uplink Grants (ULGs). These grants are used for the pur-
pose of notifying a UE of specific PRBs at specific times
where (i) downlink transmissions are to be received or
where (ii) uplink transmissions are allowed. Each type of
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Control Data

TTTI = 14 OFDM symbols
TTI

f [PRB]

Fig. 3: Visualization of the downlink region divided into (i)
control and (ii) data channel. A downlink grant (yellow)
always contains information in the control and the data
channel. As can be seen, a downlink grant is always directly
followed by a data transmission in the subsequent data
channel. Depicted also is an uplink grant (green) and an
ACK/NACK signal (black) with information only contained
in the control channel.

grant information is signaled in the control channel of a TTI
and addressed to a specific UE. Moreover, downlink grants
always point to PRBs in the data channel of the very same
TTI, whereas uplink grants indicate PRBs to be used by the
UE exactly 4 TTIs in the future. Finally, to serve as input
for our work on grant prediction in Section 6, downlink and
uplink grants can be formally described by tuples:

DLG = (ndi, tbs,mcs) ∈ B× N+ × N[0,31] (1)

ULG = (ndi, tbs,mcs) ∈ B× N+ × N[0,31] (2)

ndi is a Boolean value that describes whether a new packet
(ndi ≡ t) should be sent, or a previous packet should be
retransmitted (ndi ≡ f ). tbs is a positive natural number
that specifies the exact number of PRBs associated with
the grant within the data channel. mcs is also a natural
number between 0 and 31 that specifies the Modulation
and Coding Scheme (MCS) for both uplink transmission and
downlink reception and describes how the RF payload data
is encoded.

3.4 Uplink
Not crucial for prediction, but nevertheless important for
our evaluation of overall energy consumption in Section 7,
are the uplink RF LTE mechanisms. In this work, we
consider (i) Buffer Status Reports (BSRs), (ii) uplink data
transmissions, and (iii) ACK/NACK signaling.

(i) BSRs are sent by the UE to notify the eNodeB of
data that is ready to be sent. Hence, asking for future
scheduling and, thus, an uplink grant.

(ii) Uplink data transmission is implicitly scheduled ex-
actly 4 TTIs after the reception of an uplink grant.

(iii) ACK/NACK signaling in the uplink is realized to no-
tify the eNodeB of successful (ACK) or unsuccessful
(NACK) data reception from the UE, and is specified
to happen exactly 4 TTI after downlink transmissions
(i.e., a received DLG).

Data

D
ata

Control
TTTI = 14 OFDM symbols

TTI

f [PRB]

Fig. 4: Visualization of the uplink region. The upper- and
lowermost frequency bands (the uplink control channel)
are exclusively used for protocol signaling. The uplink data
channel is reserved for sending payload. If a UE transmits
both control signals and data, both is bundled together and
sent within the data channel.

Since the eNodeB knows when in time and where in
frequency to expect data transmissions and ACK/NACK
feedback, it will react to unexpected behavior (no, or erro-
neous data transmissions, missing ACK/NACK feedback).
This is done by rescheduling and resending an uplink
grant (missing transmission) or resending the downlink
data (missing ACK/NACK), but both kinds of grants with
the field ndi = f .

Similar to the downlink case, the uplink frequency spec-
trum is subdivided into channels for uplink control and
for uplink data, as shown in Fig. 4. Here, the upper- and
lowermost PRBs belong to the control channel and the
frequencies in between carry the data channel.

Transmissions in a TTI are exclusive to one channel,
which means that a UE can either send in the control or data
channel, with the data channel taking precedence. Thus, if a
UE transmits payload data, everything will be transmitted
in bulk in the data channel. Otherwise, it will be sent in the
control channel.

4 ARCHITECTURE AND POWER MODELING

To model the power consumption of a modem and to
formalize policies for DPM, we take a Power State Machine
(PSM)-based approach according to [1], see Fig. 5 for con-
venience. Here, each essential power-manageable hardware
component is modeled by a PSM with its respective power
states and possible state transitions corresponding to power
management decisions. Distinguished in Fig. 5 are a Ra-
dio Frequency (RF) part and a Physical Layer (PHY) part.
In each power state, a fixed nominal power consumption
value is assumed. Additionally, each part is divided into
a reception (RX), transmission (TX), and control (CTRL)
components. Thus, resulting in the six different components
shown in Fig. 5a). The RF components receive information
from, respectively, send information to the PHY components
that decode, respectively, encode the information.

In the following section, we motivate the potential of
power and energy savings in an LTE modem through proac-
tive power management. We propose DPM policies based
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on off

120mW

offDataControl

0mW210mW

PHY_CTRL

b)

a)

60mw

RF_CTRL

RF_RX

RF_TX PHY_TX

PHY_RX

0mW

Fig. 5: a) Abstract hardware model of an LTE modem. b)
Power State Machines (PSMs) [19], [20] of the RF RX and
PHY RX components. The power states ”on”, Control”,
and ”Data” are high, while ”off” are low-power states. We
assume the transitions to be instantaneous and requiring no
additional power.

on the prediction of grant signals in the reception path,
thus affecting the RF RX and PHY RX components. Their
PSM models are shown in Fig. 5b). As can be seen, both
components can be in a low (off) or high power state (on,
Control/Data). Whereas during the decoding of the control
region (first three OFDM symbols of a TTI), the PHY RX
component is in the Control state, it transits to the Data state
when decoding the data channel.

4.1 Power Management Policies

In the context of an LTE modem, a power management
policy denotes a schedule of the power states of all its DPM-
controllable components over the duration of a TTI.

On the receiver (RX) path, an LTE-compliant reactive
DPM could distinguish a very simple policy as shown
in Fig. 6a): If the data channel contains no data for the UE,
which is the case if no DL grant (DLG) is present in the
control channel, then the RF RX and PHY RX components
can be simply turned off for the remainder of the TTI, see
the two scenarios z1 and z3, respectively, on the left (only
an ULG) and on the right (neither ULG nor DLG present)
in Fig. 6. Otherwise, the components must remain in the
high power state and no power savings are possible in this
case (scenario z2 shown in the middle).

However, the potential to achieve considerable power
and energy savings through reactive DPM in scenarios z1

and z3 is not very high, as the information to power down
RX components becomes available to the DPM only after
the complete decoding of the data channel as shown by the
length of the red time intervals of the components RF RX
and PHY RX in Fig. 6a).

