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Abstract—The notion of age of information (AoI) has become an important performance metric in network and control systems.

Information freshness, represented by AoI, naturally arises in the context of caching. We address optimal scheduling of cache updates

for a time-slotted system where the contents vary in size. There is limited capacity for the cache and for making content updates. Each

content is associated with a utility function that is monotonically decreasing in the AoI. For this combinatorial optimization problem, we

present the following contributions. First, we provide theoretical results settling the boundary of problem tractability. In particular, by a

reformulation using network flows, we prove the boundary is essentially determined by whether or not the contents are of equal size.

Second, we derive an integer linear formulation for the problem, of which the optimal solution can be obtained for small-scale

scenarios. Next, via a mathematical reformulation, we derive a scalable optimization algorithm using repeated column generation. In

addition, the algorithm computes a bound of global optimum, that can be used to assess the performance of any scheduling solution.

Performance evaluation of large-scale scenarios demonstrates the strengths of the algorithm in comparison to a greedy schedule.

Finally, we extend the applicability of our work to cyclic scheduling.

Index Terms—age of information, caching, optimization, scheduling

✦

1 INTRODUCTION

The research interest in age of information (AoI) has been rapidly

growing in the recent years. The notion of AoI has been introduced

for characterizing the freshness of information [1]. AoI is defined

as the amount of time elapsed with respect to the time stamp

of the information received in the most recent update. The AoI

grows linearly between two successive updates. For a wide range

of control and network systems, e.g., status monitoring via sensors,

AoI has become an important performance metric.

The AoI aspect arises naturally in the context of caching for

holding content items with dynamic updates [2]. Consider a local

cache for which updates of content items take place via a network

such as a backhaul link in wireless systems. Rather than obtaining

content items via the backhaul network, users can download them

from the cache if the content items of interest are in the cache, thus

reducing network resource consumption. Due to limited backhaul

network capacity, not all content items in the cache can be updated

simultaneously. Hence, at a time point, the performance of caching

depends on not only the content items currently in the cache, but

also how old these items are; the latter can be characterized by

AoI.

We address optimal scheduling of cache updates, where the

utility of the cache is based on AoI. The system under con-

sideration is time-slotted, with a given scheduling horizon. The

content items are of different sizes. Updating the cache in a time

slot is subject to a capacity limit, constraining which content

items that can be downloaded in the same time slot. Moreover,

the cache itself has a capacity. For each content item, there is a
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utility function that is monotonically decreasing in the AoI, and

because the content items differ in popularity, the utility function

is content-specific. If a content item is not in the cache, the

utility value is zero. For every time slot, the optimization decision

consists of the selection of the content items to be updated,

subject to the network and cache capacity constraints. Thus the

problem falls in the domain of combinatorial optimization. The

objective is to find the schedule maximizing the total utility over

the scheduling horizon.

Our work consists in the following contributions toward under-

standing and solving the outlined AoI-driven cache optimization

problem (ACOP).

• We provide theoretical results of problem tractability.

Specifically, for the special case of uniform content size,

the global optimum of ACOP admits polynomial-time

tractability (even if the problem remains combinatorial

optimization). We establish this result via mapping the

problem to a graph, and proving that the optimal schedule

is a minimum-cost flow in the graph. For non-uniform

content size, the problem is NP-hard due to the knapsack

structure, except for two contents. Thus our results settle

the boundary of problem tractability.

• We derive an integer linear programming (ILP) formu-

lation for ACOP in its general form, enabling the use of

off-the-shelf optimization solvers to approach the problem.

This is particularly useful for examining the performance

of sub-optimal solutions for small-scale scenarios, for

which the global optimum is computed via ILP.

• We derive a mathematical reformulation, by considering

sequences representing the evolution of the AoI over time

for each content item. The reformulation enables a scalable

solution approach. Specifically, we present a column gen-

eration algorithm that addresses the linear programming

(LP) version of the reformulation, by keeping only a

http://arxiv.org/abs/2005.00445v1
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small subset of possible sequences and augmenting the

subset based on optimality condition. To obtain integrality,

we present a rounding concept based on disjunctions

rather than on fractional variables, such that column

generation is repeated for improvement after rounding.

Performance evaluation demonstrates the strengths of the

repeated column generation algorithm in comparison to a

greedy schedule. Moreover, as the algorithm provides an

optimality bound in addition to a problem solution, it is

possible to gauge performance even if the global optimum

is out of reach. Using the bound, our results show the

algorithm consistently yields near-to-optimal solutions for

large-scale problem instances.

• Finally, we discuss the extension of our results to cyclic

scheduling, i.e., the schedule is repeated in a cyclic man-

ner. In this case, the AoI values at the beginning of the

schedule are determined by the caching updates made

later in the schedule. We present adaptations, such that the

tractability analysis, the ILP formulation, and the repeated

column generation algorithm all remain applicable.

2 RELATED WORK

The notion of AoI was introduced in [1]. Generalizations to

multiple information sources have been studied in [3]. The aspect

of queue management has been introduced in [4], [5], [6]. Early

application scenarios of AoI include channel information [7] and

energy harvesting [8]. In [9], the authors address optimal update

policy for AoI, and provide conditions under which the so called

zero-wait policy is optimal. In [10], the authors have considered

AoI under a pull model, where information freshness is relevant

(only) when the use interest arises. For transmission scheduling

with AoI minimization, [11] considers a system model with error

probability of transmission, and [12] proposes algorithms for

multiple link scheduling with presence of interference. We refer

to [13] for a comprehensive survey of research on AoI. Below

we outline very recent developments that demonstrate a rapidly

growing interest in the topic.

One line of research has consisted in sampling, scheduling and

updating policies for various system models that have queuing

components and AoI as the performance objective. In [14], the

scenario has multiple source-destination pairs with a common

queue, along with a scheduler. In [15], the authors have inves-

tigated optimal sampling strategies addressing AoI as well as

error in estimating the state of a Markov source. The system

model in [16] combines stochastic status updates and unreliable

links; the authors make an approximation of the Whittle index and

derive a solution algorithm thereby. The study in [17] considers an

energy-constrained server that is able to harvest energy when no

packet from the source requires service. The notion of preemption

has been addressed in [18], [19] for a single flow in a multi-

hop network with preemptive intermediate nodes, and multiple

flows such that different flows preempt each other, respectively.

The authors of [20] have proposed the use of dynamic pricing to

provide AoI-dependent incentives to sampling and transmission.

