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Abstract—The fifth generation of cellular networks (5G) will rely on
edge cloud deployments to satisfy the ultra-low latency demand of future
applications. In this paper, we argue that such deployments can also
be used to enable advanced data-driven and Machine Learning (ML)
applications in mobile networks. We propose an edge-controller-based
architecture for cellular networks and evaluate its performance with
real data from hundreds of base stations of a major U.S. operator. In
this regard, we will provide insights on how to dynamically cluster and
associate base stations and controllers, according to the global mobility
patterns of the users. Then, we will describe how the controllers can
be used to run ML algorithms to predict the number of users in each
base station, and a use case in which these predictions are exploited
by a higher-layer application to route vehicular traffic according to net-
work Key Performance Indicators (KPIs). We show that the prediction
accuracy improves when based on machine learning algorithms that
rely on the controllers’ view and, consequently, on the spatial correlation
introduced by the user mobility, with respect to when the prediction is
based only on the local data of each single base station.

Index Terms—5G, machine learning, edge, controller, prediction, mo-
bility, big data.

1 INTRODUCTION

The 5th generation (5G) of cellular networks is being de-
signed to satisfy the massive growth in capacity demand,
number of connections and the evolving use cases of a
connected society for 2020 and beyond [2]. In particular, 5G
networks target the following KPIs: (i) very high through-
put, in the order of 1 Gbps or more, to enable virtual reality
applications and high-quality video streaming; (ii) ultra-
low latency, possibly smaller than 1 ms on the wireless
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link, to support autonomous control applications; (iii) ultra-
high reliability; (iv) low energy consumption; and (v) high
availability of robust connections [3], [4].

In order to meet these requirements, a new approach in
the design of the network is required, and new paradigms
have recently emerged [4]. First, the densification of the net-
work will increase the spatial reuse and, combined with the
usage of mmWave frequencies, the available throughput. On
the other hand, this will introduce new challenges related to
mobility management [5]. Second, with Mobile Edge Cloud
(MEC), the content will be brought closer to the final users,
in order to decrease the end-to-end latency [4]. Third, a
higher level of automation will be introduced in cellular
networks, relying on ML techniques and Software Defined
Networking (SDN), in order to manage the increased com-
plexity of 5G networks.

The usage of ML and Artificial Intelligence (AI) tech-
niques to perform autonomous operations in cellular net-
works has been widely studied in recent years, with use
cases that range from optimization of video flows [6] to
energy-efficient networks [7] and resource allocation [8].
This trend is coupled with the application of big-data an-
alytics that leverage the huge amount of monitoring data
generated in mobile networks to provide more insights on
the behavior of networks at scale [9]. In the domain of
mobile networks, these two technological components can
empower costs savings, but also new applications, as we
will show in this paper. However, despite the importance
of this topic, the state of the art lacks considerations on
how it is possible to effectively deploy machine learning
algorithms and intelligence in cellular networks, and an
evaluation of the gains of a data-driven approach with real
large-scale network datasets.

1.1 Contributions

To address these limitations, in this paper we propose
a data-driven control architecture for the practical imple-
mentation of ML techniques in 5G cellular networks, and
evaluate the gains that this architecture can introduce in
some data-driven applications, using real data collected
from hundreds of base stations of a major U.S. carrier in
the San Francisco and Mountain View areas for more than



TABLE 1: Relevant literature on machine learning, MEC and edge controllers in cellular networks and novel contributions of this paper.

Topic Relevant References

Contribution of this paper

Application of ML in cellular

[1O], (111, 121, [13], [14], [15],
networks [16]

Novel network-level architecture, integrated with 3GPP 5G specifications,
and evaluation of its performance gains based on real network dataset.

Mobility prediction in cellu-

lar networks [17], 18], [19]

Cluster-based approach to capture spatial correlation

Mobile Edge Cloud [20], 1211, [41, 1221, [23]

MEC-based architecture used for ML for network control and applications

SDN in cellular networks [24], 1251, [26], 127], [28], [29]

ML-driven edge-SDN controllers integrated in the ML architecture

a month. In particular, the main contributions of this paper
are:

o the design of a scalable and efficient multi-layer
edge-based control architecture to deploy big-data
and ML applications in 5G systems. We propose to
exploit controllers implemented in MEC and cloud
facilities to collect the data generated by the network,
run analytics and extract relevant metrics, that can be
fed to intelligent algorithms to control the network
itself and provide new services to the users. The
Radio Access Network (RAN) controllers, deployed
at the edge, are associated with a cluster of base
stations, and are thus responsible not only for RAN
control, as proposed in [25], but also for running the
data collection and ML infrastructure. The network
controller, placed in the operator’s cloud, orches-
trates the operations of the RAN controllers. We char-
acterize this architecture with respect to the latest 5G
RAN specifications for 3GPP NR, the 5G standard for
cellular networks [30], and provide insights on how
the controllers can interface with an NR deployment,
following the approach of an emerging open RAN
initiative contributed by multiple operators and ven-
dors [25].

o the demonstration of the gains that data-driven
techniques enabled by the proposed architecture
can yield in network applications, leveraging a real
world dataset on two use cases. In the first, big data
analytics are used to control the association between
the base stations and the RAN controllers. We pro-
pose a dynamic clustering method where base stations
and controllers are grouped according to the day-
to-day user mobility patterns, which are collected
and processed by the ML infrastructure. With respect
to a static algorithm, based on the position of the
base stations, the data-driven algorithm manages to
decrease the number of inter-controller interactions
and thus reduce the control plane latency. In the
second example, we test different machine learning
techniques (i.e., the Bayesian Ridge Regressor, the
Gaussian Process Regressor and the Random Forest
Regressor) for the prediction of the number of users
in the base stations of the network. We show that,
thanks to the proposed ML edge-based architecture,
which makes it possible to exploit the spatial corre-
lation of the users, it is possible to increase the pre-
diction accuracy with respect to that of decentralized
schemes, with a reduction of the prediction error by
up to 53%.

To the best of our knowledge, this is the first exhaus-
tive contribution in which a practical control-plane ML
architecture, that can be applied on top of 5G NR cellular
networks, is evaluated using a real network dataset, show-
ing promising results that indicate that new user services
and optimization techniques based on machine learning in
cellular networks are possible.

1.2 Related Work

In the following paragraphs we will discuss the literature
relevant to the scope of this paper, which is also summarized
in Table [I} and highlight the main differences we introduce
with respect to the state of the art.

ML in cellular networks: The application of ML
techniques to cellular networks is a topic that has gained a
lot of attention recently, thanks to the revived importance of
ML and Al throughout all facets of the industry. The surveys
in [10], [11] present some recent results on how it is possible
to apply regression techniques to mobile and cellular sce-
narios in order to optimize the network performance. The
paper [12] gives an overview of how machine learning can
play a role in next-generation 5G cellular networks, and lists
relevant ML techniques and algorithms. The usage of big-
data-driven analytics for 5G is considered in [13], [14], with
a discussion of how data-driven approaches can empower
self-organizing networks. However, none of these papers
provides results based on real operators datasets at large
scale that show the actual gains of data-driven and machine
learning based approaches. Moreover, while practical im-
plementations of machine learning algorithms for networks
indeed exist for host-based applications (e.g., TCP [15],
video streaming [16]), or base-station-based use cases (e.g.,
scheduling [31]]), the literature still lacks a discussion and
an analysis of how it is possible to practically deploy the
algorithms, collect real-time data and process it to enable
new services in large-scale commercial networks.