In contrast, imagine the DPM could correctly predict the
information that neither a DLG nor a ULG grant will be
received in the next TTI. Obviously, both components could
then stay in the off mode for the complete duration of a TTI
(see scenario z3 in Fig. 6b). Moreover, in scenario z1, this
would allow at least the RF RX component to stay off for a
considerably longer time than in case of a reactive DPM.

Our predictive DPM approach proposed in this paper
aims to exploit the full potential of energy savings of a UE by

a)

b)

f

PHY RX
RF RX

RF RX
PHY RX

(z1)
ULG only

(z2)
DLG ∧

maybe ULG

(z3)
No DLG∧
No ULG

Fig. 6: Three scenarios and corresponding policies of a)
reactive DPM and b) proposed predictive DPM are shown
(red/green: component turned on/off). In the left scenario
z1, an uplink grant (ULG) is received. Scenario z2 is charac-
terized by a downlink grant (DLG) and potentially addition-
ally an ULG being received. Finally, scenario z3 represents
the case of a TTI in which the UE does neither receive a ULG
nor DLG. As can be seen, the predictive DPM may power
the two components RF RX and PHY RX down earlier and,
thus, for a longer duration of time. In the right scenario, both
components can be turned off even from the very beginning
of the TTI.

trying to maximize the intervals (green in Fig. 6b) in which
components are operated in off mode. This is achieved by
aggressively turning the modem components off before the
decoding of the control channel. To achieve this, Section 6 will
introduce and evaluate two machine learning algorithms for
time-series prediction of whether a TTI will contain a DLG or
ULG grant for a UE in the next TTI. In contrast to a reactive
approach, it will be shown that this has the potential of a
significant amount of net energy savings (see Section 7).
However, prediction bears also the danger of potentially
loosing transmission capacity in uplink or downlink in case
of misprediction of grant signals. Such mispredictions may
indeed affect performance but notably also future traffic of
the whole cell due to retransmissions. Because the eNodeB
will generally retransmit data if a UE does not react as
expected, e.g., by missing grant signaling due to erroneously
turning the modem off, a prolonged data transfer for the
affected data will result. In consequence, no energy savings,
but rather increased energy might be observed due to the
required retransmissions. This and the overhead of energy
consumed by an implementation of the prediction technique
itself must therefore be carefully evaluated.

5 PREDICTIVE DPM
This section formalizes the problem of predictive DPM,
introduces the notion of DPM policies based on the three
scenarios distinguished previously, and provides formulas
for energy estimation based on the notion of analyzed traces.

Figure 7 gives an overview of the complete predictive
DPM system. Based on received LTE traces with l[n] de-
noting the control information received by the modem of a
UE in the nth TTI of a trace (see Section 5.1), a predictor as
explained in Section 5.3 performs the prediction lp[n + 1]
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l [n]

l [n-K+1]

l [n-K+2]

l [n-2]

l [n-1]

lp  [n+1]

z [n+1]

p [n+1]

K

PHY_CTRLRF_CTRL

RF_RX

RF_TX PHY_TX

PHY_RX

Fig. 7: Predictive LTE-modem DPM system. It consists of
a predictor that computes a prediction lp[n + 1] of the next
TTI’s control information (based on a sliding windows of the
last K information) and a scenario recognizer that maps this
prediction to a scenario z[n+ 1] as identified in Fig. 6. From
this, an optimized policy p[n + 1] is derived. This policy is
immediately applied to all components of the modem at the
beginning of the next TTI.

of the next TTI’s control information upon which the next
scenario z[n + 1] is determined. Section 5.2 thereby illus-
trates the notion of policies as schedules of power states
of each power-controllable component and how they are
determined for each of the characterized scenarios to save
the highest amount of energy.

5.1 LTE Traffic Modeling
Let the TTI information l[n] represent all information that is
observable by a single UE during the nth TTI. This infor-
mation is used for grant prediction. It is defined as a tuple
containing the ULG and DLG information, as introduced
in Eqs. (1) and (2):

l[n] = (ULG,DLG) ∈ L (3)

Based on this, a so-called trace of length N can be modeled
by a sequence

l =< l[1], l[2], ..., l[N ] >∈ LN (4)

5.2 Policies and Mapping of Scenarios to Policies
A policy p is defined as a schedule of the power states of
each power-controllable component r ∈ R = {rRF RX,
rPHY RX, rRF TX, rPHY TX, rRF CTRL, rPHY CTRL} accord-
ing to Fig. 5 within a TTI.

Assuming that the initial state of each component is a
high power state and that each component can maximally
be switched off once during a TTI, the schedule of each
component r may be described by a time index

tr ∈ {
0

W
,

1

W
,

2

W
· · · , W

W
} ∪ {−} (5)

that indicates the fraction of a TTI (with W = 14) at which
the component is powered down to its off-state. A policy p
is then simply a tuple p = (t1, · · · , t|R|) of such time indices.

Hereby, we assume that an LTE-conform DPM system
will never switch a component to on, apart from the very

beginning of a TTI. Following this, the time index of 0 means
that the respective component will not be switched on at all,
while 1 means it is kept on during the entire TTI.

As motivated in the previous section (see Fig. 6), we
distinguish three relevant scenarios Z = {z1, z2, z3} for
our LTE-modem DPM. In detail, scenario z1 corresponds to
information only in the control channel, scenario z2 has in-
formation both in the control and data channel, and scenario
z3 indicates no information within the TTI.

The mapping of this input to power states and transi-
tions is intuitive: For z1, only the control channel should
be received, i.e., RX components can be turned off after the
control signals have been processed. For z2, obviously all
content of the TTI has to be received, and no RX component
should be turned off. Last, for z3, the RX components can
be turned off during the whole TTI without any loss of
information. The time that the RX components need to
process the data contained in the control channel and can
forward the information to the DPM system is dependent
on the modem itself. In the following energy analysis, we
assume the RX components are operated at a 50 % duty cycle
and turned off in the second half (0.5 · tTTI) of the TTI if no
DL grant is present in the control channel.

Obviously, three policies, one characterizing each of the
above scenarios are necessary but also sufficient to describe
the DPM schedules for each modem component. Table 1
shows the relation between TTI tuple information l, the
corresponding scenario z, and the resulting policy p to be
chosen for the purpose of energy reduction:

TTI Scenario Policy
l z p

(t, f) z1 p1 = (0.5, 0.5,−,−, 1, 1)
(t, t), (f , t) z2 p2 = (1, 1,−,−, 1, 1)

(f , f) z3 p3 = (0, 0,−,−, 1, 1)

TABLE 1: Mapping of a TTI information tuple l to a scenario
z and corresponding DPM policy p. Each element in the
policy vector corresponds to one physical modem compo-
nent, the value indicating at which portion of TTI length the
component is switched to the off state. The don’t care values
− for the transmitter components rRF TX and rPHY TX stem
from the fact that our proposed policies only target the RX
chain of the modem.