For network control systems (NCPs), [21] has addressed sampling

and scheduling, relating estimation error to AoI, and [22] has

focused on approximately optimal scheduling strategy for multi-

loop NCPs, where the centralized scheduler takes a decision based

on observed AoI.

Another line of research arises from the introduction of AoI to

various applications and networking context. By including energy

constraints, [23] extends [12] for optimal link activation for AoI

minimization in wireless networks with interference. The study

in [24] is similar to [12] and [23] in terms of the scheduling

aspect and the presence of interference, however the system model

considers AoI for all node pairs of the network, and the emphasis

is on performance bounds. The work in [25] considers a two-

way data exchanging system, where the AoI is constrained by the

uplink transmission capability and the downlink energy transfer

capability. Application of the AoI concept in camera networks

where information from multiple cameras are correlated has been

presented in [26]. For remote sensor scenarios, [27] has studied

AoI-optimal trajectory planning for unmanned aerial vehicles

(UAVs). For distributed content storage, AoI has been applied to

address the trade-off between delay and data staleness [28]. In

[29], the authors have studied AoI with respect to orthogonal mul-

tiple access (OMA) and non-orthogonal multiple access (NOMA),

and revealed that NOMA, even though allowing for better spectral

efficiency, is not always better than OMA in terms of average AoI.

AoI has also appeared as the performance metric in using ma-

chine learning as a tool in communication systems. In [30], online

adaptive learning has been used for addressing error probability

in the context of AoI minimization. In [31], learning is used for

optimal data sampling to minimize AoI.

For AoI-aware caching, research results are available in [2],

[32]. The general problem setup, i.e., what to optimize and when

to update with an objective function defined by AoI, reminds the

system model we consider. However, our work has significant

differences to [2] and [32]. First, it is (implicitly) assumed in [2]

and [32] that the items are of uniform size. We do not have this

restriction and hence in our problem, which items can be updated

at a time are determined by the sizes as well as the capacity limits.

Second, the works in [2] and [32] derive updating policy with

respect to expected AoI, whereas our problem falls into the domain

of combinatorial optimization and we use methods thereof to solve

the problem. Moreover, the problems in [2], [32] are approached

by either assuming given inter-update intervals of each item or

the total number of updates of each item. In our work, these

entities remain optimization variables throughout the optimization

process.

3 PRELIMINARIES

3.1 System Model

Consider a cache of capacity C. The content items for caching

form a set I = {1, . . . , I}. Item i ∈ I is of size si. Time

is slotted, and the time horizon consists of a set of time slots

T = {1, . . . T }. In each time slot, the cache can be updated via a

backhaul communication link whose capacity is denoted by L.

The AoI of an item in the cache is the time difference between

the current slot and the time slot in which the item was most

recently updated. Each time the item is updated, the AoI is zero,

i.e., maximum information freshness. The AoI then increases by

one for each time slot, until the item gets updated again. The value

of having item i cached is characterized by a utility function fi(·)
that is monotonically decreasing in its AoI. If the item is not in

the cache, its utility is zero. The utility function is item-specific to

reflect, for example, the difference in the popularity of the content

items.
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The AoI-driven cache optimization problem, or ACOP in

short, is to determine which content items to store and update

in each time slot, such that the total utility of the cache over the

time horizon 1 . . . T is maximized, subject to the capacity limits

of the cache and the backhaul. Later in Section 8, we will consider

the case of optimizing a cyclic schedule of cache updates.

Notation: In addition to regular mathematical style of entities,

we adopt the following notation style in the paper. Sets are denoted

using calligraphic style. Moreover, boldface is used to denote the

vector form of the entity in question.

Remark 1. Our system model is not necessarily restricted to

caching scenarios. For example, consider a system monitoring

a number of remote sites, for which the information generated

differ in size. The amount of information that can be sent to the

monitoring center is constrained by the network bandwidth, and

the task is optimal scheduling of updates to maximize utility as a

function of AoI. This setup corresponds to ACOP with redundant

cache capacity. �

3.2 Greedy Solution

For a combinatorial problem, a simple and greedy strategy typi-

cally serves as a reference solution. For ACOP, a greedy solution

is to maximize the total utility of each time slot by simply

considering the utilities of the individual items if they are added

to the cache or become updated in the cache. This solution for a

generic time slot is given in Algorithm 1.

Algorithm 1 Greedy solution for a generic time slot

Input: I, si, i ∈ I, current cache H, current AoI ai, i ∈ I
Output: H

1: I ′ ← I; L′ ← L; r ← C −
∑

i∈H si; H′ ← ∅
2: while I ′ 6= ∅ and L′ > 0 do

3: i∗ ← argmaxi∈I′fi(0)
4: I ′ ← I ′ \ {i∗}
5: if i∗ ∈ H then

6: Update cache item i∗ ∈ H
7: H′ ← H′ ∪ i∗

8: else

9: if r +
∑

i∈H\H′ si ≥ si∗ and si∗ ≤ L′ then

10: while r < si∗ do

11: i′ ← argmini∈Hfi(ai)
12: H ← H \ i′

13: r ← r + si′
14: H ← H ∪ {i∗}
15: r ← r − si∗
16: L′ ← L′ − si∗

In the algorithm, I ′ is the candidate set of items for caching, r
is the residual cache capacity, andH′ is used to keep track of those

items that are currently in the cache and selected for update. The

item i∗ maximizing the utility, if added or updated, is considered

and then removed from I ′. If i∗ is in the cache, it gets updated

and recorded in H′. Otherwise, if the remaining downloading

capacity admits and there will be sufficient residual capacity by

removing cached items except those in H′, the algorithm removes

items in ascending order of their utility values with respect to the

current AoI, followed by adding item i∗. The process ends when

the candidate set I ′ becomes empty.

4 PROBLEM COMPLEXITY ANALYSIS

ACOP apparently is in the domain of combinatorial optimization.

Thus it is important to gain understanding of problem complexity,

as many combinatorial problems are NP-hard (e.g., the travel-

ing salesman problem) whereas others are tractable in terms of

computing global optimum in polynomial time (e.g., matching

in graphs). In this section, we present proofs to establish the

boundary of tractability for ACOP. Namely, for uniform item size,

ACOP is tractable, otherwise it is NP-hard except for the very

special case of two content items. We denote ACOP with uniform

item size by ACOPu.

As the capacity limits of the cache and the backhaul link imply

constraints of knapsack type, it is not surprising that ACOP is

NP-hard in general, with a proof based on the binary knapsack

problem. This result is formalized below.

Theorem 1. ACOP is NP-hard.

