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ABSTRACT Proceedings of ACM Conference (Conference’17). ACM, New York,

Understanding and predicting real-time vehicle mobility pat-
terns on highways are essential to address traffic congestion
and respond to the emergency. However, almost all existing
works (e.g., based on cellphones, onboard devices, or traffic
cameras) suffer from high costs, low penetration rates, or
only aggregate results. To address these drawbacks, we uti-
lize Electric Toll Collection systems (ETC) as a large-scale
sensor network and design a system called VeMo to trans-
parently model and predict vehicle mobility at the individual
level with a full penetration rate. Our novelty is how we
address uncertainty issues (i.e., unknown routes and speeds)
due to sparse implicit ETC data based on a key data-driven
insight, i.e., individual driving behaviors are strongly corre-
lated with crowds of drivers under certain spatiotemporal
contexts and can be predicted by combining both personal
habits and context information. More importantly, we eval-
uate VeMo with (i) a large-scale ETC system with tracking
devices at 773 highway entrances and exits capturing more
than 2 million vehicles every day; (ii) a fleet consisting of
114 thousand vehicles with GPS data as ground truth. We
compared VeMo with state-of-the-art benchmark mobility
models, and the experimental results show that VeMo out-
performs them by average 10% in terms of accuracy.
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1 INTRODUCTION

Understanding and modeling individual vehicular mobility
on highways have various applications, e.g., congestion pre-
diction [22], route planning [6] and ramp metering [34]. How-
ever, modeling and predicting individual vehicle locations in
fine spatial-temporal granularity are extremely challenging
due to a large number of vehicles and limited infrastructures
on highways compared to cities [1][33].

The existing approaches for vehicle location prediction can
be basically categorized into two groups: (i) mobile infrastruc-
ture based solutions such as cellphones (e.g., Online Map Ser-
vices [17]) and onboard devices (e.g., OBD devices [7]), and
(ii) static infrastructure based solutions: traffic cameras [42],
loop sensors [36], and RFID [47]. For mobile infrastructure
based solutions, they typically have privacy issues since they
require real-time GPS locations of vehicles [50]; for static
infrastructure based solutions, they typically introduce low
spatial coverage or high costs for a complete highway system
coverage [41]. Further, both of them may suffer low penetra-
tion rates, e.g., some commuters do not use navigation apps
when traveling some familiar routes [35]; traffic cameras are
not pervasive on highways in some countries [15].

In this paper, to address these drawbacks, we utilize a high-
way Electric Toll Collection (ETC) system as a sensor net-
work for vehicular mobility modeling and prediction. Com-
pared to the existing approaches, our ETC based solution
has the following features: (i) it requires no additional infras-
tructure since it relies on data already gathered in real time
over highway networks for toll collections; (ii) it poses no
additional privacy threats because it does not collect vehicle-
specific GPS data; (iii) it does not suffer from low penetration
rates since all vehicles have to be charged by an ETC system
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when using highway systems. Even some highways are in-
stalled with induction loops, they cannot achieve individual
level modeling compared to the ETC system.

However, since an ETC system is deployed for toll collec-
tions instead of mobility modeling, we have the following
new challenges. (i) An ETC system only logs when and where
a vehicle enters and leaves a highway system for billing pur-
poses and it leads to extremely sparse location records for
each vehicle, i.e., only two data points per trip, which makes
predicting destinations without intermediate locations be
challenging. Without any historical routes or speeds logged,
it is difficult to train a model. (ii) In a complicated highway
network, given an entrance and exit, there are many potential
routes as shown by our later analyses, and ETC data do not
log any information regarding which route was taken during
a particular origin and destination pair. Based on our data,
we found that the shortest routes are not the first choices
for many vehicles due to congestion. (iii) Traffic speeds vary
by different spatiotemporal contexts, and ETC data do not
directly log speeds. Straightforward solutions (e.g., assuming
real-time speeds vary near the speed limit) usually do not
perform well because of various driving behaviors under
different contexts.