Note that the mapping of TTI information l to a scenario
z, respectively policy p, can also be used in the following
predictive approach, thus, deriving z[n + 1] and policy
p[n+ 1] directly from a predicted tuple lp[n+ 1] according
to Table 1. Next, we will explain the prediction mechanism
itself, which is based on an observed time series of TTI
control information.

5.3 The Predictive DPM Cycle
In contrast to a reactive DPM system that may take as
input only TTI control information up to, respectively of the
current TTI n, a time-series based predictor takes a sliding
window of length K to predict the TTI control information
l[n + 1] of the next TTI, see Fig. 7. Such a predictor may be
represented by a function fPRED : LK → L that uses the
information of l[n −K + 1] . . . l[n] to compute a prediction
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lp[n + 1] of the next TTI control information tuple. As the
predictor has to predict whether a grant will be present or
not in the next TTI, only the four discrete tuples shown
in Table 1 will result from prediction, as the predictor will
never predict the TTI information value u.

Based on the prediction lp[n+ 1], the scenario z[n+ 1] is
determined by the mapping function fZ : L→ Z according
to Table 1. The table also describes the final step of mapping
the scenario z[n + 1] to a desired policy. This mapping can
therefore also be described by a function fDPM : Z → P
according to Fig. 7.

5.4 Energy Estimation

Since the motivation for applying learning techniques is to
reduce the modem power, respectively energy consumption,
it is important to consider the inherent energy consumption
of the prediction overhead per TTI as well. In the following,
this overhead is denoted by EQ. This overhead will be
carefully examined in our experiments in terms of clock
cycles and energy consumption when implementing the
predictor in software on a Digital Signal Processor (DSP)
that is representative for usage in LTE modems (see Sec-
tion 7). As our goal is to evaluate net energy savings, we take
the energy consumption EDPM of the reactive approach as
a base line for the comparison with the energy consumption
ECOG – including prediction overhead EQ – obtained by
the predictive DPM approach when analyzing a given trace
l.

The energy consumption ECOG for a given trace is de-
pendent on the cognitive policy pCOG[n] (with pCOG[n].tr
carrying the respective time portion of TTI n the resource
r will stay in its ”on” power state) and the power con-
sumption P on

r (P off
r ) of each resource r in the high (low)

power state. Thus, the energy consumption of a complete
trace using predictive DPM can be calculated as follows:

ECOG =
N∑

n=1
(EQ +

∑
r∈R\
{rRF TX,
rPHY TX}

P on
r · pCOG[n].tr + P off

r · (1− pCOG[n].tr)

+
∑
r∈

{rRF TX,
rPHY TX}

P on
r · pDPM[n].tr + P off

r · (1− pDPM[n].tr)) (6)

Since the proposed DPM considers only the power state
transitions of the RX components, we assume the TX com-
ponents (r2, r3) to be steered by a state-of-the-art reactive
LTE DPM policy pDPM.

Likewise, the energy consumption for the reactive ap-
proach, dependent on the reactive LTE DPM policy pDPM,
may be computed as:

EDPM =
N∑

n=1

∑
r∈R

P on
r · pDPM[n].tr + P off

r · (1− pDPM[n].tr) (7)

A net energy gain can be achieved if ECOG < EDPM

holds for a trace.

6 MACHINE LEARNING TECHNIQUES FOR LTE
GRANT PREDICTION

There exists a multitude of machine learning approaches.
Which of the following approaches is suitable or not de-
pends mainly on which information is available during

learning. If during each learning step, there is direct feed-
back on the quality of a classification or prediction, super-
vised learning is appropriate. If this information is not readily
available at every training step, but rather an approximation
of quality must be deduced indirectly from certain events,
reinforcement learning may be the appropriate choice. Finally,
unsupervised learning may be applied to cases where neither
of the above information is available. In our case of LTE
grant prediction, a suitable machine learning approach shall
correctly predict the next TTI control information based
on a sequence of K previous control tuples. Thus, since
the correctness of each prediction may be asserted either
directly or indirectly (listening and grant being sent or not
listening when no grant is being sent), we do not consider
unsupervised learning as a preferable technique for our
problem.

Before delving into details, Section 6.1 discusses error
classes and how mispredictions may affect a UE and even
the whole cell. Subsequently, in Section 6.2, both a super-
vised and a reinforcement learning approach are presented
and benefits and shortcomings of each outlined. Next, we
present solutions for LTE grant prediction based on su-
pervised learning (Section 6.3) and reinforcement learning
(Section 6.4).

6.1 Error Classification
In the context of our stated LTE grant prediction formal-
ization, the scenario identification is dependent on the pre-
dicted presence or absence of a DLG and an ULG. Hence, it
can be defined as a binary classification problem for which
two types of prediction errors exist: False Positive (FP) and
False Negative (FN) errors [17].

A FP error means a grant was erroneously predicted
to appear. This error is neutral to performance (e.g., data
rate), as no information is lost. However, as a false positive
error means that components are left in a high power state
for longer than needed, energy savings are missed, thus,
negatively affecting the non-functional property energy con-
sumption. To measure the proportion of false positive errors,
we define the False Positive Rates (FPRs) as:

FPR =
# grant presences erroneously predicted

# grant absences
(8)

The second kind of prediction error is a FN error, which
means a grant absence was erroneously predicted. As ex-
plained in Section 3.1, this leads to scheduled PRBs to be
effectively unused because either the downlink data is not
received by the UE or the UE will not transmit any uplink
data. False negative errors are diminishing the performance,
i.e., leading to a deterioration of data rate and effective
bandwidth of the whole LTE cell. Analogous to the FPR,
we define the False Negative Rate (FNR) as:

FNR =
# grant absences erroneously predicted

# grant presences
(9)

In summary, minimization of the FPR corresponds to a
minimization of energy consumption as defined by Eq. (6),
while minimization of the FNR is necessary in order not
to affect the quality of service. Hence, the two approaches
presented in the following both aim at saving energy while
minimizing the FNR.
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6.2 Design Considerations

Depending on UE application, UE movement, and other
UEs behavior in the cell, traffic patterns are diverse and may
undergo continuous changes.