Proof: Consider a knapsack problem with N items and

knapsack capacity B. Denote the value and weight of item i
by vi and wi, respectively. We construct an ACOP instance by

setting T = 1 (i.e., single time slot), I = N , L = C = B,

and si = wi, i = 1, . . . , I . The utility function is defined such

that fi(0) = vi, i = 1, . . . , I . Downloading a content item to the

cache amounts to selecting the corresponding item in the knapsack

problem. Obviously, the optimal solution maximizing the total

utility of the cache leads to the optimum of the knapsack problem,

and the result follows.

Consider ACOPu where all items are of the same size. In this

case, both cache and backhaul capacities can be expressed in the

number of items. Even though the problem is still combinatorial

along the time dimension, we prove it is tractable, i.e., the global

optimum can be computed in polynomial time. The key is to

transform the problem into a minimum-cost flow problem [33]

in a specifically constructed graph. In the following, we assume

that the backhaul capacity L is non-redundant, i.e., L < C.

In optimization, a network flow problem is defined in a (di-

rected) graph; each arc has a linear cost in the arc flow that is also

subject to an upper bound and a lower bound. The latter is often

zero. There are one or more source nodes and sink nodes, each

generating and receiving a specified amount of flow, respectively.

The total amount of flow generated at the source nodes equals

that to be received by the sink nodes. The optimization task is to

determine how flows go from the source nodes to the sink nodes,

such that the total flow cost is minimum, subject to flow balance

at the nodes as well as the upper and lower bounds of the arcs.

The graph we construct for proving the tractability of ACOPu

is illustrated in Fig. 1. For clarity, we illustrate the construction

for two items and the first two time slots. The construction of the

remaining time slots follows the same pattern. There is one source

node, n0, and one sink node nT . The source node generates I
flow units to be sent to the sink through the network.

The underlying rationale is as follows. There are three types of

nodes. First, for each item i and time slot t, node αita represents

that item i is in the cache in slot t with age a. Second, nodes

nt, t = 1, . . . , T act as the collection points for all items except

those to be kept in the cache in time slot t. Third, nodes mt, t =
1, . . . , T−1, are collection points for items to be added or updated

in the cache.

Each arc of the graph is associated with tuple (c, l, u), where

c is the cost per flow unit, and l and u are the lower and upper
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Fig. 1. An illustration of the network flow problem corresponding to ACOPu.

bounds of the arc flow, respectively. These values are shown in

the figure, however not for the arcs entering the nodes nt, t =
1, . . . , T due to lack of space. For these arcs, the tuple is (0, 0, 1).
Moreover, we do not show explicitly the tuples for some arcs of

time slot two for the sake of clarify; the tuple values of any such

arc are the same as for the corresponding arc in the previous time

slot.

Let us consider the first time slot with any integer flow

solution. The I flow units leaving source n0 have to either enter

m0 or n1. Note the maximum number of units entering m0 has

upper bound L, allowing at most L items to be added or updated.

Node m0 has an arc of capacity one to node αi10 of item i,
i = 1, . . . , I . Having a flow of one unit on the arc corresponds

to putting item i in the cache, generating utility fi(0) that is

equivalent to an amount of −fi(0) in cost minimization. There

will be L such items1. The flow units from n0 to n1 correspond to

the items not cached in time slot one. Note the flow lower bound

of arc (n0, n1) is I − C, meaning that at least I − C flow units

must enter node n1, i.e., at least I−C items are outside the cache.

For a generic time slot t and item i, if one unit of flow enters

node αita, then the flow has two choices by graph construction.

Either it goes to node αi(t+1)(a+1), representing that item i
remains in the cache, with AoI a + 1 for the next time slot and

the corresponding utility, or it has to be sent to the collection node

nt+1. The latter case represents that the item is removed from the

cache, and, from nt+1, the item either enters αi(t+1)0 via node

mt+1 (i.e., item i is downloaded again to the cache with AoI zero),

or stays outside the cache by entering collection node n2.

Remark 2. In Fig. 1, some of the nodes (and hence also their

adjacent arcs) are redundant. For example, no flow will enter

nodes α122 and α123, because the AoI will never attain two or

three in time slot two. These nodes are however kept in the figure

to better reflect the general structure of graph construction. �

Lemma 2. The optimal solution to ACOPu corresponds to an

integer flow solution for the constructed graph with equivalent

1. For ACOPu , the downloading capacity L is always fully used, because
adding or updating items always leads to better utility (or more negative cost
for the minimum-cost flow problem).

objective function value.

Proof: Consider an optimal solution to ACOPu. For time

slot one, L items are downloaded, and the flow on arc (n0,m0) is

set to L, whereas I−L units of flow are put on (n0, n1). For each

downloaded item i, we set the flow on (m0, αi10) to be exactly

one unit, generating the (negative) cost of −fi(0).
Consider a generic time slot t. For the next time slot t + 1,

denote the number of deleted items by Id, and the numbers of

items updated and added by Iu and Ie, respectively. Denote by Î
the number of items not in the cache in the ACOPu solution for

time slot t. Thus there are Î flow units on arc (nt−1, nt). If a

cached item i in the ACOPu solution is kept in the cache in t+ 1,

we set one flow unit on the arc representing this state. That is, if

the AoI of i is a, we set one flow unit on arc (αita, αi(t+1)(a+1)),
generating a (negative) cost of −fi(a+ 1). For any item i that is

either to be deleted or updated for t+ 1, we set one flow unit on

arc (αita, nt). Thus there are Id + Iu flow units in total arriving

nt via these arcs, and the total amount of incoming flow to nt

equals Id + Iu + Î .

We set L flow units on arc (nt,mt). Next, observe that L =
Ie+ Iu, because at optimum the backhaul capacity is always fully

utilized. From mt, for any item i that is either updated or added

to the cache in t+ 1, we set one unit flow on arc (mt, αi(t+1)0),
giving the (negative) cost of −fi(0). By flow balance, the amount

of outgoing flow on arc (nt, nt+1) equals In = Î+Id+Iu−L =
Î + Id + Iu − Ie − Iu = Î + Id − Ie, and we need to prove In
is between the flow bounds I − C and I . If the cache is full, then

clearly Ie = Id, and the conclusion follows. Suppose the cache

is not full (this occurs at the first few time slots if downloading

capacity L is much smaller than cache capacity C), such that

the spare capacity can hold ∆ items. In this case, at optimum, if

Id > 0, then each deleted item will be replaced by an added item,

as otherwise it is optimal not to delete. Let ∆′ = ∆ + Id. We

have Ie = min{L,∆′}. Moreover, as C − ∆ items are cached,

the number of items outside the cache Î = I − C + ∆. Thus

In = Î + Id − Ie = I − C + ∆ + Id − min{L,∆′} = I −
C + ∆′ −min{L,∆′}. Note that ∆′ −min{L,∆′} ≥ 0, thus

In ≥ I − C. That In ≤ I follows simply from that ∆′ ≤ C.