Furthermore, several papers report results on the pre-
diction of mobility patterns of users in cellular networks.
The authors of [17], [18] use network traces to study human
mobility patterns, with the goal to infer large-scale patterns
and understand city dynamics. The paper [19] proposes to
use a leap graph to model the mobility pattern of single
users. Other works focus on the prediction of the traffic
generated by single base stations [32], [33], or by groups
of base stations [34], and do not consider the mobility
patterns. With respect to the state of the art, in this paper we
focus on the prediction of the number of users associated
to a base station, in order to provide innovative services
to the users themselves, and propose a novel cluster-based
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Fig. 1: Example of timeseries from the traces collected for 4 evolved Node Bases (eNBs) in the Palo Alto dataset over 5 days.

approach to improve the prediction accuracy, evaluating the
performance of different algorithms on a real large-scale
dataset.

MEC and controllers in cellular networks: The role
of MEC has also been discussed in the context of 5G net-
works, e.g., to perform coordination [20] and caching [21],
and to offer low-latency content and control applications to
the end users [4]. MEC is indeed considered a key element in
the deployment of future autonomous driving vehicles, for
which very short control loops will be needed [35]. A few
papers consider specific cases for the application of machine
learning and big data techniques at the edge, for example
for intelligent transportation systems [22], or the processing
of data collected by internet-of-things devices [23], but,
to the best of our knowledge, the usage of MEC to run
data collection and machine learning algorithms for the
prediction and optimization in 5G cellular networks has not
been discussed in detail yet.

The edge has also been proposed for hosting con-
trollers in cellular networks [24], [25], [26]. As the SDN
paradigm has become popular in wired networks [36], sev-
eral software-defined approaches for the RAN have been
described in the literature [27], [28], [29], and the telecom
industry is moving towards open-controllers-based architec-
tures for the deployment of 5G networks [25]]. With respect
to existing studies, in this paper we propose to exploit the
RAN controllers as proxies for the data collection in the
RAN and the enforcement of machine learning algorithm-
based policies. This approach has been considered in a
wired-network context [37], but this is the first paper that
studies it in a 5G cellular network.

1.3 Paper Structure

The remainder of the paper is organized as follows. In
Sec. 2| we present the real network data that will be used
throughout the paper, and in Sec. 3| we describe the pro-
posed architecture. In Sec. 4| we provide details on the first

application, i.e., the autonomous data-driven clustering of
base stations. Results on the second application, i.e., the
prediction accuracy for the number of users in the cells, are
given in Sec. [5| together with possible use cases. Finally, in
Sec.[f|we conclude the paper.

2 THE DATASET

This section describes the data that will be used in the eval-
uations in the remainder of the paper. The traces we exploit
are based on the monitoring logs generated by 650 base
stations of a national U.S. operator in two different areas,
i.e., San Francisco and Palo Alto/Mountain View, for more
than 600000 UEs per day, properly anonymized during the
collection phase. The base stations in the dataset belongs to a
4G LTE-A deployment, which represents the most advanced
cellular technology commercially deployed at a large scale.
Even if 5G NR networks will have more advanced charac-
teristics than Long Term Evolution (LTE) ones, this dataset
can be seen as representative of an initial 5G deployment at
sub-6 GHz frequencies in a dense urban scenario [38]. We
consider two separate measurement campaigns, conducted
in February 2017 in the San Francisco area and in June and
July 2018 in the Palo Alto and Mountain View areas. Table
summarizes the most relevant details of each measurement
campaign.

Given the sensitivity of this kind of data, we adopted
standard procedures to ensure that individuals’ privacy
was not compromised during the data collection and the
analysis. In particular, the records were anonymized by
hashing the UEs’ International Mobile Subscriber Identitys
(IMSIs), which is the unique identifier that can be associated
to a single customer in these traces. Moreover, for our anal-
ysis, we only used anonymized metrics that are based on
aggregated usage at multiple layers: first, we consider users’
data for each single cell (a cell is mapped to a sector and
carrier frequency), and, then, aggregate the cells associated
to the same base station (i.e., with the RF equipment in the

Location Time interval Number of eNBs
Campaign1  San Francisco 01/31/2017 — 02/26/2017, every day from 3 PM. to 8 PM. 472
Campaign2  Palo Alto, Mountain View  06/22/2018 — 07/15/2018, whole day 178

TABLE 2: Anonymized datasets used in this paper.



same physical location). In this way, no user can be singled
out by the results we present.

The traces used in this paper record a set of standardized
events in LTE eNBs, mainly related to the mobility of users.
The raw data is further processed to construct time series
of different quantities of interest in each eNB at different
time scales (from minutes to weeks): (i) the utilization of
the eNB, which is represented by the ratio of used and
available Physical Resource Blocks (PRBs); (ii) the number
of incoming and outgoing handovers, for both X2 and S1
handover events [39]; and (iii) the number of active UEs,
obtained from context setup and release events. The mea-
surement framework we used also offered the possibility of
logging other events and extract other metrics, for example
related to the latency experienced by the users, link statistics
(e.g., error probability), or different estimates of the user and
cell throughput. The events associated to these quantities,
however, are reported less regularly and less frequently than
those we consider, therefore they do not represent a reliable
source for the estimation of the network performance. With
respect to other publicly available datasets [40], this presents
a more precise characterization of the mobility dynamics in
the network and a finer granularity in the collected data.

Fig. |1 shows an example of different timeseries for 4
eNBs in the Mountain View/Palo Alto area, with a time
step of 15 minutes. It can be seen that, even though daily
patterns can be identified, each eNB presents characteristic
differences with the others.

3 RAN CONTROLLERS AS ENABLERS OF
MACHINE-LEARNING APPLICATIONS AT THE EDGE

The past and current generations of cellular networks were
not designed to deploy machine learning and artificial in-
telligence algorithms at scale. The main reason is that there
are no standardized interfaces that network operators can
exploit to collect data from the base stations and the equip-
ments of different vendors, and/or to modify the behavior
of the network according to custom policies. Indeed, despite
the Self-Organizing Network (SON) capabilities embedded
in the LTE standard [39], the deployment of autonomous
networks is not widespread, and LTE eNBs are usually
self-contained appliances to which the telecom operators
have restricted access. Therefore, the control plane is usually
decentralized, and the exchange of information among eNBs
is limited [25]. Accordingly, practical machine learning solu-
tions that can deployed in a 4G LTE network are generally
limited to SON parameters optimization for a few eNBs,
generally with offline training and/or optimization, thus
without real-time insights, or to the application of intelligent
algorithms to the data that is collected in each single eNB,
for example to predict the channel gain [41]], perform smart
handovers [42] or scheduling [8], [31].