Thus, when designing a predictor, there are several con-
flicting design objectives. The first pair is complexity and
prediction accuracy. As explained in Section 5.4, performing
a prediction itself as well as the training of the predictor
requires additional computations. Assuming a nominal pre-
diction accuracy, a less complex prediction algorithm will
yield higher energy savings compared to a more complex
algorithm. Of course, the prediction accuracy of a more
complex algorithm may achieve a better prediction accuracy
if the trace characteristics are hard to predict. For traces with
especially simple characteristics, complexity may be wasted.

The second important decision is assumption of station-
arity. Assume a trace that is stationary for a long time. In
this case, training a predictor with a quick convergence to a
sufficient solution on a short initial part of interval may be
the preferred choice. However, if the observable traces are
subject to continuous changes, a solution that is capable of
on-line training to improve its prediction may be superior.

Therefore, we propose and compare two different ap-
proaches that carefully balance these considerations. The
first presented approach (Section 6.3) is based on supervised
learning. Here, we propose a predictor based on a neural
network, aimed to be trained quickly until it is turned
into exploitation mode. The second approach (Section 6.4)
is based on reinforcement learning. There, we introduce a
light-weight tabular prediction algorithm, which is trained
continuously. Finally, in Section 7, both approaches are com-
pared for a number of different traces in terms of prediction
accuracy and the potential for energy savings.

6.3 Supervised Learning

A first benchmark of several supervised ML algorithms
for LTE grant prediction is described in [17]. In essence,
3 different algorithms have been trained to perform grant
prediction. Their output, a value between 0 and 1, is used
as cost-sensitive classification input, to decide whether a
grant, modeled as 1, or no grant, modeled as 0, should be
predicted. This gives the ability to tune the false negative
rate (FNR) separately from the accuracy result. Using this
two-stage classification approach has 2 main advantages:

• Intrinsic algorithm accuracy comparison: Applying
the same cost-sensitive classification technique with
different first-stage ML algorithm makes it possible
to compare the intrinsic predictive ability of these
algorithms. In other words, it becomes possible to
answer the following question: which algorithm can
inherently model the grant traffic better?

• Tunable operating point: For a given prediction, it
might be requested to reach different FNR perfor-
mances. For instance, if too many grants have been
missed (high FNR) at the beginning of an LTE sce-
nario, it is desirable to adjust only the cost-sensitive
parameters in order to have a predictor which is less
prone to false negatives than false positives. Using
such dynamic and straight-forward adjustments of

Fig. 8: Process in one neuron as depicted in Eq. (10). θ is the
weight vector subject to backpropagation. The link function,
l, is often sigmoid, linear or tangent hyperbolic.

Fig. 9: Example of a FFNN with one hidden layer. The
neurons of the input layer do not act as other neurons as
depicted in Fig. 8. They store the values presented as input.

the predictor output can be used to tune the FNR
depending on the user needs. Therefore, a safe cost-
sensitive setup, i.e., low FNR but higher FPR, would
be used for scenarios with time constraints where
packet losses could be very damageable. For non-
critical scenarios, a more aggressive cost-sensitive
setup, i.e., low FPR but higher FNR, would be ap-
plicable.

6.3.1 Feed-Forward Neural Network

From 3 popular supervised learning approaches, i.e., feed-
forward neural networks (FFNN), support vector regression
(SVR) and recurrent neural networks (RNN), we chose the
less computationally expensive one, the FFNN approach.
Indeed, SVR requires to solve a high-dimensional optimiza-
tion problem, often in the dual space [21]. RNNs, when
unfolded through time, are also computationally very ex-
pensive [22].

In particular, we use a specific type of FFNN where all
the neurons of one layer are connected to all neurons of the
next layer, i.e., fully connected FFNN. In Fig. 8, we describe
the model of one neuron which is the core building block of
the entire neural network depicted in Fig. 9, which uses the
hyperparameters given in Table 2. Formally, the output of
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TABLE 2: Neural Network Hyperparameters

Name [properties]
Layer 1 [60 neurons, tangent hyperbolic]
Layer 2 [10 neurons, tangent hyperbolic]
Output Layer [2 neurons, linear]
Performance Function [mean square error]

one neuron can be expressed as

l(Σ) = l(θ0 + θ1x1 + ...+ θnxn) (10)

with (x1, ..., xn) being the output of the n previous neurons,
l the link function and θ ∈ Rn+1 the weight vector modified
by backpropagation in order to minimize the error between
outputs and targets during the training phase.

This type of ML algorithms is known to be universal
function approximators and can therefore achieve any kind
of nonlinear mapping between inputs and outputs [23]. Al-
though training neural networks with backpropagation can
be computationally expensive, several variants exist [24],
allowing to choose the optimal accuracy-complexity trade-
off depending on the task. Generally, no conclusions can be
drawn on the influence of the number of hidden layers and
neurons. Therefore, we chose the hyperparameters given
in Table 2.

The prediction window input length is chosen equal to
K = 10, which is equivalent to taking the last 10 values of
each LTE metric as neural network input.

In total, the input vector is thus a 60-dimensional vector
containing the normalized LTE metric values, explicitly
considering all information contained in a grant (ndi, tbs,
and mcs). These values might give some indications on the
past grant history but also bandwidth occupancy, channel
conditions, and past corrupted data, which are informations
used by the eNodeB to decide on the future allocations.

The output is a real-valued estimation of the likelihood
of a ULG and/or a DLG presence in the next TTI. This real-
valued estimation is then transformed by the cost-sensitive
classification decision stage to discern the actual predicted
TTI (present or absent).

6.3.2 Cost-Sensitive Classification
A receiver operating characteristic (ROC) curve is often used
to assess the classifiers’ performance. It depicts the trade-
off between the FNR and the FPR. The performance of a
classifier is assessed by computing the area under the ROC
curve (AUC). The higher is the AUC, the more efficient is
the classifier. As depicted in Fig. 10, the FNR and FPR can be
tuned to achieve the any desirable trade-off on the training
data.