In addition to the above, it is straightforward to see that the
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flow construction satisfies the flow balance at nodes representing

the items’ possible AoI values, and adheres to the bounds of their

adjacent arcs. At the last stage, for all cached items in slot T ,

we set one unit of flow from the node representing the AoI to

nT . These flow units, together with those on arc (nT−1, nT )
that represent the number of items outside the cache, arrive the

destination node nT with a total flow of I . Hence the lemma.

Lemma 3. The optimal integer flow solution in the constructed

graph corresponds to a solution of ACOPu with equivalent objec-

tive function value.

Proof: For any integer flow solution, all arcs adjacent to

nodes aitα, i = 1, . . . , I, t = 1, . . . , T, a = 1, . . . , T − 1, have

either zero or one unit of flow. Moreover, obviously an optimal

flow will have L flow units on arcs (nt−1,mt−1), t = 1, . . . , T .

Consider the flows on the outgoing arcs of node m0. Exactly

L arcs have one unit of flow, and the other arcs have zero flow. For

any arc (m0, αi10) with one flow unit, the corresponding solution

of ACOPu downloads and caches item i for time slot one. Doing

so for all time slots gives the ACOPu solution in terms of the items

that are added to or updated in the cache over time. Moreover, any

arc (αita, αi(t+1)(a+1)) with a flow unit means to keep the item

i in the cache from t to t + 1. Thus the flow solution leads to

a caching solution for ACOPu. Note that the solution is feasible

with respect to cache capacity. This is because there are at least

I − C flow units on arc (nt−1, nt), and by flow balance, for any

time slot t, t = 1, . . . , T , there are at most C flow units in total

on the incoming arcs of αita, i = 1, . . . , I, t = 1, . . . , T, a =
1, . . . , T − 1. Finally, the constructed solution clearly gives an

objective function value that equals the negation of the optimal

flow cost, and the lemma follows.

Theorem 4. ACOPu is tractable with polynomial-time complexity.

Proof: The maximum possible age of any item in the

cache is bounded by the number of time slots T . Hence the size

of the constructed graph is polynomial in I and T . Moreover,

the graph is clearly acyclic. For minimum-cost flow problems

with integer input, there is an optimal solution in which the arc

flows are integers, and there are (strong) polynomial algorithm

for the problem including that with negative costs in an acyclic

graph [33]. These facts, together with Lemmas 2-3, establish the

theorem.

Consider now ACOP with two content items. For this special

case, it is trivial to see if the cache can hold one or both items.

Moreover, without loss of generality, one can assume that the

backhaul capacity allows for updating one item. As a result, ACOP

with two content items falls in the domain of ACOPu, giving the

corollary below.

Corollary 5. ACOP with two items is tractable with polynomial-

time complexity.

The above observation does not generalize to three or more

items, because then the capacity can no longer be interpreted in

the number of items. Instead, the items’ individual sizes must be

explicitly accounted for.

Remark 3. For combinatorial optimization problems, tractable

problem sub-classes are often identified by proving that a greedy

solution leads to optimum. For ACOPu, however, the greedy

solution in Section 3.1 remains sub-optimal. This is due to item-

specific utility function and backhaul capacity. Consider a simple

example of two items. Both are of size one. The capacity values are

C = 2 and L = 1. For item one, the utility function f1(0) = 2k
(with k > 1) and f1(a) = 0 for a ≥ 1. For item two, f2(a) = k
for a ≤ t, and f2(a) = 0 for a ≥ t+1. The greedy solution would

cache and update item one in all time slots. Thus for T = t, the

total utility is 2kt. The optimal solution is to cache item two in time

slot one. Then, item one is added and kept updated in the next t−1
time slots. This gives a total utility of kt+2k(t− 1) = 3kt− 2k.

As a result, the greedy solution becomes highly sub-optimal for

large t. Thus the notion of network flows is necessary for arriving

at the conclusion of the tractability of ACOPu. �

5 INTEGER LINEAR PROGRAMMING FORMULA-

TION

We derive an integer linear programming (ILP) formulation for

ACOP. This leads to a solution approach of using an off-the-shelf

optimization solver (e.g., [34]). Even though the approach does

not scale, it can be used to obtain optimum problem instances

of small size, for the purpose of performance evaluation of other

algorithms.

We use binary variable xita that equals one if the age of item

i in time slot t is a, otherwise the variable equals zero. Note that

index a is up to t− 1, because the AoI in slot t can never exceed

t−1. Also, xit0 = 1 means item i is added to the cache or updated

for time slot t. Binary variable yit is used to indicate if item i is

in the cache in time slot t or not. The ILP formulation is given

below.

max
x,y

∑

i∈I

∑

t∈T

t−1∑

a=0

fi(a)xita (1a)

s.t.

t−1∑

a=0

xita = yit, i ∈ I, t ∈ T (1b)

(1− yi(t+1)) + xi(t+1)0 + xi(t+1)(a+1) ≥ xita,

i ∈ I, t = 1, . . . , T − 1, a = 1, . . . , t− 1 (1c)
∑

i∈I

siyit ≤ C, t ∈ T (1d)

∑

i∈I

sixit0 ≤ L, t ∈ T (1e)

xita ∈ {0, 1}, i ∈ I, t ∈ T , a = 0, . . . , t− 1 (1f)

yit ∈ {0, 1}, i ∈ I, t ∈ T (1g)

The objective function (1a) is to maximize the overall utility.

By (1b), if item i is cached in a time slot t, i.e., yit = 1, then

exactly one of the binary variables representing the possible AoI

values is one, otherwise these binary variables have to be zeros.

Inequality (1c) states that if item i is cached with AoI a in a

time slot, then for the next time slot, either the AoI becomes

a + 1 (represented by xi(t+1)(a+1) = 1), or it gets updated

(represented by xi(t+1)0 = 1), or the item is no longer in the

cache (represented by yit = 0). The cache and backhaul capacity

limits are formulated in (1d) and (1e), respectively.

6 REPEATED COLUMN GENERATION ALGORITHM

For efficient solution of ACOP, we propose an algorithm based

on repeated column generation. Column generation is an efficient

method for solving large-scale linear programs with the following
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two structural properties [35]. First, there are exponentially many

columns (i.e., variables), hence including all is not practically

feasible and the method deals with only a small subset of them.

