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Abstract—In traditional machine learning, the central server
first collects the data owners’ private data together and then
trains the model. However, people’s concerns about data privacy
protection are dramatically increasing. The emerging paradigm
of federated learning efficiently builds machine learning models
while allowing the private data to be kept at local devices. The
success of federated learning requires sufficient data owners to
jointly utilize their data, computing and communication resources
for model training. In this paper, we propose an auction based
market model for incentivizing data owners to participate in
federated learning. We design two auction mechanisms for the
federated learning platform to maximize the social welfare of the
federated learning services market. Specifically, we first design
an approximate strategy-proof mechanism which guarantees the
truthfulness, individual rationality, and computational efficiency.
To improve the social welfare, we develop an automated strategy-
proof mechanism based on deep reinforcement learning and
graph neural networks. The communication traffic congestion
and the unique characteristics of federated learning are particu-
larly considered in the proposed model. Extensive experimental
results demonstrate that our proposed auction mechanisms can
efficiently maximize the social welfare and provide effective
insights and strategies for the platform to organize the federated
training.

Index Terms—federated learning, incentive mechanism, graph
neural network, auction, automated mechanism design, wireless
communication

I. INTRODUCTION

Currently, there are nearly 7 billion connected Internet-of-
Things (IoT) devices1 and 3 billion smartphones around

the world. The devices continuously generate a large amount
of fresh data. The traditional data analytics and machine
learning requires all the data to be collected to a centralized
data center/server, and then used for analysis or produce
effective machine learning models. This is the actual practice
now conducted by giant AI companies, including Amazon,
Facebook, Google, etc.. However, this approach may raise
concerns regarding the data security and privacy. Although
various privacy preservation methods have been proposed,
such as differential privacy [1] and secure multi-party com-
putation (MPC) [2], a large proportion of people are still not
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willing to expose their private data which can be inspected by
the server. This discourages the development of advanced AI
technologies as well as new industrial applications. Motivated
by the increasing privacy concern among data owners, Google
introduced the concept of the federated learning (FL) [3].
The FL is a collaborative learning scheme that distributes the
training process to individual users which then collaboratively
train the shared model while keeping the data on their devices,
thus alleviating the privacy issues.

A typical FL system is composed of two entities, including
the FL platform and the data owners. Each data owner, e.g.,
mobile phone user, has a set of private data stored at its
local device. The local data are used to train a local machine
learning model where the initial model and hyper-parameters
are preset by the FL platform. Once the local training is
completed, each data owner just sends the trained model to the
FL platform. Then, all received local models are aggregated by
the FL platform to build a global model. The training process
iterates until achieving the target performance or reaching the
predefined number of iterations. Federated learning has three
distinctive characteristics [4], [5]:

1) A massive number of distributed FL participants are
independent and uncontrollable, which is different from
the traditional distributed training at a centralized data
center.

2) The communication among devices, especially through
the wireless channel, can be asymmetric, slow and
unstable. The assumption of a perfect communication
environment with a high information transmission rate
and negligible packet loss is not realistic. For example,
the Internet upload speed is typically much slower than
download speed. Some participants may consequently
drop out due to disconnection to the Internet, especially
using the mobile phone through congested wireless
communication channels [6].

3) The local data is not independent and identically dis-
tributed (Non-IID), which significantly affects the learn-
ing performance [7], [8]. Since data owners’ local data
cannot be accessed and fused by the FL platform and
may follow different distributions, assuming all local
datasets are IID is impractical.

As implied by the first characteristic above, an important
prerequisite for a successful FL task is the participation
of a large base of data owners that contribute sufficient
training data. Therefore, establishing an FL services mar-
ket is necessary for the sustainable development of the FL
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community. We propose an auction based market model to
facilitate commercializing federated learning services among
different entities. Specifically, the FL platform first initiates
and announces an FL task. When receiving the information
of the FL tasks, each data owner determines the service value
by evaluating its local data quality and the computing and
communication capabilities. Then, data owners report their
types including bids representing the services value and their
resources information to the FL platform. According to the
received types, the platform selects a set of FL workers from
data owners and decides the service payments. Finally, the
FL platform coordinates the selected FL workers to conduct
model training.

In this paper, we mainly investigate the federated learning
in the wireless communication scenario and design applicable
auction mechanisms to realize the trading between the FL
platform and the data owners. From the system perspective,
we aim to maximize their total utility, i.e., social welfare.
For an efficient and stable business ecosystem of the FL
services market, there are several critical issues about FL task
allocation and pricing. First, which data owner can participate
in the federated training as an FL worker? Due to the unique
features listed above, the FL platform should consider data
owners’ reported data size and non-IID degree of data. Also,
the limited wireless spectrum resource need to be reasonably
allocated since the large population of participated data owners
may exacerbate the communication congestion. Second, how
to set reasonable payments for data owners such that they
can be incentivized to undertake the FL tasks? Auction is
an efficient method for pricing and task allocation [9]. The
payment amount should satisfy individual rationality, which
means there is no loss to data owners from trading. We should
also consider how to make data owners truthfully expose
their private types. The truthfulness property can stabilize the
market, prevent possible manipulation and may significantly
reduce the communication overhead and improve the learn-
ing efficiency. The major contributions of this paper can be
summarized as follows:

• Based on real-world datasets and experiments, we de-
fine and verify a data quality function that reflects the
impacts of local data volume and distribution on the fed-
erated training performance. The earth mover’s distance
(EMD) [7] is used as the metric to measure the non-IID
degree of the data. Moreover, we consider the wireless
channel sharing conflicts among data owners.

• We propose an auction framework for the wireless fed-
erated learning services market. From the perspective
of the FL platform, we formulate the social welfare
maximization problem which is a combinatorial NP-hard
problem.

• We first design a reverse multi-dimensional auction
(RMA) mechanism as an approximate algorithm to max-
imize the social welfare. To further improve the so-
cial welfare and the efficiency, we novelly develop an
automated deep reinforcement learning based auction
(DRLA) mechanism which is integrated with the graph
neural network (GNN). According to the data owners’

requested wireless channels, we construct a conflict graph
for the usage of GNN. Both mechanisms, i.e., RMA and
DRLA, are theoretically proved to be strategyproof, i.e.
truthful and individually rational.

• Demonstrated by our simulation results, the proposed
auction mechanisms can help the FL platform make
practical trading strategies to efficiently coordinate data
owners to invest their data and computing resources in
the federated learning while optimizing the social welfare
of the FL services market. Particularly, the automated
DRLA mechanism shows significant improvement in
social welfare compared with the RMA mechanism.

To the best of our knowledge, this is the first work that studies
the auction based wireless FL services market and applies the
GNN and deep reinforcement learning (DRL) in the design of
a truthful auction mechanism to solve a combinatorial NP-hard
problem.

The rest of this paper is organized as follows. Section II
reviews related work. The system model of the FL services
market and the social welfare maximization problem are
introduced in Section III. Section IV proposes the designed
reverse multi-dimensional auction mechanism. In Section V,
the automated auction mechanism based on GNN and DRL is
presented in detail. Section VI presents and analyzes simula-
tion results based on real-world and synthetic datasets. Finally,
Section VII concludes this paper.