In the following, let P (y/t) denote the conditional prob-
ability that y is predicted given t as target, P (y, t) denotes
the joint probability and C(y, t) the cost of predicting y with
target t. Therefore, a general cost function R can be defined
for the classifier,

R =
∑

t,y=0,1

P (y, t) C(y, t) (11)

In this work, since correct classifications are not penal-
ized, only cases with C(1, 1) = C(0, 0) = 0 are considered
and from Bayes’ rule, joint probabilities can be expressed

Fig. 10: A receiver operating characteristic (ROC) represen-
tation of the cost-sensitive classification CSC. The optimal
threshold is obtained by setting m, the slope of (d). There-
fore, the ratio of the FNR and FPR can be tuned as depicted
in Eq. (13).

with conditional probabilities. Under the naive Bayes as-
sumption, FPR = P (1/0) and FNR = P (0/1) and therefore
the formulation for Eq. (11) becomes

R = P (t = 1) FNR C(0, 1)

+ P (t = 0) FPR C(1, 0)
(12)

Selecting the threshold which allows the best trade-
off is done by drawing isocost lines as described in [25].
Using Eq. (12), it can be derived that two points (1 −
FNR1, FPR1) and (1−FNR2, FPR2), in Fig. 10, have the same
performance if

FNR1 − FNR2

FPR2 − FPR1
=
C(1, 0) P (t = 0)

C(0, 1) P (t = 1)

= m , with m ∈ R+∗
(13)

In Fig. 10, the minimum isocost line (d) is depicted for
m = 2

3 . Therefore, m is tuned by the proportion of binary
targets from training samples and by specific costs which
can be presented in a cost matrix,

R =

(
C(1, 1) C(0, 1)
C(1, 0) C(0, 0)

)
(14)

Concretely, we set this cost matrix to

R =

(
0 0.85

0.15 0

)
(15)

6.4 Reinforcement Learning
To best deal with the outlined need for online learning,
another feasible approach is reinforcement learning that is
tailored to learn without needing to be given a desired
output. This problem occurs, whenever the DPM system
decides to not decode the control channel of a TTI.

A reinforcement learning system [26], in general, consists
of an agent that interacts with the environment. The agent
performs an action a, which will affect the environment
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leading to a new environment state s. Subsequently, the
agent will use this environment state s in order to choose
the next action. As additional feedback, the agent receives
a reward r, which is either calculated from the observed
state s or is explicitly given by the environment. The reward
indicates how desirable it is for the environment to be in this
state. The agent’s goal is to choose actions that maximize the
long term reward.

The general approach works as follows: For each possi-
ble pair (s, a) of an observable state s of the environment
and each action a that may be taken in this state, the agent
stores an expected long-term reward value Q(s, a) for taking
the action a in state s. Upon encountering a state s, the agent
determines an appropriate action according to an action
selection algorithm, based on the stored Q-values. After that,
the agent calculates a reward r (reward mapping) based on
the observed response from the environment and updates
the estimated value ofQ(s, a) of the last state and last chosen
action. Because this update considers the Q-value of the
next state, even negative rewards, like retransmissions in
our LTE case, will propagate back through previous actions
to the erroneous prediction. In the following, we apply these
notions and ideas of reinforcement learning to our time
series-based task of online prediction of l[n + 1] based on
a known time series of K previous TTI information tuples,
see Fig. 11.

Here, the state s[n] during TTI n is given by the presence
and absence of ULG and DLG in the current TTI control
tuple information l[n] and the lastK−1 previous tuples. The
action a[n] selected by the agent for the nth TTI corresponds
to the prediction lp[n + 1] of the forthcoming TTI’s control
information according to the three scenarios distinguished
in Section 4.1.

6.4.1 Action Selection
In our case of predictive LTE grant prediction, the observed
training data may itself be affected by the agent’s chosen
previous actions. Thus, an area of tension naturally arises:
the balance of exploration and exploitation.

Exploration, on the one hand, refers to gathering in-
formation of the state and action space. This is generally
achieved by choosing actions in states that have not yet,
or rather seldom, been visited. Because the Q(s, a)-values
cannot be initialized perfectly without prior learning, this
means that exploration hazards the consequences of taking
initially presumably suboptimal actions. The trade-off is the
potential to find better Q-values, or at the very least broad-
ening the agent’s knowledge for the future. Exploitation, on
the other hand, is the simple act of taking the – currently
estimated – best action abest, i.e. the action that maximizes
the expected long-term reward:

abest = argmax
a

Q(s, a)

Obviously, a suitable balance between exploitation and
exploration is key to success when applying reinforcement
learning. A handicap in our context of LTE grant prediction
is that important information for taking the right decision
on DPM is not directly observable by a single UE, like radio
condition, number of other UEs in a cell, and the scheduling
strategy of the eNodeB. Indeed, in dynamic environments,

fPRED
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Fig. 11: Reinforcement Learning-based prediction: For each
possible combination of current state s[n] – a sliding win-
dow of the last K observed control information – and action
a – all possible scenarios according to Table 1 – the predictor
keeps track of an estimated long-term reward – the Q-value
Q(s[n], a). At each time step, an action is chosen based on
this Q-value (Section 6.4.1). To make sure that the estimated
Q-value is accurate, the Q(s[n − 1],a[n − 1]) of the last
state s[n − 1] and last chosen action a[n − 1] is updated
(Section 6.4.4) according to the reward r[n − 1] received,
which is deduced from s[n]. To steer the agent towards
desired behavior, problem-specific reward identification and
assignment logic is crucial (Section 6.4.3) as well as appro-
priate Q-value initialization (Section 6.4.5).

these unknowns even undergo a constant flux. We therefore
argue for a strategy for action selection that permanently
has the capacity to explore and refine.

For action selection, an ε-Greedy strategy [27] is pro-
posed, which is a function that chooses at the nth TTI the
action with the highest estimated long-term reward value
abest with a chance of 1 − ε, and a random action with a
chance ε.

a[n] =

{
random action with probability ε
abest with probability 1− ε

(16)

Thereby, the parameter ε can be set to a constant, e.g., ε =
10 % in our experiments. Alternatively, the value could even
be adapted online to explore different behavior (if the trace
characteristics change) or to exploit more often (if the trace
characteristics are stable).

6.4.2 Dedicated Learning Phase

As we will show in Section 7, the time an agent might need
to achieve acceptable FNRs may be significant. Because the
UE is operated in an LTE cell that potentially penalizes
UEs that exhibit a disproportionately large rate of missed
messages, we propose to start up with an initial dedicated
learning phase. During this phase, the actions proposed
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by the agent are not forwarded to the DPM. Instead, ex-
isting reactive LTE DPM policies are used. However, the
rewards are calculated as if the agent decision were used.
For example, if scenario z3 (No DLG ∧ No ULG according
to Table 1) is predicted, we will not turn off the RF RX
and PHY RX components immediately. Rather, if a grant
should be received within the TTI, a negative reward (for
theoretically missing the information) is issued.