In order to make network management and operation
more efficient, new design paradigms have emerged in the
5G domain. The main trend is related to the disaggregation
of the base station (which in 3GPP NR networks is the
Next Generation Node Base (gNB)). The 3GPP has proposed
different splits of the gNB protocol stack [30], so that it will
be possible to deploy a different RAN architecture, with
the lower layers in Distributed Units (DUs) on poles and

towers, and the higher layers in Centralized Units (CUs)
which can be hosted in a datacenter. The pooling of CUs
can enable more sophisticated orchestration operations, and
energy savings [28]. On the other hand, the DUs that are
deployed in the RAN are simpler and possibly smaller than
4G full-fledged base stations.

The second trend is related to the deployment in the
wireless RAN of SDN solutions based on open and smart
network controllers [43], which have already been adopted
with success in large wired backbone networks [36]. Along
this line, the O-RAN Alliance, a consortium of network
operators and equipment vendors, is standardizing con-
troller interfaces between the CUs and new custom RAN
controllers that can be implemented and deployed by the
telecom operators themselves. As mentioned in [25], an
architecture with a split between the distributed hardware
that performs data-plane-related functions and a more cen-
tralized software-based control plane can enable more ad-
vanced control procedures, thanks to the centralized view
and the context awareness, and thus this approach is quickly
becoming a de facto standard for the deployment of 5G
cellular networks.

3.1 Proposed Architecture

In this paper, we propose to exploit the new design
paradigms for the 5G RAN to make it possible to practi-
cally deploy intelligence in cellular networks, without the
constraints and limitations previously described for 4G LTE
deployments. As shown in Fig. |2} our architecture leverages
the different layers of controllers to aggregate and process
the network data using machine learning and Al techniques,
with a multi-layer semi-distributed point of view that strikes
a balance between the decentralized 4G approach and a
completely centralized approach, which would be infeasible
due to the amount of data to be processed. Notice that the
proposed architecture applies to the control plane, and does
not affect the routing of data packets.

In the following paragraphs, we will introduce the pro-
posed architecture and describe how it can be integrated in
the NR and O-RAN Alliance designs, following the MEC
paradigm. Moreover, we will discuss the costs and the
technical challenges associated to the deployment of the
proposed architecture. In Sec. i and Sec. [5| we will describe
two ML-based applications for networks, showing that the
usage of the proposed architecture makes it possible to
improve the performance with respect to decentralized, 4G-
based approaches.

3.1.1 Integration with 3GPP networks

The proposed architecture exploits a multi-layer overlay
that is compliant with 3GPP NR networks, as reported in
Fig.[2l The overlay is composed by three main elements:

o the RAN, which is deployed to provide cellular ser-
vice to the users, and includes the 3GPP NR CUs,
DUs and Radio Units (RUs). The RAN handles the
data plane of the users, i.e., the user traffic is for-
warded from or to the core network and the public
Internet from the CUs [30].

e the RAN controllers, which control and coordinate
the RAN elements, as proposed in [25]. Each RAN
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Fig. 2: Proposed controller architecture for RAN control and machine learning at the edge.

controller is associated to a cluster of gNBs, and is
deployed in MEC, to minimize the communication
latency with the RAN. Some of the control-plane
processes are assigned to the RAN controllers, which
can benefit from the cluster-based overview. For
example, as proposed in [25], the RAN controllers
can manage UE-level connectivity, by coordinating
handover decisions and performing load balancing,
or can enforce Quality of Service (QoS) policies.
Moreover, the RAN controllers can be deployed in
the same edge datacenters that host the CU for a cer-
tain area, to minimize the CU-controller latency and
to guarantee interconnectivity across the different
controller domains, following the trends for cloud-
and edge-based deployment of 5G networks [44].

e the Cloud Network Controller, that orchestrates the
RAN controllers (e.g., to establish the RAN con-
trollers/gNBs association) and provides application-
layer services, and can be deployed in a remote cloud
facility.

A multi-layer controller architecture combines the ben-
efits of the scalability of a distributed approach with the
performance gain given by a partially-centralized view of
the network. Each layer implements control functionalities
with different latency constraints, allowing the network to
scale: the DUs schedule over-the-air transmissions on a sub-
ms basis, the RAN controllers may decide upon users’ asso-
ciation on a time scale of tens of milliseconds, and, finally,
the Cloud Network Controller can operate on multiple-
second (or even longer) intervals, for example to update
the association between gNBs and RAN controllers. At each
additional layer, it is possible to support a larger number
of devices (e.g., a DU controls tens of UEs at most, while
the RAN controller can be designed to handle hundreds
of UEs), and, given the more relaxed constraints on the
decision time scale, it is possible to implement more refined
and complex decision policies, based on machine learning
algorithms enabled by the larger amount of data given by
the clustered and/or centralized views.

3.1.2 RAN Controllers, Machine Learning and Data Col-
lection

While the RAN controllers are generally deployed to per-
form the aforementioned control plane task, we propose to
leverage them to implement machine learning techniques at
the edge of the network. A network operator can indeed
use the proposed overlay to manage the data collection
from the distributed gNBs and enforce policies based on the
learning applied to this data. Notice that, for some metrics,
the controllers would not need explicit signaling for the
data collection: for example, if a controller manages the UEs
sessions, as proposed in [25], then it is already aware of the
number of users connected to each gNB it controls.

The position of the RAN controllers in the overlay
network strikes a balance between the breadth of their
point of view, the amount of data they need to collect
and process, and the number of the user sessions they can
handle. In general, as the number of base stations associated
to a controller grows (and, consequently, the number of
controllers decreases, up to a single controller), it is pos-
sible to perform more refined optimizations, given that the
knowledge of the state of the network is more complete.
However, there is a limit to how much the data collection
can be centralized. Indeed, if the operator is interested in
running real-time data-driven algorithms, for example to
decide upon the association of UEs and gNBs, then we
argue that a completely centralized architecture does not
scale because of (i) the amount of data (for example, related
to channel measurements) that needs to be collected and
(ii) the collection and processing delay. In this regards,
we observed that it is not possible to perform a real-time
collection and processing of a subset of the monitoring data
streamed from the Palo Alto/Mountain View network (178
base stations) in a single virtual machine with 8 x86 CPUs
at 2.1 GHz. Moreover, controllers distributed in multiple
datacenters at the network edge minimize the delay experi-
enced by control messages exchanged with the gNBs. On the
other hand, a completely distributed approach (as in a 4G
LTE network) cannot exploit any centralized view and/or
enforce coordinated policies, as previously mentioned, and,



as we will show in Sec. [5| with real network data, does not
perform as well as the controller-based architecture for the
accurate prediction of the number of users in the network.

