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Characterising Usage Patterns and Privacy
Risks of a Home Security Camera Service

Jinyang Li, Zhenyu Li, Gareth Tyson, and Gaogang Xie

Abstract—Home security cameras (HSCs) are becoming increasingly important in protecting people’s household property and caring
for family members. As an emerging type of home IoT devices, HSCs are distinct from traditional IoT devices in that they are often
installed in intimate places, detecting movements constantly. Such close integration with users’ daily life may result in distinct user
behavioral patterns and privacy concerns. To explore this, we perform a detailed measurement study based on a large-scale service
log dataset from a major HSC service provider. Our analysis reveals unique usage patterns of HSCs, including significant wasted
uploads, asymmetrical upload and download traffic, skewed user engagement, and limited watching locations. We further identify three
types of privacy risks in current HSC services using both passive logs and active measurements. These risks can be exploited by
attackers, through observing only the traffic rates of HSCs, to infer the working state of cameras and even the daily activity routine in
places where the camera is installed. Moreover, we find the premium users who pay an extra fee are especially vulnerable to such
privacy inferences. We propose countermeasures from the perspectives of susceptible users and HSC providers to mitigate the risks.

Index Terms—Home security camera; IoT; Privacy; Usage pattern.
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1 INTRODUCTION

The Home Security Camera (HSC) is a home wireless In-
ternet of Things (IoT) device that has become increasingly
common in people’s daily lives in recent years. With the en-
try of major players such as Nest [8], XiaoMi [11], Hikvision
[5], and Netgear [9], the HSC market is expected to reach
$1.3 billion by 2023 [6]. The home security cameras are often
installed in private places (like home or office) for securing
the safety of the property or caring for the elders and kids.
The cameras are connected to the Internet via WiFi. The
camera owner can watch the live feed through the mobile
app provided by the camera provider from everywhere. The
video content is transmitted via the cloud servers of the
provider — the content is uploaded to the servers first and
then stream to the mobile app. Besides the live streaming
mode, HSCs often provides a motion detection mode, where
the HSC will alert the owner through the mobile app when
movements being detected in front of the camera. Most
HSC services provide the third mode, which upgrades the
second mode, called Replay mode, a functionality exclusively
available for premium users (who pay an extra fee). With
the replay mode, the HSC will record a video clip for
the movements, and upload it to the cloud. The owner
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(premium user) can later replay the clip to examine the
movements.

As a new type of Internet video, the HSC service
providers and the network operators are eager to know the
usage patterns of HSCs, in order to understand the impact
on network load and optimise the systems. While there are
a load of studies on measuring the usage behavior of other
Internet video systems [21] [22] [28] [25] [33], their findings
may not be applicable to HSCs. This is because of the unique
features of HSCs, such as the replay mode, usage context,
and unicast communication between cameras and owners.

Another important aspect relevant to HSCs is about the
privacy risks (if there is any) as they are often installed at
intimate places. HSCs, once being turned on, will monitor
every movement that occurs in the installation places 7×24,
and will automatically upload recordings when movement
is detected (a notification for normal users and a clip about
the movement for premium users). Despite that the content
is encrypted, it may be possible for attackers to infer private
information from the traffic patterns (e.g. traffic rate) as
previous studies have proved this possibility for other types
of IoT devices [1], [15], [18], [40]. For most people, it is
difficult to verify if protections are in place [49], and thus,
this offers strong motivation to investigate any potential
leakage of user privacy brought about by the HSC. Despite
some initial studies on the possible privacy leakage of HSCs
or alike services [18], [31], we still lack a comprehensive
understanding of the privacy risks of HSCs using both large-
scale passive logs and active measurements.

Thus, we argue that the novel features of the HSC
warrant further investigation. We are particularly interested
in the following questions: (i) What are the user behavioral
patterns of HSC’s live streaming mode and replay mode,
respectively? (ii) What are the differences between the usage
patterns of premium and normal users? (iii) Are there any
privacy risks, and could a tractable adversary exploit them?



(iv) What mitigation would address these privacy concerns?
To answer these questions, we rely on a unique dataset

of passive service logs collected from a mainstream HSC
provider for a week period. The dataset covers 15.4M
streams from 211K active users (§2). It contains a mix of
premium and normal (free) users, allowing us to explore a
wide diversity of HSC behaviors. We complement the pas-
sive logs with active measurements of three popular HSCs,
in order to have a deep understanding of the working flows
and generalize our findings as well. Our analysis starts by
examining the overall behavioral patterns of the examined
HSC service. We then proceed to perform unsupervised
clustering to identify key user types, followed by diving into
the watching locality (§3). We then explore a set of privacy
attacks and characterise their efficacy (§4), discovering a
subset of highly regular users for whom the attacker can
effectively infer their activities. Our key findings include:

1) The platform is dominated by premium users, who also
produce a large volume of wasted content. Premium
users constitute 59% of all accounts, yet contribute more
than 95% of total traffic, since they are much more
active in using live streaming than normal users and the
replay mode is exclusive for them. Despite this, 60% of
the total video data is wasted, since a great amount of
motion-triggered replay goes unwatched. This waste is
largely attributed to a handful of very heavy premium
users (∼1/4).

2) The viewings locations are predictable: about 10% of
users appear to utilize the HSCs as a regular surveil-
lance service and generate a huge amount of viewing
traffic. Such users tend to view their HSC streams from
1 or 2 key (network) locations, and often these are at
a different location to the camera. This is likely driven
by the differing uses of HSCs, ranging from monitoring
children’ s safety to surveillance of commercial proper-
ties.

3) We identify three major privacy risks: (i) traffic surge
risk, (ii) traffic regularity risk, and (iii) traffic rate change
risk. These attacks allow an adversary to predict the
daily patterns of the camera uploads and even infer
activities on the camera feeds. We propose methodolo-
gies to infer privacy-compromising information, and
explore the risks with both the passive logs and active
measurements of three popular HSCs.

4) We find that, premium users are more vulnerable to
privacy risks because of their heavier live video usage
and exclusive access to the additional replay mode.
For example, the accuracy of predicting the patterns of
premium users’ upload streams is as high as 0.75 (3×
the accuracy for live streams by non-premium users).
Moreover, we propose to obfuscate video uploads to
minimize the exposure to these attacks.

While the basic user behavioral patterns and privacy
issues have been presented in [32], the workload diurnal
patterns and user engagements (relevant to user behavior
patterns), as well as the user activity switch patterns (rel-
evant to privacy risks) are newly added in this extended
version.

The remainder of this paper is organized as follows.
Section 2 describes the background and dataset. Section 3

presents an in-depth analysis of user behavior, while Section
4 investigates the privacy leakage problem. We discuss the
related work in Section 5. Finally, Section 6 concludes our
work.

2 BACKGROUND & DATASET

In this section, we first introduce the HSC service, then
detail the dataset we utilize.

2.1 Primer on Home Security Cameras
We first briefly explain the operating procedures of typical
HSC services. Upon purchase, the owner of an HSC first
downloads the corresponding HSC app on a smartphone
and then connects the HSC via an accessible Wi-Fi. The user
then binds the camera to her account. The camera passively
receives commands from the servers that are hosted in a
cloud operated by the HSC provider. After setup, the user
can remotely request a live stream or an archived replay via
the cloud servers using the mobile app. It is worth noting
that users never connect directly to the camera — all video
traffic is forwarded via the servers.