II. RELATED WORK

Due to the resource constraints and the heterogeneity of
devices, some papers have discussed the optimal allocation of
the resources and tasks to improve the efficiency of federated
training. The relevant issues mainly include client selection,
computation offloading and incentive mechanism. The authors
in [10] designed a protocol called FedCS. The FedCS protocol
has a resource request phase to gather information such as
computing power and wireless channel states from a subset
of randomly selected clients, i.e., FL workers. To tradeoff
the accuracy and efficiency, the FL platform optimally selects
a set of clients that are able to punctually finish the local
training. Compared with the protocol that ignores the client
selection, the FedCS can achieve higher performance. Besides
improving the training efficiency, the authors in [11], [12]
discussed the fairness issue that if a protocol selects the clients
by the computing power, the final trained model would more
cater to the data distribution of clients with high computational
capability. Based on the original federated averaging (FedAvg)
algorithm [13], a q-FedAvg training algorithm was proposed
in [12] to give the client with low performance a higher
weight in optimizing the objective function. For computation
offloading, the authors in [14] combined the DRL and the
FL to optimally allocate the mobile edge computing (MEC)
resources. The client can use the DRL to intelligently decide
whether to perform the training locally or offload it to the
edge server. The simulation results showed that the DRL based
approaches can achieve similar average utilities in FL and
centralized learning. With respect to the incentive mechanism
design, the authors in [15] proposed a Stackelberg game model
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Fig. 1. Federated learning services market.

to investigate the interactions between the server and the
mobile devices in a cooperative relay communication network.
The mobile devices determine the price per unit of data for
individual profit maximization, while the server chooses the
size of training data to optimize its own profit. The simulation
results demonstrate that the interaction can finally reach an
equilibrium, and the cooperative communication scheme can
reduce the congestion and improve the energy efficiency. In a
similar setting of [15], the authors in [16] proposed a contract
theory method to incentivize the mobile devices to take part in
the FL and contribute high-quality data. The mobile users can
only choose the contract matching their own types to maximize
the utility. However, the above incentive mechanisms did not
consider the non-IID data or the wireless channel constraints
which are taken into account in this paper.

Different from the Stackelberg game and contract theory, the
auction mechanism allows the data owner to actively report
its type and has been applied in various application scenar-
ios [17]. Thus, the FL platform can sufficiently understand
their status and requests to optimize the target performance
metric, such as the social welfare of the market or the
platform’s revenue. To design a new auction mechanism for
higher performance or other properties that manually designed
auction mechanism cannot realize, the automated mechanism
design [18], [19]Â assisted by machine learning techniques is
gaining popularity. In [20], the authors used the multi-layer
neural network to model an auction with the guarantee of
individual rationality (IR) and incentive compatibility2 (IC).
The proposed deep learning based framework successfully
recovered all known analytical solutions to classical multi-
item auction settings, and discovered new mechanisms for
settings where the optimal analytical solution is unknown.
In [21], the authors proposed a strategyproof mechanism to
deploy the mobile base station based on the deep learning
technique, which significantly improved the social welfare
of the wireless powered spatial crowdsourcing system. The
study of using DRL to solve combinatorial problems over

2In this paper, truthfulness and incentive compatibility are used interchange-
ably.

the graph was initialized in [22]. The authors first calculated
the graph embedding and then trained a deep Q network to
optimize several classical NP-hard problems in a greedy style.
Since the wireless channel conflicts among the data owners
are represented by a conflict graph in this paper, we propose
an automated auction mechanism based on DRL and GNN
to optimize the social welfare of FL services market while
meeting the requirement of IC and IR.

III. SYSTEM MODEL: FEDERATED LEARNING SERVICES
MARKET

A. Preliminary Knowledge of Federated Learning

As illustrated in Fig. 1, we focus on a representative
monopoly FL services market structure which consists of
one FL platform and a community of N data owners N =
{1, . . . , N}. The platform performs publishing the FL task
and selecting data owners as FL workers. Each data owner i
maintains a set of private local data Di and has a local FL
runtime to train a local model wi. We use W ⊆ N to denote
the set of W FL workers selected from data owners. Different
from the traditional centralized training that collects all local
data DW = ∪i∈WDi, the FL platform only collects and
aggregates the updated local models ∪i∈Wwi from workers to
generate a global model wg . We assume that the data owners
are honest to use their real private data to do training and
submit the true local models to the platform. The FL training
process generally contains the following 3 steps, where Steps
2 and 3 form an iterative loop between the platform and the
workers.
• Step 1 (task initialization): The platform determines the

training task, i.e., the target application, and the cor-
responding data requirements. Meanwhile, it specifies
the hyper-parameters of the machine learning model and
the training process. Then, the platform transmits the
task information and the initial global model w0

g to all
workers.

• Step 2 (local model training and update): Based on the
global model wk

g , where k denotes the current global
epoch index, each worker respectively uses the local data
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and device to update the local model parameters wk
i . The

worker i’s goal in epoch k is to make parameters wk
i that

minimize the predefined loss function L(wk
i ), i.e.,

wk∗

i = arg min
wk
i

L(wk
i ). (1)

• Step 3 (global model aggregation and update): The plat-
form receives and aggregates the local models from work-
ers, and then sends the updated global model parameters
wk+1
g back. The platform aims to minimize the global

loss function L(wk
g ), i.e.,

L(wk
g ) =

1

W

∑
i∈W

L(wk
i ).

Steps 2-3 repeat until the global loss converges. Note that
the federated training process can be adopted for various
machine learning approaches based on the gradient descent
method such as Support Vector Machines (SVM), convolu-
tional neural network, and linear regression. The worker i’s
local training dataset Di usually contains a set of ni feature
vectors xi = {x1, . . . , xni} and a set of corresponding labels
y = {y1, . . . , yni}. Let ŷj = f(xj ; w) denote the predicted
result from the model w using data vector xj . We focus on
the neural network model in which a common loss function
is the mean square error (MSE) defined as

l(wk
i ) =

1

ni

ni∑
j=1

(yj − f(xj ; w
k
i ))2. (2)

Global model aggregation is the core part of the FL scheme.
In this paper, we apply the classical federated averaging
algorithm (FedAvg) [3] in Algorithm 1. According to (1),
the worker i trains the local model on minibatches sampled
from the original local dataset (lines 4-8). At the kth iteration,
the platform minimizes the global loss using the averaging
aggregation which is formally defined as

wk
g =

1∑
i∈W ni

∑
i∈W

niw
k
i . (3)

As the hyper-parameters of Algorithm 1, δB is the local

Algorithm 1 Federated averaging algorithm (FedAvg) [3]
Input: Local minibatch size δB , number of local epochs δl, number of global

epochs δg , and learning rate η.
Output: Global model wg .
1: [Worker i]
2: LocalTraining(i, wi):
3: Split the local dataset Di to minibatches and include them into the set
Bi.

4: for each local epoch from 1 to δl do (stochastic gradient descent
(SGD))

5: for each minibatch in Bi do
6: w← w− ηl′(w) (l′ is the gradient of l on the minibatch.)
7: end for
8: end for
9:

10: [Platform]
11: Initialize w0

g
12: for each global epoch k from 1 to δg do
13: Randomly choose a subset of δs workers from W
14: for each worker i in the sampled subset parallely do
15: wk+1

i ← LocalTraining(i, wk
g )

16: end for
17: wk

g = 1∑
i∈W ni

∑
i∈W niw

k
i (Averaging aggregation)

18: end for

minibatch size, δl is the number of local epochs and δg is

the number of global epochs and η is the learning rate.

