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Abstract—Recent years have witnessed the fast growth in telecommu-
nication (Telco) techniques from 2G to upcoming 5G. Precise outdoor
localization is important for Telco operators to manage, operate and
optimize Telco networks. Differing from GPS, Telco localization is a
technique employed by Telco operators to localize outdoor mobile de-
vices by using measurement report (MR) data. When given MR samples
containing noisy signals (e.g., caused by Telco signal interference and
attenuation), Telco localization often suffers from high errors. To this
end, the main focus of this paper is how to improve Telco localization
accuracy via the algorithms to detect and repair outlier positions with
high errors. Specifically, we propose a context-aware Telco localization
technique, namely RLoc, which consists of three main components: a
machine-learning-based localization algorithm, a detection algorithm to
find flawed samples, and a repair algorithm to replace outlier localization
results by better ones (ideally ground truth positions). Unlike most exist-
ing works to detect and repair every flawed MR sample independently,
we instead take into account spatio-temporal locality of MR locations
and exploit trajectory context to detect and repair flawed positions. Our
experiments on the real MR data sets from 2G GSM and 4G LTE Telco
networks verify that our work RLoc can greatly improve Telco location
accuracy. For example, RLoc on a large 4G MR data set can achieve
32.2 meters of median errors, around 17.4% better than state-of-the-art.

1 INTRODUCTION

Outdoor localization systems have gained focus recently due to the
remarkable proliferation of telecommunication (Telco) networks
(from 2G to upcoming 5G networks) and sensor-rich smart mo-
bile devices. These systems span different application domains,
such as navigation systems, location-based advertisements, social
networks and resource allocation in wireless networks [25]. In
particular, Telco operators have strong interest in localization
technology due to their needs for automated network management,
operation and optimization. Specifically, location information of
mobile devices is important for Telco operators to 1) identify
location hotspots for capacity planning, 2) identify gaps in radio
frequency coverage, 3) troubleshoot network anomalies, and 4)
locate users in emergency situations (E911) [29].

Differing from GPS, Telco localization is a technique em-
ployed by Telco operators to localize outdoor mobile devices by
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using measurement report (MR) data. MR data mainly contain
the connection information, such as signal strength, between
mobile devices and nearby base stations. Telco operators exploit a
backend localization algorithm on MR data to infer the locations
of mobile devices. Due to the rich commercial opportunities of
the inferred locations, Telco localization has recently attracted
intensive research interests in both academia [3], [40], [22] and
Telco industries [29], [34], [45], [41].

Unfortunately, the design of an accurate Telco localization
algorithm is challenging. For example, high buildings in urban
cities often cause Telco signal interference and attenuation. Mobile
devices located in those areas with high buildings often generate
noisy MR samples containing unstable signal strength. When
given such MR samples, Telco localization cannot achieve high ac-
curacy. Though the recently popular data-driven localization [22],
[45], [8] leverages those MR samples tagged by GPS coordinates
to train a machine-learning-based localization model, the localiza-
tion accuracy is around 80 meters in terms of median errors [45],
leading to little chance of achieving GPS-like performance [8].

In this paper, we propose a context-aware Telco localization
technique, namely RLoc, in order to achieve high localization
accuracy. Our work is motivated by the following observation.
For those MR samples containing noisy signals, their predicted
positions are typically with high errors and significantly degrade
overall localization accuracy. For simplicity, the samples leading
to high errors are called flawed samples, and corresponding
predicted locations with high errors are called flawed locations.
To this end, the main focus of this paper is how to improve Telco
localization accuracy via the algorithm to detect flawed samples
and repair flawed positions. That is, we would like to first detect
flawed MR samples. If the associated flawed positions can be
repaired by highly precise ones (ideally ground truth positions),
we then have chance to achieve much lower localization errors.
Nevertheless, most existing works detect each individual flawed
sample and then repair the corresponding flawed position [14],
[27], [43], [26] and do not take into account contextual knowledge
of neighbouring MR positions. Unlike these works, we consider
that a sequence of MR positions exhibits spatio-temporal locality
and contributes to a trajectory of positions. For example, when
a mobile device is moving around high buildings and suffers
from Telco signal interference, we assume that a sequence of
generated MR samples is all flawed. By exploiting the spatio-
temporal context in the trajectory of MR positions, we design the
sequence-based detect and repair approach for much lower errors.
As a summary, we make the following contributions.
• Confidence-based detection algorithm: Based on the physical

distance between predicted position and real ones, we define
a confidence level for an MR sample to determine whether or
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not the sample is flawed. Beyond that, we are interested in
the confidence levels of a sequence of MR samples. Thus, we
propose a dual-stage adaptive Hidden Markov Model, called
DA-HMM, to predict a corresponding sequence of confidence
levels. By introducing the adaptive state transition probability
and adaptive mission probability, DA-HMM can process
real world MR sequences (which exhibit uneven timestamp
intervals among neighbouring MR samples), and thus lead to
better performance than traditional HMM models.

• Joint probability-based repair algorithm: Still when given a
sequence of flawed MR samples, we are interested in not
only the goodness of a certain candidate position to repair an
individual flawed position, but also the transition possibility
from the previous position to the next one. Thus, we define
the joint probability of an entire path to connect candidate
positions. Among all possible paths of candidate positions,
we design a dynamic planning algorithm to select the best
one to repair the entire sequence of flawed positions.

• Extensive Performance Validation: Our experiments on the
real MR data sets from 2G GSM and 4G LTE Telco networks
verify that our work RLoc greatly improves Telco location
accuracy. For example, RLoc on a large 4G MR data set can
achieve 32.2 meters of median error. Such numbers indicate
that RLoc achieves comparable accuracy as GPS.

The rest of this paper is organized as follows. Section 2 first
reviews the background and related work. Section 3 then formu-
lates the problem definition and highlights the solution. Next,
Sections 4 and 5 describe the detection and repair algorithms,
respectively. After that, Section 6 evaluates our work. Section 7
finally concludes the paper. Table 1 summarizes the mainly used
terms/symbols and associated meanings.

TABLE 1
Used Terms and Associated Meanings

Term/Symbol Meaning
MR Measurement Report
RSSI Radio Signal Strength Index
Telco Telecommunication
HMM Hidden Markov Model
DA-HMM A Dual-stage Adaptive Hidden Markov Model
r MR sample
Lp(r) Predicted location of MR sample r
Lt(r) Ground truth location of MR sample r
R = {r1, ..., r|S|} a sequence of |R| MR samples
L Telco localization model
C Confidence model
D Original Training dataset with D = DL ∪ DC
DL Training subset for localization L
DC Training subset for confidence model C
D Testing dataset with D = D− ∪D+

D− Flawed Testing datasets
D+ Non-Flawed Testing datasets
A = {ai,j} State transition probability in HMM
B = {bj(k)} Emission probability in HMM
a∆ Adaptive state transition prob. by time interval ∆
bγ Adaptive emission prob. by sample size γ

vk = {vbsk , v
ss
k }

MR observation vk with a pair of base stations vbsk
and Telco signal strength vssk

2 BACKGROUND AND RELATED WORK

2.1 Background of MR Data

A Measurement Report (MR) sample maintains the connection
state of a certain mobile device in a Telco network, including
a unique ID (IMSI: International Mobile Subscriber Identity),

connection time stamp (MRTime), up to 7 nearby base stations
(RNCID and CellID) [35], and corresponding signal measure-
ments such as AsuLevel, SignalLevel and RSSI. Table 2 gives
an example 2G GSM MR sample collected by an Android device.
AsuLevel, i.e., Arbitrary Strength Unit Level, is an integer pro-
portional to the received signal strength measured by the mobile
device. SignalLevel indicates the power ratio (typically logarithm
value) of the output signal of the device and the input signal. RSSI
denotes a radio signal strength indicator. Among the up to 7 base
stations, one of them is selected as the primary serving station to
provide communication and data services for mobile devices.

TABLE 2
An Example of 2G GSM MR Record Collected by an Android Device.

MRTime *** IMSI *** SRNC ID 6188 BestCellID 26050 # BS 7
RNCID 1 6188 CellID 1 26050 AsuLevel 1 18 SignalLevel 1 4 RSSI 1 -77
RNCID 2 6188 CellID 2 27394 AsuLevel 2 16 SignalLevel 2 4 RSSI 2 -81
RNCID 3 6188 CellID 3 27377 AsuLevel 3 15 SignalLevel 3 4 RSSI 3 -83
RNCID 4 6188 CellID 4 27378 AsuLevel 4 15 SignalLevel 4 4 RSSI 4 -83
RNCID 5 6182 CellID 5 41139 AsuLevel 5 16 SignalLevel 5 4 RSSI 5 -89
RNCID 6 6188 CellID 6 27393 AsuLevel 6 9 SignalLevel 6 3 RSSI 6 -95
RNCID 7 6182 CellID 7 26051 AsuLevel 7 9 SignalLevel 7 3 RSSI 7 -95

Generally, we can collect MR samples from two typical data
sources: 1) the data collected from client side and 2) the one
from backend Telco operators. MR samples, no matter generated
by either 4G LTE networks or from 2G GSM networks, follow
the same data format if they are collected by Android APIs.
Nevertheless, the data format of MR samples collected by backend
Telco operators may differ from the one by frontend Android APIs
(The detail refers to [20]). All these MR samples provide useful
data collection sources. Due to the difference between MR data
formats by frontend Android devices and backend Telco operators,
we use those MR feature items, e.g., RSSI, that appear within all
data sets without loss of generality.