During this phase, a moving average of the FNR is
calculated. Only after reaching a minimal error threshold,
in our case of εmin err = 40%, the system starts powering
the system components down according to the actions as
suggested by the agent. Furthermore, we introduce a max-
imal error threshold εerr max = 45 %, that upon reaching
will trigger a new dedicated learning phase, to account for
recognizing changes and transients in trace characteristics.
Of course, this introduces a certain amount of time where no
energy can be saved. This is offset by a guaranteed worst-
case impact, because no grants will be missed.

6.4.3 LTE-Specific Reward Mapping Algorithm

After choosing an action, the agent maps the response of
the environment to a reward r[n − 1]. This is realized by
a mapping function that checks reality l[n] against the last
prediction lp[n] for desirable and undesirable attributes.

Desirable are all actions that minimize energy consump-
tion, i.e., that favor turning components off as early as
possible. Undesirable are in descending order of severity: (i)
turning components off too early (false negative error) and
(ii) turning components off too late, or not at all (different
degrees of false positive errors).

The proposed reward assignment is shown in Ta-
ble 3 ordered by the prediction lp[n], i.e., the last action
a[n − 1] performed by the agent. For the cases lp[n] ∈
{(t, f), (t, t), (f , t)}, the modem will at least receive and
decode the control channel, which allows the evaluation of
whether data has been lost or an opportunity to save energy
was missed. The prediction lp[n] = (f , f) is special, as it
leads to the TTI information l[n] not being received, mean-
ing no direct evaluation of prediction accuracy is possible.

However, to make sure a wrong prediction of lp[n] =
(f , f) is discouraged, we further introduce three additional
mechanisms: (i) If the UE has received a DLG with ndi ≡ f ,
a negative reward rndi = −5 is awarded. As explained
in Section 3.1, this indicates that a prior DLG from the
eNodeB was missed, indicating a wrong prediction of (f , f)
some time in the past. (ii) The agent may not predict (f , f)
more than K = 3 times in a row. This ensures that the
agent does not permanently turn off the modem (obtaining
the reward roff ) while evading the first mechanism (by
making communication impossible). (iii) Assigning the neg-
ative reward rbsr = −5 if no ULG was received for a BSR
(see Section 3.4) sent within the last 10 TTIs. This situation
may indicate that control information – the missing ULG –
was lost some time in the past.

6.4.4 Learning

Based on the calculated reward r[n − 1], the Q-values are
updated.

For this, we propose to employ SARSA-λ (see [28]).

Prediction Reality Reward Description
lp[n] l[n] r[n− 1]

(t, f)
(t, f) 2 energy saved

(t, t)(f , t) -5 false negative
(f , f) 0 false positive

(t, t), (f , t)
(t, f) 0 false positive

(t, t)(f , t) 2 energy saved
(f , f) 0 false positive

(f , f)

(t, f) -5 false negative
(t, t)(f , t) -5 false negative

(f , f) 0 energy saved
(u,u) 0 assumed correct

TABLE 3: Deriving the reward r[n − 1] for the last action
a[n − 1] ≡ lp[n] and the really observed TTI information
l[n]. The reward value is in descending order: (i) correct
predictions, (ii) false positives, and (iii) false negatives. A
special case is lp[n] = (f , f) as a direct assessment of pre-
diction quality can only be performed during the dedicated
learning phase. During the exploitation phase, the input l[n]
may sometimes not be observable (u,u), i.e., our predictive
DPM decided to completely turn of the modem. In this case,
we assume the prediction to be correct and assign a positive
reward. However, if turning the modem of turned out to be
wrong, i.e, data had to be re-transmitted by the eNodeB, the
misprediction will be penalized later through the discussed
additional mechanisms.

Q(s[n− 1],a[n− 1]) = (1− α) ·Q(s[n− 1],a[n− 1])

+ α · (Q(s[n],a[n]) · γ + r[n− 1])
(17)

It updates the respective Q-values after having observed the
immediately experienced reward r[n− 1] resulting from the
last action a[n−1] with this reward and the estimated long-
term reward Q(s[n],a[n]) (of the current state) to a degree
determined by α. We chose SARSA-λ over other simple
algorithms like Q-Learning, as SARSA-λ generally penalizes
actions leading to bad rewards stronger.

6.4.5 Initialization of Q-Values
The initialization of the Q-values can quite significantly
affect the initial prediction quality. As explained before,
the reception of the control channel information allows for
the most accurate reward assignment, because the predictor
can deduce the perfect action. Considering that, a Q-value
initialization favoring lp[n + 1] = (f , f) is highly discour-
aged. Additionally, as outlined in Section 6.1, false negative
errors may have a significant impact on transmission quality
and speed of the whole cell. Therefore, a setup minimizing
the FNR seems appropriate. To realize this, we propose an
initialization in the following order:

∀s ∈ S : Q(s, (t, t)) = Q(s, (f , t)) ≥ Q(s, (t, f)) ≥ Q(s, (f , f))

The discrepancy in value must be small enough to allow for
a fast adaption to new experiences.

7 EVALUATION

This section compares both presented DPM approaches,
regarding both functional and non-functional properties.



12

First, in Section 7.1, we give a short introduction to our
simulation-based evaluation framework. Next, the appli-
cation of video streaming is chosen as introduced in Sec-
tion 7.2. For trace characterization, we introduce suitable
metrics in Section 7.3. Subsequently, we perform a complex-
ity analysis (Section 7.4) based on Floating Point Operations
(FLOPs) used for training and prediction. Finally, in Sec-
tion 7.5, an in-depth evaluation and comparison of both
approaches in terms of accuracy, learning rates, and energy
savings is presented based on the previously introduced
concepts.

7.1 Simulation Framework
Designing a predictive DPM system poses certain con-
straints on the nature of the realization. Apparently, such
prediction techniques must be of low computation complex-
ity, but also lead to net overall energy savings in order to be
economically of interest. Additionally, in contrast to reactive
power management systems, employing a prediction step
inherently introduces a certain degree of uncertainty, as
explained in Section 6.1.

For the evaluation of potential energy savings and scope
of mispredictions of our proposed predictive DPM, we need
an evaluation that reflects a UE in a real cell environment
with a sophisticated energy modeling. For a realistic and
parameterizable model of the LTE cell environment, we
employ the ns-3 simulator [29]. In order to quantify the
energy consumption (Section 5) of the hardware model
(Section 4), a SystemC-based simulator [19] is used. Both
simulators exchange relevant information on a subframe
basis through a cosimulation interface.