To address these challenges, in this paper, we perform a
systemic investigation of a large-scale ETC system along
with its data, and we found a key data-driven insight: even
with complicated highway networks and real-time context,
individual travel behaviors are strongly correlated with crowds
under certain spatiotemporal contexts and can be predicted
by combining both personal habits and context information.
Built upon this insight, we design a model called VeMo to
model and predict individual vehicular mobility patterns
based on sparse observations on real-time origins as well as
historical origins and destinations only. In particular, the key
contributions of this paper are as follows.

e To our knowledge, we conduct the first systematic
investigation of real-time vehicular mobility modeling
and prediction based on large-scale ETC and GPS data.
Our investigation is based on real-time and historical
ETC data from 7.8 million vehicles and GPS data from
114 thousand vehicles. This large-scale vehicle sensing
study enables us to find mobility insights that are not
possible to obtain with small-scale systems and data.
By working with our collaborators, we released some
processed sample data for the benefit of the research
community!.

e We analyze both ETC and GPS data and provide some
in-depth discussions on vehicular mobility patterns on
highways. Based on the insights from our analyses, we
design a mobility prediction system called VeMo with
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three key components to predict destinations, routes,
and speeds for individual vehicles based on both his-
torical and real-time ETC data. Technically, we extract
unobserved routes and speeds through a joint opti-
mization model. By studying various mobility features
at both the individual level and crowd level, we fuse
them based on a Mondrian Forests model to address
the uncertainty issue in the mobility prediction.
e More importantly, we implement and evaluate the
VeMo in Guangdong Province, China with (i) an ETC
system covering 1,439 highway entrances and exits,
and it captures around 2 million vehicles per day; (ii) a
vehicle fleet and its GPS data including 114 thousand
vehicles for evaluation only, where 20% of vehicles
have the trajectories on highways.
We evaluate VeMo through a two-month set of ETC
and GPS data by showing both intermediate results
(e.g., predicting destinations, routes, and speeds) and
end-to-end results (e.g., predicting real-time locations).
We study the performance sensitivity of our system
to different spatial-temporal contexts. Compared with
state-of-the-art solutions, VeMo provides a 10% perfor-
mance gain on average in terms of prediction accuracy.

2 MOTIVATION
2.1 Use cases

VeMo aims to predict the real-time locations of individual
vehicles, which enables various applications that cannot be
achieved by previous solutions. As collaboration with the
highway administrators, we gives two exemplary applica-
tions that matter a lot to the highway management.

e Highway anomaly detection: One important task
for highway administrators is to detect the highway
anomaly at the first time, such as traffic accidents. How-
ever, it is quiet expensive to arrange regular road check
manually or cannot detect anomalies in time. Through
predicting the real-time location of a vehicle, we can
know when the vehicle is expected to leave the high-
way in the regular situation. Conversely, we could
know there may be an anomaly event if a number of
vehicles do not leave the highway as expected.

e Highway risk assessment: Improving driving safety
on highways is always an important topic for the high-
way administration companies. Noticeably, there are
more than 6 million crashes on highways in the United
States during 2015, including more than 30 thousand fa-
talities and 1 million injuries [23]. By transparently pre-
dicting the locations of individual vehicles, highway
administration companies can understand the num-
ber of affected vehicles if there were an accident on
certain road segments, and provide some contingency



plans accordingly. Another safety related application
is to localize a vehicle of interest (e.g., a vehicle with
dangerous cargo or suspects) for public safety after it
enters the highway.

Uniqueness of ETC based systems: To implement those
applications, previous works either require extra installed in-
frastructures or suffer from low penetration rates of vehicles.
For example, mobile phone based solutions can only know
the locations of a number of vehicles, which cannot provides
the accurate number of vehicles in a certain location. In-
duction loop based solutions cannot identify the uniqueness
of a vehicle. Traffic cameras are potentially used to detect
individual vehicles but limited by the laws in many coun-
tries such as U.S. Moreover, in developing countries, satellite
images or mobile infrastructure is not well penetrated and
it is really hard to predict the real-time locations. The ETC
based toll system is universal and exist almost everywhere
even in developing countries. Therefore, ETC based systems
utilize widely deployed infrastructure (i.e., ETC), which can
transparently obtain information from vehicles (i.e., when
charging toll) with extremely low marginal cost. Moreover,
the full penetration rate on highways can also make up for
the weakness of mobile phone based solutions.

2.2 Challenges

It is not trivial to predict the real-time locations of vehicles
because of the uncertainties caused by various traffic condi-
tions and driving behaviors. To show these challenges, we
study one-month data (both ETC transactions and trajecto-
ries of sample vehicles) in the Guangdong province of China
and identify several challenges regarding three key factors
including destinations, routes and speeds. The detailed data
description is presented in Section 3 and Section 5.