2.2 Related Work on Telco Localization
Depending upon location results, we category literature works into
single-point-based and sequence-based localization. The former
works independently process every MR sample to localize an out-
door mobile device, and the latter ones frequently take as input a
sequence of MR samples and then leverage the underlying spatio-
temporal locality of such MR samples to generate a trajectory of
predicted locations.

2.2.1 Single-point-based Telco localization
In terms of single-point-based localization, we classify literature
works into two categories. Firstly, the distance-based approaches
[7] typically use point-to-point absolute distances or angles to
localize mobile devices. Geometric techniques are used to triangu-
late the locations of mobile devices from 3 or more channel mea-
surements of nearby access points, e.g., signal strength and angle-
of-arrival [15], [9]. To localize users with information regarding
only one base station in a cellular network, the previous work [41]
proposed a Bayesian inference-based localization approach by
incorporating additional measurements (such as round-trip-time,
signal to noise and interference ratio: SINR) with the knowledge
of network layout. However, these methods usually suffer from
low localization accuracy due to multi-path propagation, non-line-
of-light propagation and multiple access interference.

Secondly, machine learning approaches [16] either construct a
fingerprinting database or train a learning model such as Random
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Forest (RaF) [45] and deep neural network (DNN) [44], from
training MR samples to the associated positions. As baseline
machine learning approaches, fingerprinting methods [22], [33],
[34], [29] in general have better accuracy than the aforementioned
distance-based approaches, and their average errors are 100 – 200
meters. The classic work CellSense [22] first divides an area
of interest into smaller grid cells and constructs a fingerprint
database to store the mapping function between RSSI features
to the corresponding grid cells. When given a query (i.e., an input
RSSI feature), the online prediction phase searches the fingerprint
database to find the K nearest neighbors (KNN) and returns an
average weighted location of theK neighbors. A better CellSense-
hybrid technique consists of the rough and refinement estimation
phases. In a recent work [29], the AT&T researchers developed an
improved fingerprinting-based outdoor localization system NBL,
by assuming a Gaussian distribution of signal strength within
each divided grid, and it computes the predicted location by
using either Maximum Likelihood Estimation (MLE) or Weighted
Average (WA). Unlike the above fingerprinting methods, the
learning-based localization trains either a multi-classification or
a regression model depending upon the representation of MR
positions, e.g., spatial grid cells or numeric GPS coordinates. For
example, the previous work [45] proposed a regression model
implemented by a two-layer context-aware coarse-to-fine Random
Forests (CCR). In addition, a previous work [8] exploits semi-
supervised and unsupervised machine learning techniques to re-
duce the cost of collecting labelled training samples meanwhile
without compromising the accuracy of localization.

Comparison: we note that distance-based approaches do not
require an offline phase to either construct the fingerprinting
database or to train the machine learning models, and instead
leverage radio signals to localize mobile devices via a Telco
signal propagation model. Machine learning-based approaches
require sufficient training samples during the offline phase, lead-
ing to much higher localization precision than distance-based
approaches. These machine learning approaches are frequently
called data-driven localization.

2.2.2 Sequence-based Telco localization
Unlike single-point-based localization, sequence-based localiza-
tion approaches [34], [12], [13], [5], [39], [4], [11], [21], [32], [46]
first group MR samples by IMSI and then sort the grouped MR
samples by time stamps, generating the sequences of neighbouring
MR samples. By mapping the sequential MR samples into trajecto-
ries of locations, these approaches exploit contextual information,
e.g., spatio-temporal locality, to achieve more accurate localization
than single point-based methods.

To enable the sequence-based localization, various HMM-
based localization algorithms have been developed, such as [34],
[39], [4], [11], [21], [46]. For example, the previous work [39]
explored a two-layer-HMM model: Grid Sequencing maintains the
mapping from a series of GSM fingerprints to a sequence of spatial
grid cells, and Segment Matching the mapping from the sequence
of grid cells to a road map. The previous work CAPS (Cell-ID
Aided Positioning System) [33] uses a cell-ID sequence matching
technique to estimate current position based on the history of cell-
ID and GPS position sequences that match the current cell-ID
sequence. This approach essentially identifies user position on a
route that he or she ever passed in the past. The work [34] utilized
HMM and particle filtering to localize a sequence of MR samples.
A recent work [32] localized mobile devices by using 4G Long-

term evolution (LTE) TA (Timing Advance) and RSRP (Reference
Signal Receiving Power), by incorporating route constraint (e.g.,
road networks) for the motion of vehicles into HMM.

In general, our work belongs to the sequence approach. Nev-
ertheless, there exists some significant difference between the
previous sequence approaches above and ours. The previous works
above such as [34], [32] take the locations of mobile devices
(e.g., the divided grid cells in physical space either with road
constraints or not) as HMM states. One issue of using such states
is that the amount of states is tremendously large and the transition
probability is rather sparse and inaccurate with insufficient MR
samples. In contrast, we take the developed confidence levels (with
the binary values either 0 or 1) as the states. The key point is
that even with scarce training samples used for HMM, we still
have chance to develop a much accurate localization model. In
addition, a recent work [46] requires the third-party historical
position trajectory database as the prior of HMM. In case that
the positions to predict do not follow the similar distribution as
the third-party database, the work [46] may not work well.

Finally, though our work and CAPS [33] share some com-
monality in terms of the sequence-based techniques, there exists
some significant difference between the two works. Firstly, be-
yond cell-IDs, our work further leverages signal measurements
for more precise localization. Secondly, our work leverages the
sequence-based post-processing technique to detect and repair
outlier positions and instead CAPS targets the sequence-based lo-
calization. In some sense, the proposed post-processing technique
can improve the positions generated by CAPS. Finally, in terms
of the sequence-based algorithm, we mainly exploit the improved
HMM-based detection and a dynamic-programming (DP)-based
repair algorithm. Instead, CAPS, among a historical Cell-ID se-
quence database, finds out the sequences that are similar to the
currently observed sequence via a sequence matching algorithm,
e.g., Smith-Waterman.

2.3 Related Work on Outlier Detection and Repair

Outlier detection: To perform data repair, we first need to detect
flawed MR samples or outliers. In general, outlier detection
methods include statistic approaches, proximity-based, clustering-
based and classification-based approaches [17], [16]. The first
three approaches frequently assume that normal objects either 1)
follow a statistical/stochastic model (e.g., Gaussian distribution),
or 2) are close with the nearest neighbors in feature space, or
3) belong to large and dense clusters, respectively; and otherwise
the remaining objects then become outliers. Differing from the
three approaches above, classification-based approaches train a
classification model (with two classes) to distinguish normal
objects from outlier ones.

We detect flawed MR samples differs from the approaches
above. The three approaches above all perform outlier detection
directly on MR samples or associated features. Instead, we do not
detect whether or not a certain MR sample r is flawed, and instead
detect whether or not the prediction result of r is an outlier. It
makes sense because we are interested in outlier locations, instead
of outlier MR samples or MR features.

Data repair: Once outlier objects are detected, the simplest
way is to discard them. Instead, data repair techniques replace
outlier objects with either existing normal objects or newly created
objects. The key of data repair is a minimal repair principle,
i.e., to minimize the distortion between original data and repaired
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data based on some semantic constraints and/or rules. In a recent
work targeting on GPS points, Song etc. [37] proposed to repair
a noise GPS point by an existing GPS point within a cluster,
such that data repair and clustering co-occur together (instead
of separating data repair from data clustering) with the objective
to minimize repair cost. The previous work [2] targeted the data
cleaning in Wireless Sensor Network (WSN) and establishes belief
on spatially related nodes to identify potential nodes that can
contribute to data cleaning. In addition, to repair a spatial-temporal
database, the previous works [10], [30] defined spatial-temporal
constraints (such as an object must not enter a specified area on
Sunday 2am and 5am) and the repair objective is to minimize the
change between initial database and repaired database.

Our work differs from the works above. 1) We do not repair
flawed MR samples directly, and instead repair the associated
locations. In this way, we have change to optimize the accuracy of
the proposed localization algorithm. 2) Unlike the work [2], we do
not evaluate the confidence of mobile devices, but the confidence
of predicted locations. It makes sense because flawed MR samples
are typically caused by high buildings in urban cites. 3) Finally,
the traditional data repair approaches frequently exploited integrity
constraints. Without the predefined constraints, such approaches
do not work very well [38]. In our case, it is non-trivial to find
data repair constraints in Telco localization. We therefore employ
machine learning algorithms to repair prediction result, but not
MR samples themselves.