B. Local Data Evaluation

The evaluation of local data is the first step for both the data
owners and the platform in the valuation of FL service. The
data owner needs to calculate the cost of collecting the local
data. The local data cost not only comes from the deployment
of sensing devices, e.g., IoT gadgets and smart phones, but
also from the data pre-processing that requires costly human
intervention for data annotation and cleaning, e.g., redundancy
elimination and anomaly detection. Hence, the data owner i
has a unit cost γi > 0 of local data. The local data cost cdi
can be written as

cdi = diγi (4)

where di > 0 is the data owner i’s local data size.
The platform cares about the data quality and needs a metric

to quantify data owners’ potential contributions to the task
completion. Due to the unique features of local data in FL,
we focus on two critical attributes of local data: one is the
data size and the other one is the data distribution. According
to [23] and the experimental validation in [24], data size plays
an essential role in improving the data quality where more
data generally means better prediction performance. With
respect to the data distribution, the conventional centralized
learning, e.g., data center learning, usually assumes that the
training data are independently and identically distributed
(IID). However, the local data are user-specific and usually
non-IID in the FL scenario. The characteristic of non-IID
dominantly affects the performance, e.g., prediction accuracy,
of the trained FL model [3]. Indicated in [7], the accuracy
reduction is mainly due to the weights divergence which can
be quantized by the earth mover’s distance (EMD) metric. A
large EMD value means that the weights divergence is high
which adversely affects the global model quality. We consider
an L class classification problem defined over a compact space
X and a label space Y . The data owner i’s data samples
Di = {xi,yi} distribute over X ×Y following the distribution
Pi. Let σi denote the EMD of Di. Specifically, given the
actual distribution Pa for the whole population, the EMD σi
is calculated by [7]

σi =
∑
j∈Y
‖Pi(y = j)− Pa(y = j)‖ . (5)

The actual distribution Pa is actually used as a reference
distribution. It can be the public knowledge or announced by
the platform which has sufficient historical data to estimate
Pa.

Let σ = {σ1, . . . , σN} denote the set of all data owner’s
EMD value. With the data size and the EMD metric, the
FL platform can measure its data utility. The real-world
experimental results in Section VI indicate that the relationship
between the model quality q, e.g., prediction accuracy, and the
selected workers’ total data size D and average EMD ∆ can
be well represented by the following function:

q(W) = q(D(W),∆(W))

= α(∆)− κ1e−κ2(κ3D)α(∆)

(6)
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where D and ∆ are functions of the set of workers W ,
i.e., the total data size D(W) =

∑
i∈W di and the av-

erage EMD metric ∆(W) =
∑
i∈W σi
|W| with ∆(∅) = 0,

and α(∆) = κ4 exp(−(∆+κ5

κ6
)2) < 1. κ1, . . . , κ6 > 0 are

positive curve fitting parameters. The curve fitting approach
for determining the function of machine learning quality is
typical in the literature and a similar function has been adopted
in other works, such as [25]. In the experiment presented in
Section VI-A, the data utility function (6) fits well when σ
falls in the [0, σmax]. To guarantee good service quality, σmax

can be set as the maximum EMD that the platform can accept.
The first term α(∆) reflects that the increasing average EMD
metric causes the degradation of the model performance. The
exponential term −κ1e−κ2(κ3D)α(∆)

captures the diminishing
marginal returns when the total data size increases. Hereby,
we define the platform’s data utility ϕ as a linear function of
q as

ϕ(W) = ϕ(D(W),∆(W))

= κ7q(W)

= κ7

(
α(∆)− κ1e−κ2(κ3D)α(∆)

)
(7)

where κ7 represents the profit per unit performance.

C. Auction based FL Services Market

To recruit enough qualified workers for successful federated
training, the FL platform3 conducts an auction. Figure 1
depicts the auction supported the FL process. For simplicity,
we assume that the data owners’ computing and storage
capabilities, i.e., the CPU frequency and memory, can meet
the FL platform’s minimum requirement of the training speed
and the local model size. Since the communication delay
seriously degrades the efficiency of FL [6], the platform
requires the FL worker4 to immediately transmit back the
updated local model at the transmission rate R bits/s when
the local training is completed. With the fixed model size, this
is actually equivalent to requiring the workers to finish the
model transmission in a fixed time.

As described in Step 1 in Section III-A, the platform first
initializes the global neural network model with size M and
hyper-parameters, such as δl, δg and R. Then, the platform
announces the auction rule and advertises the FL task to the
data owners. Then, the data owners report their type profile
T = {t1, . . . , tN} and the requested wireless channel profile
C = {C1, . . . , CN}. The data owner i’s type ti contains the
bid bi which reveals its private service cost/valuation ci, the
size di and EMD value σi of its possessed local data, i.e.,
ti = {bi, di, σi}. Ci is the set of data owner i’s requested
wireless channels to communicate with the FL platform.

Since this paper focuses on the resource allocation of the
FL system, we assume that there is no adverse attack in the FL
training. The data owners cannot provide services with higher
data quality than their truly owned. They will not report higher
data size or lower EMD metric to the platform. Otherwise,

3We use “FL platform” and “platform” interchangeably.
4Note that the FL worker refers to as the data owner that has been selected

by the platform to perform the FL training.

this would be seen as the model update poisoning attack [6].
Based on the received types, the platform has to select workers
and notifies all data owners the service allocation, i.e., the
set of FL workers W , and the corresponding payments p =
{p1, . . . , pN} to each data owner. The workers are considered
to be single-minded at the channel allocation. That is, the data
owner i only accepts the set of its requested channels if it wins
the auction. The payment for a data owner failing the auction is
set to be zero, i.e., pi = 0 if i /∈ W . Once the auction results
are released, an FL session starts and the selected workers
train the local model using their own local data. Meanwhile,
the platform keeps aggregating the local models and updating
the global model. Finally, the platform pays the workers when
the FL session is completed.

D. Service Cost in the FL Market

Besides the local data cost defined in (4), the data owner also
needs to calculate the costs of computation and communication
to estimate its service cost if it becomes the worker. According
to our previous experimental results about the energy con-
sumption of the FL training [26, Figure 2], the data owner i’s
computational cost cpi is defined as a linear function of the
data size di, which is written as

cpi = diδlδgMαi (8)
where αi is the data owner i’s unit computational cost. Since
the structures of the global model and the local model are
the same when applying FedAvg, we use M to denote the
model size. With respect to the communication cost, we ignore
the communication overhead and assume the channel is slow-
fading and stable. Since this paper focuses on the design
of incentive mechanism, we consider a frequency-division
multiple-access (FDMA) communication scheme. This is also
for simplicity and minimum communication interference.
Nonetheless, other more sophisticated wireless communication
configurations can be adopted with slight modification in the
cost function.

According to Shannon’s formula [27], the data owner i’s
communication power cost is

Pm
i =

(2
R
BCi − 1)BCi

hi
, (9)

where B is the channel bandwidth, Ci = |Ci| is the number of
data owner i’s requested channels, BCi is the total bandwidth,
hi =

h̃2
i

ψ0
is the normalized channel power gain, h̃i is the

channel gain between the data owner i and the FL platform (as
a base station), and ψ0 is the one-sided noise power spectral
density. The total cost for communication is

cmi = Pm
i

M

R
δgβi (10)

=
(2

R
BCi − 1)BCiMδgβi

hiR
(11)

where M
R δg is the total time for model transmission, βi is

the data owner i’s unit energy cost for communication. The
channel conditions of different subcarriers for each data owner
can be perfectly estimated. That is, hi is known by both the
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data owner i and the platform. Adding all costs in (4), (8) and
(10) together, the data owner i’s total service cost ci is

ci = cdi + cpi + cmi

= diγi + diδlδgMαi +
(2

R
BCi − 1)BCiM

hiR
δgβi. (12)

Since our proposed auction mechanisms are truthful (to be
proved later), the reported bid bi is equal to the true service
cost ci, i.e., bi = ci.