HSC cameras of major HSC providers (e.g. Nest, Net-
gear, Hikvision, and 360) often support two modes of
streaming:
• Live streaming mode: The user is able to login and initiate

a live stream from the camera in realtime, via the cloud
server as an intermediary. The video will not be stored
anywhere by default.
• Motion detection mode: When a motion is detected, an app

notification is sent, and the user is then given the option
of viewing the stream in real time. Again, nothing will
be stored by default.
As the above modes are inconvenient for users who

cannot immediately view streams in realtime, some HSC
services offer another feature for premium users (who pay
a fee), where the motion detection mode automatically
uploads and stores motion-triggered streams to the cloud
servers. These streams contain video footage from a few
seconds before the motion begins, until a few seconds after.
Premium users can then replay the video at any time, and
a video will be saved for several days. We term this replay
mode.

2.2 Dataset Description
Our work relies on two datasets: (i) a large scale service log
dataset from a major HSC service provider, and (ii) actively
collected network traffic data of 3 mainstream HSCs.

Passive service log: Our service log dataset is a 7-day
dataset of log entries shared by a major Chinese HSC
service. The examined HSC provider serves hundreds of
thousands of users per day and supports all the above
features. The dataset covers all cameras that were connected
to the Internet via a major ISP in China. Every individual
log related to these cameras is included in our dataset.1

Within the logs, one video view or upload corresponds
to one stream. A service log is generated for every 30-second

1. This includes cases where a user is viewing the camera feed from
a different ISP.
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segment for each stream, so it is reasonable for 1 stream to
be related to more than 1 log. In total, we obtain 96,515,229
logs of 15,432,950 streams from 211,806 unique active users
that have uploaded at least once (either live stream or
replay videos) during the observation period. Of these users,
124,985 (124K) are premium (who pay a fee), accounting for
59% of all active users. The remaining non-premium users
are referred to as normal users throughout this paper. Note
that while both types of users have unlimited access to live
streaming, replay mode is only available for premium users.

Each log entry, which corresponds to a 30-second seg-
ment, includes three main categories of information:
1) User-specific information: the anonymized user ID that

is uniquely bound to a registered account, as well as
this user’s camera(s); the IP address (anonymized using
Crypto-PAn [2]); the anonymized BGP prefix of the IP
address, which is obtained by querying Team Cymru
[10].

2) Stream-specific information: the anonymized stream ID;
stream type (up for video uploading, down for video
viewing).

3) Segment-specific information: the average bit rate of this
segment (kbps); data volume (KB); and timestamps that
mark the start and end of the segment.

Active measurement traces: We note that the above data
pertains to a particular HSC provider. To this end, we
set up a testbed to capture the packet-level traces (128-
byte packets) actively of three popular HSC services: Nest
HSC (popular in Western countries), XiaoMi HSC (popular
in China), and also the examined one in this paper. The
cameras are connected to the Internet via a laptop that acts
as a Wi-Fi access point. We use Wireshark to capture all
packets relevant to each HSC under both live stream mode
and motion detection mode. The traces enable us to have a
better understanding of the privacy risks in HSC services.

Ethical Issues: We took a number of steps to ensure the
ethical use of the data shared with us. We have no access
to the content of video streams, and can only observe
metadata (e.g. stream duration). The logs used are rou-
tinely gathered for operational purposes, and no extra data
collection was triggered. All user information, including
user ID, IP address, BGP prefix, and even the stream ID,
is fully anonymized. We are unable, and not allowed, to
link logs to users. We also leverage volunteers for controlled
experiments (§4.4), where the cameras were placed in work-
ing areas (rather than homes). The volunteers were aware
that we only use traffic rate information. Finally, we have
reported all potential privacy risks to the service provider
and assisted them in implementing fixes.

3 EXPLORING USER BEHAVIOR
Before investigating privacy issues, it is first necessary to un-
derstand user behavior. Here, we present a characterization
of typical usage patterns in the examined HSC service.

3.1 Basic Characterisation

Stream Volumes:
We first inspect the data volumes up-

loaded/downloaded by each user and traffic type.

TABLE 1: Data volume distribution.

Normal user Premium user
live stream live stream replay All

Up 1.37% 12.96% 65.89% 80.22%
Down 1.36% 12.77% 5.65% 19.78%
All 2.73% 25.73% 71.54% 100%
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Fig. 1: Distribution of stream duration.

Note that all upload (up) streams are initiated by a camera
uploading data to the server, whereas all download (down)
streams are initiated by a user viewing the video. Live-up
and live-down are generated in pairs when users request
live feeds from the camera. Recall that the replay mode is
only available to premium users: the replay-up streams are
exclusively triggered by motion seen by the camera, while
the replay-down streams are triggered by premium users
watching the replay videos, which may happen at different
times than the replay uploading.

Table 1 summarizes the results. As expected, live-up
traffic matches the live-down traffic. This is because a live-
up stream exactly corresponds to a live-down stream. We
can also observe that the platform is dominated by traffic
generated by services for supporting premium users. The
premium accounts tend to be heavy users: they generate
97% of the traffic. This is caused by heavier use of live
streaming by premium users, and more importantly, by
the dominance of motion-triggered automatic uploads —
replay-up streams contribute over 2/3 of the total workload.
As a striking contrast, only ∼5% of download streams come
from this source (replay). In fact, we see that a remarkable
60.24% of video uploaded is never downloaded, suggesting
a significant waste in both network and storage resources.
This is particularly because replay-up streams, on average,
last longer and have larger volumes (median around 4MB).
In contrast, the replay-down streams are shorter and with
smaller sizes (0.65MB). This drives the asymmetry of the
workload in Table 1. We will examine the wasted traffic in
detail later.

Stream Duration: Figure 1 illustrates the distribution of
stream duration for both upload streams and download
streams. We can see that whereas HSCs tend to upload
the long motion-triggered video (median 50 seconds), users
tend to only replay them for a short duration (median 10
seconds). We conjecture that such users are only checking to
ascertain the reason for the motion — once this is established
the viewing is cancelled. The above asymmetry in stream
volume and duration is one of the reasons that contribute to
the asymmetry of workload in Table 1.

Diurnal Patterns: Figure 2 further presents the variation
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Fig. 2: Temporal variation of the workload of the examined
HSC service. The vertical dashed represents 0:00 and 12:00
of the day.

of traffic volumes over one week, where again we observe
the dominance of premium users. The figures are sepa-
rated into different stream categories, although the trends
across different categories of streams are broadly similar.
Each shows clear diurnal patterns, where more data is
transmitted during the daytime with 2 clear peaks around
12:00 and 17:00, implying more intensive motions at those
time points. The workload pattern we observe in HSC is
therefore different from that of mobile VoD service [34],
which often hits a major peak around 23:00. Additionally,
it is also not the same as live streaming service [44] or
personal streaming [39], which reaches their peak in the
late afternoon. Therefore, workload optimization schemes
designed for traditional VoD or live streaming services may
need to be re-examined before they can be applied to the
HSC service.