3 SOLUTION OVERVIEW

3.1 Problem Definition

Consider that we train a localization model L from a training
dataset D, and then predict the locations of MR samples in a
testing MR dataset D. We are interested in the quality of these
predicted positions. Specifically, consider that the localization
model L generates a trajectory of positions for an input sequence
of testing MR samples in D. For each testing sample r ∈ D, L
predicts a location Lp(r). Denote the ground truth position of r
by Lt(r). If a mobile device located at the true position Lt(r)
suffers from Telco signal interference (e.g., caused by nearby
high buildings), Lp(r) could significantly differ from Lt(r) and
the Euclidean distance between Lp(r) and Lt(r), denoted by
||Lp(r) − Lt(r)||, is non-trivial. Here, the challenge is that, no
matter which and how a certain algorithm is applied to train
the localization model L, the distance ||Lp(r) − Lt(r)|| (a.k.a
localization error) is still high. Thus, we would like to detect those
samples r suffering from high errors, and then repair the predicted
locations Lp(r). For simplicity, we call such samples r suffering
from high errors flawed samples, and Lp(r) flawed locations.

Problem 1. Given a localization modelL learned from the training
dataset D, we want to optimize the localization errors of L
on a testing dataset D, by (1) detecting those flawed samples
r ∈ D− v D and (2) repairing the flawed location Lp(r).

In the problem above, we say that a testing MR sample r ∈
D− is flawed andLp(r) is a flawed location if ||Lp(r)−Lt(r)|| >
τ is met, where τ is a predefined threshold. We denote all flawed
testing samples by D−, and the normal testing MR samples by
D+ = D−D−. In terms of the threshold τ , it depends upon the
localization error of L and used data set. For example, we tune τ
by the 80% error, 75 meters, of L in one of our used Jiading 2G
data set. We will discuss the tuning of τ in Section 6.

To solve the problem above, we have to tackle the following
challenges. In the problem above, for one MR sample r ∈ D, if the
true location Lt(r) is available beforehand, we can comfortably
determine whether or not the condition ||Lp(r) − Lt(r)|| > τ is
met, and then find the flawed samples D−. Yet, the testing MR
samples r ∈ D do not have the ground truth locations Lt(r), and
it is rather hard to determine or not the aforementioned condition
is met and then to perform outlier detection and repair. Even if we
can detect the flawed MR samples r ∈ D−, how to repair flawed
locations Lp(r) is still non-trivial. Since the ground true location
Lt(r) is the most desirable one to repair Lp(r), it is challenging to
choose an appropriate location to replace Lp(r) when the ground
truth Lt(r) is unavailable.

3.2 Solution Overview

5a. Select Cands. 5b. Final Repair

5. Repair
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3. Localization

Fig. 1. Overview of RLoc

To address the challenges above, the proposed solution RLoc
essentially includes three components: a localization model L,
an outlier detection algorithm to find flawed samples r ∈ D−

via a confidence model C, and an outlier repair algorithm to
replace the flawed locations Lp(r) by better ones. In terms of the
localization model L, we improve the previous work CCR [45] by
using a classifier instead of the original regressor. The basic idea
of the classifier is as follows. We first divide an area of interest
to small square grid cells beforehand, and then build a classifier
between MR samples (or equivalently MR features) and the grid
cells where the GPS coordinates of MR samples are located. The
classifier indicates a mapping function from MR features to grid
cells. After the classifier is ready, we can predict one target grid
cell which a testing MR sample belongs to, and take the centroid
of the classified grid cell as the predicted location.

In Figure 1, RLoc involves training and testing stages. In the
training stage, we divide the training data set D into two disjoint
subsets: DL and DC , i.e., D = DL ∪ DC . The first subset DL
is used to train the aforementioned localization model L (step
1), and we apply L on the the second subset DC to generate
predicted locations Lp(DC). With help of the prediction result
Lp(DC), we then train a sequence-based confidence model C
(step 2). In the testing stage, we again apply the localization
model L on testing sequences of MR samples r ∈ D to generate
trajectories of predicted locations Lp(r) (step 3), and meanwhile
apply the already trained confidence model C on the testing MR
samples D to detect flawed samples D− (step 4). To correct the
flawed positions of D−, the repair algorithm first selects candidate
locations, and then chooses the best ones to repair the flawed
locations (step 5).

Until now, we can find that RLoc significantly differs from
traditional Telco localization. First, though we divide our approach
into training and testing stages, the step 2 requires Lp(DC),
i.e., the prediction locations of the subset DC by the model



5

L. We then exploit the prediction locations Lp(DC) to acquire
the labels of confidence levels, which are next used to train the
confidence model C and finally to perform outlier detection and
repair. Thus, we can intuitively treat the confidence-model-based
outlier detection and repair (i.e., steps 2, 4, 5 in Figure 1) as a
post-processing phase of traditional Telco localization. Second, in
terms of the outlier detection and repair, the previous works such
as CRL (Confidence model-based data Repairing technique for
Telco Localization) [43], employ single-point-based detection and
repair algorithms and do not take into account the connectivity
of neighbouring locations. Instead, we adopt sequential detection
and repair algorithms for better results. Finally, to guarantee the
fairness between our approach and other competitors, we still use
D as the overall training dataset for the localization, detection and
repair algorithms in RLoc, and D as the testing dataset, with no
extra training MR samples.

In the following Sections 4 and 5, we present the proposed
detection and repair algorithms, respectively. Moreover, if without
special mention, we by default say that the proposed detec-
tion/repair models are all sequence-based and MR samples have
been re-processed to be sequence data.

4 CONFIDENCE-BASED DETECTION APPROACH

In this section, we first introduce the confidence level (Section
4.1), and then present a sequence-based outlier detection algorithm
via the proposed confidence model (Section 4.2).

4.1 Confidence Level
We define the confidence level by a binary indicator. If the
confidence level of a MR sample r ∈ D is 0, the sample r is
flawed and otherwise normal.
Definition 1. For a MR sample r and a localization model L, if

the distance ||Lp(r) − Lt(r)|| between a prediction location
Lp(r) and ground truth Lt(r) is greater than a predefined
threshold τ , i.e., ||Lp(r) − Lt(r)|| > τ , then we say that
r is a flawed sample and the confidence level of r is 0, and
otherwise a normal sample with the confidence level 1.

To predict the confidence level of a testing sample r, our gen-
eral idea is to learn a machine-learning-based confidence model
that maps from training MR samples to the corresponding labels
of confidence levels. Unfortunately, the original training dataset D
only contains MR samples and GPS positions, but not confidence
levels. To this end, we give the following steps to find the labels
of confidence levels for training samples. Recall that we use the
two disjoint subsets DL and DC to train a localization model L
and a confidence model C, respectively (see Figure 1). After the
localization model L is trained by DL, we then apply L on the
subset DC to predict the locations Lp(r) for the sample r ∈ DC .
Since DC is still a training data subset, the sample r ∈ DC has
the ground truth position Lt(r). We then follow Definition 1 to
compute the confidence level for every sample r ∈ DC . Once the
confidence level is available, we train a machine-learning-based
confidence model C from these samples r ∈ DC to corresponding
confidence levels. After that, we apply the trained model C on
testing samples D to detect flawed ones D−.

In terms of the specific machine learning algorithm used to
train the confidence model C, a simple approach is to exploit
a binary-classifier such as Random Forest or GBDT (Gradient
Boosting Decision Tree) [1] to learn the mapping function from

an individual sample r ∈ DC to its confidence level. Note that it is
straightforward to extend our binary confidence levels to a multi-
level confidence model (e.g., using the levels from 1 to 5). For
example, we could leverage a multi-classifier, instead of a binary
classifier, to support the multi-level confidence model.

Nevertheless, the approach above does not take into account
the underlying spatio-temporal locality in neighbouring MR sam-
ples, and is still inaccurate. In the rest of this section, to capture
the underlying spatio-temporal locality in neighbouring samples,
we estimate the confidence levels of MR sequences for higher
accuracy first via a static HMM confidence model and then via an
improved one, namely DA-HMM.

4.2 Static HMM-based Confidence Model
In this section, we train a static HMM-based confidence model
C to learn the mapping between each MR sequence in DC and a
sequence of confidence levels by the following intuition.

Let us consider the scenario: a mobile device is moving first
close to a certain serving base station (say bs) and then far away
from bs, until the device is with another serving base station.
In this scenario, the mobile device generates a sequence of MR
samples. The signal strength of bs within such MR samples
becomes first stronger and later weaker. If we treat the signal
strength ss (e.g., RSSI) of bs in MR samples as observation and
the confidence level as state, then the states (i.e., confidence levels)
first become greater (i.e., one) and next smaller (i.e., zero).