3.1.3 Technical Challenges

The usage of RAN controllers, however, introduces new
technical challenges. First, new standard interfaces and
signaling between the gNBs and the controllers will need
to be deﬁned For example, in a completely distributed
architecture (e.g., LTE), for a handover there is a message
exchange between neighboring base stations, and, then, the
core network [39], while, if controllers are used, the gNBs
can interface directly with their controller to exploit its
global view. Once the actual specifications for RAN con-
trollers will be completed, it will be possible to also evaluate
the signaling difference among these different architectures.

Another interesting problem is related to the association
of controllers and gNBs. This issue has already been studied
for SDN controllers in wired networks [45], but wireless
cellular networks have characteristics that introduce new
dimensions to this problem, mainly related to the higher
level of mobility of the endpoints of such networks, ie.,
the UESEI If the RAN controllers are used to manage user
sessions and mobility events, then they will need to main-
tain a consistent state for each user associated to the gNBs
they control. Given that cellular users often move through
the area covered by the cellular networks, it becomes of
paramount importance to minimize the number of times a
user performs a handover between two base stations con-
trolled by different controllers. In this case, indeed, the two
controllers would need to synchronize and share the user’s
state, and this would increase the control plane latency, as
also observed in case of inter-controller communications
in wired SDN networks [47]. Therefore, in the following
section, we will describe a practical data-driven method
to perform the association between gNBs and controllers,
testing the proposed algorithm on the San Francisco and the
Mountain View /Palo Alto datasets.

4 BIG-DATA DRIVEN RAN CONTROLLER ASSOCI-
ATION

In the remainder of this paper we introduce our second
major contribution, i.e., we describe two applications related
to network control and optimization that show the advan-
tages of using the proposed controller-based architecture
described in Fig.[2| In particular, in this Section, we illustrate
a data-driven approach for the control-plane association of
RAN controllers and gNBs. The algorithm we designed aims
at minimizing the number of interactions between gNBs
belonging to different RAN controllers (since any controller
that is added in the control loop severely impacts the control
plane latency), and enables a dynamic allocation of the base
stations to the different controllers. Moreover, it is based

1. This effort is being pursued, among others, by the O-RAN Al-
liance [25]

2. Notice that in this paper we consider a control-plane gNB-
controller association, i.e., the controller is not involved in the process-
ing of data-plane packets and low-level scheduling, which is what is
instead usually considered in the design of controllers for interference
coordination problems [46].

Algorithm 1 Network-data-driven RAN Controller Association Algo-
rithm

1: for every time step T¢
2:  distributed data collection step (performed in each RAN con-

troller):
3: for every RAN controller p € {0, ..., N. — 1} with associated
gNBs set B),
4: for every gNB i € BB,
5: compute the number of handovers N, ih‘J?Vj eB
6: end for 7
7: report the statistics on the number of handovers to the
Cloud Network Controller
8: end for
9:  clustering and association step (performed in the Cloud Net-
work Controller):
10: compute the transition probability matrix H based on the
handovers between every pair of gNBs
11: define weighted graph G = (V, E) with weight W(G); ; =
H;;+ Hj
12: perform spectral clustering with constrained K means on G to
identify N, clusters
13: apply the new association policy for the next time step
14: end for

Algorithm 2 Graph spectral clustering algorithm with constrained K
means

1: input: graph G = (V, E) with weights W (G)

2: compute the degree matrix D; ; = Z;V:gl W(G)s,;

3: compute the normalized Laplacian of G as L = I — D™1W(G)

4: create the matrix U € RNg*Ne with the eigenvectors of L associ-

ated to the N, smallest eigenvalues as columns
5: apply constrained K means on the rows of U to get N, clusters

on the real data that the network itself can collect, thus it
represents another example of how it is possible to exploit
real-time analytics to self-optimize the performance.

4.1 Proposed Algorithm

Our method is based on a semi-supervised constrained
clustering on a graph weighted according to the transi-
tion probabilities among base stations. The algorithm is
summarized with the pseudocode in Alg. [1} The input is
represented by the timeseries of X2 and S1 handovers for all
the N, gNBs in the set 3, each tagged with the timestamp of
the event and the pair < source, destination > gNBs, and
by the time step T, to be considered for the computation
of the transition probability matrices (e.g., fifteen minutes
or a day). Moreover, the network operator can tune the
number of RAN controllers V. according to the availability
of computational resources and the number of base stations
and related UEs that each controller can support.

Every T, each RAN controller p € {0,..., N.—1}, which
has collected the timeseries of events for its gNB ¢ in the set
of controlled gNBs B,,, will process this data to extract the
number of handovers Ni}j;?, Vi € Bp,Vj € B, and will report
this information to the Cloud Network Controller described
in Sec. The Cloud Network Controller then aggregates
the statistics from each RAN controller and builds a com-
plete transition probability matrix H, where entry (4, j) is

_NE i N NPe £ 0
Hij={ T4 NS J=tn T 1)
0 otherwise.

Then, consider the fully-connected undirected graph G =
(V,E), where V = B is the set of N, vertices, and E is the
set of edges that represent possible transitions among the
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Fig. 3: Network-data- and position-based clusters in San Francisco, using data from 2017/02/01 with T, = 24 hours and N, = 22, and Mountain
View /Palo Alto, with data from 2018/06/28 with T, = 24 hours and N. = 10. The colored dots represent the base stations, with different colors
associated to different clusters. The lines connecting the dots represent the weights in the graph G of the edge between the two gNBs, with a
thicker line representing a larger weight, i.e., sum of transition probabilities between the gNBs. Finally, lines with the same color as the dots
represent edges between vertices in the same cluster, and vice versa for black lines.

gNBs. Each edge e; ; is weighted by the sum of the tran-
sition probabilities between gNBs ¢ and j, ie, W(G); ; =
H, ; + H; ;, with W(QG) the weight matrix, to account for all
the possible transitions (and thus interactions, and, possibly,
message exchanges and state synchronizations) between the
two gNBs. In order to identify the set of gNB-to-controllers
associations that minimize the inter-controller communica-
tions, the proposed algorithm clusters the undirected graph
G to identify the groups of gNBs in which the intra-cluster
interactions (i.e., handovers and transfer of user sessions)
are more frequent than inter-cluster ones.

We tested and considered different approaches for the
clustering [48], [49], which, in this case, has to satisfy two
constraints: (i) the number of clusters should be an input of
the algorithm, to match the number of available controllerﬂ
and (ii) the size of the clusters (i.e., number of gNBs per
cluster) should be balanced, to avoid overloading certain

3. Notice that in this case finding the optimal solution to the clus-
tering problem is NP-hard, thus identifying the optimal solution is not
feasible in large scale networks [50].

controllers while under-utilizing others. The first constraint
rules out popular unsupervised graph clustering techniques
based on community detection algorithms, which are also
generally applied to directed graphs [51]]. Therefore, we
propose to use a variant of standard spectral clustering
techniques for graphs [52], which relies on a constrained
version of K-means to balance the size of the clusters. Alg. ]
lists the main steps of the procedure.