3.2 Characterising Live Stream Mode

Next, we inspect the generation and consumption of live
content by users. Note that these include both normal users
and those with premium accounts.

Overview of Live Users: We first count the number (termed
frequency hereafter) and the total duration of the live-down
streams generated per user. We show the cumulative distri-
bution in Figure 3.2 As expected, premium users are more
active than normal ones: the median frequency of streams is
7 for premium users vs. 2 for normal users. This observation
is also mirrored when inspecting duration: the median total
duration of normal users and premium users are 90 seconds
and 435 seconds respectively. Nevertheless, some normal
users generate over 100 streams and watch over 5 hours
during the observation period.

Clustering Live Stream Users: The above suggests a di-
versity of user groups. Thus, we proceed to identify core
behavioral types within the user population. To this end,

2. Note that upload and download streams are approximately sym-
metrical in terms of frequency and duration in the case of live stream-
ing.
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Fig. 3: Distribution of active users’ live streaming usages.

TABLE 2: User clustering for live streaming.

no. freq. dura.(s) % feature
#1 1.5 41.7 49 Light

Normal #2 4.8 287.1 42 Medium
#3 16.9 3,719.1 9 Heavy
#1 3.4 129.5 45 Light

Premium #2 18.4 1,422.8 44 Medium
#3 64.6 22,217.2 11 Heavy

we fit the frequency and total duration statistics of all users to
a 3-component Gaussian Mixed Model (GMM) [4].

We experimented with a number of configurations from
2 to 5 GMM components and selected 3 based on the balance
between relatively small AIC (Akaike Information Criterion)
and not too small components (percentage < 0.1%). Table
2 presents the clusters identified, alongside their fitting re-
sults. The results expose three main sub-populations, shared
across both normal and premium users. We term these light
(L), medium (M), and heavy (H). Light users use the live
streaming service rarely. In contrast, medium users tend
to check their camera feeds daily. The heavy users deviate
significantly from the average, with extremely regular view-
ing patterns. It seems likely that heavy users use HSCs as
a (potentially commercial) surveillance camera service, and
the cameras likely cover high-value regions (e.g. in a shop).

In summary, while the live streaming mode is presented
to both premium and normal users, premium users use it
more heavily than normal users.

3.3 Characterising Replay Mode

We next inspect users of the video replay service. This is
only available to premium users (59% of the population).
When activated, the replay mode automatically uploads all
motion-triggered content to the cloud for later on-demand
access.
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Fig. 4: Per-user characteristics of replay mode.
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Fig. 5: Distribution of premium users, based on their watch-
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Overview of Replay Users: Figure 4(a) presents the number
of replay streams per user. It shows that viewing replay
content is significantly more frequent (per-user) than up-
loading. This was surprising as Table 1 found that the
majority of data is generated by replay uploads. A deep
investigation reveals that whereas, by volume, the majority
of data uploaded is replay traffic, this is driven by a small
subset of streams. A remarkable 40% of (premium) users
never upload a video for replay during the week, leaving
a small subset of users with exceedingly high upload rates
— 97% of the total replay upload traffic is generated by the
top 5% of premium users. This indicates a mix of camera
installations, with many fitted in locations with very limited
motion and others in high activity zones.

This disparity raises the question of whether users actu-
ally view the videos uploaded. To measure this, we define
the Watching Proportion as the ratio of a user’s total replay-
down duration to total replay-up duration.3 Figure 4(b)
depicts the distribution of watching proportions. While
the median is around 1, it is less than 10−2 for 13.8% of
users, meaning that they watch far less than their cameras
upload. Nevertheless, about 61.5% of premium users have
a watching proportion in excess of 1, indicating that they
repeatedly watch the same streams.

Figure 5 further examines the correlation between the
uploaded volume and the watching proportion. We can
observe two typical patterns. Most users are within the
first group (upper left), where the total uploaded duration
is relatively low, yet the watching proportion is relatively
high (around 1). The remaining users (about 1/4 of the total
premium users) are within the second group (lower right),
where the total replay-up duration is relatively high, but the
watching proportion is relatively low. The actions of these
users result in over 60% of network and storage resources
being wasted.

In summary, the huge traffic waste relevant to the replay
mode is largely attributed to a handful of very heavy pre-
mium users (∼1/4) that reside in the lower right in Figure 5.
Indeed, only 4% of premium users never watch replay (See
Figure 4(a)), as many as 61.5% of the premium users watch
at least the same length of the uploaded replay streams (see
Figure 4(b)). Our results suggest that the service providers

3. We only include premium users who have uploaded replay video
for at least 10 seconds.

0 1 2 3 4 5 6 >6
# of Days Since the First Day

0

10

20

30

40

%
 o

f C
lo

ud
 U

se
rs

Fig. 6: Fraction of users that upload replay videos on the first
observation day and watch them on the x-th day (relative to
the first day).

should adopt a more informed upload strategy to meet user
needs while saving costs.

User Engagement: We next inspect user engagement, in
terms of how long it takes a user to view a video once it has
been uploaded. One would imagine that HSCs streaming
(potentially) important content would warrant immediate
viewing. Figure 6 presents a histogram of the number of
days it takes a (premium) user to view an uploaded replay
video. Over 40% of premium users check the video feed the
same day as the upload. This is intuitive in cases where the
cameras are being used for security purposes. Nevertheless,
as many as 20% of users never come back within the ob-
served week. This suggests that many users do not actually
benefit from the automated motion-sensitive uploads.

Clustering Replay Users: The above shows a wide range of
behavioral types. Thus, we repeat our earlier user clustering
process. Here, we use total replay-up duration and watching
proportion of active premium users to fit a 3-component
GMM.4 The fitting result is shown in Table 3. This exposes
three broad categories of users, which we index as light (L),
medium (M), and heavy (H) for watchers (W) or uploaders
(U), respectively. Thus, each user cluster is tagged with both
the watching and upload behaviours.

TABLE 3: Clustering active premium users.

no. up dura.(s) watch. prop. % feature
#1 46.8 20.6 11 LU-HW
#2 298.7 1.4 65 MU-MW
#3 94,823.3 0.5 24 HU-LW

The majority (around 2/3) of premium users fall into
the Medium Uploader and Medium Watcher category (MU-
MW). They keep the best balance between upload and
watching rates. The next most populated group are those
who are Heavy Uploaders but Light Watchers (HU-LW).
Such users are most costly to the system, as they consume
large amounts of network and storage, yet do not benefit
from them. At the opposite extreme, the smallest group are
those that have a low rate of uploads, but a high rate of
watching (LU-HW).

3.4 Characterising Viewing Locality
We next proceed to explore where streams are uploaded
and consumed from. This is particularly important for QoE

4. We decided on the component number here using the same ap-
proach as mentioned in §3.2.
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improvement, e.g. via caching or pre-fetching.

On-site vs. Off-site Access: Since we are interested in
the network footprint of users, we use the BGP prefix of
the user’s IP address to represent the user’s location. We
represent proximity as a binary metric where we test if the
camera and viewer are located within the same prefix. We
refer to accesses that occur from the same prefix as the
camera as on-site, and similarly, we denote accesses that
occur from a different prefix as the camera as off-site.
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Fig. 7: The proportion of users who have watched a video
from the same BGP prefix as the camera for none, all or
some of the views in each user component.