When given an observed sequence of MR samples (containing
bs and ss), we expect to infer a corresponding sequence of confi-
dence levels via the following HMM decoding problem: given the
parameters of HMM (acquired from the training data DC ) and the
MR observation sequence for the testing dataset D, we aim to find
the most likely sequence of states (confidence levels). Formally,
we describe the static HMM λ = (S, V,A,B, π) as follows.
• S = {0, 1} is the set of states (confidence levels).
• V = {v1, ..., vk, ..., vM} is the set of observations vk =
〈vbsk , vssk 〉, where vbsk is a list of up to 7 base stations bs
and vssk is the list of associated ss. Moreover, we convert the
continuous readings of ss into 8 discrete levels: ss within the
range [−50,−110] is converted to 6 levels from 2, 3,..., to 7
by the equal interval of length 10, ss < −50 and ss > −110
to the levels of 1 and 8, respectively.

• A = {aij} is the distribution of state transition probability
aij of going from the confidence level i at time step t to the
next confidence level j at time step t+ 1.

• B = {bj(k)} is the distribution of emission probability
bj(k) of observation vk in state j.

• π = πi is the initial state distribution with πi = P [q1 = Si].

4.3 A Dual-Stage Adaptive HMM
The static HMM model above may not work well on real MR
samples: the neighbouring MR samples within real sequence data
frequently exhibit uncertain timestamp intervals, e.g., caused by
various sampling rate and data missing. Thus, besides the states
si and sj , the state transition probability aij further depends upon
the timestamp intervals between neighbouring MR samples. More-
over, due to the high cost of collecting training samples, it is not
rare that some areas of interest suffer from insufficient samples,
leading to inaccurate estimation of the emission probability bj(k).

To address the issues above, we propose a dual-stage adaptive
HMM, named DA-HMM, on top of the static HMM model.
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Specifically, after a static HMM model is learned by the samples
DC , in the training phase of DA-HMM, we introduce the time
interval ∆ between neighbouring MR samples and the sample
size γ for observation k in state j, and define the new transition
probability a∆

ij and emission probability bγj (k), respectively. The
new probabilities are then adaptive to ∆ and γ. The detail to
estimate a∆

ij and bγj (k) is as follows.

4.3.1 Adaptive State Transition Probability

0 25 50 75 100 125
Time Interval Δ Δsecond)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ra
tio

Jiading 2G Data

0 25 50 75 100 125
Time In erval Δ Δsecond)

0.75

0.80

0.85

0.90

0.95

S 
a 

e 
Tr

an
si 

io
n 

Pr
ob

ab
ili 

y

Jiading 2G Da a
aΔ

1, 1

aΔ
0, 1

0 25 50 75 100 125
Time Inter al Δ Δsecond)

15

20

25

30

35

40

45

Lo
ca
liz
at
io
n 
M
ed

ai
n 
Er
ro
r Δ
m
et
er
s) Jiading 2G Data

O erall Median Error

Fig. 2. From left to right: (a) Time Interval Distribution, (b) State Transi-
tion Probability a∆

i,1, (c) Localization Median Error.

Figure 2 first motivates the design of the adaptive state tran-
sition probability. The leftmost figure indicates a rather uneven
distribution of timestamp intervals among neighbouring MR sam-
ples: the intervals vary from 0 and 125 seconds, instead of a fixed
value. In the middle figure (we omit the curves of a1,0 and a0,0

due to a1,0 = 1.0−a1,1 and a0,0 = 1.0−a0,1), the probabilities
a0,1 and a1,1 become decreased with a greater timestamp interval
∆. The rightmost figure gives the localization error under various
timestamp intervals. Greater timestamp intervals indicate higher
localization errors and vice versa. It makes sense: a smaller times-
tamp interval means densely sampled MR data, leading to higher
spatio-temporal locality and thus smaller localization errors. As a
summary, Figure 2 clearly indicates that the probabilities a1,1 and
a0,1 significantly vary from timestamp intervals ∆ and thus using
a fixed interval does not work well.

To design the adaptive state transition probability a∆
i,1 (where

i = 1 or 0), we first note that a∆
i,1 decreases by a greater timestamp

interval ∆ (see Figure 2b). To this end, we exploit an exponential
decrease-based time decay model which has been widely used
for mobility pattern analytic and usually treated as an exponential
regression mode [23], [6].

a
∆
i,1 = e

(−αi∆) · βi · ai,1 (1)

To derive the a∆
i,1 above, we need to estimate αi and βi from

the training data subset DC . That is, for each discrete time interval
∆ in DC , we estimate a∆,true

i,1 via the statistics of DC .

a
∆,true
i,1 =

U∆
i,1

U∆
i,1 + U∆

i,0

(2)

where U∆
i,j denotes the count of the training samples in DC that

satisfy 1) the hidden state of the sample is i at time step t, 2)
the hidden state transfers to j at time step t + 1, and 3) the time
interval between time steps t and t+ 1 is ∆. Next, we exploit the
Gauss-Newton algorithm [31] to finally estimate αi and βi with
help of ∆ and a∆,true

i,1 .

4.3.2 Adaptive Emission Probability

Given the observation vk = 〈vbsk , vssk 〉, we first estimate the static
emission probability bj(k) by the statistics of the training data
subset DC as follows.

bj(k) = P (v
bs
k , v

ss
k |sj) =

P ((vbsk , b
ss
k ), sj)

P (sj)

≈
|DC(vbsk ) ∩ DC(vssk ) ∩ DC(sj)|

|DC(sj)|

(3)

In the equation above, we estimate the probability P (sj) by
using the carnality of set DC(sj), i.e., the count of MR samples
within DC involving state sj . Since the state (i.e., confidence level)
is represented by a binary indicator, we reasonably assume that
DC(sj) could contain sufficient samples, then the estimation of
P (sj) above makes sense.

Yet, to estimate P ((vbsk , b
ss
k ), sj) in the numerator, we have

to find the carnality |DC(vbsk ) ∩ DC(vssk ) ∩ DC(sj)|. Unlike vssk
and sj , the base stations in vbsk are uniquely identified and vbsk
may be a list of base stations that are rarely sampled within DC .
Thus, the estimation of P ((vbsk , b

ss
k ), sj) is rather sensitive to

|DC(vbsk )|. In case that the carnality |DC(vbsk )| is smaller than
the aforementioned threshold γ, Equation 3 may not precisely
estimate P ((vbsk , b

ss
k ), sj).

To overcome the issue above, our basic idea is to leverage
those MR observations vk′ such that vk and vk′ are similar in
terms of the Jaccard similarity coefficient between vbsk′ and vbsk ,
i.e., the similarity J(vbsk , v

bs
k′ ) ≥ ε, where ε is a given threshold

ε. Then, for every similar observation vk′ , we define a weight wk′
and give a weighted adaptive emission probability

b
γ
k(k) =

Pγ((vbsk , v
ss
k ), sj)

P (sj)
≈
∑
k′
wk′ ·

|DC(vbs
k′ ) ∩ DC(vssk ∩ DC(sj)|
|DC(sj)|

where wk′ =

lg(1 + z
vbs
k′

) · J(vbsk , v
bs
k′ )∑

vd

(
lg(1 + z

vbs
d

) · J(vbsk , v
bs
d )

)
(4)

In the equation above, zbsvk = |DC(vbsk )| denotes the size
of those training MR samples DC(vbsk ) and vd denotes every
observation similar to vbsk . Note that such similar observations
represented by vd are actually those represented by vk′ and we
introduce the notation vd just to avoid confusion between vd
and vk′ in the equation above. In this way, by introducing the
sum in the denominator, wk′ is a normalized weight. Here, the
item log (1 + zvbs

k′
) ensures a valid logarithmic operation even

for zvbs
k′

= 0. The intuition of weight wk′ is as follows. When
more training samples DC(vbsk′ ) (a.k.a a greater size zvbs

k′
) have

the observation vk′ (which is similar to vk with the coefficient
J(vbsk , v

bs
k′ ) ≥ ε), we have a greater weight wk′ .
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Fig. 3. Example of 8 grid cells g1...g8, 6 base stations A...F and 4
MR samples ra...rd. Solid (resp. dotted) lines indicate the connection
of mobile devices to serving (resp. non-serving) stations.

Example 1. For simplicity, we assume that the four training MR
samples in Figure 3 are all with the exactly same Telco signal
strength observation vssk (e.g., all RSSI levels of these samples
are 2) and the states of these samples are all 0 except that the
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state of rc is 1. Thus, we directly remove the subitems with
respect to vssk in the estimation of the emission probability (see
Equations 3 and 4).
Suppose that we have the thresholds γ = 2 and ε = 0.5
and need to estimate the emission probability bj(k) for
sj = 0 and vbsk = {B,E, F}. Since no sample is with
such sj and vbsk , we could follow Equation 3 and estimate
the static emission probability by zero. Nevertheless, this
estimation, which is sensitive to the sample size of DC(vbsk )
with |DC(vbsk )| < γ = 2, may not make sense.
Instead we follow Equation 4 to find two similar observations
vbsk′ : {B,D,E} in samples rb and rd, and {B,E, F} in
sample rc. Then for the first observation vbsk′ = {B,D,E},
we can compute the Jaccard similarity J(vbsk , v

bs
k′ ) = 0.5 and

next wk′ = lg(2+1)·0.5
lg(2+1)·0.5+lg(1+1)·1 = 0.44. For the second

observation vbsk′ = {B,E, F}, we compute wk′ = 0.56.
Finally, we estimate bγj (k) = 0.44 · 2

3 + 0.56 · 0
3 = 0.293.