Consider the degree matrix D ¢ RNa*xNs je. a diagonal
matrix with an entry D;; = Z;V:“’l W(G);,; for each gNB
i €1,..., Ny Then, it is possible to compute the normalized
graph Laplacian as L = [ — D7'W(G) and extract the
eigenvectors associated to the IV. smallest eigenvalues, i.e.,
as many eigenvalues as the number of clusters to identify.
The result is a matrix U € RNo*Ne with the eigenvectors
as columns. Each row of this matrix, which corresponds to
a specific gNB, can be considered as a point in R"¢, and
can be clustered using K means [52]. Standard K means,
however, does not generate balanced clusters. Therefore, we
replace this last step with a constrained K means algorithm,
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Fig. 4: Ratio R between intra- and inter-cluster handovers as a function
of the number of clusters N, with clustering based on daily updates.

which modifies the standard K means by adding constraints
on the minimum and maximum size of the clusters during
the cluster assignment step. In this way, the cluster assign-
ment problem can be formulated as a linear programming
problem [53]. The final result is a set of IV, clusters, and the
Cloud Network Controller can apply the clustering policy
to assign the gNBs to the respective RAN controllers.

4.2 Evaluation with Real Data

We compare the proposed network-data-based strategy
(whose results are reported in Fig. 3al for the San Francisco
area and Fig.[Bb|for the Mountain View area) with a baseline,
in which the constrained K means is directly applied to
the latitude and longitude of the gNBs (shown in Figs.
and 3d} respectively). Indeed, several approaches have been
proposed in the literature to cluster, for example, remote
radio heads and Base Band Units (BBUs) into BBU pools,
according to different targets [54], [55], [56]. However, none
of these focuses on the minimization of the control plane
latency, but rather on data-plane issues, such as the min-
imization of interference or coordinated multipoint trans-
missions. Therefore, as a baseline, we consider the basic
clustering approach based on the geographical position of
the base stations. This method is static, and can be applied
in networks that do not rely on data-driven approaches for
configuration purposes, for example because the operator
does not collect and/or make use of real-time network
analytics. In the absence of this kind of data, we argue that
geographic clustering is an approach in line with the goal to
minimize inter-controller interactions, given that users are
expected to move among neighboring base stations, which
the geographical clustering will group under the same RAN
controller.

Fig.Ba|reports an example of the clustering applied to the
N, = 472 San Francisco base stations, with N, = 22 clusters
and T. = 24 hours, i.e.,, with one clustering update per
day, using the data collected in the previous day. The size
of the clusters is constrained in {0.8N,/N,,...,1.2N,/N.}.
By comparing Figs. [3al and [3c} it can be seen that network-

based clustering maintains a proximity criterion (i.e., base
stations which are close together are generally clustered
together), but this is not as strict as in the geographical
one, as it strives to match the users’ mobility with the
clusters. Consider for example the base station at the bottom
right of the figures: it serves an area close to U.S. Route
101, and public transportation stations, thus there are a lot
of handovers happening directly from base stations in the
downtown area to that gNB. Consequently, the network-
based approach clusters it with the purple cluster in the city
center, reducing the number of inter-controller handovers
with respect to the position-based strategy, which associates
it to the other base stations at the bottom of the map. In
general, it can be seen that in Fig. [3c| there are more large
black lines connecting the gNBs, meaning that base stations
with a high level of interactions are placed under different
controllers in different clusters. Another example of this can
be seen in the comparison between Figs. Bb| and [3d] for the
transitions along the Caltrain railway line that crosses the
map on the diagonal. In Fig. [3b} most of the lines along the
railway are colored, showing that intra-cluster handovers
happen between the interested base stations, and vice versa

in Fig. Bd]

4.2.1 Reduction of inter-cluster handovers

The effectiveness of the data-driven approach is eventually
highlighted by the reduction in inter-controller handovers.
As mentioned in Sec. 3 intra-controller handovers can be
managed locally, by the controller which is in common to
the source and target base stations. Inter-controller handoffs,
instead, require the coordination and synchronization of the
two controllers, thus increasing the control plane latency
to at least twice that of handovers related to a single con-
troller. The actual overhead on the latency introduced by
inter-controller communications will depend on signaling
specifications that have not been developed yet, and on
the controller implementation and processing capabilities,
as mentioned in Sec.[3} but the need to avoid inter-controller
synchronization is valid in any case. Therefore, we report as
metrics the number of intra- and inter-controller handovers
and their ratio as a function of the number of controllers]
(and thus clusters) N, and the time interval between two
consecutive updates 7.

In Fig.[d we present the ratio R between intra- and inter-
cluster handovers by considering 1. = 24 hours as fixed,
and changing the number of clusters N.. For each value
of N., we run multiple times the clustering algorithms, to
average the behavior of K means and provide confidence
intervals. It can be seen that the gain of the network-
data-based solution over the position-based one is almost
constant, especially as the number of clusters grows, with
an average increase of the ratio R of 45.38% for the San
Francisco case and 42.62% for the Mountain View /Palo Alto
scenario. The behavior in the two scenarios with N, = 2,
however, is different: while in the San Francisco case N, = 2
yields the largest difference for the value of R between
the network-data- and the location-based clustering, in the

4. The number of controllers an operator will need to deploy on a
network will depend on the capacity of the controllers themselves and
the signaling they will need to support.
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Fig. 5: Number of intra- and inter-cluster handovers (and relative ratio R) with different clustering strategies, in different deployments (i.e., San
Francisco, with 472 base stations, and Mountain View /Palo Alto, with 178).

Mountain View context it corresponds to the minimum
difference. This is due to the difference in the geography of
the two areas, as shown in Fig. B} the San Francisco dataset
covers a much larger number of base stations than the other
one, and the mobility patterns of the users are less regular,
thus the clustering based on the network data can find a
better solution than that based on location.

Moreover, in Figs. [pa] and we report the number
of handovers for the two configurations shown in Fig.
with T, = 24 hours, and for a more dynamic solution
based on more frequent updates (i.e,, 7. = 15 minutes).
Moreover, Figs. pd and also plot the ratio between the
intra- and inter-cluster handovers. Notice that the number
of handovers reported in Fig. a| refers to the events hap-
pened on February 2nd, while the clustering is based on
the data from the previous day. For the 15-minute update
case, the clustering is updated every 15 minutes to reflect
the statistics from the previous 15 minutes. However, as
Fig. |5a| shows, updating the clusters with a daily period-
icity, using data from the previous day, does not result in
significantly degraded performance with respect to the 15-
minute updates case. Notice also that a cluster update has
some cost in terms of control signaling between the gNBs
and the controllers. Moreover, the daily-based update builds
the graph and the clustering according to a more robust
statistics, i.e., based on the transitions for the whole day. This
is particularly evident if we consider the example in Figs.
and which report the same metrics but for a whole
day in the Mountain View/Palo Alto area and N, = 10
clusters. As it can be seen, at night, when the number of
handovers is low, the clustering with update step T,, = 15
minutes exhibits a very high variation in the ratio between
intra- and inter-cluster handovers, and in some cases has a
performance which is similar to that of the geographic case,
while the curve for the daily-based update shows a more
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Fig. 6: Propagation delay between the location of a RU (or gNB,
if not split) and a possible datacenter location at the center of the
San Francisco area, and the clusters identified using the data-driven
clustering.

stable behavior and better performance.