7.2 Functional Application Model
As both predictive DPM techniques are designed to be
trained in a live network cell, there are two main charac-
teristics that need to be considered. The first characteristic
is the length of stable trace behavior. Obviously, if the
grant patterns change too quickly, a predictor will always
be stuck in the learning phase, without ever being able to
get into the exploitation phase. Obviously, no energy can
be saved in such circumstances. It will be shown that the
required minimum length of this stable interval depends
on the patterns in the trace themselves and the employed
approach.

The second characteristic is the grant density, i.e., the
proportion of TTIs that contain either an ULG, DLG, or both,
which is explained in Section 7.3.

In the following experiments, we carefully investigate
traces and prediction accuracy for highly different manifes-
tations of each characteristic. Based on a parameterizable
video streaming application, we create a variety of different
scenarios with varying transmission length (seconds of short
video playback or several minutes long videos) and varying
resolutions corresponding to different data rates.

Our modeling realizes the proposed video stream al-
gorithm from [30], which is given in Algorithm 1. Here,
a video transmission of a video of size S bytes consists
of a first burst phase (Initialization procedure), followed by
smaller periodic transmissions during the Filling procedure.
During the initialization procedure, in total SB = 5·Rencoding

Algorithm 1: Server application model from [30].
input : S,Rencoding

1 Procedure Initialization()
2 Rsending ← Rencoding · 1.25
3 SB ← 5 ·Rencoding

4 S ← S − SB

5 socket open(2 · 106)
6 while SB ≥ 0 do
7 socket send(P)
8 end
9 Filling()

10 Procedure Filling()
11 tsteady ← P

Rsending

12 while S ≥ 0 do
13 sleep(tsteady)
14 socket send(P)
15 S ← S − P
16 end

bytes, corresponding to approximately 40s of encoded video
length, are transmitted at maximum speed. During the
filling procedure, a packet of size P = 64 KB is transmitted
every tsteady = P

Rsending
· 103 ms time duration, with a

sending rate of Rsending = Rencoding · 1.25. For realistic
values of the encoding rate, we use the values as reported
in [30], with Rencoding ∈ [200 KB

s , 3320 KB
s ].

7.3 Trace Characterization

The evaluation of the prediction techniques is performed
for traces of lenghts up to 106 TTIs in the following, varying
in the grant density of both ULGs and DLGs. We define the
grant densities DDLG and DULG for a time series of length
K as the proportion of TTIs containing the respective kind
of grant.

DK
G =

# of grants of type G
K

, G ∈ {DLG,ULG} (18)

These densities define upper bounds in terms of achiev-
able energy savings of each of the predictive DPM ap-
proaches. To exemplify, consider a trace with a DDLG =
100 %, i.e., a DLG in every TTI. Obviously, not even an
ideal, perfect predictor could reduce the energy consump-
tion compared to a reactive DPM, because each channel of
every TTI contains information and has to be decoded. For
a trace with DDLG = 50 %, on the other hand, the proposed
predictive DPM approaches could optimize the behavior for
the remaining 50 % compared to a naive approach.

7.4 Complexity Analysis

As target platform for testing the presented prediction al-
gorithms, we assume given an LTE base band DSP from
literature, as discussed in [31], [32], that runs at a clock
frequency of f = 300 MHz with a power consumption
of Pf = 1 mW/MHz (including the power consumption
of its memory). This DSP introduces another component
(with a power state machine, see Fig. 12) to the architecture
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model introduced in Section 4.1. To estimate the inherent
energy overhead EQ of the presented algorithms per TTI,
we propose to employ a FLOP-based approach. Here, we
translate one iteration (that is performed in each case per
TTI) of the presented algorithms first to the number of
required FLOPs cQ (according to Table 4, from [33]) and
second to power consumption. We assume that both the Q-
table as well as the operations and weights describing the
neural net fit on the on-chip memory of the DSP.

Operation Complexity [FLOP]

Addition 1
Subtraction 1
Comparison 1

Multiplication 2
Division 4

Exponential 8

TABLE 4: Translation of arithmetic operations to FLOPs
count.

Based on the assumption of one FLOP per DSP cycle, EQ

per TTI can be calculated according to:

EQ =
cQ
f
· Pf · f (19)

If we assume that the predictor is run for the duration of
the whole TTI, i.e., 1 ms, this yields the power consumption
PQ =

EQ

1 ms as modeled by a power state machine for the
predictor (see Fig. 12).

on

0.031mW

a) Supervised b) Reinforcement

Learning Prediction

9mW 2mW

Fig. 12: Power State Machines of both the a) supervised
and b) reinforcement predictors. For the supervised pre-
dictor, the computational complexity, and thus the power
consumption differs between a higher power state – during
the training phase – and a lower power state – during the
exploitation phase. The reinforcement predictor is always in
a learning phase, and thus has a constant power consump-
tion. The power consumption is approximated from the cal-
culation of FLOPs per TTI, assuming their implementation
in software on a DSP for modems [31].

For the supervised predictor, we distinguish between
two power states, corresponding to (i) the learning phase
and (ii) the exploitation phase, as both phases differ in
algorithm and thus number of computations. For the FFNN
introduced in Section 6.3, we obtain 7, 018 FLOPs per TTI
for learning, and 2, 014 FLOPs per TTI during the ex-
ploitation phase. Because we perform a prediction along-
side each learning step to evaluate the prediction accuracy,
one complete iteration during learning requires a total of
7, 018 + 2, 014 = 9, 032 FLOPs. With the introduced DSP
model, this translates to an energy consumption per TTI of
EL

Q = 9µJ for learning and EP
Q = 2µJ for exploitation,

respectively. Thus, the two power states in Fig. 12 corre-
sponding to a power consumption of PL

Q = 9 mW and
PP
Q = 2 mW, respectively.

The reinforcement predictor, always updating its Q-
values according to Eq. (17), respectively, is always in the
same power state. One step for Q-learning requires 19
FLOPs, while one step of sarsa-λ requires 25 FLOPs. Fac-
toring in the reward mapping function requiring 12 com-
parisons, translating to 12 FLOPs. In sum sarsa-λ requires
37 FLOPs per TTI translating to an energy consumption
of ES

Q = 0.037µJ resulting in power states with a power
consumption of PS

Q = 0.037 mW.

7.5 Results
This section discusses experimental results that were ob-
tained by both prediction approaches in the presented simu-
lation environment. In Section 7.5.1, we investigate learning
time and prediction accuracy in terms of FNR of both
approaches for different scenarios. Section 7.5.2 then inves-
tigates how this affects the modem energy consumption.