To inspect the locality patterns of the different user
groups, we take the premium user categories from Table 3,
as well as the normal user categories from Table 2. We
exclude any users who have fewer than 3 views in the obser-
vation period, to avoid bias caused by the sparse sampling
of irregular users. Figure 7 presents the breakdown of on-
site vs. off-site views for each group of users. None indicates
that no view comes from the same prefix; some indicates that
a fraction (> 0) of views come from the same prefix; and all
indicates that all user views emanate from the same prefix
as the camera.

Users exhibit similar behaviors across all usage groups.
About 30% of examined users consume no streams on-
site. This is rational, as there is perhaps little sense in
accessing camera feeds from the same site in many cases.
The remaining users may experience local access under
several situations where a single site covers a large area (e.g.
factory) or where users employ cameras for monitoring local
activities (e.g. sleeping children).

User Mobility: We finally inspect how mobile users are, i.e.,
whether users always view from the same location. To this
end, we compute for each user the proportion of views that
happened at the top k locations, where k ∈ {1, 2, 3}. Users
are again grouped based on the earlier clustering results.

Figure 8 presents the fraction of views from the top
k locations per-user as a box plot. The majority of users
view primarily from their top 1 or 2 locations. The median
fraction of views in the top 1 location and top 2 locations for
premium users is about 0.7 and 0.95, respectively. Although
normal users tend not to watch the live streams on-site (see
Figure 7), they are more likely to view the content at a single
location than premium users: over 40% of normal users
watch all streams at the top locations, while this number
for premium users is only about 30%. This indicates that
users may not move often (e.g. staying at their office). These
observations imply the possibility of predicting users’ next
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Fig. 8: The proportion of views that happened at the top k
locations for each user, where k ∈ {1, 2, 3}.

viewing location and perform pre-loading of material for
improved QoE.

3.5 Takehome Messages
We make three notable observations: (i) Wasted resources:
premium users generate the majority of the workload
(97.27%), largely due to the exclusive availability of replay
mode. This results in 60% of the uploaded videos going
unwatched. The waste is attributed to a handful (∼1/4) of
heavy premium users, who have cameras with high levels
of motion-triggered uploads (see Table 3). (ii) Distinct usage
patterns: premium users show heavier live streaming usage
pattern and higher levels of engagement than normal ones;
these account types have a mix of access patterns. (iii) Watch-
ing locality: users tend to view streams from 1 or 2 key
locations, with a sizeable portion of users watching streams
from individual remote sites, suggesting a surveillance use
case.

The above indicates that a set of simple innovations
could streamline HSC operations. Most notably, HSC ser-
vices could benefit from on-demand (rather than real time)
uploads for the replay mode. This is because most un-
watched replays come from a handful of heavy premium
users and last for a longer time. Therefore local record-
ing (with on-demand uploads) could offload a significant
volume of unwatched uploads from the network. There
are a number of ways this could be implemented without
negatively impacting the customer experience. For example,
HSCs could upload the first 1 minute of a stream by default,
allowing users to ’preview’ the content. If a user wishes to
continue viewing (this applies to less than 20% of streams),
the remaining video can be requested from the HSC. This
could also be mixed with more sophisticated methods of
delivery, whereby only users predicted to consume content
have their previews uploaded. The predictability of where
users view content from means these videos could even be
pre-fetched (e.g. to the top 1 or 2 locations). This will reduce
the startup delay, and thus improve the QoE.

4 EXPLORING PRIVACY RISKS

HSCs are always-on sensors devised to actively detect
movements mostly in intimate places. The motion-triggered
recordings are automatically uploaded. As such, network
traffic patterns may expose information about users. This
differs substantially from other traffic-inference attacks (e.g.
monitoring a user’s Netflix usage) as variations in the
camera feed (e.g. bit rate changes) can expose specifics
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about behavior, such as exposing Activities of Daily Living
(ADL). In this section, we study potential privacy risks and
solutions.

4.1 Adversary Model
Our adversary is able to monitor all network traffic in
and out of home gateway routers via Wi-Fi sniffing (e.g.
DeWiCam [23]), and then utilize IoT stream classification
approach to separate the HSC streams from others, which
is well studied in [14], [18], [27], [38], [41]. In most cases,
the payload is encrypted; nevertheless, the attacker can
exploit and only needs metadata, i.e., IP packet headers and
traffic rate. We also assume a targeted attacker, who has an
approximate understanding of the camera’s context (e.g. if
it is mounted in a house), and who owns it. Based on our
adversary model, we identify three major privacy risks:

1) Traffic surge risk: If the traffic rate of a camera surges
from its base rate, this indicates that the video is being
uploaded. In the case of motion detection mode, this
indicates activity near the camera zone.

2) Traffic regularity risk: After a period of observing surges,
an attacker may be able to infer a user’s daily patterns.
For example, a camera consistently uploading motion-
triggered video at 18:00 might indicate that family
members arrive home at that time.

3) Rate change risk: The different activity patterns of the
photographed subject will result in different HSC traffic
rates. This is because variable-bitrate (VBR) encoding is
often used for video compression, where the bit rate of
a video stream is closely related to the video content.
Based on these rate variations, an attacker may be able
to infer the intensity of activity being undertaken, and
even the types of activity.

The first risk and the third risk have been examined
in [18], [31] via small-scale testbeds using active measure-
ments. We extend the analysis using our passive logs and
active measurements of three popular HSCs. The second
risk is explored for the first time. It should be noted that
although the examined HSC is based in China, these attacks
are equally applicable to other cameras that use VBR encod-
ing, including Nest [18] as we show later in this section.

4.2 Traffic Surge Risk
A traffic surge is a point in time where the bit rate of a
camera’s feed increases dramatically. This creates a privacy
risk that is inherently part of the transmission schemes of
HSC services (since the camera only uploads when some
certain functions are activated and stays idle for the rest
of the time). This constitutes the foundation stone of all
subsequent attacks.

Methodology: A traffic surge may be triggered by one of
two events: (i) a user viewing the live stream; or (ii) the
motion capture triggering an upload for later replay (in the
case of premium users). In both cases, once an upload is trig-
gered, a significant surge in traffic is observed. Trivial peak
identification across the bit rate time series can therefore be
used to verify if the camera is recording.

It is noteworthy that motion-triggered uploads corre-
spond to the real time movements in private places, while

live uploads may be triggered by the viewing requests of
users. As such, an attacker who can differentiate between
live and motion-triggered uploads is threatening. Inspec-
tion of the traffic reveals that it is possible to differentiate
between live and motion-triggered uploads. This is because
motion-triggered uploads always start with an initial peak,
due to the uploading of a motionless video at the beginning
of the transmission. We can identify peaks from the traffic
rate time series, S = {s1, s2, ..., sn}, where si represents
the bit rate observed at the time point i. The maximum
value within S is denoted as p. We assume the traffic rates
follow a Gaussian distribution, then we construct a second
set with p removed, S′ = {s|s ∈ S, s 6= p}. We calculate
the standard deviation (σ) and the average of S′ (i.e., S̄′).
Values less than 1.96σ + S̄′ occupy approximately 95% of
the probability space [13]. If the maximum value within S
is greater than 1.96σ+ S̄′, this time series indicates a replay
upload. Otherwise, it indicates a live stream. We have also
verified the presence of this traffic surge risk in two other
HSCs: XiaoMi and Nest.