Similarly, the FL platform has the computational cost ĉp for
model averaging and the communication cost ĉm for global
model transmission defined as follows:

ĉp(W) = δgM(W − 1)α̂, (13)

ĉm(W) =
∑
i∈W

(2
R
BCi − 1)BCiM

hiR
δgβ̂, (14)

where α̂ and β̂ are respectively the unit costs for computation
and communication. Hence, we have the platform’s total cost
as follows
ĉ(W) = ĉp + ĉm (15)

= δgM(W − 1)α̂+
∑
i∈W

(2
R
BCi − 1)BCiM

hiR
δgβ̂. (16)

E. Social Welfare Optimization and Desired Economic Prop-
erties

With the data utility and the service cost introduced in
Sections III-B and III-D, we can obtain the utility functions of
all entities. The FL platform’s utility is the data utility minus
the total cost and the total payments to workers, which is
written as

û = ϕ(D,∆)− ĉ−
∑
i∈W

pi. (17)

The data owner i’s utility is the difference between its payment
pi and service cost ci, which is expressed as

ui = pi − ci. (18)
In Section IV, we design the auction mechanism to max-

imize the social welfare which can be regarded as the FL
system efficiency [28] and is defined as the sum of the
platform’s utility and the data owners’ utilities. Formally, the
social welfare maximization problem is

max
W⊆N

S(W) = û+
∑
i∈W

ui (19)

= ϕ(D(W),∆(W))− ĉ(W)−
∑
i∈W

ci (20)

s.t. Ci ∩ Cj = ∅,∀i, j ∈ W, i 6= j. (21)
As we consider the FDD communication scheme, the con-
straint in (21) requires that the sets of workers allocated
channels have no conflict with each other. For an efficient and
stable FL market, the following economic properties should
be guaranteed.
• Truthfulness (Incentive compatibility, IC). The data owner
i has no incentive to report a fake type for a higher
utility. Formally, with other data owner’s types fixed, the
condition for the truthfulness is

ui(t
′
i) ≤ ui(ti),∀t′i 6= ti,

where ti = (bi, di, σi) is data owner i’s true type and
t′i = (b′i, d

′
i, σ
′
i) is a false type.

• Individual rationality (IR). No data owner will suffer a
deficit from its FL service provision, i.e., ui(ti) ≥ 0,∀i ∈
N .

• Computational efficiency (CE). The auction algorithm can
be completed in polynomial time.

IV. REVERSE MULTI-DIMENSIONAL AUCTION
MECHANISM FOR FEDERATED TRAINING

In this section, we first design a truthful auction mechanism,
called Reverse Multi-dimensional auction (RMA) mechanism,
to maximize the social welfare defined in (19). As presented
in Algorithm 2, the RMA generally follows a randomized
and greedy way to choose the FL workers and decides the
payments. It consists of three consecutive phases: dividing
(lines 2-9), worker selection (lines 12-20) and service payment
determination (lines 21-41).

The RMA first divides the workers into G groups, i.e.,
{Θ1, . . . ,Θj , . . . ,ΘG}, according to the EMD metric. Each
group consecutively covers an EMD interval ε = σmax

G .
That is, the data owner i whose EMD value σi falls in
[(j−1)σmax

G , j σmax

G ) will be put in the group Θj . Meanwhile,
we define a virtual EMD value for the data owner i in group j
by the corresponding interval midpoint, i.e., σ̃j = (2j−1)σmax

2G .
For group j, the virtual social welfare S̃j(W) is calculated by
using the virtual EMD value as follows:

S̃j(W) = ϕ̃j(W)− ĉ(W)−
∑
i∈W

bi (22)

= ϕ(D(W), ∆̃j(W))− ĉ(W)−
∑
i∈W

bi (23)

where ϕ̃j(W) = ϕ(D(W), ∆̃j(W)) and ∆̃j(W) =∑
i∈W σ̃j

|W| = σ̃j = (2j−1)σmax

2G . Let L(W) denote the set of
workers that have channel conflicts with the worker setW . We
introduce the marginal virtual social welfare density V ji (W)
for the worker i in group j defined as

V ji (W) =
S̃j(W ∪ {i})− S̃j(W)

|L({i})|
(24)

=
1

|L({i})|

(
κ1κ7e−κ2(κ3

∑
k∈W dk)α(∆̃j)

−κ1κ7e−κ2(κ3

∑
k∈W∪{i} dk)α(∆̃j)

− ĉ({i})− bi
)
.

(25)
For the sake of brevity, we simply call it marginal density.
We useWo to denote the set of already selected workers from
other groups. In each group j, the RMA first excludes the
workers that are conflicted with Wo, i.e., Θ̃j = Θj \ L(Wo).
Then, the RMA finds and sorts the data owners which have
no channel conflict with each other in Θ̃j by non-increasing
order of the marginal density:
V j1 (U0 ∪Wo) ≥ V j2 (U1 ∪Wo) ≥ · · ·

≥ V jk (Uk−1 ∪Wo) ≥ · · · ≥ V jK′(UK′−1 ∪Wo) (26)
where Uk−1 is the set of first k − 1 sorted data owners and
U0 = ∅. There are totally K ′ data owners in the sorting and the
kth data owner has the largest marginal density V jk (Uk−1∪Wo)
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Algorithm 2 Reverse Multi-dimensional auction (RMA)
Input: G, Ē and t = {t1, . . . , ti, . . . , tN} with ti = {bi, di, ei, Ci}.
Output: The set of FL workers W and the service payment p.
1: begin
2: ε← σmax

G
,U ← ∅, Wo ← ∅, G ← ∅

3: for j = 1 to G do
4: Θj ← ∅, Wj ← ∅, G ← G ∪ {j}
5: end for
6: for each i ∈ N do
7: pi ← 0, j ← dei/εe
8: γ̄i ← (2j−1)ε

2
9: end for

10: while G 6= ∅ do
11: Uniformly select j from G
12: G ← G \ {j}, Θ̃j ← Θj \ L(Wo), U ← ∅
13: while Θ̃j 6= ∅ do
14: k∗ ← arg maxk∈Θ̃j

V jk (U ∪Wo)

15: if V jk∗ (U ∪Wo) < 0 then
16: break
17: end if
18: U ← U ∪ {k∗}, Θ̃j ← Θ̃j \ (L({k∗} ∪ {k∗})
19: Wj ← U
20: end while
21: for each i ∈ Wj do
22: Θ−ij ← Θj \ ({i} ∪ L(Wo)), Θ̃−ij ← Θ−ij , T ← ∅
23: if Θ̃−ij = ∅ then
24: pi ← argbi V

j
i (T ∪Wo) = 0

25: end if
26: while Θ̃−ij 6= ∅ do
27: ik∗ ← arg max

ik∈Θ̃−ij
V jik

(T ∪Wo)

28: if V jik∗ (T ∪Wo) < 0 then
29: pi ← max{pi, argbi V

j
i (T ∪Wo) = 0}

30: break
31: else if i ∈ L({ik∗}) then
32: pi ← argbi V

j
i (T ∪Wo) = V jik∗

(T ∪Wo)
33: break
34: end if
35: pi ← max{pi, argbi V

j
i (T ∪Wo) = V jik∗

(T ∪Wo)}
36: T ← T ∪ {ik∗}, Θ̃−ij ← Θ̃−ij \ ({ik∗} ∪ L({ik∗}))
37: if Θ̃−ij = ∅ then
38: pi ← max{pi, argbi V

j
i (T ∪Wo) = 0}

39: end if
40: end while
41: end for
42: Wo ←Wo ∪Wj

43: end while
44: W ←Wo

45: end

in Θ̃j\Uk−1 while having no channel conflict with data owners
in Uk−1. From the sorting, the RMA aims to find the set UKs
containing Ks data owners as workers, such that V jKs(UKs−1∪
Wo) > 0 and V jKs+1(UKs ∪Wo) (lines 12-19).