We present the results for three representative traces
li ∈ {lmin, lavg, lmax} defined by their respective encoding
rate Rli

encoding, covering a large spectrum of different grant
densities DG:

(i) Rlmin
encoding = 200 KB

s , with DDLG = 0.299507

(ii) R
lavg

encoding = 3320 KB
s , with DDLG = 0.652489

(iii) Rlmax
encoding =

3320 + 200

2
KB
s = 1760 KB

s , with DDLG =

0.827384

7.5.1 Prediction Accuracy
First, we evaluate the prediction accuracy in terms of FNR,
giving an indication of the maximum negative impact on the
whole cell. Reflecting our time-series problem, we evaluate
these values absolutely, as well as their shift over time.
Fig. 13 shows the calculation of the FNR as a moving
average over intervals of 3, 000 TTIs. To first showcase the
prediction accuracy, this evaluation is performed while (a)
disregarding changed trace characteristics due to missed
transmissions and (b) rescheduling missed traffic.

For the first 5, 000 TTIs, the average FNR is high,
strengthening our argument for a dedicated learning phase.
Afterwards, for stable traces (Fig. 13a), both prediction
approaches quickly converge to desirably low FNRs. Here,
the supervised approach, cognizant of all prediction errors,
outperforms the reinforcement predictor especially for both
lmin and lmax, achieving FNRs of lower than 1%. Due to
the ε-Greedy strategy used, and the only grant presence-
based prediction, the reinforcement predictor exhibits a
higher FNR. Both approaches achieve stable prediction rates
of lower than 15%. For traces that are subject to changes
due to missing traffic (Fig. 13b), the first characteristic we
observe is the added difficulty for prediction, as the FNR
of both predictors, for all scenarios are significantly higher
(but still lower than εmin err). While the initial convergence
remains fast, upon exiting the dedicated learning phase, re-
transmissions occur, especially for lmax, with the highest
density DDLG. While this peak in errors occurs for both
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(a) No rescheduling of missed transmissions.
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(b) Rescheduling of missed transmissions.

Fig. 13: Depicted is the FNR calculated as moving average over a window of the last 3,000 ms for 3 representative traces.
The reinforcement FNR is shown as a smooth and the supervised FNR as a dashed line. The scenarios are distinguished
by color: blue corresponds to lmin, green to lavg, and violet to lmax.

approaches and all scenarios, a far more severe oscilla-
tion for the supervised predictor is observable due to no
mechanism to cope with the information contained in re-
transmitted grants. The reinforcement predictor, however,
quickly incorporates this information of re-transmissions
into subsequent predictions as outlined in Section 6.4.3,
show-casing the online learning capabilities. Despite their
differences, both learning approaches achieve the desired
task of learning grant prediction patterns. For all shown
traces, the exploitation phase is reached, allowing for en-
ergy to be saved by following the predictions, as shown
in Section 7.5.2.

7.5.2 Energy Consumption

Finally, we evaluate the effectiveness of both approaches
regarding the stated goal of achieving a reduction of the
overall modem energy consumption. Fig. 14 shows the
energy consumption for the (i) reinforcement and the (ii)
supervised predictor, normalized to the (iii) state-of-the-art
reactive DPM for the same traces as Fig. 13.

The most apparent difference, as explained in Section 7.3,
is the impact of DDLG on savable energy. Secondly, we
observe the added energy consumption of EQ from Eq. (6),
that leads to higher energy consumption both during the
learning phase and during traffic intense intervals, where
the modem cannot be turned off without missing a grant.
In the worst possible case of a failure to learn grant pat-
terns this overhead would not be mitigated. As shown in
Section 7.5.1, in the simulations we performed, this did not
occur. After finishing the learning phase, both approaches
quickly compensate for this energy overhead. Indeed, both
predictors for all scenarios enter the exploitation phase and
achieve energy savings compared to the naive approach
within 6 and 11 s. In terms of achievable energy savings,
the reinforcement predictor is generally superior. Only for
lmin the supervised predictor achieves the same energy
saving of 17%. This is significant due to the higher inher-
ent energy consumption EQ, indicating a generally better
performance of exploited opportunities for energy saving
for this trace. For the other two traces, the reinforcement
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Fig. 14: Accumulated energy consumption of both proposed
predictors, normalized to the consumption of a naive, reac-
tive DPM EDPM (see Section 5.4), for the simulated traces.
Similar to Fig. 13, reinforcement results are depicted as
smooth, supervised results as dashed lines. The scenarios
are: lmin (blue), lavg (green), and lmax (violet).

predictor achieves 11% (lavg) and 7% (lmax). Compared to
this, the supervised predictor exhibits ceilings of 6% (lavg)
and 2% (lmax).

Finally, one can observe the impact of trace characteris-
tics, like downlink grant densities, for static traces. In the
long run, the trace that is best in terms of achievable FNR
(lmax), with DDLG = 0.82, turns out to be the worst in terms
of achievable energy savings.

8 CONCLUSION

This paper presents an approach for predictive dynamic
power management for mobile devices in LTE through grant
prediction. Two different approaches based on supervised
learning and reinforcement learning that are optimized for
accurate offline and efficient online learning, respectively,
are investigated. Moreover, we use a consistent complexity
analysis to derive a comparable power model for both ap-
proaches. Thus, using an identical environmental stimulus
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derived from a relevant simulated application model we
perform a fair evaluation of both approaches.

As a result, both approaches need an interval of stable
trace behavior to learn the grant patterns. We believe the
supervised predictor is the preferable solution if either the
traffic density is low enough, or if more training of false
negatives can be performed at early, offline design stages, as
lower FNRs are achievable. If neither trace stability can be
guaranteed, nor offline learning improved, we argue for the
reinforcement predictor due to its lower energy overhead
and the observed online learning capabilities. For longer
stable scenarios, both approaches may achieve up to 17%
energy savings, with the reinforcement predictor providing
generally higher savings.

Common to both approaches, the prediction-based DPM
only gets activated if/once an acceptable error rate is
achieved in the learning phase. In general, the supervised
predictor exhibits a lower margin for prediction errors, if the
training can be performed on representative data, leading
to less missed transmissions, at the cost of a higher inherent
energy consumption. In contrast to this, the reinforcement
predictor achieves higher energy savings, at the cost of a
slower learning speed. For real-world applications, one has
to find a balance between energy savings (preferring the
reinforcement approach) and the least impact on service
quality (in favor of supervised learning). This might best be
achieved through a combination of both approaches, where
the supervised predictor is trained extensively offline, while
the reinforcement predictor is employed for unexperienced
trace scenarios.
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