Risk Exploration: To measure the efficacy of this risk, we
conduct a set of controlled experiments, where we connect
three types of HSCs (namely an examined HSC, a XiaoMi
HSC, and a Nest HSC) using a laptop as the Wi-Fi access
point, and perform packet capture using Wireshark. We
leave the cameras dormant before starting to view the
stream after 25 seconds. Figure 9(a), 9(c) and 9(e) present
the time series of the normalized bit rate for three types of
HSCs respectively. When we start to watch a live stream, all
cameras switch from motion detection mode (white) to live
streaming mode (green): this is shown by the sudden spike
in bit rate. When we finish watching, all cameras switch
back to motion detection mode and stop the transmission.

To confirm our ability to differentiate live and motion-
triggered uploads (i.e., replay-up), we repeat the above
setup5 with premium user accounts and periodically sim-
ulate motion in front of the cameras. Figure 9(b) presents
the result for the examined HSC, confirming that motion
triggers an immediate upload. For the Nest HSC in Figure
9(d), we can also observe clear traffic spikes when the
motions were triggered. Importantly, the traffic peaks at the
beginning of transmissions are notable and trivial to detect
using our methodology (i.e., we obtain 100% accuracy).

4.3 Traffic Regularity Risk

The above shows that a passive attacker can infer (i) if
a camera is uploading; and (ii) if that content is being
streamed for motion capture replay. We next explore if this
can be exploited to identify regular patterns in a user’s
behavior. For example, if a camera in a house regularly
initiates a motion-triggered stream at 7 AM, an attacker
could infer that this is the time the owner awakes. Such
information could be used to enable physical attacks, e.g.
burglary.

Methodology: To test if such regularity can be inferred from
network traffic, for each user, we define the Regularity Value
(RV) as follows. We first count the upload duration per

5. We exclude XiaoMi HSC, since it did not support motion detection
mode when the experiments were conducted.
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Fig. 9: Normalized traffic rates for the examined HSC, Nest HSC and XiaoMi HSC in live streaming mode and motion
detection mode.
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Fig. 10: Durations of premium users uploaded replay video
and corresponding regularity value (R.V.) example.

hour across the observed period. This yields one 24-element
vector per day. We then filter out the days without any
uploading. For each of the remaining vectors, we compute
the moving average with a window size of 3 hours, in order
to compensate for variations in a user’s daily activity (e.g.
viewing a stream at 10:03 rather than 9:59). We then calculate
the pairwise Pearson Correlation Coefficient between all
possible pairs of a user’s daily vectors; we refer to the final
per-user average as the regularity value.

The regularity value ranges from -1 to 1. If the value
is positive, the upload patterns of the user are regular (the
closer to 1, the stronger the regularity). This indicates the
daily patterns of the user can be inferred. Note that the
regularity value is not an attack in itself — it quantifies how
susceptible users in our dataset are to this type of analysis
by an attacker. To highlight the efficacy of regularity value,
Figure 10 presents the hourly duration recorded across two
users in our dataset. The duration being captured are for
the motion-triggered uploads. User 1 (green) exhibits highly
regular patterns, with a score of 0.9. It can be seen that this
user’s camera performs motion-triggered uploads regularly
at night and during the early morning. In contrast, User 2
(red) has highly irregular patterns (score of -0.9), where all
camera activity is across several hours on Wednesday and
Thursday.

Risk Exploration: We next test the regularity of users in our
dataset. We only inspect those users who have uploaded for
at least 2 days within the observed week. This includes 67%
of all users who have performed live uploads, and 51% of
premium users who have motion-triggered replay uploads.
Figure 11 presents the distribution of regularity values
across normal and premium users. Again, we separate these
users into their categories as identified via our earlier GMM
clustering.

Figure 11(a) reveals significant diversity across the differ-
ent clusters for motion-triggered replay predictability. The
majority of LU-HW users and MU-MW users show little-to-
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Fig. 11: Distr. of regularity value of different clusters of
users.

no regularity. Their median regularity is near to 0, indicating
that their daily patterns are difficult to predict. This is partly
driven by their very nature, which consists of limited usage.
In stark contrast, HU-LW users show stronger regularity,
with the 75-th percentile as high as 0.69. In the case of
live videos (Figure 11(b)), in all clusters, the regularity of
premium users is higher than that of normal users. Fur-
thermore, as the usage frequency becomes higher (for both
premium and normal users), the regularity becomes higher.
This intuitive finding indicates that heavier users are easier
to predict.

To find a reasonable threshold (thresh) for what might
be considered strongly predictable, we use the approach sug-
gested in [29]. We fit all positive user regularity values into
a 2-component GMM, and we define the intersection of the
2 resulting components as the threshold. The resulting value
of thresh is 0.34 in both the cases of normal and premium
live uploading, and 0.35 in the case of replay uploading.
Consequently, 17.4% of replay-up premium users, 18.7% of
live-up premium users and 11.5% live-up normal users can
be considered as strongly predictable.

Predicting Activity: We next confirm that this regularity
can be exploited to predict upload patterns. We extract all
users who have uploaded video data on all 7 days: 9,912
(8%) premium users for replay-up and 14,826 (7%) users
for live-up. We then use their first four days to fit a Holt-
Winters model [3] to predict the following three days time
series (seasonal period was set to 24). Note that the time
series are binary (0 for no upload in that hour, 1 otherwise).
We compute the prediction accuracy as follow:

Hit rate = 1/n ∗
∑n

i=1
hri (1)

where hri is 1 if the prediction for the i-th time slot is correct
(0 otherwise), and n is the number of hours under prediction
(i.e., 3 ∗ 24).
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Figure 12 presents the distribution of hit rates across all
users. We perform separate predictions for replay, premium
live and normal live streams. We then split these users
into the two categories of regularity: 0 < RV ≤ thresh
and RV > thresh. Unsurprisingly, the more regularly the
user uploads, the higher the hit rate is. The predictions are
most accurate for replay video uploading, where the hit
rates are as high as 0.75 (3x the accuracy in the cases of
live uploads). This is likely because it depends solely on
motion, rather than user viewing behavior. This confirms
that, particularly for heavy users, motion-triggered uploads
do have the capacity to allow attackers to predict future
activity. This could be an effective tool for identifying the
best time for physical attacks.

4.4 Rate Change Risk

Finally, we explore the potential to identify activity changes
on a camera feed via bit rate monitoring, e.g. identifying
a person shifting from sitting to walking. This is possible
due to the use of Variable Bit Rate (VBR) encoding, in which
video artifacts may manifest themselves as rate changes.

Methodology: We take inspiration from Li et al. [31], who
proved it possible to identify activities by monitoring the
bit rate feed from a video stream. Their approach involves
first identifying video segments (via change points), and
extracting key features. By manually labeling each segment
with their associated activities (e.g. eating, dressing, styling
hair), they then train classifiers to identify activities in other
feeds. With these results in mind, we next test the number
of potential activity segments that can be extracted from
the video streams in our dataset (1 segment maps to one
activity [31]). Although we cannot associate these segments
with their respective labels (e.g. eating), this does offer an
upper-bound on how many activities could be extracted. To
do this, we convert all streams into a bit rate time series,
and then utilize Bayesian Online Change Point Detection
(BOCPD) [12] to identify each segment in a camera’s feed.