Once the set of workers in group j has been determined,
the RMA re-executes the worker selection on the set of data
owners in group j (except the data owner i), i.e., Θ̃−ij =

Θ̃j \ {i}, to calculate the payment pi for worker i (lines 22-
34). Similarly, the RMA sort data owners in Θ̃−ij = Θ̃j \ {i}
as follows:

V ji1(T0 ∪Wo) ≥ V ji2(T1 ∪Wo) ≥ · · ·
≥ V jik(Tk−1 ∪Wo) ≥ · · · ≥ V jiK′′ (TK′′−1 ∪Wo) (27)

where Tk−1 is the set of the first k − 1 data owners in the
sorting and T0 = ∅. From the sorting, we select the first Kp

data owners as the workers where the Kpth data owner iKp
is (1) the first one that has a non-negative marginal density

and channel conflicts with worker i, i.e., i ∈ L({iKp}) and
V jiKp (TiKp−1

∪ Wo) ≥ 0, or (2) the last one that satisfies

i /∈ L({ik}) and V jiKp (TiKp−1
∪ Wo) ≥ 0. If the data owner

iKp is chosen by the condition (1), the payment pi is set to
be the bid value such that the worker i and the data owner
iKp have equal marginal density on TiKp−1

∪Wo, i.e., pi ←
argbi V

j
i (TiKp−1

∪Wo) = V jiKp (TiKp−1
∪Wo) (lines 31-33). If

data owner iKp is chosen by condition (2), pi is set to be the
maximum value such that V ji (Tik−1

∪Wo) ≥ V jik(Tik−1
∪Wo),

∃k ∈ {1, . . . ,Kp} or V ji (TKp ∪Wo) ≥ 0 (lines 28-30 and 35-
39).

The dividing phase decomposes the original auction mech-
anism Mo into a set of G sub-auctions. We use Mj∈{1,...,G}
to denote the sub-auction mechanism for group j. Since the
data owners in each group have the same EMD value and
the reported channel information is true, only the bid and the
data size (bi, di) in the type ti can be manipulated. Thus,
each sub-auction can be reduced to a deterministic reverse
multi-unit auction where each data owner i bids bi to sell di
data units. Reflected in the data utility function in (6), the di
data units here essentially represent the data owner i’s service
quality. Here, again, the data owners are single-minded, which
means they can only sell the reported amount of data units.
The deterministic auction mechanism here means the same
input types will deterministically generate the same unique
output. As the randomization is applied over a collection
of deterministic mechanisms (line 11), the original auction
mechanism Mo is a randomized auction mechanism [29]. Our
design rationale of each sub-auction is formally presented in
Theorem 1 which adopts the characterizations for the truthful
forward multi-unit auction presented in [30, Section 9.5.4].

Theorem 1. In the reverse multi-unit and single-minded
setting, an auction mechanism is truthful if it satisfies the
following two properties:

1) Monotonicity: If a bidder i wins with type (bi, di), then
it will also win with any type which offers at most as
much price for at least as many items. That is, bidder
i will still win if the other bidders do not change their
types and bidder i changes its type to some (b′i, d

′
i) with

bi ≥ b′i and di ≤ d′i.
2) Critical payment: The payment of a winning type (bi, di)

by bidder i is the largest value needed in order to sell di
items, i.e., the supremum of b′i such that (b′i, di) is still
a winning type, when the other bidders do not change
their types.

We next show the desired properties of the RMA, including the
truthfulness (Proposition 1), the individual rationality (Propo-
sition 2) and the computational efficiency (Proposition 3).

Proposition 1. The RMA mechanism is universally truthful
(incentive compatible).

Proof: We first investigate the truthfulness of the sub-
auction Mj . Since the RMA guarantees that data owners in the
same group have the same virtual EMD value and the group
selection is random (line 11), data owners have no incentive to
report false EMD value. Therefore, we just need to discuss the



8

truthfulness of the reported data size and the bid. According
to Theorem 1, it suffices to prove that the worker selection of
Mj is monotone, and the payment pi is the critical value for
the data owner i to win the auction. Given a fixed EMD value
∆, we construct a function o(z) as

o(z) = κ1κ7e−κ2(κ3z)
α(∆)

(28)
where x ∈ R+ and α(∆) ∈ (0, 1), κ1, κ2, κ3, κ7 ∈ (0,+∞)
are parameters. The first derivative and the second derivative
of o(z) are receptively

do(z)

dz
= −κ1κ2κ3κ7(κ3z)

α(∆)−1α(∆)e−κ2(κ3z)
α(∆)

, (29)

d2o(z)

dz2
= κ1κ2κ7α(∆)e−κ2(κ3z)

α(∆)

(κ3z)
α(∆)(κ2α(∆)(κ3z)

α(∆) − α(∆) + 1).
(30)

Since 1 > α(∆) > 0 and κ1, κ2 > 0, we can find
that do(z)

dz < 0 and d2o(z)
dz2 > 0 which means o(z) is

a convex and monotonically decreasing function. Note that
expanding W is equivalent to increasing the total data size
D(W) = W =

∑
k∈W dk. Substituting z =

∑
k∈W dk

and z =
∑
k∈W∪{i} dk into o(z), we can find V ji (W) =

o(
∑
k∈W dk)−o(

∑
k∈W∪{i} dk)−ĉ({i})−bi
|L({i})| which is monotonically

decreasing with W since
∑
k∈W∪{i} dk >

∑
k∈W dk and

the monotonicity and convexity of o(z). It is also clear that
the marginal density V ji (W) defined in (24) is monotonically
decreasing with the bid bi while monotonically increasing with
di. As the data owner i takes the ith place in the sorting
(26), if it changes the type from ti to t′i by lowering its bid
from bi to b−i (bi > b−i ) or raising the reported data size
from di to d+

i (d+
i > di ), it will have a larger marginal

density V j
i′

(Ui−1) > V ji (Ui−1). Since V ji (W) is a decreasing
function of W , the data owner i’s marginal density can only
increase when it is at a higher rank in the sorting (26), i.e.,
V j
i′

(Ui−k) > V j
i′

(Ui−1),∀k ∈ {2, 3, . . . , i}. Thus, we have
proved the monotonicity condition required by Theorem 1.

We next prove that pi calculated by Algorithm 2 is the
critical payment, which means that with di fixed, bidding a
higher price b+i > pi causes the worker i to fail the auction.
As mentioned above, the final payment pi depends on the
data owner iKp in the sorting (27). If the Kpth worker has
channel conflict with the worker i, summiting a higher bid
b+i makes worker i be ranked after data owner iKp , i.e,
V ji (TKp−1 ∪ Wo) < V jiKp (TKp−1 ∪ Wo), and then worker i
would be removed from the candidate pool in the subsequent
selection. If the data owner iKp has no channel conflict
with the data owner i, a higher bid b+i > pi still causes
V ji (Tk−1 ∪Wo) < V jik(Tk−1 ∪Wo),∀k ∈ {1, 2, . . . ,Kp} and
V ji (TKp ∪ Wo) < 0, which apparently cannot lead the data
owner i to win the auction. Thus, the truthfulness of the sub-
auction Mj is proved. Since each sub-auction Mj is truthful
and the original auction mechanism Mo is a randomization
over the collection of the sub-auctions, we can finally prove
that the RMA mechanism is universally truthful [31, Definition
9.38].

Proposition 2. The RMA mechanism is individually rational.