To summarize, we showed that the data-driven cluster-
ing based on the proposed architecture (i) adapts to the
mobility of users, in different scenarios, thus reducing the
inter-controller interactions and, consequently, the control
plane latency, and (ii) can be updated on a daily basis
without significant performance loss with respect to a more
dynamic solution.

Notice that the control plane latency is not significantly
impacted by the higher geographical displacement that the
data-driven clustering algorithm introduces (as shown in
Fig. [3] some locations of the RU of a gNB may be spaced
by several kilometers). Indeed, the communication delay
between the CUs and the controller is minimized by co-
locating the CUs and controllers in the same datacenter
at the network edge, as mentioned in Sec. Moreover,
even in the case in which the gNBs were deployed (for
example, in the San Francisco area) with RU, DU and CU
in the same location, the aforementioned delay would be
much smaller than the timescale at which the controllers
operate. In Fig. [f| we consider the propagation delay on



fiber optic cables from the position of each node to that of
a possible datacenter in the center of the San Francisco area
(e.g., which could represent the location at which fibers to
the deployed units would be terminated). As can be seen,
for this specific region, the values are all smaller than 53 us,
with an average of 25 us, and are thus much smaller than
the timescale at which the RAN controllers operate (i.e., tens
of milliseconds).

5 PREDICTING NETWORK KPIs UsING CON-
TROLLERS

In this section, we present an additional application of the
ML architecture presented in Sec. |3} in which the point
of view of the RAN controllers is exploited to predict
the number of users attached to each base station of the
cellular network. This metric can be used to forecast useful
KPIs such as the user throughput, the outage duration and
the overall network load. In the following paragraphs, we
will first discuss the quality of the prediction with several
machine learning algorithms by considering a single cluster
among those presented in Fig. [3a| for San Francisco. The
main comparison will be between the accuracy of the pre-
diction with (i) methods that only use local information,
i.e., in which each base station is a separate entity (as in
4G) and has available only its own data for the training
of the machine learning algorithm, and (ii) techniques that
exploit the architecture described in Sec. |3| to collect and
process data, and thus for which it is possible to perform
predictions based on the joint history of multiple base
stations associated to each controller. Then, we will extend
the analysis to all the clusters, using the most promising
approaches identified for the test-cluster, showing how a
cluster-based approach reduces the prediction error with
respect to a local-based approach. Finally, we will describe
some prediction-based applications for network automation
and new user services.

5.1 Data Preprocessing

The performance analysis presented in this Section is based
on the San Francisco dataset. We sampled the number of
users in each base station with a time step T, = 5 minutes,
and divided the dataset into a training set (which will be
used for k-fold cross validation) and a test set. The training
set is based on the interval from January 31st to February
20th, while the test set goes from February 21st to February
26th. In the following, the notation N/ indicates the number
of elements of type o (e.g.,, « = u for users, @ = bs for
base stations) associated to the entity 3. For example, N?
indicates the number of users in base stations b, while N,
the number of base stations in set d.

Let B be the set of base stations in San Francisco. For
base station b € B, consider a multi-step ahead prediction
of the number of users N’(¢t + L) at times t + 1,...,t + L
(where L > 1 is the look-ahead step of the prediction), given
the real-time data before time ¢. The features we identified
are (i) the past W samples of the number of users (where
W is the window of the history used for the prediction), i.e.,
NY(t+7),7 € [-W + 1,0]; (ii) an integer h(t) € {0,...,4}
that represents the hour of the day (from 3 PM. to 8 PM.);

and (iii) a boolean w(t) that indicates whether the selected
day is a weekday. We also tested the cell utilization and the
number of handovers as possible features, however they
showed small correlation with the prediction target. For
each day, given the discontinuities of the collected data,
we discard the first W samples, thus the actual size of the
training (My,) and test (M) sets depends on the value of
W.

For the local-based prediction, in which each base station
predicts the future number of users based on the knowledge
of its own data, the training and test set are composed by
the feature matrix X € RMi3W i ¢ {tr te}, in which each
row is a vector

NSt =W + 1), h(t =W + 1), w(t —W +1)...,
N(t),h(t),w(®)], ()

and by the target vector y € RMi1 i € {tr te}. For the
cluster-based method, instead, the goal is to predict the
vector of the numbers of users for all the base stations in the
cluster. Therefore, for the set Cy = {kq, . ..,jqa} C B with the
N base stations of cluster d, each row of the target matrix
Y € RMi:Nis i € {tr,te} is composed by a vector

[N¥a(t + L),...,NJ4(t + L)) 3)

Each row of the feature matrix X € RMo(WNVi+2W 4 ¢
{tr,te} is instead a vector

[NFe(t —W +1),...,
Nid(t =W +1),h(t =W +1),w(t —W +1),...,
Nt (t), -, NRH(E), h(), ()] (4)

The values of the numbers of users in the training and test
sets are transformed with the function log(1 + x) and scaled
so that each feature assumes values between 0 and 1. The
scaling is fitted on the training set, and then applied also
to the test set. For the evaluation of the performance of
the different methods and prediction algorithms, we use the
Root Mean Squared Error (RMSE), defined for a single base
station b as

1 M.
% =\ AL ;(yb(t) —Un(t))?, ®)

with g, the time series of the real values for the number of
users for base station b, and ¥, the predicted one.

5.2 Algorithm Comparison

We tested several machine learning algorithms tailored for
prediction, i.e., the Bayesian Ridge Regressor (BRR) for the
local-based prediction, and the Gaussian Process Regressor
(GPR) and Random Forest Regressor (RFR) for both the
local- and the cluster-based predictions, using the imple-
mentations from the popular open-source library scikit-
learn [62]E] For each of these methods, we considered dif-
ferent values of W € {1,...,10} and predicted at different
future steps L € {1,...,9}, ie, over a time horizon of

5. An approach based on neural networks was also considered, but,
due to the reduced size of the training set, underperformed with respect
to the other regression methods.



Regression method

Hyperparameters

Bayesian Ridge Regressor [57], [58]
Random Forest Regressor [59], [60]
Gaussian Process Regressor [61]

a € {107%,1073,1, 10,100}, A € {10~6,1073, 1, 10, 100}
Number of trees N,y € {1000, 5000, 10000}
a € {1076,1074,1072,0.1}, o € {0.001,0.01}

TABLE 3: Values of the hyperparameters of the different regressors for the k-fold cross-validation.

45 minutes. 3-fold cross-validation was performed for each
method and value of L and W to identify the best hyper-
parameters, among those summarized in Table 3| The split
in each fold is done using the TimeSeriesSplit of scikit-
learn, i.e., without shuffling, and with increasing indices in
each split, to maintain the temporal relation among con-
secutive samples. We also considered an Auto-Regressive
Moving Average (ARMA) predictor for the local-based case,
using the implementation in [63].