BOCPD assumes that a sequence of observations
(x1, x2, ..., xt) contains several non-overlapping partitions
ρ [19]. For a given time series, BOCPD computes the run
length, which represents the number of time steps since
the last detected change point (denoted as rt at time t).
The probability distribution of rt can be computed using
a recursive algorithm as follow:
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Fig. 12: Distribution of accuracy of upload behavior pre-
diction (hit rate) for users of different ranges of regularity
value.

P (rt|x1:t) =

∑
rt−1

P (rt|rt−1)P (xt|rt−1, x
(r)
t )P (rt−1, x1:t−1)∑

rt

P (rt, x1:t)
(2)

where x(r)t indicates the set of observations associated with
the run rt. P (rt|rt−1), P (xt|rt−1, x(r)t ) and P (rt−1, x1:t−1)
are prior, likelihood, and recursive components of the above
formulation. The conditional prior has non zero mass under
only 2 circumstances:

P (rt|rt−1) =

 H(rt−1 + 1) if rt = 0
1−H(rt−1 + 1) if rt = rt−1 + 1

0 otherwise
(3)

H(τ) =
Pgap(g = τ)∑∞
t=τ Pgap(g = t)

(4)

In the above, H(τ) is the hazard function [26]. The likelihood
term P (xt|rt−1, x(r)t ) therefore represents the probability
that the most recent datum belongs to the current run.

Adams and MacKay [12] do not specify an exact method
to identify change points after calculating the run length
distributions. Thus, we propose a statistical way to identify
change points: after obtaining all the run length distribu-
tions, we fit all probability values P (rt = 0), t ∈ N into a
Gaussian distribution. Since for all Gaussian distributions,
95% of the area is within 1.96 standard deviations (σ) plus
the mean (µ) [13], we label any time step t as a change
point when P (rt = 0) > µ + 1.96σ holds. One advantage
of BOCPD is that it is effective in cases where an attacker
only has access to periodic (smoothed) bit rate samples (e.g.
every 30 seconds). In such cases, each sample x can be
expanded across the time period by a Poisson distribution
of λ = x, namely P (λ = x).

For context, Figure 13 highlights the outcome of this
change point detection process. Here, we setup a controlled
experiment, in which we connect an examined HSC, a
XiaoMi HSC, as well as a Nest HSC to a Wi-Fi hotspot on a
laptop. We then set those cameras in live streaming mode.
Then, we present them with an animated GIF that flickers
between all black and all white at different intervals (still,
800ms, 400ms, and 200ms), and meanwhile, we monitor the
network traffic rates of cameras in the laptop via Wireshark.

Figure 13(c) presents the bit rate time series for the
examined HSC. By studying the bitrate, we see that the HSC
traffic rate is sensitive to the intensity of the GIF. Figure 13(f)
also shows the extract change points. This confirms the
correct calculation of the run length. The same observation
holds for Nest (see Figure 13(b) and 13(e)). This, however,
does not hold for XiaoMi HSC (presented in Figure 13(a)
and 13(d)), where there is no significant correlation between
traffic rate and GIF shifting period. This is because XiaoMi
does not use a susceptible encoding scheme. Note that it
is out-of-scope to perform the mapping between these runs
and their underlying activities, as it is necessary for an at-
tacker to first collect ground truth mapping data for training
purposes [31]. Thus, we emphasize that such an attack could
only be realised by a highly equipped adversary with the
ability to contextualize the segments.
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activity pattern changing. GT: I think the above
needs a bit of a rewrite (i.e. make more for-
mal rather than verbose). Also, it is not clear
why this is a good metric. JY: Now this bit is
named Risk Verification, but actually, we cannot
verify the risk as you said. What we can do and
what we are doing here is we assume the risk ex-
ists and measure the magnitude of the potential
privacy risk. To measure the magnitude of the
risk (namely, the number of changepoints), two
factors should be taken into consideration: the
duration of uploading and the changepoint ratio
(# of changepoints = duration ∗ changepoint ratio).
So I thought we should study both factors. How-
ever, considering the page limit and the con-
clusion about the duration-changepoint-number
relationship is quite intuitive, we can only talk
about the changepoint ratio.
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Figure 13: Distribution of users’ change point point
ratio.

Consider the impact of usage pattern variation, we

break all premium users and normal users into groups
according to the GMM models in Table3 and Table 2,
respectively. After that, we calculate change point ratio
for users in each groups. The resulting statistics is ex-
hibited in Figure 13. As we can see in Figure 13(a), the
change point ratio distribution of the 3 groups of pre-
mium users is quite close. The most noteworthy is that
less than 1% of HU-LW users have never had a change
point, and this proportion is about 10% in the other
two relatively inactive uploading premium user groups.
Compared with premium users, normal users which are
presented in 13(b) are less active, having shorter up-
loading duration. From previous experiments, we know
that less active uploading (short duration) user have
fewer change points, but from Figure 13(b), the median
change point ratio in L group which consists of least
active users is 0.5, which is the greatest change point
ratio among all 6 groups of users. However, at the same
time, the proportion of users in L group with a 0 change
point ratio is also the largest, exceeding 40%, indicat-
ing that for users who upload inactively, the observed
activity pattern is probably shifting in a irregular way
since the uploading is short.

JY: This is the conclusion part. Now we only
analysis the changepoint ratio. If we decide not
to analysis from the duration perspective, we
should remove it. From the duration perspective:
The longer the uploading duration is, the more activ-
ities will be observed. While, from the perspective of
user habits: for users who regularly upload, the prob-
ability of doing only one thing for a long time is very
small. Therefore, studies on above two factors can actu-
ally draw one conclusion jointly: The longer and more
regular the user uploads, the more user activity will be
exposed to the attacker, creating a serious privacy risk.

GT: I think the above is a bit risky. We’re
basically jumping to the conclusion that longer
duration streams expose more information. But
we don’t really have any evidence to say these
segments are really exposing anything for real
(we are just assuming they are). I fear this
will get attacked by reviewers. Would you be
okay with me condensing this analysis (maybe
even removing some of the graphs)? JY: Yes,
we only assume that the segmentation can be
mapped to activity. Actually, if m changepoints
are detected in one of our traffic rate timeserie,
there will be m + 1 activities at most. But m,
the number of changepoints, can still represents
the number of activities to some extent. I agree
with you that too strong assertion will probably
be attacked. Please feel free to edit on.

Activity switch pattern. Apart from the mag-
nitude of the rate change risk, we are also interested
in user’s activity switch pattern since people often do
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Fig. 13: Traffic rate changes of cameras when GIFs shifting period changes and the corresponding probability of run length.
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Fig. 14: Distribution of users’ change point ratio.

Risk Exploration: First, to gain an idea of the number
of potential activities that can be extracted from a camera
feed, we measure the number of BOCPD segments in each
camera’s stream. To this end, we define the Change Point
Ratio for a stream as:

Ru =
1

n

n∑
i=0

Ci

Pi
(5)

where Pi andCi are the number of data points and the num-
ber of identified change points in stream i’s rate timeserie
respectively; n is the number of up-streams generated by
user u.