Recall that among the base stations within 4G LTE MR
samples collected by Android devices, only the serving station
is valid and other stations might be null (see Section 2.1).
Then, to estimate the emission probability bj(k) for sj = 0
and vbsk = {B} (differing from the above vbsk = {B,E, F}),
we have |DC(vbsk )| = 3 > γ = 2 and then follow Equation 3
to compute bγj (k) ≈ |DC(vbsk )∩DC(vssk )∩DC(sj)|

|DC(sj)| = 2
3 = 0.667.

To summarize the steps above, in Algorithm 1, we give the
Pseudo-code to estimate the parameters of DA-HMM. First, the
lines 1-4 follow Section 4.3.1 to estimate the adaptive state
transition probability a∆

i,j , and lines 6-22 follow Section 4.3.2 to
estimate the adaptive emission probability bγj (k).

Algorithm 1: Parameter Estimation in DA-HMM
Input: Static HMM model λ = {S, V,A,B, π}, Training MR subset DC ,

Thresholds γ and ε
Output: a∆

i,j and bγj (k)

1 Create a time interval list TList from nbr. samples within MR sequences in
DC ;

2 foreach time interval δ ∈ TList do Infer aδ,truei,1 by the statistics of DC ;
3 Estimate the parameters αa and βi in Eq. (1) with δ and aδ,truei,1 by

Gaussian-Newton method;
4 Update a∆

i,1 ← e(−αi∆) · βi · ai,1 and a∆
i,0 ← 1− a∆

i,1 ;
5 foreach observation vk in V do
6 Compute the sample size z

vbs
k
← |DC(vbsk )|;

7 if z
vbs
k
≥ γ then Compute bγj (k) by Eq. (3);

8 else
9 foreach similar observation vbs

k′ with J(vbsk , v
bs
k′ ) ≥ ε do

10 zbs
k′ ← |Dc(v

bs
k′ )|, and Compute wk′ by Eq. (4);

11 Computebγj (k) by Eq. (4);

12 return a∆
i,j and bγj (k) ;

5 LOCATION REPAIR

Recall that the proposed confidence model can be applied onto
a testing sequence R = {r1, ..., r|R|} v D of MR samples to
detect flawed samples. We are interested whether or not these
flawed samples are neighboring within the sequence R. For
example, in Figure 1, we have detected five flawed samples within
an input sequence of 8 testing samples. Four of them (i.e., 2, ..., 5)
are neighbouring within the input sequence and yet the one 7
is disjoint from all other flawed samples. For a disjoint flawed
sample, we find the most appropriate candidate location to replace
the flawed location Lp(r). Instead, to repair the neighboring

flawed locations, we then find the best sequence (a.k.a trajectory)
of candidate locations. Since an individual flawed location can be
treated as the special case of a sequence with the sequence length
equal to 1, we thus generally focus on 1) finding the candidate
locations for every flawed location and 2) the repair of an entire
sequence of neighboring flawed locations.

5.1 Candidate Positions
Recall that our multi-classifier-based localization model has al-
ready divided an area of interest into multiple small grid cells.
Thus, to find candidate positions, we alternatively select candidate
grid cells. Before giving the detail, we first give the following
notations. For a certain flawed sample r, the notation bsr indicates
the set of those base stations appearing in r, and gr denotes the
grid cell where the position Lp(r) is located. For a grid cell g, the
notation BSg means the set of all base stations appearing in entire
MR samples located within g.

With help of the notations above, we give the intuition of
finding candidate positions. For a flawed sample r, a certain grid
cell g becomes the candidate of gr , if the similarity of the two sets
bsr and BSg is high and greater than a predefined threshold ξ.
We measure the similarity as follows. Recall that bsr contains
up to 6 or 7 base stations, i.e., |bsr| = 6 ∼ 7. Next, the
grid cell g may contain many MR samples and |BSg| is thus
possibly much greater than |bsr|. The standard Jaccard coefficient
between bsr and BSg , which is very close to 0.0 no matter
bsr, does not work well. Thus, we define a variant coefficient
J ′(bsr, BSg) =

|bsr
⋂
BSg|

|bsr| . Based on the intuition above, we
then give the following rule to find candidate grid cells for gr.

Gr = {g ∈ G|J′(bsr, BSg) ≥ ξ} (5)

where G denotes the set of all spatial grid cells in the area of
interest, and ξ is a predefined threshold.
Example 2. Still in Figure 3, we assume that rd is a flawed

sample and the threshold ξ = 0.5. For the grid cell g2

with the set BSg2 = {A,B,D,E} and g4 with the set
BSg4 = {B,E, F}, we have J ′(bsrd , BSg2) = 1.0 and
J ′(bsrd , BSg4) = 2/3, both of which are greater than ξ. We
thus choose g2 and g4 as two candidates.

5.2 Sequence-based Repair
When given a sequence of flawed locations Lp(r), the proposed
repair algorithm considers 1) the possibility or weight of a can-
didate grid to repair every flawed location and 2) the transition
possibility between two candidate grids, i.e., the possibility of
mobile devices to move from one candidate grid to the next one.
To this end, we propose to maximize the joint probability of the
path to connect a sequence of candidate grids that are used to
repair the entire sequence of flawed locations. Before giving the
definition of the joint probability, we first define a repair graph.

Repair Graph: Consider a sequence R of N(= |R|) neigh-
bouring flawed locations Lp(ri) with 1 ≤ i ≤ N . For each flawed
location Lp(ri) and corresponding grid cell gri , we have a set Gi
of at most k candidate grids gi,j ∈ Gi with 1 ≤ j ≤ k. Formally,
we define a repair graph G, where each vertex in G is mapped to
a candidate grid gi,j . We build a directed edge from a candidate
vertex gi,j to another vertex gi+1,j′ , if the corresponding locations
Lp(ri) and Lp(ri+1) are neighbouring within the sequence R.
Each vertex (and edge) is with an associated weight or probability
(we will give the probability soon). Given the graph G, we have at
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most kN paths from the source to sink. Among all such paths, we
want to find one path which is with the maximal joint probability
to repair the N flawed locations.

Definition 2 (Vertex Weight). For a flawed location Lp(ri), we
define the vertex weight Wgi,j of a candidate grid gi,j to
measure the goodness of gi,j to repair Lp(ri).

For a non-flawed sample ri, no candidate grid is needed and
we simply set the vertex weight of gri by 1.0. For a flawed location
Lp(ri) and a candidate gi,j , we compute the vertex weight Wgi,j

by the following equation.

Wgi,j
=
J′(bsri , BSgi,j ) · P (gi,j |BSgi,j ) · exp(−D(bs1ri

, BS1
gi,j

))∑
g∈Gri

J′(bsri , BSg) · P (g|BSg) · exp(−D(bs1ri
, BS1

g))

In the equation above, we compute three sub-items.
• J ′(bsri , BSgi,j ): the similarity coefficient between the

flawed MR ri and candidate grid cell gi,j in terms of their
base stations.

• P (gi,j |BSgi,j ): the posterior probability.
• D(bs1

ri , BS
1
gi,j ): the average physical distance between the

serving base station bsri in MR sample ri and those serv-
ing stations of MR samples within gi,j . Since the serving
base station plays a key role in Telco localization, we thus
introduce D(·) to compute Wgi,j .

D(bs
1
ri
, BS

1
gi,j

) =


0, bs1ri

∈ BS1
gi,j∑

bs∈BS1
gi,j

d(bs1r,i,bs)

|BS1
gi,j
|

, otherwise

where d(·) denotes the Euclidean distance between the two
base stations. Thus, D(bs1

ri , BS
1
gi,j ) indicates the average

distance between the serving base station bsri and each
serving station within the grid gi,j .

Besides the vertex weight in a repair graph G, we also consider
the transition possibility of mobile devices to move from one
position to the next one. Thus, we define the following transition
probability as the edge weight.

Definition 3 (Edge Weight). For a directed edge gi,j → gi+1,j′

from a candidate grid gi,j to the next one gi+1,j′ within a path
of the repair graph G. The edge weight is computed as follows.

Wgi,j→gi+1,j′
∝

cos θ

d(gi,j , gi+1,j′ )
(6)

In the equation above, d(gi,j , gi+1,j′) is the Euclidean dis-
tance between gi,j and gi+1,j′ , and θ is the angle between the
two edges gi−1,j′′ → gi,j and gi,j → gi+1,j′ . The intuition to
compute the edge weight Wgi,j→gi+1,j′ is as follows. When
one mobile device is walking or driving on a road, it is not
likely to change the direction very frequently, and the physical
distance between two neighbouring vertices (i.e., two neighboring
locations) should not be very far away.