The BRR (which is used for urban traffic prediction
in [58]) combines the Bayesian probabilistic approach and
the ridge L, regularization [57]. The Bayesian framework
makes it possible to adapt to the data, and only needs the
tuning of the parameters o and A\ of the Gamma priors.
However, it does not generalize to multi-output prediction,
thus we applied this method only to the local-based sce-
nario.

The RFR (used in [60] for population prediction) is a
classic ensemble method that trains NN, regression trees
from bootstrap samples of the training set and averages
their output for the prediction [59]. The only hyperparame-
ters to be tuned are (i) the number of trees N, ¢, for which
a higher value implies better generalization properties, but
also longer training time; and (ii) the number of random
features to sample when splitting the nodes to build addi-
tional tree branches, which is set to be equal to the number
of features for regression problems. It supports prediction
of scalars and vectors, thus we tested it with both the local-
and the cluster-based approaches.

The GPR is a regressor that fits a Gaussian Process to
the observed data [61]. The prior has a zero mean, and the
covariance matrix described by a kernel. In this case, we
chose a kernel in the form

2 d(xi, 2j)*\ "
k($i7$j):ak+xi'xj+<l+w> +6’£¢’£17 (6)
i.e., the sum of a dot product kernel, that can model non-
stationary trends, a rational quadratic kernel with [ = 1 and
a = 1, and a white kernel, that explains the noisy part of
the signal. The GPR can be used for both single-output and
multi-output regressions.

Finally, an ARMA model predicts future values of a
certain sequence. The model is based on two polynomials,
of order p and g. The first is an autoregressive term, which
models the stochastic process as a weighted sum of the
past history (up to p steps in the past) and a random noise
term. The second is a moving average model, which models
the randomness in past samples with ¢ white noise terms,
added to the average of the process. We selected p = 4 and
g = 2. A first-order differentiation was applied to remove
trend from the time series.

Notice that, as we use a real dataset, it is not possible to
estimate the theoretical lower bound of the prediction, as it

is given by the variance of the unknown distribution of the
stochastic process underlying the data we consider.

5.3 Performance analysis for a sample cluster

For the comparison between the aforementioned regressors,
we consider the cluster d = 0 with N = 22 base stations in
the San Francisco area. We assume that the cluster is stable
throughout the training and testing period. In a real de-
ployment, when the base station association to the available
controllers changes, a re-training will be needed, together
with additional signaling between the controllers, to share
the data related to the base stations whose association was
updated.

In order to compare the local- and the cluster-based
methods, we report in Fig. [/] the average RMSE & =
Eicc,[0:] of the base stations in the set Cy associated to
cluster 0. As expected, the RMSE increases with the look-
ahead step L. Among the local-based methods, the BRR
gives the best results for all the values of the look-ahead
step L, with a gain of up to 18% and 55% with respect to
the GPR and RFR for L. = 9. The GPR, instead, is the best
among the cluster-based techniques, with an improvement
up to 50% from the RER (for L = 1). When comparing the
local- and the cluster-based methods, the latter performs
better, especially as the look-ahead step increases, since the
curve of the RMSE for the cluster-based GPR flattens around
0 = 14.8, while that for both the BRR and the local-based
GPR continues to increase. In this case, instead, for small
values of L the performance of local- and cluster-based
methods is similar. Finally, the ARMA model (with local
information) underperforms all the others for small values
of L, and is better than the local-based RFR (with W = 1)
for L > 4.

Table {4 reports the values of the window W used in
Fig. [7b| for the two best performing methods, the BRR and
the GPR. By comparing Figs. in which the window W
is fixed, and where W is selected for each step L to
yield the smallest RMSE &, it can be seen that the difference
is minimal for the best performing methods (i.e., below
5%), while it is more significant for the local-based RFR.
Moreover, the spatial dimension has more impact on the
quality of the prediction than the temporal one. Indeed,
while by changing W the RMSE for the GPR and BRR
improves by up to 5%, when introducing the multi-output
prediction with the GPR the RMSE decreases by up to
50%. Differently from prior works in which the single user

Look-aheadstepL 1 2 3 4 5 6 7 8 9

BRR 6 6 4 4 3 3 3 2 2
cluster-GPR 3 2 2 2 2 1 6 5 4

TABLE 4: Values of W for the plot in Fig. for the BRR and the cluster-
based GPR
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Fig. 7: RMSE ¢ for different local- and cluster-based prediction methods, as a function of the look-ahead step L, and for different windows W.
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Fig. 8: Example of predicted vs true time series, for L = 3 (i.e., 15
minutes ahead), W = 3 and the cluster-based GPR on two base stations
for cluster 0.

mobility is predicted [19], we are indeed considering the
number of users at a cell level, and, in this case, the possible
transitions between neighboring cells are limited by the
geography of the scenario, and by the available means of
transport. Therefore, there exists a spatial correlation be-
tween the number of users in the neighboring base stations
and the number of users in the considered base station at
some time in the future, given that the mobility flows are
constrained by the aforementioned factors.

Nonetheless, there exist still some limitations to the
accuracy of the prediction of the number of users. Fig.
reports an example of the predicted (for L = 3, ie., 15
minutes) and the true time series for two different base
stations, with a high and low number of users. As it can
be seen, the true time series have some daily patterns, but
are also quite noisy. As a consequence, the predicted time
series manage to track the daily pattern, but cannot predict
the exact value of the number of users. This is more evident
when the number of UEs is low, as in Fig. which also
exhibits smaller daily variations.

Finally, Fig. P]reports additional results on the prediction
performance of the cluster-based GPR. In Fig. 9al we com-
pare the RMSE 6 obtained on the testing dataset when using
partial training datasets of different sizes, i.e., with 25, 50, 75
hours, or the complete training dataset (i.e., 100 hours). The
RMSE monotonically decreases as the size of the training
dataset increases, showing that there is room for improve-
ment with a richer past history. Moreover, the difference is

I 1 25 hours | B 50 hours
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(a) RMSE & of the cluster-based GPR on cluster 0 when varying the amount of
data used for training, at different future time steps L.
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(b) Residual error N, (t) — N.(t), where N, (t) is the true value of the number
of users at time t, and N, (t) is the predicted one, as a function of the true value
of the number of users N, (¢t — 1) attimet — 1. L = 2.

Fig. 9: Additional results on the prediction accuracy for cluster 0 with
the cluster-based GPR, W = 2.

more marked when considering a higher prediction lag L,
i.e.,, the full training dataset yields an RMSE which is 25%
smaller than the 25-hours dataset for L = 1 and 40% for
L=5.

Fig. [Ob] shows an example of residual analysis, which
can help understand the limits of the cluster-based GPR on
the available San Francisco dataset. The y-axis reports the
residual error N, (t) — Ny (t), with N, (t) and N, () the true
and predicted number of users at time ¢, and the x-axis one
of the features used in the prediction, i.e., the true number
of users N, (t — 1) at the previous time step ¢ — 1. Notice that
the x-axis is quantized into 100 bins in order to improve the
visualization of the residuals. It can be seen that the largest
errors happen (infrequently) on the left part of the plot, i.e.,
when there is a sudden increase in the number of users in
the base station, transitioning from a small N, (¢t — 1) to a
large N, (t).