Second, identifying new columns that improve the objective func-

tion value can be performed by solving an auxiliary problem,

named the subproblem. This enables successive addition of new

and promising columns until optimality is reached.

6.1 Problem Reformulation

Applying column generation to ACOP is based on a reformulation.

In the reformulation, a column of any item is a vector representing

the caching and updating decisions of the item over all time slots.

We denote by Li the index set of all possible such vectors for

item i. For each column ℓ ∈ Li, there is a tuple (bitℓ, uitℓ) for

every time slot t. Both elements are binary. Specifically, a column

is represented by [(bi1ℓ, ui1ℓ), (bi2ℓ, ui2ℓ), . . . , (biTℓ, uiTℓ)] in

which bitℓ and uitℓ are one if and only if the item i is cached and

updated, respectively, in time slot t. Note that there are exactly

three possible outcomes of the tuple values: (0, 0), (1, 0), and

(1, 1). As a result, the cardinality of set Li is bounded by 3T .

Because a column ℓ fully specifies the caching and updating

solution, the associated AoI values over time are known for any

given column. Hence, the total utility value of column ℓ for item

i, denoted by fiℓ, can be computed.

The problem reformulation uses a binary variable χiℓ for each

item i ∈ I and column ℓ ∈ L. This variable is one if column ℓ is

selected for item i, and zero otherwise. The reformulation is given

below.

max
χ

∑

i∈I

∑

ℓ∈L

fiℓχiℓ (2a)

s.t.
∑

ℓ∈L

χiℓ = 1, i ∈ I (2b)

∑

i∈I

∑

ℓ∈L

bitℓsiχiℓ ≤ C, t ∈ T (2c)

∑

i∈I

∑

ℓ∈L

uitℓsiχiℓ ≤ L, t ∈ T (2d)

χiℓ ∈ {0, 1}, i ∈ I, ℓ ∈ Li (2e)

In (2), (2b) states that exactly one column (i.e., caching

and updating solution) has to be selected for every item. The

next two constraints formulate the cache and backhaul capacity,

respectively. Note that both (2) and (1) are valid optimization

formulations of ACOP. However they differ in structure.

6.2 Column Generation

The structure of (2) can be exploited by using column generation.

To this end, we consider the linear programming counterpart of

(2), where (2e) is replaced by the relaxation 0 ≤ χiℓ ≤ 1, i ∈
I, ℓ ∈ L. Moreover, for each item i, a small subset L′i ⊂ Li is

used and successively augmented to approach optimality. Initially,

L′i can be as small as a singleton, containing only the column

representing not caching the item at all. One iteration of column

generation solves the following LP.

max
χ

∑

i∈I

∑

ℓ∈Li

fiℓχiℓ (3a)

s.t.
∑

ℓ∈Li

χiℓ = 1, i ∈ I (3b)

∑

i∈I

∑

ℓ∈Li

bitℓsiχiℓ ≤ C, t ∈ T (3c)

∑

i∈I

∑

ℓ∈Li

uitℓsiχiℓ ≤ L, t ∈ T (3d)

0 ≤ χiℓ ≤ 1, i ∈ I, ℓ ∈ Li (3e)

At the optimum of (3), denote by λ∗
i (i ∈ I), π

∗
t (t ∈ T ), and

µ∗
t (t ∈ T ) the corresponding optimal dual variable values of (3b),

(3c) and (3d), respectively. For any item i, the LP reduced cost of

column ℓ equals fiℓ−λ∗
i −

∑
t∈T bitℓsiπ

∗
t −

∑
t∈T uitℓsiµ

∗
t . We

are interested in knowing if there exists any column with a positive

reduced cost (among those in Li \L′i for item i). If so, adding the

column to (3) shall improve the objective function value. This can

be accomplished by finding the column of maximum reduced cost

for each item. Clearly, the resulting optimization task decomposes

by item.

Recall that any column ℓ is characterized by a vector of tu-

ples of binary values [(bi1ℓ, ui1ℓ), (bi2ℓ, ui2ℓ), . . . , (biTℓ, uiTℓ)].
Finding the column of maximum reduced cost amounts to setting

binary values of the tuples, such that the corresponding reduced

cost is maximized. These values represent the update and caching

decisions of one item, and hence we can use the variable def-

initions in Section 5. The subproblem for a generic item i is

formulated below.

(SPi) v∗i = max
x,y

∑

t∈T

t−1∑

a=0

fi(a)xita − si
∑

t∈T

(π∗
t yit + µ∗

txit0)

(4a)

s.t.

t−1∑

a=0

xita = yit, t ∈ T (4b)

(1 − yi(t+1)) + xi(t+1)0 + xi(t+1)(a+1) ≥ xita,

t = 1, . . . , T − 1, a = 1, . . . , t− 1 (4c)

xita ∈ {0, 1}, t ∈ T , a = 0, . . . , t− 1 (4d)

yit ∈ {0, 1}, t ∈ T (4e)

There are clear similarities between (4) and (1), as both

concern optimizing caching and updating decisions. However, they

differ in several significant aspects. First, (4) deals with a single

item. Second, the cache and backhaul capacities are not present

in (4) because these are addressed in (2). Finally, the objective

function (4a) contains the dual variables as the purpose is to

maximize the reduced cost. Note that dual variable λi is a constant

for item i and hence it is not explicitly included in (4a).

Subproblem (4) is an integer linear problem. What is less

obvious is that it can be transformed into a shortest path problem

that is polynomial-time solvable. This is illustrated in Fig. 2,

which is a modified single-item version of the network in Fig. 1.

Moreover, the dual variables appear as part of the arc costs in

Fig. 2.

Theorem 6. The shortest path from node n0 to nT gives the

optimal solution of (4).
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time slot 1

−
f i
(0
)
+
s i
(π

∗ 1
+
µ

∗ 1
)

−fi(1) + siπ ∗

2

n0 n1

αi10

time slot 2

−f
i(1) + siπ ∗

3

time slot 3

αi31αi21

αi20 αi30

αi32

−f
i(2) + siπ ∗

3

−
f i
(0
)
+
s i
(π

∗ 2
+
µ

∗ 2
)

−
f i
(0
)
+
s i
(π

∗ 3
+
µ

∗ 3
)

n2 n3 nT

Fig. 2. The graph for which finding the shortest path gives the optimum of (4).