Example 3. Figure 4 illustrates an example repair graph G, where
the source and sink are normal. For the two flawed locations
Lp(ri) and Lp(ri+1), we have 3 candidate grids gi,1, gi,2, gi,3
and 2 candidate grids gi+1,1, gi+1,2, respectively, and thus
totally have 6 paths from source gri−1

to sink gri+2
. Among

the six paths, we choose one path with the maximal joint
probability. The candidate grids within the selected path are
then used to repair the flawed locations Lp(ri) and Lp(ri+1),

Source Sink

Fig. 4. Example of a Repair Graph and Illustration of three angles: θ1
between the edges Lp(ri−1)→ gi,1 and gi,1 → gi+1,1, θ2 between the
edges Lp(ri−1) → gi,2 and gi,2 → gi+1,1, and θ3 between the edges
Lp(ri−1)→ gi,3 and gi,3 → gi+1,1

respectively. In addition, this figure gives an example of three
angles θ1, θ2 and θ3 between repair graph edges.

Until now, in the repair graph G, each vertex gi,j is with a
weight Wgi,j and each edge gi,j → gi+1,j′ is with a weight
Wgi,j→gi+1,j′ . Our task is to find a path from the source to
sink, such that the found path is with the largest joint probability.
Consider a path ω = g1 → ... → g|ω| that traverses |ω| vertices
from g1 to g|ω|, we compute the joint probability of ω.

P (ω) = Wg1
·Wg1→g2 ·Wg2

...Wg|Ω|−1
·Wg|Ω|−1→g|Ω| ·Wg|ω| (7)

5.3 Algorithm Detail

Algorithm 2: DP-based Repair Algorithm
Input: G Repair Graph, Gvertex(·) vertex weight, Gedge(·) edge weight
Output: rSeq the path with the max. joint probability

1 JP []← the highest joint probability so far;
2 par[]← parent nodes of current candidates;
3 Vparent ← those vertices in G without parents;
4 foreach vp ∈ Vparent do JP [vp]← Gvertex(vp) ;
5 while Vparent still has children in G do
6 max=−∞, Vchild ← child vertices of Vparent in G;
7 foreach vc ∈ Vchild do
8 foreach vp ∈ Vparent do
9 if |Vchild| == 1 then tmp=JP [vp] ;

10 else tmp=JP [vp]× Gvertex(vp)× Gedge(vp→ vc) ;
11 if tmp > max then max = tmp; par[vc] = vp ;
12 JP [vc]=max;

13 Vparent ← Vchild;

14 Initialize rSeq as an empty list;
15 c=argMaxv(JP [v]), add R to rSeq;
16 while par[c] 6= ∅ do add par[c] to rSeq, c← par[c] ;
17 return rSeq;

Algorithm 2 outlines the sequence-based repair via a dynamic
programming method. It requires an input repair graph G and
generates a trajectory or equivalently a path of selected candidate
positions having the maximal joint probability. In general, finding
such a path in a repair graph is NP-hard. Thus, we design an ef-
ficient path planning algorithm. The planning algorithm first finds
the vertices Vparent having no parent (line 3) after the initiation
of two variables JP [] (joint probability) and par[] in lines 1-2.
Next, the loop in lines 5-13 visits the remaining vertices level by
level in the repair graph G by a Breadth-First Search (BFS) style.
The JP [] maintains the largest joint probabilities from sink to the
current vertices so far. Thus, when the edges from vp ∈ Vparent
to vc ∈ Vchild are considered, we are interested in the maximal
joint probability JP [vp]×Gvertex(vp)×Gedge(vp→ vc), where
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Gvertex(vp) denotes the vertex weight of vp and Gedge(vp→ vc)
denotes the weight of the edge vp → vc. Such maximal product
is again maintained by a new item JP [vp]. Meanwhile the item
par[vc] with respect to vc maintains the parent vertex vp. Once
Vparent has no child, the entire graph G has been visited and the
sink has been reached. Thus, the algorithm breaks the loop. Now
we simply find the item v in JP [] leading to the maximal JP [v]
(line 15). By reversely tracking the parent par[c] of such found
item v (line 16), we can return a sequence of desirable candidates
leading to the maximal JP [v].

The running time of Algorithm 2 heavily depends upon the
path planning, especially the two loops in lines 8-13. Suppose the
repair graph G has n neighbouring flawed locations, i.e., n levels
from source to sink, and each level has k candidates. Thus, the
running time of the path planning part is O(kn). Note that the
previous work [28] does not adopt any detection algorithm. Thus,
when given an entire sequence of continuous grids (no matter
flawed or not), the running time of [28] is O(kN ), where N is
the size of the entire sequence. Thus, our repair algorithm can
significantly improve the efficiency from O(kN ) to O(kn) in
particular due to N � n.

6 EVALUATION

In this section, we evaluate our approach RLoc in terms of three
aspects: the overall localization accuracy after RLoc is applied
to correct flawed positions, the performance of the proposed
detection and repair algorithms, and sensitivity study of RLoc
to key parameters.

6.1 Experimental Setting
Data sets: In Table 3, we use totally three datasets: two collected
from the rural Jiading district of North-west Shanghai, and one
from the urban Xuhui district in the core center Shanghai (The
physical distance between the two districts is around 31 km).

TABLE 3
Statistics of Used Data Sets

Jiading-Campus Xuhui Jiading-Rural
2G 4G 2G 4G 4G

Num. of IMSIs 7 4 4 3 5967
Num. of samples 20324 14218 24570 16905 150288
Sampling Period (sec) 2∼3 2∼3 1 1 10∼11
Density of Serving Stations 25.85 29.43 28.18 38.76 24.92
Num. of Serving Stations 61 44 21 16 508
Coverage Area (km2) 1.64*1.44 1.32*0.43 4.46*4.57

• Jiading-Campus: This dataset, collected by our developed
Android App, contains MR samples collected from 2G GSM
and 4G LTE networks in a university campus that is located
within the rural Jiading area. When students holding mobile
devices installed with the App are moving around outdoor
campus roads, the App then collects MR samples and current
GPS coordinates. Table 2 shows the data format of this
dataset. Note that, probably due to the limitation of Android
API and policy rules of backend system configuration with
respect to Telco networks, the identifiers (RNCID 2∼7 and
CellID 2∼7) of non-serving base stations are null values,
though the associated RSSI measurements could be collected
in 4G MR samples.

• Xuhui: This dataset contains 2G and 4G samples collected
on several main roads. As mentioned in Section 2.1, the

data formats of MR samples collected by frontend Android
APIs and backend operators may differ. For example, the
backend 2G samples contain the signal measurements such
as RxLev (= RSSI), ARFCN (absolute radio-frequency chan-
nel number) and the backend 4G MR samples contain the
identifiers of all connected base stations and the associated
signal measurements such as RSSI, RSRP and RSRQ. The
detail of these data formats refer to the previous work [20].

• Jiading-Rural: This large dataset contains 4G LTE MR sam-
ples collected in a large rural area in Jiading. The sampling
rate of this dataset is rather low, i.e., one sample for every
10∼11 seconds, when compared with other datasets. This
dataset follows the same data format as Xuhui dataset.

Similar to the previous works NBL [29] and CCR [45], we
use GPS coordinates as the ground truth locations of MR samples.
Since the collected GPS coordinates may contain noisy informa-
tion, we exploit the map-matching technique [19] to mitigate the
effect of noisy information. To protect user privacy, all IMSIs
(International Mobile Subscriber Identity) in the used datasets
have been anonymized.

Counterparts and Data Division: In Table 4, we evaluate
RLoc against four counterparts, including three outdoor localiza-
tion approaches: a Random Forest regressor-based approach CCR
[45], HMM-based localization approach [32] (for simplicity we
rename this HMM-based approach as HLoc), and fingerprinting-
based localization approach NBL [29]) and our previous data
repair-based approach CRL [43]. Note that HLoc [32] originally
works only on 4G LTE data and requires the items of both
TA (Timing Advance) and RSRP (Reference Signal Receiving
Power). Since the MR samples in our used datasets do not contain
the TA item and the MR samples in 2G datasets or frontend
Android datasets do not contain the RSRP item, for fairness, our
implementation of [32] has to remove the component regarding
TA and then replace RSRP by RSSI.

These five approaches all require localization steps, and only
two of them RLoc and CRL [43] require the localization, detection
and repair steps. Here, both RLoc and CRL [43] use a RaF
classifier-based localization model L, whereas CCR [45] adopts
a RaF regressor-based localization model. The input to the three
Raf-based localization algorithms contain the features such as raw
MR features (see Table 2), base station features (e.g., GPS coor-
dinates of base stations) provided by Telco operators, and hand-
made contextual features (e.g., the moving speed and direction
[45]). Nevertheless, RLoc and CRL differ in terms of the used
detection and repair algorithms: RLoc exploits the sequenced-
based approach, and yet CRL the single-point-based approach.