5.4 Performance analysis for the other clusters

Given the promising results of the cluster-based approach
on the first cluster, we selected the best performing local-
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Fig. 10: Cluster-based GPR vs local-based BRR for the other clusters.

and cluster-based methods, i.e., respectively, the BRR and
the GPR, and performed the prediction on all the clusters re-
ported in Fig.[Ba] The results are reported in Fig. [I0]for each
single cluster. The cluster-based method always outper-
forms the local-based one, and, in most cases, also exhibits
a smaller RMSE for small values of the look-ahead step L,
contrary to what happens for cluster 0. The reduction in the
average RMSE over all the clusters Ejysters[0] is 18.3% for
L =1 (from Egysters[0] = 7.24 to Egpusters[0] = 6.11) and
increases up to 53% for L = 9 (from E¢jysters[0] = 17.42 to
]Eclusters[a—] = 1134)

5.5 Possible Applications

The results presented in Figs. [/and[I0]show that the cluster-
based method is more capable than local-based ones to
capture the user dynamics in the cellular network. The
prediction of the number of users in a base station can
be used to optimize the performance of the network in
a number of different ways: for example, it can enable
predictive load-balancing, bearer pre-configuration, scaling
of RAN resources, sleeping periods for base stations, and so
on. We believe that the increase in the prediction accuracy
that the cluster-based method yields can be beneficial to
practically enable these anticipatory and prediction-based
optimizations.

Moreover, network operators can exploit the prediction
to offer novel services to the end users. For example, con-
sider a vehicle that has to travel from point A to point B in
an area covered by cellular service. While on the journey, the
passengers may want to participate in a conference call, or,
if not driving, surf the web or stream multimedia content.
Therefore, given the choice of multiple routes with similar
Estimated Times of Arrival (ETAs), the passengers may
prefer to choose an itinerary with a slightly higher ETA but
with a better network performance, because, for example,
it crosses an area with a better coverage, or with fewer
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Fig. 11: Map of the routes. The dots represent the visited base stations.
Notice that, for route 2 (the red one), several base stations are shared
with either the blue or the green routes.

users. This becomes particularly relevant in view of the
envisioned transition to an autonomous driving future, in
which active driving might not be required and working or
getting entertained in the car will become a common trend.
In order to address this need, cellular network operators
can exploit the architecture described in Sec. 3| and the
prediction of the number of active users in the cells to offer
anticipatory services to the end users and inform them on
which is the best route for their journey.

Fig. [L1| shows an example of three different routes in
the San Francisco area, together with different metrics in
Table |5, which are computed from the predicted number of



Feb. 23rd, 19:00 \

Feb. 24th, 19:00 | Feb. 24th, 19:20

Route R1 R2 R3 R4 | RI R2 R3 R4 | RI R2 R3 R4
S [Mbit/s] 1.93 2.51 2.36 2.74 172 200 228 2.89 2.05 2.49 1.98 2.86
Do max [s] | 13347 1578 1725 1712 | 1524 157 1488  169.1 | 1521 123.7 1725 116.7

TABLE 5: Average throughput $ and maximum outage duration Do max on the four itineraries from Fig. for different departure times in
February 2017. For the three routes with a similar duration, the colored cells represent the best route for the metric of interest.

users, in different dates. It can be seen that the fastest route
(i.e., route 1, in blue), is not always the one offering the best
service in the three departure times considered. For the first
three routes, which have a similar travel time, the best route
changes at different departure times: for the throughput, on
Feb. 23rd, 19:00, route 2 (red) is better than the others, while
in the next day at the same time the best itinerary is route 3
(green). When considering also the longest route, which still
leads from the origin to the destination, but takes 50% more
time than the shortest, it can be seen that it always offers the
highest average throughput, but, in some cases, is one of the
worst in terms of maximum outage duration.

This example shows that, according to the users’ needs,
it is possible to identify and select different routes that have
different performance in terms of throughput and outage.
Moreover, the routes are ranked differently according to
various departure times. Therefore, simply applying the
analytics given by the average statistics from the previous
days may not yield reliable results in terms of routes rank-
ing. This makes the case for adopting the medium-term
prediction techniques described in this Section to forecast
the expected value of the metrics in the time interval in
which the user will travel, based on the actual network
conditions for the same day.

6 CONCLUSIONS

Machine learning, software-defined networks and edge
cloud will be key components of the next generation of
cellular networks. In this paper we investigated how these
three elements can be jointly used in the system design
for 5G networks, providing insights and results based on a
dataset collected from hundreds of base stations of a major
U.S. cellular network in two different cities for more than a
month.

After reviewing the relevant state of the art, we inves-
tigated how it is possible to practically introduce machine
learning and big-data-based policies in 5G cellular net-
works. We proposed an overlay architecture on top of 3GPP
NR, in which multiple layers of controllers with different
functionalities are used to collect the data from the RAN,
process it and use it to infer intelligent policies that can be
applied to the cellular network.

Next, we discussed a first application of the proposed ar-
chitecture, i.e., a data-driven association algorithm between
the gNBs and the RAN controllers themselves. We described
a clustering solution that limits the interactions among
different controllers to minimize the need for inter-controller
synchronization and reduce the control plane latency, and
evaluated the performance of the proposed approach using
data from a real network.

Then, we outlined a second possible application enabled
by our architecture, providing an extensive set of results

related to the prediction accuracy of the number of users
in base stations, using one month of data collected from
the San Francisco base stations. In particular, we showed
how the usage of the cluster-based architecture proposed
in this paper can reduce the prediction error. With respect
to a solution in which each base station tries to perform
the regression based solely on its own data, as realized
by a completely distributed architecture (e.g., in LTE), the
controller-based design makes it possible to aggregate data
from multiple neighboring base stations, and to predict a
vector with the number of users in the nodes associated to
the controller. This captures the spatial correlation given by
the mobility of users, and, especially when increasing the
temporal horizon of the prediction, reduces the RMSE by up
to 53%. Finally, we also described some prediction-enabled
use cases, either to control the network itself, or to offer
innovative predictive services to network users, for example
by recommending different driving itineraries to improve
the user experience in the network. We illustrated a real
example in the San Francisco area, showing how the fastest
route does not necessarily yield the best throughput, or the
minimum outage, and that the best itinerary according to
these metrics (which we derive from the number of users
in each base station) may differ according to the departure
time, so that a prediction-based approach is useful.

We believe that this paper addresses for the first time
several issues related to the practical deployment of ma-
chine learning techniques in 5G cellular networks, provid-
ing results and conclusions based on a real-network dataset.
As future work, we will test different prediction algorithms
(e.g., neural networks) to understand if it is possible to
improve even more the prediction accuracy, and will extend
the regression to other relevant metrics in the network (e.g.,
the number of handovers, the utilization), to verify the limits
of what can be actually predicted in a cellular network.
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