(i) Destination uncertainty: To predict the real-time lo-
cations of vehicles, it is important to understand the des-
tinations and routes. However, it is not trivial to predict
the routes and destinations. To characterize the inherent
predictability across vehicles, we present the destination en-
tropy of each vehicle in Fig 1. The figure reveals two peaks
as the entropy equals 0 and 1, which indicates the next lo-
cation of a vehicle could be found on average in any 2° = 1
and 2! = 2 locations, respectively. Especially, we find most
vehicles travel on highways only once in one month when
the entropy=0; vehicles are more like to commute between
two locations when the entropy=1. Many works [46] [11]
have been done to predict the destinations of vehicles whose
entropy is greater than or equal to one since those vehi-
cles generally have regular commute patterns or extensive
historical data. However, it is not clear how to predict the des-
tinations of vehicles with only a few historical transactions.
We refer this problem as a destination sparsity problem.
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Fig 1: Destination entropy Fig 2: Number of routes

(ii) Unobserved routes and speeds: Previous studies have
been done to model the route choices and driving speeds [6] [49].
Through studying the historical routes and speeds in the trip
recorded by GPS-based devices, some sophisticated models
are proposed to predict vehicular mobility in the near fu-
ture. However, in our setting, one of the key characteristics
of the ETC system is that it can only obtain very sparse
information (i.e., the time and location when entering and
exiting highways). This leads to the problem that we cannot
obtain detailed routes and speeds to learn the route choice
model and the driving speed model, which is not solved in
the previous work.
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Fig 3: Speed STD

Moreover, routes and speeds also vary depending on user
behaviors and contexts. For a given origin and destination,
people can choose different routes if the road network is
not trivial (i.e., only one route from the origin to the des-
tination). Fig 2 illustrates the number of routes between
the origin-destination pairs. We found that only 17% of sta-
tion pairs have only one route based on GPS trajectories
obtained from 114 thousand vehicles. It is impractical to as-
sume only shortest routes are used by vehicles. (Note that
these trajectories are only used in the motivation and evalu-
ation rather than the model design.) As for speeds, people
empirically expect that the driving speeds of vehicles are
around certain speeds (e.g., speed limit or average speed)
with less variance. However, in our study, we found the
real-time speed is more complicated than the empirical intu-
ition. To illustrate the characteristics of real-time speed, we



study the real-time speed standard deviation (STD) across
vehicles by replacing the mean value in the standard for-
mula of standard deviation with the speed limit(S(Limit)),
the historical average speed(S(Historical)), the current trip
average speed(S(Trip)), respectively. Fig 3 demonstrates both
S(Historical) and S(Trip) have a Gaussian-like distribution
with the mean STD near 20 km/h. It leads to a 330-meter
offset in one-minute driving if only the average speed is uti-
lized to obtain the real-time location. It also revels the fact
that it is difficult for people to drive at the speed limit (e.g.,
can only drive at 60 km/h compared to the speed limit of 120
km/h) because of the heavy traffic.

2.3 Summary

The ETC based system provides an unprecedented opportu-
nity to transparently model and predict vehicular mobility
with a full penetration rate, which enables various poten-
tial applications such as highway safety management and
adaptive dynamic toll strategies. However, due to the unique
characteristic of only observing vehicles at entrances and
exits, there are several challenges to be solved including des-
tination sparsity problem and unobserved routes and speeds.

3 ETC SYSTEM AND DATA DESCRIPTION

We first introduce some notations to facilitate our discussion,
and then give a brief description of an ETC system based on
our infrastructure access in Guangdong and finally provide
some data-driven insights.

Notations: Given ETC data on the vehicle’s trip levels,

e Anedge e is a highway segment between two adjacent
toll stations, i.e., the finest spatial unit for ETC data-
based modeling.

e Aroute r is a set of adjacent edges, which connect the
origin toll station and the destination toll station of a
particular trip.

e A K-edge trip is a trip of a particular vehicle with K
edges in its route between the origin and the desti-
nation. Specifically, a single-edge trip has only one
edge in the route.