Proof: Let ii denote the worker i’s replacement in the
payment determination process, i.e., the ith data owner in
the sorting (27). As the data owner ii must be after the
ith place in the sorting (27) or even not in the sorting
if worker i wins the auction, we have V ji (Ti−1 ∪ Wo) >
V jii(Ti−1 ∪ Wo). As shown in the Algorithm 2, the payment
pi for worker i is the maximum winning bid b

′

i, which means
the corresponding marginal density V ji′ (Ti−1 ∪ Wo) satisfies
V ji (Ti−1 ∪Wo) > V jii(Ti−1 ∪Wo) ≥ V ji′ (Ti−1 ∪Wo). Since
V ji (W) is monotonically decreasing with the bid bi (see the
proof for Proposition 1), we have pi = b′i ≥ bi = ci, which
means the worker i’s utility ui defined in (18) is non-negative,
i.e., ui(ti) ≥ 0. Therefore, we can guarantee the individual
rationality of each sub-auction Mj and the original RMA
mechanism Mo.

Proposition 3. The RMA mechanism is computationally effi-
cient.

Proof: For each sub-auction Mj (lines 12-41) in Algo-
rithm 2, finding the workers in group Θj with the maximum
marginal density has the time complexity of O(|Θj |) (line
14). Since the number of workers is at most |Θj |, the worker
selection process (the while-loop lines 13-20) has the time
complexity of O(|Θj |2). In the payment determination process
(lines 21-41), each for-loop executes similar steps as the while-
loop in lines 13-20 and the payment determination process
generally has the time complexity of O(|Θj |3). Dominated by
the for-loop (lines 21-41), the time complexity of a sub-auction
(Algorithm 2) is O(|Θj |3). Since

∑
j∈{1,...,G} |Θj | = N and

N3

G2 ≤
∑
j∈{1,...,G} |Θj |3 ≤ N3, the running time of the

original RMA Mo is bounded by polynomial time O(N3).

V. DEEP REINFORCEMENT LEARNING BASED AUCTION
MECHANISM (DRLA)

Although the RMA mechanism can guarantee the IC, IR
and CE, its achieved social welfare is still restricted. The
reasons are that the randomization may degrade the social
welfare performance and the channel conflicts among workers
is not well represented and exploited. Resolving these issues
is very challenging. In this section, we attempt to utilize the
powerful artificial intelligence (AI) to establish an automated
mechanism for improving the social welfare while ensuring the
IC and IR. Specifically, we first use the graph neural network
(GNN) [32] to exploit the conflict relationships and generate
effective embeddings. Based on the embeddings, we propose
a deep reinforcement learning (DRL) framework to design
truthful auction mechanisms in order to improve the social
welfare.

A. Feature engineering with embeddings of wireless spectrum
conflict graph

Although the bid bi, data size di and EMD σi in data
owner’s type ti and the channel information hi are already
continuous variables, the information of requested wireless
channels Ci is a discrete variable which restricts directly ap-
plying the DRL approach. Therefore, we construct a spectrum
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Fig. 2. Feature engineering based on GNN.

conflict graph G [33] to represent the channel conflicting
relationship among the data owners. We here denote the data
owner i’s original feature by fo

i , i.e., fo
i = [bi, di, σi, hi, Ci]>.

> is the transpose operator and the square brackets [·] is the
operators of incorporating the inside elements to a vector.

As illustrated in Fig. 2, each node in the graph G is a
data owner and each undirected edge represents the conflicting
relationship between two connected data owners. Due to the
differences in some aspects, such as hardware or wireless
channel occupancy, each data owner may have different
demands for wireless channels. Taking an example with 3
data owners, the data owners 1, 2 and 3 respectively request
channels C1 = {1, 4, 6}, C2 = {2, 5, 6} and C3 = {3, 7}.
Since the data owners 1 and 2 are single-minded and both of
them request the channel 6, they are conflicting in wireless
channels and there should be an edge between data owners
1 and 2. The data owner 3 has no channel conflicting with
any other worker’s requested channels, so there is no edge
connected to data owner 3.

To map the discrete channel information to continuous
embeddings, we specifically apply a multi-layer Graph Convo-
lutional Network (GCN) [22] in which the l+1th layer output
H(l+1) is calculated by

H(l+1) = ReLU(B−
1
2 ÂB−

1
2 H(l)Φ

(l)
G ), (31)

where H0 = 1N×$G is an all-ones matrix and Â = A+I de-
notes the adjacency matrix A ∈ NN×N with self-connections.
I ∈ NN×N is an identity matrix and B =

∑
j=0 Âij is the

diagonal degree matrix of Âij . ΦG is the trainable parameter
set of the GCN where Φ

(l)
G ∈ R$G×$G is the trainable

weight matrix of the lth layer. We use the rectified linear units
ReLU(·) = max(0, ·) [34] as an activation function. Then, the
embedding vi ∈ R$G×1 of each data owner (node) i generated
by the GCN can be obtained from the output of the last layer
H(l̂+1) = [v1, v2, . . . , vN ]>, where l̂ is the total number of
layers. Based on the node embeddings, the embedding of the
graph G is encoded by vG =

∑
i vi ∈ R$G×1. We concatenate

the node embedding and the graph embedding as the data
owner i’s final embedding ṽi = [vi, vG ]> ∈ R2$G×1. Apart
from the data owner’s own type information, the state si which
is output by the DRL algorithm and indicates whether the
worker i wins the DRL based auction should be included
in the input feature. If the data owner i is selected to be

included in the set of workers, we set si = 1; otherwise,
si = 0. Finally, the data owner i is represented by its feature
fi = [bi, di, σi, Ci, hi, ṽi, si]

> ∈ R(2$G+5)×1 which incor-
porates its type, embeddings, state and channel information.
In addition, we use F = [f1, . . . , fN ]> ∈ RN×(2$G+5) and
Fo = [fo

1 , . . . , f
o
N ]to respectively represent all data owners’

features and original features.

B. Automated mechanism under deep Q-learning framework

Fig. 3. DRL based framework auction mechanism.

Generally, we adopt the deep Q-learning [22], [35] frame-
work to design an auction mechanism that possesses the
properties of IC and IR and solves the NP-hard social welfare
maximization problem. Similar to the RMA, the DRL based
auction mechanism applies the greedy scheme which finds the
workers step by step. At the step m (starting from 1), it selects
a worker that has no channel conflict with the candidate set
Vm and maximizes an evaluation function Q on Vm. After m̂
steps reaching the termination condition, the worker selection
process ends and the final worker set is V̂ = Vm̂. At step 1,
the initial candidate set is V1 = ∅.

The core assumption for the DRLA mechanism is that
the data owners’ original features Fo follow a distribution
D. When the service provider, i.e., the auctioneer, trains
the DRLA network, it can obtain the data owners’ original
features from a historical real-world dataset or a priori known
distribution [22].

As illustrated in Fig. 3, the proposed DRL framework is
composed of the state, action, reward, policy and environment
parts defined as follows:
• States: the state sm = {sm1 , . . . , smi , . . . , smN} consists of

the aforementioned workers’ states at step m, indicating
whether they have joined the candidate set Vm, i.e., smi =
1 if i ∈ Vm and 0 otherwise. We use function V to
express this transformation, sm = V (Vm).

• Actions: the action am is a data owner, i.e., a node in the
graph G, which is picked by the FL platform at step m
and not in the candidate set Vm.

• State transition: the state transition from the current state
sm to the next state sm+1 is determined by the mth action
which means setting sam = 1 and putting the data owner
(node) am into the set Vm, i.e., Vm+1 = Vm ∪ {am}.