Proof: By construction and the proof of Lemma 3, a

flow solution corresponds to a caching solution of the item in

question. Since the graph is acyclic, a flow solution is a single

path. Moreover, it is easy to verify that the total path cost equals

(4a) of the corresponding caching solution, and the result follows.

Remark 4. Suppose a partial decision is taken such that an item

shall not be cached at a slot. This amounts to simply deleting

all the arcs entering the nodes representing the age values for

that slot. Similarly, the partial decision of caching the item in a

slot corresponds to deleting the arc representing the opposite. To

account for a partial decision of updating the item in a slot t, we

find first the shortest path problem from the source to node nt−1,

and then include arc (nt−1, αit0) and find the shortest path from

αit0 to the destination node. In conclusion, solving the subproblem

can easily accommodate partial decisions. This observation is

useful for attaining an integer solution (Section 6.3). �

Algorithm 2 Column generation

Input: I, T , si, i ∈ I, C, L, fi(·), i ∈ I
Output: χ∗

1: Initialize Li, i ∈ I
2: Stop← False

3: while Stop = False do

4: Solve (3) to obtain optimum χ∗ and dual optimum

(λ∗,π∗,µ∗)
5: Stop← True

6: for i = 1, . . . , I do

7: Solve (4)

8: if v∗i − λ∗
i > 0 then

9: Stop← False

10: Add the column corresponding to v∗i to L′i

Column generation for ACOP is summarized in Algorithm 2.

Applying Algorithm 2, the optimal objective function value is the

LP optimum of (2) and is therefore an upper bound (UBD) of

the global optimum of ACOP. This UBD is very useful to gauge

performance of any suboptimal solution, because the deviation

from the global optimum is bounded by that to the UBD.

6.3 Attaining Solution Integrality

The solution by Algorithm 2 may be fractional. A naive rounding

algorithm would pick some fractional χ-variable of some item

i and round it either up to one or down to zero, depending on

the value. This way of rounding is rather aggressive, however,

because the caching and updating decisions over all time slots

become fixed, and there would be no opportunity to make any

further decision for item i.
We consider performing rounding more gracefully. The idea is

to make a rounding decision for one item and one time slot at a

time. Given the optimum LP solution χ∗ via column generation,

we define (cf. variables used in formulation (1) in Section 5) wit =∑
ℓ∈L′

i

bitℓχ
∗
iℓ and zit =

∑
ℓ∈L′

i

uitℓχ
∗
iℓ. These entities can be

interpreted as the likelihood of caching and updating item i in time

slot t, respectively. Note that for item i, there may be multiple (and

factional) χ∗-variables contributing to the values of wit and zit.
The following theorem states that, to attain an integer solution for

(3), it is sufficient that wit and zit, i ∈ I, t ∈ T , become integer.

Theorem 7. χ∗ is integer if and only if z and w are integer.

Proof: The necessity is obvious by the definition of z and

w. For sufficiency, assume z and w are integer. Suppose χ∗

is fractional, and assume more specifically 0 < χ∗
iℓ < 1. By

(3b), there must exist at least another χ-variable for item i that

has fractional value. Let L̂i denote the column index set of the

fractional χ-variables of item i. Because there are no identical

columns in L′i, there must exist some time slot t, for which L̂i can

be partitioned into two sets, L̂
0

i and L̂
1

i , such that btℓ = 0, ℓ ∈ L̂
0

i

and btℓ = 1, ℓ ∈ L̂
1

i , and none of the two sets is empty. Thus

wit =
∑

ℓ∈L′
i

btℓχ
∗
iℓ =

∑
ℓ∈L̂

1

i

btℓχ
∗
iℓ < 1, contradicting that

wit is integer. The same argument applies to z, and the theorem

follows.

By the above result, rounding can be performed on z and

w, instead of χ∗. This amounts to considering disjunctions,

i.e., a partition of the χ-variables into two subsets rather than

considering a single χ-variable (cf. the proof of Theorem 7), and

assembles the use of disjunctions in branch-and-bound in solving

integer programs [36]. Hence we use the term disjunction-based

rounding (DR) to refer to to the rounding concept.

After performing DR, column generation is applied again. This

is because additional columns may be needed to reach the LP

optimum given the constraint imposed by rounding. For example,

setting yit = 0 means to exclude columns {ℓ ∈ Li : bitℓ =
1} and since the current L′i is a small subset of Li, some new

column ℓ /∈ L′i with bitℓ = 0 may improve the objective function.

This yields the repeated column generation algorithm, or RCGA

in short.

Note that, after a DR operation, both (3) and the subproblem

of column generation have to comply with the rounding decision.

Namely, if yit = 0 by DR, then {ℓ ∈ L′i : bitℓ = 1} are removed

from (3), and arcs representing caching the item i in slot time

t in the subproblem graph are deleted. If yit = 1, then {ℓ ∈
L′i : bitℓ = 0} are removed from (3), and the subproblem for
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item i becomes two (smaller) shortest path problems, then the

arc representing not being in the cache is deleted. Similar updates

apply for DR on z. Thus the subproblem remains polynomial-time

solvable.

The details of DR is presented in Algorithm 3. In the al-

gorithm, symbol ← is used to indicate assignment of value.

Symbol ⇔ is used to indicate that an assigned value of an

optimization variable is kept fixed after the assignment. Lines 1-

2 calculate z and w. For item i ∈ I and time slot t ∈ T ,

Line 3 makes the decisions of fixing xit0 = 1 and yit = 1, if

zit = 1, and Line 4 discards the columns that do not comply

to the decisions. Line 5 performs the opposite decision of fixing

xit0 = 0 and yit = 0, if wit = 0, and the non-complying columns

are discarded (Line 6). Lines 7-10 calculate the remaining spare

backhaul and cache capacities, denoted by L′ and C′, respectively.

Lines 11 and 12 compute the number of fractional elements of

z and w, denoted by ξ and η, respectively. If both ξ and η equal

to zero, the current solution is integer by Theorem 7. Otherwise,

one DR is applied for z if ξ > 0 (Lines 14-26). If z is integer but

η > 0, DR is applied to a fractional element of (Lines 28-42).

More specifically, Lines 14-15 find the fractional element of

z being closest to zero, and the corresponding item and time

slot. These entities are denoted by
¯
z,
¯
i, and

¯
t, respectively. The

corresponding entities in examining the fractional element of z

that is closest to one (Lines 16-17) are denoted by z̄, ī, and

t̄, respectively. If
¯
z < z̄, DR fixes x

¯
i
¯
t0 to be zero in Line 19.