Based on the above terms, our problem definition is "Given
a vehicle entering a highway network from a toll station
as an origin S, at time T,, predict its real-time locations on
highways at any given time T, until it exits the highway.

Infrastructure Overview: Fig 4 shows the road structure
and the locations of toll stations in the Guangdong province,
which has 69 highways and 773 ETC toll stations with 1,439
highway entrances and exits covering an area of 179, 800km?.
The circles represent toll stations and the larger the icon, the
heavier the daily traffic volume. It shows the traffic mainly
concentrates on the central area and the road structure in
that area is also complex as shown in the Guangzhou-Foshan
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Fig 4: ETC Systems in Guangdong Province

Road Network. Each toll station detects all vehicles when
they enter the highway system, and then logs the records as
transactions after they leave the highway system. The toll
station identifies a vehicle by ETC RFID devices (for regular
charging) or cameras (for the purpose of detecting escaping
charges).

Table 1: ETC Transaction Description

Field Value

Entering/Exit Toll Station Humen Station

Entering/Exit Time 2016-07-01 13:00:01
Vehicle Id F37551D4GU
Vehicle Type Car/Bus/Truck
Axis Count 2

Weight 1500kg

Number of Daily Transactions: 4 millions
Number of Daily Vehicles: 2 millions

As shown in Table 1, each generated transaction contains
information including entering and exit station, entering and
exiting time, vehicle id, vehicle type (i.e., car, bus, truck), axis
count and weight. Such a transaction was generated when
a vehicle enters and exits the highway network with both
ETC cards or cash. On average, there are more than 4 million
transactions generated every day from 2 million vehicles.
Statistic description: Fig 5 plots the average traffic volume
in 24 hours of a day. It shows there are two peak hours
(i.e., 10 am and 6 pm), which potentially make prediction
challenging due to uncertainty (e.g., route choice, traffic jam,
etc) introduced by high traffic volume. Fig 6 depicts the daily
transaction volume of all the toll stations, where 25 % of



the stations contribute 75 % of the transactions. It suggests
the major number of vehicles enter the highway from a
limited number of stations, indicating prediction related to
unpopular stations may suffer from lack of historical and
real-time data.
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4 VEMO DESIGN

In this section, we first depict the overview framework of
VeMo, which is then followed by feature extraction of three
components including (i) destination prediction, (ii) route
inference, and (iii) speed estimation. Specifically, in the route
and speed inference, we utilize a joint optimization model to
learn the historical routes and speeds with only transaction
data, to obtain necessary training data. These features are
fed into a learner to learn predictors for different tasks.

Fig 7 shows the framework of our system, which consists
of two parts: offline learning and online prediction. In the
offline learning, all the data come from three data sources
including the road map, historical ETC transactions and con-
text data. In the feature extraction, we divide all the features
into three categories, which are individual features, crowd
features and context features. The feature summary is pre-
sented in Table 2 (next page). By fitting these features into
the learner, we train three predictors for destinations, routes
and speeds. By combining these predictor together, we pre-
dict the real-time locations of vehicles. In the next three
subsections, we introduce three predictors for destinations,
routes, and speeds from a feature perspective respectively,
and then unify them together with a prediction model based
on Mondrian Forest.

4.1 Framework

4.2 Destination Predictor

Destination prediction has been intensively studied in the
past few years [16, 51]. The existing approaches for the ve-
hicle destination prediction mainly rely on transition prob-
abilities between different locations through learning his-
torical trajectories using various Markov chain based mod-
els [12, 27]. One of the key prerequisites is that there should
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Fig 7: Framework

be enough historical data of individuals to learn the transi-
tion probabilities. However, in our context, most vehicles
only have limited historical data (as we discussed in Sec-
tion 2), which makes it hard to directly apply the Markov
chain based models. To address this issue, we explore more
individual features, crowd features and context features.