• Rewards: the reward function rm(sm, am) at state sm is
the increased social welfare contributed by the action am,
which is defined as

rm(sm, am) = S(Vm ∪ {am})− S(Vm) (32)
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where S(·) is the social welfare function in (19). Then,
the cumulative reward R =

∑m̂
m=1 r

m(sm, am) is equal
to our optimization target, i.e., the final achieved social
welfare S(Vm̂).

• Policy: different from the traditional Q-learning [36],
which uses a Q-table, the adopted DRL trains a deep neu-
ral network (DNN) Q(sm, am|ΦQ) to evaluate the quality
of action am under state sm. That is, the input of DNN is
any state and action pair and the output is the correspond-
ing quality value. ΦQ denotes the trainable parameter set
of the DNN. Thus, Φ = [ΦG,ΦQ] represents all trainable
parameters of the proposed DRLA networks. Based on
the evaluation function Q, we use the greedy policy
π(am|sm) = arg maxam∈N\(Vm∪L(Vm))Q(sm, am) to
choose the action am under state sm. In the specific
algorithm, we apply ς-greedy policy. That is, the DRL
based auction at step m randomly chooses a worker from
Vm with probability ς , or implement the policy π(am|sm)
with probability 1− ς .

With the Q function in the classical deep Q-learning [22],
[37] and the prepared data owners’ features F, the DNN based
evaluation function Q(sm, am|ΦQ) is designed as
Q(sm, am|Φ) = Q(sm, am|ΦG,ΦQ) (33)

= ReLU([ṽ, s,C,h]>Φ1
Q)Φ2

Q

− b>eΦ3
Q + g(d,σ)eΦ4

Q)
(34)

where ṽ = [ṽ1, . . . , ṽN ]>, s = [s1, . . . , sN ]>, C =
[C1, . . . , CN ]>, h = [h1, . . . , hN ]>, b = [b1, . . . , bN ]>,
d = [d1, . . . , dN ]> and σ = [σ1, . . . , σN ]>. Besides the
parameters Φ1

Q ∈ R(2$G+3)×(2$G+3), Φ2
Q,Φ

3
Q ∈ R(2$G+3)×1

and Φ4
Q ∈ R, the evaluation function integrates a monotonic

neural network function g(d,σ) ∈ R described by
g(d,σ) = max

j∈{1,...,J}
min

k∈{1,...,K}
{ReLU(ReLU(

[d,−σ]>eΦ
5jk1
Q + Φ

6jk1

Q )eΦ
5jk2
Q + Φ

6jk2

Q )}
(35)

where J and K are positive integral hyper-parameters that
adjust the approximate accuracy and the complexity of the
monotonic network g, Φ

5jk1

Q ∈ R2×K , Φ
6jk1

Q ∈ RN×K

are the parameters in the first layer, and Φ
5jk2

Q ∈ RK×1,
Φ

6jk2

Q ∈ RN×1 are the parameters in the second hidden
layer. The exponential operations in (34) and (35), i.e., eΦ3

Q ,
eΦ4

Q , eΦ
4jk1
Q and eΦ

4jk2
Q , guarantee that the coefficients of

input features −b, [d,−σ] and g are positive. According to
the characterizations of the monotonic network in [38], [39],
g(d,σ) and Q(sm, am|Φ) are monotonically decreasing with
the data owner’s EMD value and monotonically increasing
with the data size. Q(sm, am|Φ) is clearly monotonically
decreasing with bid. The DNN Q can be seen as a scoring
function [40], [41] that calculates the data owner i’s score Qi.
This is convenient for the FL platform to sort and select the
data owners. Actually, g(d,σ) maps the data owner i’s data
size di and EMD σi to a new metric value gi. Analogous to
the RMA, the setting in the DRLA mechanism is transformed
to that each data owner wants to sell gi units of data at price

bi. gi can be regarded as the data owner i’s normalized data
size. Thus, the truthfulness and individual rationality of the
DRLA mechanism are also guaranteed by Theorem 1 where
we accordingly replace di with gi. With the FL platform’s
greedy policy, the trained deep Q-learning model with fixed
parameters always chooses the maximum Qi at each step
and thus possesses the monotonicity in worker selection. The
payment pi is set to the worker i’s critical bid, i.e., the
maximum bid b̄i that keeps Qi as a winning score. Similar to
the RMA (lines 21-41), the payment determination is applying
the deep Q-learning model on the set of data owners except the
worker i to find the critical data owner ī which is the last data
owner selected or the first one having channel conflicts with
worker i. Due to the monotonicity of the bid in Q function,
the FL platform can efficiently calculate the bid b̄i such that
worker’s new score Q̄i is equal to the critical data owner ī’s
score Qī.

Algorithm 3 DRLA training algorithm
Input: Distribution D or real dataset
Output: The set of FL workers W .
1: Initialize parameters Φ, Φ−, experience replay memory M
2: begin
3: for episode k = 1 to L1 do
4: Draw Fo from distribution D or real dataset
5: Initialize the candidate set to be empty Vm = ∅
6: for step m = 1 to L2 do
7: V̂m ← Vm ∪ L(Vm)

8: am =

{
randomly choose am ∈ N \ V̂m, w.p. ς

arg max
am∈N\V̂m Q(sm, am), w.p. 1− ς

9: Vm ← Vm ∪ {am}
10: sm+1 ← V (Vm)
11: Execute action am to obtain reward rm
12: if rm < 0 or N \ V̂m = ∅ then
13: break
14: end if
15: if m ≥ µu then
16: Store {sm−µu , am−µu , rm−µu , sm,F} in M
17: Sample minibatch B from memory M
18: Update Φ by SGD over (36)
19: end if
20: end for
21: if k mod µr = 0 then
22: Φ− ← Φ
23: end if
24: end for
25: end

The training process of our proposed DRL based auction
mechanism is presented in Algorithm 3. At the beginning
of each episode, the platform first samples a set of worker’s
original features Fo from a known distribution D or a real-
world dataset. Training the DNN, i.e., the evaluation function,
can help the FL platform to establish the optimal policy
that finds the best action at the current state. The stan-
dard Q-learning updates the Q function parameters based on
the immediate reward rm at the mth step of an episode.
However, the standard update method is myopic since our
objective is to optimize the total social welfare, i.e., the
accumulated reward R. Thus, our deep Q-learning training
shifts to use the additive reward from the past µu steps,
i.e., Rmµu

=
∑m
m−µu

rm. To improve the training stability,
an experience replay memory M is created for storing the
experiences, e.g.,

{
sm−µu , am−µu , Rmµu

, sm,F
}

. Moreover, a
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single DNN may also lead to the overestimation [42] since
the FL platform’s action is selected and evaluated by the same
Q function. To address this issue, we apply the double deep
Q learning (DDQL) [42]. Specifically, we have two DRLA
networks, including the original evaluation DRLA network
with parameters Φ and an additional target DRLA network
with parameters Φ−. The parameters Φ of the evaluation DNN
can be updated by using the gradient descent at each step after
µu steps in an episode to minimize the following square loss
function:

loss = (Q̂−Q(sm−µu , am−µu |Φ))2. (36)
The target value Q̂ is defined as
Q̂ = Rmµu

+ λµu(Q(sm, arg max
am∈N\V̂m

Q(sm, am|Φ)|Φ−)),

(37)
where µu ≤ m ≤ m̂ and λ is a discount factor. The target
DNN resets its parameters Φ− = Φ at every µr episodes. The
termination condition for the training in an episode is that
the immediate reward rm becomes negative, i.e., rm < 0,
or there is no worker to select, i.e., N \ V̂m = ∅. For
higher robustness of convergence, we use stochastic gradient
descent (SGD) to train the evaluation DNN over a minibatch
B of µB experiences randomly drawn from memory M. The
proposed DRLA mechanism actually adopts the classical DRL
framework proposed in [35] which has the stable convergence
in training large neural networks using the reinforcement
learning signal and the SGD method. In Section VI, we present
the experimental result on the convergence in training the
DRLA network.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we first conduct a federated learning ex-
periment based on real-world data to verify the proposed
data utility function. From the simulation results, we then
examine the performance of the proposed RMA and DRLA
mechanisms.