Furthermore, the non-complying columns are discarded from L
¯
i

in Line 20. If
¯
z ≥ z̄, the algorithm checks whether or not there

is enough remaining backhaul capacity to download item ī. If the

answer is positive, xīt̄0 is fixed to be one in SPī by Line 22, and

the non-complying columns are deleted from Lī by Line 23. If the

remaining capacity does not permit to download ī, xīt̄0 is fixed

to be zero by Line 25 and the non-complying columns will be

discarded from L′
ī

by Line 26. DR based on y is similar to that

for z, and the details are presented in Lines 28-42.

As the next step, the algorithm updates the remaining spare

backhaul and cache capacity limits (Lines 44-47). Thereafter, the

algorithm examines if any content item has a larger size than what

can be admitted by the capacity limit in any time slot. For any such

item and time slot, the corresponding variable is fixed to zero, and

the non-complying columns are discarded (Lines 48-55). Finally,

to ensure feasibility, an auxiliary column is added for each item

(Lines 56-57). If the item is cached or updated in a time slot by

the decisions made by DR thus far, the corresponding parameter

is set to one. The rest of elements of the column are zeros.

6.4 Algorithm Summary

The framework of RCGA is shown in Algorithm 4 that iterates

between CGA and DR. As there are I items and T time slots, and

at least one element of x and y becomes fixed in value in each

iteration, Algorithm 4 terminates in at most I × T iterations.

7 PERFORMANCE RESULTS

In this section, we present performance evaluation results of

RCGA and the greedy algorithm (GA). We consider ACOP in-

stances of both small and large sizes. For the former, we compare

the utility achieved by RCGA and GA to the global optimum

obtained from solving ILP (1). By using global optimum as the

reference, we obtain accurate evaluation in terms of the (relative)

deviation from the optimum, referred to as the optimality gap.

Algorithm 3 DR Algorithm

1: Compute z = {zit, i ∈ I, t ∈ T }, where zit =
∑

ℓ∈Li
uitℓχ

∗
il

2: Compute w = {wit, i ∈ I, t ∈ T }, where wit =
∑

ℓ∈Li
bitℓχ

∗
iℓ

3: xit0 ⇔ 1 and yit ⇔ 1 in SPi if zit = 1, i ∈ I, t ∈ T
4: χiℓ ⇔ 0 in RMP if uitℓ = 0, i ∈ I, t ∈ T , ℓ ∈ L′

i

5: xit0 ⇔ 0 and yit ⇔ 0 in SPi if wit = 0, i ∈ I, t ∈ T
6: χiℓ ⇔ 0 in RMP if bitℓ = 1, i ∈ I, t ∈ T , ℓ ∈ L′

i

7: I′ ← {i ∈ I|xit0 is fixed to one}
8: I′′ ← {i ∈ I|yit is fixed to one}
9: C′ ← C −

∑
i∈I′ si

10: L′ ← L−
∑

i∈I′′ si
11: ξ ← cardinality{zit|zit > 0 and zit < 1}

i∈I,t∈T

12: η ← cardinality{wit|wit > 0 and wit < 1}
i∈I,t∈T

13: if ξ > 0 then
14:

¯
z ← min{zit|zit > 0 and zit < 1}

i∈I,t∈T

15: (
¯
t,
¯
i)← argmin{zit|zit > 0 and zit < 1}

i∈I,t∈T

16: z̄ ← min{1− zit|zit > 0 and zit < 1}
i∈I,t∈T

17: (t̄, ī)← argmin{1− zit|zit > 0 and zit < 1}
i∈I,t∈T

18: if (
¯
z < z̄) then

19: x
¯
t
¯
i0 ⇔ 0 in SP

¯
i

20: χ
¯
iℓ ⇔ 0 if u

¯
i
¯
tℓ = 1, ℓ ∈ L′

¯
i

21: else if (sī ≤ L′) then
22: xīt̄0 ⇔ 1 in SPī

23: χīℓ ⇔ 0 if uīt̄ℓ = 0, ℓ ∈ L′

ī

24: else
25: xīt̄0 ⇔ 0 in SPī

26: χīℓ ⇔ 0 if uīt̄ℓ = 1, ℓ ∈ L′

ī

27: else if η > 0 then
28: yit ⇔ 1 in SPi if wit = 1, i ∈ I, t ∈ T
29: χiℓ ⇔ 0 in RMP if bitℓ = 0, i ∈ I, t ∈ T , ℓ ∈ L′

i

30:

¯
w← min{wit|wit > 0 and wit < 1}

i∈I,t∈T

31: (
¯
t,
¯
i)← argmin{wit|wit > 0 and wit < 1}

i∈I,t∈T

32: w̄← min{1− wit|wit > 0 and wit < 1}
i∈I,t∈T

33: (̄i, t̄)← argmin{1−wit|wit > 0 and wit < 1}
i∈I,t∈T

34: if (
¯
w < w̄) then

35: y
¯
i
¯
t ⇔ 0 in SP

¯
i

36: χ
¯
iℓ ⇔ 0 if b

¯
i
¯
tℓ = 1, ℓ ∈ L′

¯
i

37: else if (sī ≤ C′) then
38: yīt̄ ⇔ 1 in SPī

39: χīℓ ⇔ 0 if bīt̄ℓ = 0, ℓ ∈ L′

ī

40: else
41: yīt̄ ⇔ 0 in SPī

42: yīℓ ⇔ 0 if bīt̄ℓ = 1, ℓ ∈ L′

ī

43: for t = 1 to T do
44: I′ ← {i ∈ I|xit0 is fixed to one}
45: I′′ ← {i ∈ I|yit is fixed to one}
46: C′ ← C −

∑
i∈I′ si

47: L′ ← L−
∑

i∈I′′ si
48: for i ∈ I\I′ do
49: if si > L′ then
50: xit0 ⇔ 0 in SPi

51: χiℓ ⇔ 0 in RMP if uitℓ = 1, ℓ ∈ L′
i

52: for i ∈ I\I′′ do
53: if si > C′ then
54: yit ⇔ 0 in SPi

55: χiℓ ⇔ 0 in RMP if bitℓ = 1, ℓ ∈ L′
i

56: for i = 1 to I do
57: Add to Li column ℓ, where bitℓ = 1 if xit0 has been fixed to

be one, and bitℓ = 0 otherwise, and uitℓ = 1 if yit has been
fixed to be one, and uitℓ = 0 otherwise, t ∈ T
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Algorithm 4 Framework of RCGA

1: STOP← 0
2: while (STOP= 0) do
3: Apply Algorithm 2 to obtain χ

∗ subject to DR decisions made

4: if (χ∗ is an integer solution) then
5: STOP← 1
6: else
7: Apply Algorithm 3

For large-size ACOP instances, it is computationally difficult to

obtain global optimum. Instead, we use the UBD derived from

the first iteration of RCGA as the reference value. This is a

valid comparison because the deviation with respect to the global

optimum does not exceed the deviation from the UBD. We will

see that, numerically, using the UBD remains accurate in gauging

the optimality gap.