Individual Features: Since individual destinations es-
sentially are based on personal habits, we utilize a set of
individual features.

e Historical Destinations: As shown in Fig 1, the mo-
bility patterns of most individuals in terms of destina-
tions are relatively stable. Therefore, historical destina-
tions may largely represent their future destinations.

e Time Factor: Considering the commute pattern in
Fig 1 when the entropy is equal to 1, by introducing the
entering time factor, the uncertainty of destinations is
reduced. We use half-hour time windows to split one
day into 48 time slots.

e Vehicle Type: It has three values: cars, buses, and
trucks. Intuitively, the trucks most probably go to ar-
eas with high cargo demand (e.g., industry parks) and
buses often go to areas with a dense population (e.g.,
commercial districts or transportation hubs). Fig 8
shows the proportion of different vehicle types in dif-
ferent types of areas. We select three exemplary areas
and calculate the proportional of different types of
vehicle whose destinations are in the area. We found
only a few trucks go to the commercial areas; cars and
buses contribute major volume in the commercial and
transportation hub areas, respectively.

Crowd Features: The individual vehicle’s historical data
can be very sparse (as we suggested in Section 2). we try
to use the crowd destinations to provide complementary in-
formation. Fig 9 shows the possible destinations from the
same origins by half of all the vehicles. We found almost
50% of vehicles go to at most 10 destinations. It indicates lots
of vehicles from the same origins share the similar destina-
tions, which can be used to infer the destination of a vehicle
without any historical destination data.



Table 2: Mobility Modeling Features

Individual Features Crowd Features Context Features
Destination Predictor | Historical Destinations, Crowd Destination Distributions Day of Week
(Section 4.2) Time of Day, Vehicle Type Weekday/weekend
Route Predictor Historical Routes (Section 4.3), Crowd Route Distributions Day of Week
(Section 4.4) Driving Experience, Time of Day Traffic Speed
Speed Predictor Historical Driving Speed (Section 4.3), L Weekday/weekend,
(Spection 4.5) Time of Day, Vehgiclf Type Crowd Speed Distributions Weathery
I (' I Buis 2% Truck 100 B and speeds of individual vehicles cannot be observed by
350 < 80 ,/{ the ETC system. In order to learn the mobility of individual
%"3‘8 °: 60/ vehicles, we propose a joint learning approach to obtain
€% 8 40 ll the historical routes and speeds of vehicles simultaneously,
£10 20!t which are utilized as training data to model the route choices
&~ 0 o t(‘! “ 0" [0 20 30 4030 and real-time speeds in Section 4.4 and Section 4.5.
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Fig 8: Dest. variance Fig 9: Crowd dest.

Context Features: We further consider other context fea-
tures, i.e., the day of the week, weekday/weekend, holidays,
that may have impacts on the destination choices. We choose
the 10 most popular destinations for each origin and compare
the rank of these destinations in a regular day with that in
other days with different contexts using the measurement of
Normalized Discounted Cumulative Gain NDCG [24]. The
lower the NDCG, the lower similarity the destination choices.
Fig 10 shows that the measurement between weekdays, week-
end, and holiday. The holiday has very different destination
choices compared to other days. In the early morning and
the late afternoon of weekends, the NDCG is also lower than
that of weekdays. It suggests these factors have impacts on
people’s choice of the destinations.
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Fig 10: Context impacts

4.3 Historical Route and Speed Learning

As we discuss in Section 2, the reason that previous works
are not feasible in our setting is that the historical routes

relationship between the travel routes and real-time speeds,
which found the route of vehicles can be inferred with only
speeds information. This finding indicates the strong correla-
tion between the routes and speeds, which inspires our idea
to learn the routes and speeds simultaneously.

To achieve this, we first present a few preliminaries.

e Time: we divide a day of 24 hours into K time slots(t)
(i.e., each time slot is equal to 10 minutes).

e Location: we split the highway road networks into M
equal length road segments(s) (i.e., 1 km).

e Speed: instead of treating the speed as a continuous
variable, we discretize it into H discrete integer speed(v)
by the smallest unit of 1 km/h (e.g., if the speed limit is
120 km/h, then we can have 121 different speed values
ranging from 0 to 120km/h).

Time:

Location:

Trip i:

[ Other Trips

Fig 11: Route and speed Correlation

In this way, the states of vehicles in each trip on highways
can be presented as a sequence of states <t, s, v> between
the origin and the destination. As an example of the trip
i in Fig 11, the vehicle enters the highway from the road
segment sy at the time t, and exits the highway from the



road segment s, at the time t,,. It is worth mentioning that,
in other trips, vehicles can be at the same location as the
same time as the trip i. Then our objective is to infer the
most likely state sequence of each trip. The solution is moti-
vated by the key observation that at the same time multiple
vehicles are traveling on the same road segments and their
real-time speeds can be considered as samples of the speed
distribution. The following insights reveal the characteristics
of the distribution.

e Speeds distribution on the road segment: By ana-
lyzing the sample GPS trajectories, we observe that
speeds of vehicles on the same road segment follow a
normal distribution, which is also validated in other
contexts [19].

o Speed STD distribution: Moreover, as shown in Fig 3,
we also observe strong normality of the speed.