A. Verification for Data Utility Function

To verify the data utility function defined in (6), we use the
convolutional neural network (CNN) model on the classical
MNIST dataset5 to develop a federated handwritten digit
recognition service. For simplicity in our experiments, we first
consider 2 workers following the FedAvg algorithm (Algo-
rithm 1) and cooperating to train the CNN model with two
convolutional and two fully-connected layers. The federated
learning rate is η = 0.01 and the number of global epochs
and local epochs are fixed at δg = 10 and δl = 5. The MNIST
dataset contains 60, 000 training samples and 10, 000 testing
samples for 10 digit labels from 0 to 9. It is reasonable to
assume that each label essentially has an equal occurrence
probability. So we set the actual distribution for the whole
population P, i.e., the benchmark for measuring the EMD
value, as P(y = j) = 0.1,∀j ∈ {0, . . . , 9}. The worst
EMD σmax that the FL platform can accept is set to be 1.2,
i.e., σmax = 1.2. We vary the normalized total data size D

5http://yann.lecun.com/exdb/mnist/
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Fig. 4. Estimation of the data utility function in (6).

and the average EMD value ∆ by changing each worker i’
local data size and number of labels. Each presented result
is averaged over 100 instances. The data utility here is the
prediction accuracy. Fig. 4 demonstrates that the data utility
function in (6) well fits the real experiment results. Based on
the experiment, we set κ1 = 0.361, κ = 4.348, κ3 = 10−3,
κ4 = 0.993, κ5 = 0.31, κ6 = 1.743, κ7 = 100, δg = 10,
δl = 5 and M = 0.5 in the following simulations.

B. Performance of RMA and DRLA mechanisms

We conduct simulations to evaluate the performance of
our proposed strategyproof auction mechanisms, including the
manually designed RMA and the automated DRLA. Unless
otherwise stated, the simulation parameters are configured as
follows. There are N = 50 data owners joining in the auction
for participation in the federated learning activity. We assume
that the noise power spectral density level ψ0 is−130 dBm/Hz,
and the dynamic range of the channel power gain h̃2 is from
−90 dB to −100 dB. Hereby, we uniformly generate data
owner i’s normalized channel power gain hi from

[
106, 107

]
,

data size di from [0, 10], EMD value σi from [0, 1.2], both
unit data collection cost γi and unit data computational cost
αi from

[
10−5, 10−4

]
, and unit data transmission cost from[

10−2, 10−1
]
. Here, the worker’s maximum data size dmax =

10 and maximum EMD value σmax = 1.2. The platform’s unit
costs for computing and transmission are set as α̂ = 5×10−2

and β̂ = 5× 10−5. With respect to the wireless channels, we
fix the average number of channels per worker C̄ at 2 and
then the set of total available channels is C = {1, . . . , 100}.
Each data owner’ requested channel set Ci are uniformly
sampled from C and the corresponding number of channels
Ci also follows uniform distribution in [2, 6]. We prepare
5, 000 samples for the DRLA model training, 100 samples for
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validation and 1, 000 samples for testing and evaluating the
performance of both the RMA and DRLA mechanisms. For
RMA mechanism, we set the number of groups as G = 10.
We implement the DRLA mechanism integrated with a 2-
layer GCN and a monotonic network where K = 8, J = 8
and $G = 64. We use the ADAM optimizer [43] with a
learning rate of 0.001 and minibatch of 128 and linearly anneal
the exploration probability ς from 0.9 to 0.05 when training
the DRLA model. As illustrated in Figure 5, we plot our
proposed DRLA mechanism’s convergence curves with respect
to the held-out validation performance for different number
of data owners. The performance of DRLA mechanism, i.e.,
the achieved social welfare or the accumulated reward, can
quickly converge to a stable high value after training with a
few hundreds of minibatches. All the following experimental
results are the mean values based on the 1, 000 testing samples.
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Fig. 5. DRLA convergence measured by the held-out validation performance.
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In addition to the social welfare metric, we are interested in
the number of selected workers W which reflects the fairness
and the satisfaction rate of data owners. Figure 6 demonstrates
the impact of the number of data owners N on the social
welfare S and the number of workers W . We observe that
the social welfare and number of workers in the RMA and
DRLA mechanisms both increase with growing data owners
at a diminishing rate. The reason is two folds: First, the
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greedy algorithms only choose the worker that can improve
the social welfare. Second, a larger base of interested workers
will bring more competition in the auction and that more
workers would also reduce the remaining workers’ marginal
social welfare density. Although the DRLA can achieve higher
social welfare than that of RMA mechanism, the DRLA is less
fair since it is more capable of sequentially finding out the
data owner with larger marginal social welfare. As mentioned
in Section I, there is few research work discussing the auction
mechanism dedicated for wireless federated learning. Since
the key challenging issue in this paper is about the channel
conflict, we attempt to apply a well-known strategyproof spec-
trum auction mechanism proposed in [44] as the benchmark.
The benchmark auction mechanism decides the allocation only
based on the bidders’ bid prices while avoiding the channel
conflicts among the bidders. As shown in the Figure 6, the
social welfare achieved by the benchmark auction mechanism
is lower than the proposed auction mechanisms, although it
provides better fairness. However, this paper focuses on the so-
cial welfare optimization and thus the benchmark mechanism
is not suitable to be directly applied in our wireless federated
learning scenario.

As illustrated in Figs. 7 and 8, we investigate the impact
of the worker’s maximum data size dmax and EMD value
σmax on the social welfare. Note that dmax and σmax are
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performance.

adjustable parameters and preset by the FL platform before
the auction. It is clear that the social welfare increases when
the FL platform raises its requirement of data quality by larger
data size and lower EMD value. Certainly, the precondition is
that there are enough data owners that satisfy the requirement.
It is interesting to note that when σmax is large, the DRLA can
drop more data owners with low data quality (high σi) to keep
better social welfare than that of the RMA. In Fig. 9, we vary
the number of groups G to show its impact on the performance
of the RMA mechanism. With the G growing, the achieved
social welfare is increasing while less workers are selected.
More groups means the virtual EMD difference among data
owners is widening, so the RMA mechanism can recognize
more data owners with low original EMD value. When such
data owner with high data quality is found, there is less need
to choose other data owners with poor data quality.

VII. CONCLUSION

In this paper, we have proposed an auction based market
model for trading federated learning services in the wireless
environment. We have designed a reverse multi-dimensional
auction (RMA) mechanism for maximizing the social welfare
of the federated learning services market. The RMA mech-
anism not only considers workers’ bid prices for providing
training services but also takes each worker’s own multiple
attributes, including the data size, EMD, and wireless channel
demand, into account. To well evaluate each workers’ value,
we have introduced a data quality function verified by real
world experiments to characterize the relationship between
the accuracy performance and the size and average EMD
of all local data. To further improve the social welfare, we
have proposed a deep reinforcement learning based auction
(DRLA) mechanism which uses the graph neural network
to effectively extract useful features from worker’s reported
types and automatically determines the service allocation and
payment. Both the proposed RMA mechanism and the DRLA
mechanism possess the economic properties of truthfulness
and individual rationality.
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