We have used ten utility functions from the literature [9],

[37], [38] including linear and non-linear functions to model

the utility of content items with respect to AoI. The sizes of

content items are generated within interval [1, 10]. We have set

the the cache capacity to 50% of the total size of content items,

i.e., C = 0.5
∑

i∈I si. The capacity of backhaul link is set to

L = ρ
∑

i∈I si where parameter ρ steers the backhaul capacity in

relation to the total size of content items. We will vary parameters

I , T , and ρ and study their impact on the overall utility.

Figs. 3-5 and Figs. 6-8 show the performance results for

the small-size and large-size problem instances, respectively. In

Figs. 3-5, the magenta line represents the global optimum com-

puted using ILP. In Figs. 6-8 the black line represents the UBD. In

all figures, the green and blue lines represent the utility achieved

by RCGA and GA, respectively. Overall, RCGA delivers close-

optimal solutions (with a few percent of deviation from optimum).

For GA, the deviation from optimality is significantly larger.

Moreover, it can be seen that, the results for small-size problem in-

stances are consistent with those for larger problem size. Thus we

will mainly discuss the results for small-size problem instances,

even though we will also comment on the difference when the

instance size grows.

Figs. 3 shows the impact of the number of content items on

utility. Apparently, the overall utility increases with the number of

items. This is because when there are more content items, there

are more opportunities to exploit the item-specific utility values

in optimizing the cache. However GA is less capable of doing

so in comparison to RCGA, as the optimality gap of RCGA is

consistently about 3% only, whereas the optimality gap of GA

increases from 22% for I = 12 to 28% for I = 20.

The overall utility will obviously increase for a longer caching

time horizon. This is seen in Fig. 4. RCGA and GA offer solutions

that are approximately 2% and 26% from global optimality for

values of T from 8 to 12. These optimality gap values are quite

constant over T , and the reason is that extending the time has little

structural effect on ACOP.

Fig. 5 shows the impact of ρ on utility. Larger ρ means

higher backhaul capacity and thus higher utility as well. There

is a saturation effect, however, as when ρ approaches 0.5 (which

corresponds to the cache capacity), the backhaul capacity hardly

constrains the performance. For the lowest ρ-value of 0.1, the

optimality gaps of RCGA and GA are 9% and 42%, respectively,

showing that ACOP becomes noticeably harder if only few content

items can be updated per time slot.
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Fig. 3. Impact of I on utility when T = 10, L = 0.3
∑

i∈I
si, and C =
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si.
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Fig. 4. Impact of T on utility when I = 16, L = 0.3
∑

i∈I
si, and C =

0.5
∑

i∈I
si.
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Fig. 5. Impact of ρ on utility when I = 16, T = 10, and C = 0.5
∑

i∈I
si.

The results in Figs. 6-8 follow the same trend as the first

three performance figures. Interestingly, for large-size ACOP

instances, RCGA delivers better performance, as the achieved

utility by RCGA virtually overlaps with UBD. We believe this is

an effect of the knapsack structure of ACOP. When the number

of content items is small, even few sub-optimal caching and

updating decisions made by RCGA has noticeable impact on the

overall sub-optimality. This is of less an issue with many content

items. GA, however, has a worse performance for larger-size

problem instances. The observation demonstrates the strength of
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RCGA over the simple greedy schedule. Finally, our performance

evaluation using the UBD is accurate, because the global optimum

is between the utility by RCGA and the UBD that are almost

overlapping.

8 EXTENSION TO CYCLIC SCHEDULE

Suppose the caching and updating schedule is cyclic. Namely, the

schedule repeats itself for every T time slots. Hence the AoI of an

item in time slot one depends on the scheduling decisions made

for the item in later time slots. In this section, we discuss applying

our results and algorithmic notions to cyclic schedule.

The NP-hardness of cyclic scheduling clearly remains, as the

proof of Theorem 1 applies directly. For uniform item size, the

polynomial-time tractability stated in Theorem 4 can be general-

ized to cyclic schedule based on the notion of flow circulation,

which refers to a flow pattern satisfying flow balance at every

node of a graph without source or destination nodes. We modify

the network graph (in Fig. 1) such that the last node nT coincides

with the first noden0. Moreover, each node ni, i = 1, . . . , T−1 is

split into two nodes ni and n′
i connected by a single arc (ni, n

′
i) of

tuple (0, I, I), i.e., there will be exactly I flow units on this arc for

every time slot. Finding the optimal cyclic schedule corresponds

then to solving the minimum-cost circulation flow problem for

which the optimum can be computed in polynomial time (e.g.,

[39]).

Adapting the ILP formulation in Section 5 to cyclic scheduling

is easy; this amounts to adding an additional constraint of type

(1c) to connect together time slots 1 and T . The reformulation

(2) and our algorithm RCGA remain applicable. The difference

from acyclic schedule lies in the subproblem. Namely, instead of

finding a shortest path with graph construction shown in Fig. 2,

the subproblem consists in finding minimum cost circulation in a

modified graph as discussed above.

Finally, we remark that the underlying rationale of the greedy

solution in Section 3.2 does not appear very logical for a cyclic

schedule. The greedy algorithm works slot by slot, and, for each

slot, the algorithm uses the AoI values of the previous slot as input.

With cyclic scheduling, this input is not available as it depends on

the whole scheduling solution. Nevertheless, the greedy acyclic

schedule is still a valid solution to be used as a cyclic schedule,

though the true utility values need to be evaluated afterward.

9 CONCLUSIONS

We have considered the optimization problem of time-dynamic

caching where the performance metric is age-centric. Our work

has led to the following key findings. First, the problem complex-

ity originates from the knapsack structure, whereas for uniform

item size it is polynomial-time solvable. These results settle

the boundary of problem tractability. Second, column generation

offers an effective approach for problem solving in terms of

obtaining clear-optimal solutions. As another concluding remark,

we believe our results and algorithm admit extensions to a couple

of other related performance functions. One is time-specific utility

function as the popularity of content items may change over time.

The other is the minimization of average AoI.
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