Since both insights show the normality, to quantify them,
we utilize Kolmogorov-Smirnov test to test the normality.
Specifically, the states of different trips within the same time
and location are grouped as samples to test the normality of
speed on the road segments. For the speed STD distribution
insight, it is measured as suggested in Section 2. Then all the
STDs are considered as samples to test the normality.

Given the normality test of both the speed distribution in
each road segment and speed STD distribution of all the ve-
hicles, our problem can be transformed into an optimization
problem to find the best state sequence combination for the
maximization of the number of the acceptance of normality
tests. Suppose we have N trips with J vehicles, we formulate
the problem as following:

N J
maximize Z 1a(Rnorm(sc)) + Z 1a(Snorm(sc))
i J

where sc is the combination of the state sequences of different
trips, Rnorm is a test function to check the normality of the
speed distributions, Snorm is a test function to check the
normality of the speed STD distribution. 1 is an indicator
function of the test acceptance.

A straightforward approach to solve the optimization prob-
lem is to search all the possible state sequence combinations.
For each trip, the possible state sequence is K X M X H. Then
the total search space is O(N¥*M*H) ‘which is time con-
suming to search. To reduce the search space, we introduce
several simple but effective heuristics to guide the search.

e State sequences constrained by routes: Shown in Fig 2,
there is a limited number of routes between origins
and destinations, which naturally reduces the search
space of possible location sequences.

e Spatial smoothness: Constrained by the structure of
the road network and the speed limit, the next loca-
tion of the vehicle can be the reachable road segments

under the speed limit. (e.g., suppose the speed limit is
120km/h, the next location in 5 minutes can only be
the road segments within a range of 5 minutesx120

km/h = 10 km.)

Given these heuristics, we perform a standard search algo-
rithm (e.g., DFS) to find the best combination of the state
sequence. Then the historical routes can be obtained by con-
catenating the locations in each trip and speeds can be di-
rectly obtained from the state sequence.

4.4 Route Predictor

Similar to the destination prediction, we study the features
from three perspectives: individual features, crowd features
and context features.

Individual Features: We utilize the following features
for the route prediction at the individual level.

e Historical Routes: Based on a previous study, people
are more reluctant to change their regular routes if
they have more experience with these routes [6], which
indicates historical routes are most likely to be their
future routes given the same origin and destination.

e Driving Experience: Empirically, experienced peo-
ple are good at finding the best routes [6]. We quan-
tify the experience by two factors: (i) the frequency
of driving on highways, which can be obtained from
historical ETC transactions; (ii) the saved travel time
compared with the average travel time, which can also
be computed from historical ETC data.

e Time Factor: Empirically, people generally have their
own estimations about the route traffic at a different
time, e.g., taking a detour during the rush hour to avoid
the traffic. It affects their future route choices.

Crowd Features: For those people who have no or only
limited historical data, we incorporate the route choices of
crowds to infer their route choice. Specifically, we use the
probability of historical crowds’ routes between particular
origin/destination at the certain time.

Context Features: People’s route choices are affected
by the real-time context [5], i.e., the day of the week and
real-time traffic speed, which can be estimated with ETC
transactions in the recent past.

4.5 Speed Predictor

In this subsection, we introduce different features that are
correlated to the real-time speed. The key idea is to learn the
relation between individual driving speed and other features
(e.g., crowd speed) in order to predict the real-time speed
given all these features.

4.5.1 Features: We introduce our features on the individ-
ual, crowd, and context level.



Individual Features: Since the driving speed is essen-
tially based on people’s behaviors, we define a set of individ-
ual vehicle’s features.

o Historical Driving Speed: As shown in Fig 3, the
driving speed is relatively stable for a particular person.
We use their average speeds of historical trips to reflect
their general driving speed.

e Vehicle Type: This feature reflects the vehicle’s type
(i.e., cars, buses, trucks). Intuitively, the driving speed
of cars should be high