We give the training and testing data of the five approaches as
follows. CCR, HLoc and NBL do not require detection and repair
algorithms. We thus assign the entire datasets D and D to train and
test a localization model for them, respectively. Instead, besides
the localization model L, RLoc and CRL require detection and
repair algorithms. Thus, we assign the subset DL as the training
dataset for L and the subset DC as the training data for the detec-
tion/repair algorithms. In this way, the same training dataset D is
assigned to all five approaches, and we do not assign extra more
samples to train the localization/detection/repair algorithms for
RLoc and CRL. Thus, our data assignment guarantees evaluation
fairness for five approaches.

For the proportion of MR samples assigned for DL, DC , and
D, we divide the samples in each MR dataset into three disjoint
parts (see Table 4). Specifically, to avoid over-fitting, we adopt the
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10-fold cross validation [24] and randomly choose 80% samples
for D and 20% for D. Among the samples in D, we further
randomly assign 62.5% samples for DL and 37.5% samples for
DC . We implement the five approaches with Python and evaluate
them on a Linux workstation with Intel(R) Xeon(R) CPU E5-2620
v3 @2.40GHz and 64 GB memory.

TABLE 4
Counterparts and Used Data Sets (L: Localization Model, C:

Confidence-based Detection)

L, Training Data C, Training Data Repair Testing Data

RLoc RaF classifier, DL DA-HMM, DC DP D
CRL [43] RaF classifier, DL GBDT, DC Baseline D
CCR [45] RaF regression, D D
HLoc [32] HMM, D D
NBL [29] Fingerprinting, D D

Performance Metrics and Key Parameters: Firstly, we are
interested in the metric of localization errors. Specifically, for
each MR sample in the testing dataset, we first predict its location
and then compute the error by the Euclidean distance between
the predicted location and ground truth. We use the cumulative
distribution function (CDF) of errors in the testing data set to
evaluate the localization performance, and the key indicators are
mean, median (top-50%), top-67%, top-90% and top-95% errors.

Secondly, we evaluate the confidence-based detection algo-
rithm by three metrics: Precision Mp = |DuG|

|D| , Recall Mr =
|DuG|
|G| , and F -score Mf =

2∗Mp∗Mr

Mp+Mr
, where D is the set of

detected flawed MR samples and G is the set of the ground truth.
Here, the ground truth of flawed samples can be achieved if the
criteria of confidence levels ||Lp(r)− Lt(r)|| ≥ τ is met.

Thirdly, we define the repair accuracy of a repair algorithm by
rα = |R|

|D| , where R is the set of those correctly repaired samples
among all detected flawed samples D. Next, we are interested in
how much localization error is reduced after the repair algorithm
is applied. Thus, we measure the repair ratios of the reduced
errors by the repair algorithm. Specifically, given the original
median, 67% and 95% localization errors (denoted by Ed, Es

and El) before the repair is applied and those (denoted by Edr ,
Esr and Elr) after the repair is applied, we define three repair
ratios Id =

Ed−Edr
Ed

, Is =
Es−Esr
Es , and Il =

El−Elr
El

. Moreover,
to measure the quality of a candidate selection approach, among
the selected candidate set C , we are interested in 1) the precision
pc, i.e., the proportion of ground truth grids that appear within
the candidate set, and 2) the number |C| of selected candidates
per flawed sample. Intuitively, we will select a small number |C|
of candidates and yet repair flawed positions with a high repair
precision pc.

Finally, Table 5 lists the mainly used parameters. Since we use
the error threshold τ in Section 3.1 and Section 4.1 to determine
flawed MR samples and confidence levels, we thus set τ by a
relatively high localization error and vary it from top 70% error
to top 90% error. In addition, the threshold γ in Section 4.3.2
determines whether or not |DC(vbsk )| is a trivial sample size. Thus,
we empirically tune it by relatively small values from 1 to 15.
In terms of similarity threshold ε in Section 4.3.2, it determines
whether the two MR base station observations vbsk and vbsk′ are
similar. Since we measure the similarity by Jaccard coefficient
within the range [0.0, 1.0], we tune ε from a small value 0.25 to
the maximal one 1.0 in order to find sufficient samples. Finally,
the threshold ξ in Section 5.1 is used to select candidate positions,

we vary ξ from a relatively high value 0.6 to the maximal one 1.0
to guarantee the quality of selected candidate positions. We use
default values if without special mention, and vary their values
within the allowable range for sensitivity study.

TABLE 5
Parameters and Default Values

Allowable Range Default Val.
Error Threshold τ in Sections 3.1 and 4.1 70% error − 90% error 80% error
Sample Size Threshold γ in Section 4.3.2 1− 15 5
Similarity Threshold ε in Section 4.3.2 0.25− 1.0 0.5
Similarity Threshold ξ in Section 5.1 0.6− 1.0 0.7

6.2 Localization Performance

Figure 5 gives the localization errors of five approaches, where the
x-axis is the location error (meters), and y-axis is the (empirical)
Cumulative Distribution Function – CDF of localization errors.
From this figure, we have the following findings.

• Firstly, the proposed RLoc greatly outperforms the four
counterparts. For example, in the Jiading 4G data set, the
median errors of RLoc, CRL, CCR , HLoc and NBL are
32.20, 38.98, 48.40, 61.83 and 66.51 meters, respectively.
RLoc reduces the median error by 17.4% compared with the
state-of-the-art (CRL). These numbers indicate that RLoc
can correct flawed locations for the best results. Moreover,
among the two repair-based localization approaches, RLoc
has smaller errors than CCR, mainly due to the sequence-
based detection and repair.

• Secondly, in both 2G and 4G data sets, the median errors
of HLoc and NBL are much greater than the three other
approaches. These numbers indicate that the fingerprinting-
based and HMM-based approaches cannot compete the RaF-
based approaches such as CCR. It is mainly because these
RaF-based approaches leverage the rich engineered features
of both MR samples and base stations (e.g., GPS coordinates
of base stations). Instead, NBL uses only the MR features
(e.g., signal strength) but not the features of base stations.
Moreover, HLoc essentially employs a static HMM model
and can not capture adaptive transition probability between
spatial cell grids that is instead the main focus of the proposed
DA-HMM. In addition, both RLoc and CRL lead to better
performance than non-repair localization approach CCR,
especially with the 90% and 95% errors. This result indicates
that the detection and repair algorithms work rather well to
correct outlier flawed locations.

• Thirdly, in Jiading-Campus and Xuhui datasets, all algo-
rithms achieve better localization result in 4G data than the
one in 2G data set. It is manly because 4G Telco networks
typically deploy more dense base stations than 2G Telco net-
works. The 4G MR samples hence frequently contain much
stronger Telco signal strength. In addition, the localization
errors of all algorithms in Xuhui data sets are slightly lower
than those in Jiading-Campus data sets. This is also due to
the dense base stations deployed in the urban Xuhui area and
sparse ones in the rural Jiading area. Note that the localization
errors of Jiading-Rural 4G data set are higher than the other
four data sets. It is mainly due to the smallest sampling rate
among all datasets and more sparse base station density of
Jiading area than the one of Xuhui area.
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Fig. 5. Localization Errors of Five Algorithms on 5 Used Data Sets: Jiading-Campus 2G, Xuhui 2G, Jiading-Campus 4G, Xuhui 4G and Jiading-Rural
4G Datasets (from left to right).

Due to space limit, in the rest of this section, we evaluate the
performance of RLoc on Jiading-Rural 4G LTE dataset (with the
greatest amount of data samples on the largest area).

6.3 Detection Performance
In this section, we study the performance of four detection
algorithms: the proposed DA-HMM model, static HMM model,
the single-point-based GBDT classifier used by CRL, and a deep
sequence model using the basic recurrent neural network (RNN).

Firstly, Figure 6(a) gives the precision, recall and F-score of
the four approaches on the Jiading-Rural 4G data set. The static
HMM (denoted as HMM) does not work well, and DA-HMM in-
stead leads to the best result mainly due to the introduced adaptive
probabilities a∆

i,j and bγj (k) to incorporate uncertain time-intervals
and sample size. The RNN approach cannot compete DA-HMM,
indicating that the DA-HMM model optimized by the adaptive
probabilities could outperform the basic RNN model.

Secondly, Figure 6(b) plots the running time (used by training
and testing phases) of the static HMM and DA-HMM approaches.
Though DA-HMM requires around 3× training time over the
static HMM, the prediction time of DA-HMM is only 1.18× of
the static HMM. During the training phase, DA-HMM needs to
estimate the parameters of two adaptive probabilities on top of the
static HMM, thus the training time of DA-HMM is much higher
than the one of static HMM. In terms of testing phase to infer the
exact values of two adaptive probabilities, DA-HMM calculates
the specific time intervals between neighbouring MR samples
within testing sequence data. Since the remaining prediction steps
of DA-HMM are consistent with static HMM, DA-HMM leads to
slightly higher testing time cost.