We report the distribution of change point ratios for each
user in Figure 14, where we again separate users into their
categories as identified via our earlier GMM clustering. The
change point ratio distribution of the 3 groups of premium
users is quite close. The most noteworthy is that under 1% of
HU-LW users have never had a change point (this is about
10% in the other two relatively inactive uploading premium
user groups). This indicates that the remaining majority of
users do have activity changes within the streams. Com-
pared with premium users, more normal users have a zero
change point ratio (40% medium normal users and 20%
high normal users), implying very few activity changes
in their streams. This distinct behavior is partly because
only live streaming mode is available for normal users,
which results in less regular activity than motion-triggered
capture. Nevertheless, with appropriate training data, this
implies that the attack detailed in Li et al. [31] would have
widespread applicability.

Activity Switch Patterns: We are also interested in users’
activity switch patterns (ASP), since people often do things
in a certain logical order (e.g. washing their hands before
dinner). These sequences could therefore add context to any
inferences performed by an attacker. Unlike the controlled
experiment in a laboratory [31], our dataset is composed of
real-user traces and contains complex activities that are not
exhaustive. We first divide camera traffic time series into
activity segments, where two consecutive activity segments
are separated by a change point that is identified using the
above BOCPD-based methodology. We then cluster activity
segments so that the activities in the same group have
similar characteristics, and finally we study the ASP based
on activity categories.

To this end, we first extract 7 features for activity seg-
ments, and then input the features into the unsupervised
learning algorithm (K-Means) to obtain clustering results.
Specially, we extract features from the perspectives of both
the time domain and the frequency domain:

1) The duration of the segment: The duration (d) reflects the
length of the activity.

2) The mean bit rate: The mean bit rate (bavg) can show the
intensity of the activity.

3) The median bit rate: To avoid the effect of the churn, we
also take the median (bmid) into consideration.

4) The variance of the bit rate: Through the variance (var)
we can understand how variable is the activity.

5) The skewness of the bit rate: Skewness represents the
degree of asymmetry in the data distribution. Consid-
ering a segment S = (b1, b2, ..., bi, ..., bn), bavg is the
average of the bit rate, the skewness can be defined as
follow:

skewness =
1
n

∑n
i=1(bi − bavg)3

( 1
n−1

∑n
i=1(bi − bavg)2)3/2

(6)

6) The kurtosis of the bit rate: Kurtosis exhibits the sharp-
ness of the peak of the distribution curve. Considering
a segment S = (b1, b2, ..., bi, ..., bn), bavg is the average
of all bit rate, the kurtosis can be defined as follow:

kurtosis =
1
n

∑n
i=1(bi − bavg)4

( 1
n

∑n
i=1(bi − bavg)2)2

− 3 (7)
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TABLE 4: Mean value of major features for each segment
cluster.

no. d (s) bavg (kbps) % feature
#1 33.6 376.8 43.9 light intensity
#2 35.7 905.2 27.0 high intensity
#3 279.9 888.7 21.1 long-lasting
#4 105.6 924.3 8.0 burst motion

7) The first k Fast Fourier Transform (FFT) coefficients: To
discover the periodic characteristics of the activity,
we also take the frequency domain into consideration:
We apply FFT to each segment and use the first k
coefficients as the features6.

Recall that the replay uploading is triggered by the de-
tected activity. Therefore, we focus on the replay-up streams
from the MU-MW and HU-LW premium users. To avoid
possible bias caused by stream length, we only consider
replay up streams of duration between 2 and 30 minutes.
This is because such streams are not too short to contain
many meaningless random events (e.g. , someone shortly
passing by), Similarly, it is long enough to cover a complete
activity.

After extracting the features from above segments, we
apply Z-Score and Principal Component Analysis (PCA)
for preprocessing. Then we input the outcome to K-Means
algorithm for clustering. We experiment with k from 2 to
10, and determine k = 4 based on the relatively small
Davies Bouldin Index (DBI) [20]. We show the mean value
of some distinctive features (duration d and average bit
rate bavg) for each cluster in Table 4. Note that the activity
segments in a group exhibit similar traffic rate pattern, but
may have different types of activities. For instance, the
segments of chewing food at home and typing keyboard
in an office may be classified into one group, because both
are of light intensity. We can summarize the characteristics
of the four categories of activities as follows: The cluster 1
and cluster 2 are the two major activity types (> 70% of
activity segments). The streams in both categories are short
in duration, but differ from each other in bit rate level. It
seems that the activities in the cluster 1 are triggered by
movements of light intensity, resulting in the lowest bitrate.
On the other hand, the second highest bit rate implies
that activities in the cluster 2 are triggered by movements
of high intensity. Thus, we term the cluster 1 and 2 as
light intensity and high intensity, respectively. The cluster 3
accounts for about 1/5 of all activities, and activities in this
group last for the longest duration. We term this group as
long-lasting activities. Finally, the least populated cluster 4
shows the highest average bit rate, which potentially results
from sudden movements. Thus, we term it as burst motion.

Next, we examine the activity switch pattern by exam-
ining the probability of one type of activity (A1) switching
to another (A2) Prob{A1 → A2}, where A1 and A2 are two
consecutive activity segments separated by a change point.
Specially, we compute Prob{A1 → A2} = nA1→A2/N
×100%, whereN is the total number of activity switches ob-
served in our dataset, and nA1→A2 is the number of switches
from A1 to A2. The results are shown in Figure 15, where
the number marked on the grid x, y shows Prob{y → x}.

6. We set k to empirical value 5.
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Fig. 15: Percentage of the types of two activities that occur
in succession. The number indicates the percentage for
switching from type Y to type X. All numbers sum up to
100%

We have following observations. First of all, the most
common switch pattern is the switching between activities
of the same type: The proportion of occurrences of such
switches is 52.3%, and the probability of switching from one
light-intensity to another light-intensity (1→ 1) is as high as
30.9%. Secondly, the possibility of switching from (to resp.)
the activity of cluster 1 to (from resp.) others is lower. Recall
that, the activities in cluster 1 are far less intensive than
those in other clusters, as indicated by the very low bit rates.
We conjecture this observation is because it is relatively
infrequent that people suddenly change from low-intensive
activities to high-intensive ones. Finally, we find that a long-
lasting activity (cluster 3) is usually followed by another
long-lasting activity.

Although, we cannot link the activity change patterns
into specific activities, we make the first attempt to show
the possibility of linking the changes to users’ activities,
and shed light on future work. Furthermore, our taxonomy
could be used by attackers to infer a general category of
activity taking place on a camera feed.

4.5 Toward Privacy Risk Mitigation

The root cause of the three risks is that there is a correspon-
dence between the traffic rate and the working state of the
camera. Our results show that premium users are most at
risk, which is attributed to two factors: (i)the heavier usage
of live streaming by the premium users means a higher
possibility of exposure to the risks; (ii)the exclusive replay-
up mode further increases the risk possibility. It is therefore
necessary to alleviate this correspondence. In the simplest
case, this could be done by artificially triggering camera
activity to introduce noise to any inferences, for example,
by the user directly placing a moving object (e.g. clock)
in front of the camera for motion-triggered recording. To
examine the efficacy of this strawman solution, we setup
a controlled experiment, where a clock is set in front of
the examined HSC (about 1 metre away). We observed
motion detection recording being triggered immediately.
This strategy can also cover up the rate change caused by
the movement of light intensity: We swept hand for about 5
seconds (Figure 16(a)), and we observed no significant HSC
traffic rate change (Figure 16(b)). Indeed, the movement of
the second hand in the clock adds noise to the traffic rate.
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(a) The screenshot of the recording as the
hand swept.
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(b) Traffic rate of the HSC.

Fig. 16: No obvious HSC traffic rate change was observed
when a hand swept past the clock background.

This, however, is undesirable for several reasons, not
least because it would waste resources: in our controlled
experiments, it generates over 50MB of wasted traffic per
hour. Another reason for not preferring this strawman so-
lution is that the moving object (here are the hands in the
clock) should not be far from the camera. Otherwise, the
noise would be too low to undermine the attacks. A close
moving object before the camera would limit its coverage,
even make it useless.

Thus, a superior option would be for each HSC to ran-
domly generate streams, thereby undermining the attacks.
Such streams could be tagged in order to inform the server
to discard them. Notably, the times, duration and traffic rate
pattern must be random. HSCs could also perform traffic
shaping to flatten spikes in the bit rate [16], [48]. Note that
half of the users wait at least 10 minutes before viewing
newly uploaded replay videos, suggesting that such traffic
shaping could be easily performed without an adverse
impact on user experience.

4.6 Discussion

It should be noted that the traffic surge risk and regularity
risk are not specific for HSCs. For instance, Apthorpe et al.
[18] showed that the traffic rates of sleep sensors can be
exploited to infer when the user falls asleep and when to
get up. However, the (traffic) rate change risk is unique to
HSC due to the use of VBR encoding for video compression,
where the bit rate of a video stream is closely related to the
video content.

Indeed, the HSC traffic raises unique challenges and
causes substantial impacts: (i)HSCs are always-on sensors
installed mostly in intimate places for monitoring. The re-
play mode available for premium users even automatically
uploads recordings of the activities in front of the cameras.
These features make HSCs much more sensitive to privacy
risks; (ii)the rate change risk means that a sophisticated
attacker can even infer the activities happening in the user’s
home by simply monitoring the (encrypted) HSC traffic;

(iii)the risks caused by the HSC traffic are difficult to address
because obfuscating the traffic rate changes may introduce
much traffic overhead.

Our proposed solutions in Section 4.5 are the first at-
tempt toward the privacy risk mitigation for HSCs. These
solutions, however, require further validation and evalu-
ation before wide adoption. We leave more sophisticated
solutions as future work.

5 RELATED WORK

Privacy Leakages from IoT Traffic: In spite of encryption
in IoT, several recent studies have shown the possibility
of privacy leakages from application traffic. Ren et al. [40]
characterised the information exposure for 81 IoT devices
from four major perspectives. Li et al. [31] showed the possi-
bility of inferring Activities of Daily Living from encrypted
surveillance video traffic. Apthorpe et al. [18] showed that
attackers can infer users’ activities from a set of IoT devices’
(including Nest HSC) encrypted traffic. Wood et al. [46]
investigated medical IoT devices that may reveal sensitive
medical conditions and behaviors. Copos et al. [24] pre-
sented a scheme that could infer whether a home is occupied
by parsing characteristics of the network traffic from smart
thermostats. Xu et al. [30] devised a system to separate
the wireless camera stream from the others and infer the
presence of person in the house by inspecting the camera
stream. They further use a similar scheme to find hidden
camera [23]. Srinivasan et al. [43] presented a novel attack in
home IoT systems, by which an attacker can observe home
private activities. They then proposed and evaluated a set
of privacy-preserving design guidelines for future wireless
IoT systems. Other works examined the vulnerability of
unprotected Internet cameras. Xu et al. [47] investigated
IP cameras without password protection in insecam [7] to
examine the vulnerabilities of those cameras. Song et al. [42]
conducted a systematic study on live webcams from both
aggregation sites and individual webcams, and analysed
the spatial and content features of live webcams. Our work
differs from the above in two aspects: (i) These studies
mainly rely on active measurements with a limited number
of cameras, whereas our work leverages large-scale ser-
vice logs of over 200K cameras from a major HSC service
provider. We also conduct active measurements using three
different types of HSCs to complement the passive logs.
(ii) While most of above works only examined one privacy
risk, we investigate three privacy risks.

To address the possible privacy leakages in IoT ap-
plications, several countermeasures have been proposed.
Apthorpe et al. [17] [16] proposed strategies, including traffic
shaping and tunneling to protect IoT device consumers from
side-channel traffic rate privacy threats. Zhang et al. [48]
proposed to reshape packet features through dynamically
scheduling packets over multiple virtual MAC interfaces,
in order to obscure the features of the original traffic. The
Replacement AutoEncoder [37], on the other hand, trans-
forms discriminative features contained in time series data
to the features that are common in non-sensitive inferences,
to protect users’ privacy. Some of these solutions, like traffic
shaping, can also be applied to HSCs to preserve privacy.
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User Behavior Inspection: To the best of our knowledge,
we conduct the first measurement work on the HSC user be-
havioral pattern based on a large-scale passive log dataset.
Nevertheless, the user behavioral patterns of other Internet
video applications have been examined in various works.
Li et al. [35] examined user behavior patterns of a mobile
live streaming service and identified the traffic waste due
to the less frequent access to the uploaded content. Raman
et al. [39] explored a long period of Facebook Live data and
found that most of the broadcasts are short and go un-
watched which introduces unnecessary network burden.
Our results also have similarities with mobile personal live-
cast systems [36], [45], which also exhibit short stream char-
acteristics. Brodersen et al. [22] investigated the relationship
between popularity and locality of online YouTube videos
by examining whether YouTube videos exhibit geographic
locality of interest. Deng et al. [25] explored the unique
nature of the Twitch platform, and found that Twitch is very
different from existing video platforms. The HSC services
differ from other Internet video applications in that: (i) the
content is more private; (ii) HSCs often provide live stream-
ing mode, as well as motion detection mode; (iii) HSCs
are unicast in nature, where content is only available to
the owner of the camera. These features yield the distinct
behavior patterns of HSCs as we found in this paper.

6 CONCLUSION

In this paper, we have presented a large-scale measurement
work of a major HSC system, highlighting several novel
findings. For instance, only the top 5% of cameras (largely
motion-triggered uploads) produce about 95% of replay
upload traffic. Such skewed workload results in a significant
fraction of content going unwatched and therefore wasting
resources. These previously unknown patterns contribute to
the growing body of work focused on optimizing home IoT
devices. We also inspected the privacy implications of using
HSCs, driven by the close integration between real-world
activities and subsequent network traffic. We disclosed a
range of privacy inferences, and have offered an upper
bound for the predictability of user patterns. The suscep-
tibilities of users to these risks differ, and we identified a
subset of heavy users who are most vulnerable. Although
our passive log dataset comes from one HSC service, we
test the privacy risks in two other popular HSCs and note
the privacy attacks are equally applicable to most other HSC
brands, due to their use of Variable Bit Rate encoding.
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