Thirdly, we are interested in how DA-HMM performs on the
MR samples with various neighboring time intervals. To this end,
among the Jiading-Rural 4G data set, for each MR sequence, we
randomly select some MR samples of the sequence to make sure
that every timestamp difference between neighboring selected MR
samples is no more than a certain value. Given these selected
samples, we evaluate the proposed exponential regression-based
DA-HMM (used for the adaptive state transition probability)
against static HMM and two variants of DA-HMM using logistic
regression and polynomial regression (denoted as DA-HMMl and
DA-HMMp, respectively). In Figure 6(c), we plot the F-score
of the static HMM and three variants of DA-HMM (using the
exponential, logistic and polynomial regression models). On the
overall, a higher time interval means more sparse time sampling
rate and thus worse detection performance. In addition, we note
that the three DA-HMM approaches outperform the static HMM.
It is mainly because the adaptive transition probability in DA-
HMM can tackle the issue of various time intervals. In addition,
among three regression algorithms, the exponential function leads
to the best performance under various time intervals.

Fourthly, we are interested in the effect of the amount of
used training samples DC on DA-HMM by tuning the adaptive
emission probability, and thus vary the proportion of DC from
10% to 100%. As shown in Figure 6(d), more training samples
lead to higher F-score values for all four algorithms. In terms of
the two HMM-based methods, the static HMM is more sensitive
to the amount of training samples than DA-HMM, and whereas
DA-HMM is adaptive to sparse training data. It makes sense
because the design objective of the adaptive probabilities in DA-
HMM is to overcome the issue of uncertain data sampling rate
including sufficient and sparse data. In addition, since training a
deep neural network RNN usually needs a large amount of training
data, F-score of RNN drops rapidly when the proportion of DC
decreases from 50% to 10%. Finally, GBDT in general performs
worst especially when training data is insufficient.

Finally, we study the generalization ability of DA-HMM by
introducing a certain number of new testing MR samples in D.
To this end, we follow a recent work [36] to generate new MR
samples by using the spatial and scan augmentation methods. By
varying the proportion of these new samples from 0% to 50% in D,
Figure 6(e) plots the F-scores of four approaches. As shown in this
figure, more generated samples degrade the F-score of all detection
algorithms. It is mainly because the new MR samples may not
follow the same distribution of MR features (such as RSSI).
Nevertheless, DA-HMM can still lead to competitive performance
even if 50% testing data are generated samples, and instead the
static HMM and RNN-based methods are rather sensitive to the
amount of generated samples than DA-HMM and GBDT. Note
that this evaluation result differs from the one in the work [36]
which instead uses the new MR samples and original training
MR samples (D) together to train a localization model L for
better localization accuracy. Yet in our experiment, we introduce
generated samples to verify the generalization ability of DA-HMM
(trained by DC alone, but without any generated MR samples).
Thus, it makes sense that a larger proportion of generated samples
in D could degrade the accuracy of DA-HMM.

6.4 Repair Performance

In this section, Figure 7(a) first evaluates the proposed DP-based
repair approach (used by RLoc) against the repair in CRL and
three filtering algorithms: mean, Kalman and particle, denoted as
mFilter, kFilter and pFilter, respectively. Since both CRL and
RLoc require the detection of flawed samples, for fairness, we
adopt the same detection approach DA-HMM to select flawed
MR samples and then repair these samples by the approaches used
by CRL and RLoc. In this figure, the x-axis indicates the repair
accuracy rα and repair ratios of three localization errors Id, Is
and Il. We find that the DP approach can achieve the highest
accuracy rα and greatest repair ratios among all five approaches.
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Fig. 6. Detection Algorithm: (a-b) Effectiveness and Efficiency of Detection Approaches, (c-e) Effect of Time Intervals, Used Training Samples, and
Generated MR samples in Testing Data (from left to right).
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It is mainly because the DP approach repairs the entire sequence
of flawed MR samples.

Secondly, consider that the candidate set C is the key of a
repair algorithm. Thus, we compare our approach against two
alternative candidate selection approaches: 1) CRL utilizes a
probability Matrix M to lookup candidates for a given flawed
grid, and 2) Random Forest (RaF) classification-based localization
model predicts the probability for each possible grid to be the
position grid of a testing MR sample. Such a probability can be
used to select those top-k grids with the highest probabilities as
the candidate grids. In Figure 7(b), the left and right y-axis plots
the repair precision pc and the number |C| of selected candidates
(defined in § 6.1) of three repair approaches. CRL suffers from
the lowest repair precision but selects the smallest candidate grids.
Though the Random Forest (RaF) classifier can achieve better
result than CRL, but at the cost of the most number of selected
candidates (and thus high overhead to prune unneeded candidates).
Finally, our approach can achieve the highest precision pc and the
middle amount of selected candidates per flawed sample, 10, is
much smaller than the one by RaF. This experiment indicates that
our work can lead to the best trade-off between the repair precision
and overhead of selecting candidates.
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Fig. 8. Sensitivity Study: Effect of Error Threshold τ (left) and Sample
Size Threshold γ (right).

6.5 Sensitive Study
In this section, we vary the values of several key parameters and
study the performance of RLoc.

Firstly, we are interested in how DA-HMM is sensitive to the
threshold τ which is used to determine the confidence levels to

detect flawed samples. Depending upon the errors of a localization
model L, we vary the threshold τ from top-70% error to top-90%
error (and thus the threshold τ becomes greater), and measure
the performance of the detection algorithm. Figure 8(a) shows
the precision, recall and F-score of DA-HMM. When τ becomes
greater, the detection precision drops slightly. Nevertheless, with
a larger τ , the recall first grows and later slightly drops. For
example, the threshold τ = 80% error leads to the highest recall.
Finally, the F-score unifies precision and recall, and exhibits the
similar trend as the recall.

TABLE 6
Effects of Two Thresholds ε and ξ.

Similarity
Threshold ε

Jiading-Rural 4G Similiarty
Threshold ξ

Jiading-Rural 4G
Mp Mr Mf rα pc |C|

0.25 0.833 0.601 0.698 0.6 0.651 0.907 12.3
0.50 0.863 0.603 0.710 0.7 0.686 0.901 9.9
0.75 0.859 0.582 0.694 0.8 0.690 0.875 8.2
1.0 0.852 0.574 0.686 1.0 0.694 0.842 6.7

Secondly, we study the effect of the threshold γ on our detec-
tion algorithm. This threshold γ is to determine whether or not the
set |DC(vbsk )| contains sufficient samples, i.e., |DC(vbsk )| ≥ γ,
during the estimation of the adaptive emission probability. By
varying γ from 1 to 15, we evaluate the detection performance
of DA-HMM. In Figure 8(b), the precision, recall and F-score of
DA-HMM grow until γ = 5 and then degrade slightly. It is mainly
because too many observation samples are unnecessary to tune the
adaptive probability due to the used sufficient training samples.
Thus, we by default set γ by 5.

Thirdly, we study the effect of ε in the detection algorithm.
Recall that in the DA-HMM detection algorithm, we adopt a
similarity threshold ε to determine whether or not two base station
observations are similar. In Table 6, either a too small or too
large threshold ε may not lead to the greatest performance. Here,
ε = 0.5 helps achieving the best F-score.

Finally, we are interested in the effect of threshold ξ on our
repair algorithm. In the repair algorithm, we use a similarity
threshold ξ to determine whether or not a certain spatial grid
cell is a candidate. Table 6 shows the effect of ξ on the repair
performance. Firstly, a greater ξ leads to a smaller number |C| of
candidates for each flawed MR sample and higher repair accuracy
aα. Moreover, the repair precision pc decreases with a greater ξ.
For example given ξ = 1.0, it means that among the up-to 7 base
stations in a flawed MR sample, all of them are selected to be the
observation set of the candidates. Thus, to balance the precision
and number |C|, we by default set ξ = 0.7.

6.6 Discussion
Telco MR data usually contain privacy sensitive information
such as locations and IMSI information of individuals. Privacy
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preservation techniques can be used to address the privacy issue.
For example, we anonymized user identifiers (IMSI) in MR
samples. Moreover, we have replaced a real user ID with multiple
virtual ones, such that an entire trajectory of this real user could
be divided into multiple disjoint sub-trajectories with respect to
such virtual users. In this way, we avoid the exposure of an
entire trajectory. Nevertheless, the introduced privacy preservation
techniques compromise localization accuracy. Our long-term goal
is to adopt privacy techniques including differential privacy [18]
to support privacy-preserving machine learning and accurate data
analytics in big Telco MR data.

7 CONCLUSION

In this paper, we proposed a sequence-based localization frame-
work to detect and repair outlier positions for lower Telco localiza-
tion errors. First, the detection approach DA-HMM, via a binary
confidence level, can overcome the issues of various time intervals
of neighbouring MR samples and uneven amount MR samples
across base stations. Second, the repair approach leverages a repair
graph by incorporating the importance of each candidate and
transition between neighbouring candidates to choose a best path
with the largest joint probability. The evaluation on three datasets
validates that our work greatly outperforms both the single-point-
based and traditional sequence-based localization approaches, e.g.,
those using static HMM models.

As future work, we continue to explore more advanced ma-
chine learning techniques for Telco localization. For example the
recent work [42] explored transferable knowledge from training
data set to testing data. Such success inspired us to potentially find
transferring knowledge between MR samples and GPS locations.
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