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Abstract—Network slicing is emerging as a promising method
to provide sought after versatility and flexibility to cope with ever-
increasing demands. To realize such potential advantages and to
meet the challenging requirements of various network slices in an
on-demand fashion, we need to develop an agile and distributed
mechanism for resource provisioning to different network slices
in a heterogeneous multi-resource multi-domain mobile network
environment. We formulate inter-domain resource provisioning to
network slices in such an environment as an optimization problem
which maximizes social welfare among network slice tenants
(so that maximizing tenants’ satisfaction), while minimizing
operational expenditures for infrastructure service providers at
the same time. To solve the envisioned problem, we implement an
iterative auction game among network slice tenants, on one hand,
and a plurality of price-taking subnet service providers, on the
other hand. We show that the proposed solution method results
in a distributed privacy-saving mechanism which converges to
the optimal solution of the described optimization problem. In
addition to providing analytical results to characterize the per-
formance of the proposed mechanism, we also employ numerical
evaluations to validate the results, demonstrate convergence of
the presented algorithm, and show the enhanced performance of
the proposed approach (in terms of resource utilization, fairness
and operational costs) against the existing solutions.

Index Terms—Inter-domain network slicing, virtualization,
end-to-end service provisioning, distributed implementation,
multi-resource allocation.

I. INTRODUCTION

Network slicing is expected to become an integral part of
next generation mobile networks, since slicing helps networks
to be more versatile. Built upon recently developed tech-
nologies, such as network function virtualization (NFV) and
software defined networks (SDN), network slicing lets mul-
tiple logical networks share the same physical infrastructure.
This virtualization technique can enable one network providing
multiple services with extremely different requirements, while
maintaining isolation. As opposed to many QoS assurance
methods, network slicing differentiates between different traf-
fic as per their requirements, and for the same kind of traffic
as per different tenants1. Therefore, network slicing is a

* The paper has been accepted for publication at IEEE Transactions on
Mobile Computing. Please refer to DOI 10.1109/TMC.2021.3061613 for the
final version.

1Tenant can be thought as a group of users or a 3rd-party consumer using
the communication services to provide other communication services to users.

unique method for end-to-end granular network management
and service provisioning. Moreover, by integrating with other
technologies (such as cloud computing, cloud-RAN [1] and
mobile edge computing [2]), it introduces more flexibility in
deployment resulting in significant reduction in both opera-
tional and capital expenditures. Accordingly, network slicing
has attracted significant attention from both industry and
academia. While the leading standardization bodies for the
next generation wireless networks included network slicing in
their work items [3]–[6], there is also a significant number
of studies from the academia investigating characteristics and
dynamics of network slicing [7]–[14].

From the control plane (CP) perspective in 3GPP 5G
standardization, a network slice can consist of several network
slice instances (NSIs). NSIs help not only to adjust the network
slice resources based on the service requirements, but also
to differentiate between even the same type of QoS flows
based on granular network policies. The network management
(NM) perspective involves also the network slice subnet in-
stance (NSSI) concept for granular management of network
domains (e.g., radio access network (RAN), core network
(CN), transport network (TN)) and provides different levels of
exposure to the tenants. Briefly, a managed NSI can consist
of several NSSIs. The NSSIs can be chosen by the network
manager based on geographical circumstances, network and
access technology (e.g., a mmWave NSSI, 4G core NSSI),
vendor differences (e.g., parts of network resources are from
vendor X and parts of network resources are from vendor
Y), and other factors that are significant from the network
management perspective. In this study it is assumed that NSSIs
are generated based on network domain and geographical
region.

To achieve the potential advantages of network slicing,
network operators need to address several challenges, such as
providing QoS guarantees for different network slices/services,
while efficiently utilizing the capacity of the infrastructure
network. Fulfilling such requirements mainly depends on the
underlying resource provisioning mechanism that is used for
resource management and placement of virtualized network
functions (VNFs) [8], [9], [15]. There are several work in
the literature which study resource allocation to VNFs in
the context of a general topology network. Indeed, the VNF
resource allocation problem can be traced-back/reduced to the
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virtual network embedding (VNE) problem, wherein a virtual
network is embedded on the top of a substrate network [16].
However, it usually results in a mixed integer linear program
(MILP) which is shown to be NP-hard [17]. Hence, different
heuristic methods are proposed to address VNF placement
and resource provisioning in the network of an infrastructure
service provider (ISP) or an enterprise network [18]–[22]. The
reader may refer to Section II for a more detailed literature
survey.

By capturing the underlying resource model in a real mobile
network environment, leveraging the possibility for multi-path
connectivity, and by exploiting the constraints that are imposed
for placement of VNFs in practice, we propose a novel for-
mulation for end-to-end resource provisioning, which avoids
intractable complexities of solving an MILP. Particularly, given
the placement constraints, there remains a limited number of
nodes in each domain, and therefore a limited number of paths
which can provide service to NSIs in a certain region. By
considering pre-determined paths2 (each comprising a pre-
determined chain of VNFs) and exploiting the possibility
for multi-path connectivity, we avoid intractable complexities
of solving an MILP (for placement of VNFs), while yet
providing the flexibility to optimize routing across different
paths/chains-of-VNFs. The formulated problem indeed relaxes
the constraint of single path routing of MILPs by exploiting
the possibility for multi-path connectivity in next generation
networks. A detailed description of the system model is
presented in Section III. The proposed solution presents a
market equilibrium approach which results in an agile and
distributed mechanism for end-to-end resource provisioning
to NSIs in a multi-resource multi-domain mobile network
environment (such as an integrated terrestrial-aerial-satellite
network). The proposed market-based solution best resembles
the real-world interaction between the infrastructure service
providers (in a vertical heterogeneous network [23]) and
virtual mobile network operators (i.e., tenants) which acquire
resources to implement different NSIs. Market-based mech-
anisms have recently received considerable attention [24]–
[26], since they may lead to a desirable performance in terms
of resource utilization and energy-efficiency, in addition to
maximizing social welfare and user satisfaction. Of course the
distributed implementation comes at the price of a signaling
overhead to exchange certain information between the network
slice tenants and the infrastructure providers. The required
information to exchange, however, is kept minimal as it is
limited only to the resource prices and the allocated resources.
Such an occasional signaling (which should be performed
in case of an update) may not be significant compared to
the persistent measurement and monitoring signaling that is
usually communicated for the sake of network management
and maintenance.

Contributions: The contributions of this paper are summa-
rized as follows.

• Problem formulation: We propose a new formulation for

2It is assumed that the paths are a-priori determined by running a path
finding algorithm. The detailed implementation of such an algorithm, however,
is out of the scope of this paper.

inter-domain resource provisioning to network slices, devel-
oping a framework which unifies the allocation of different
types of resources (including network bandwidth as well as
computing resources) in a heterogeneous multi-domain en-
vironment. We formulate resource provisioning to network
slices in such an environment as a concave maximization
problem which maximizes social welfare among network
slice tenants, while minimizing operational expenditures
(OPEX) for infrastructure service providers at the same
time.
• An auction-based solution: To solve the proposed resource

provisioning problem, we devise an iterative auction game
among network slice tenants, each bidding for different
resources so as to maximize a local payoff function. The
infrastructure service providers (owning data centers or
access point (APs) across different domains), on the other
hand, decide on the resource prices. The described game
is shown to be at a Nash equilibrium if and only if it is
at an optimal solution to the global concave optimization
problem (which provably results in a unique optimal traffic
volume for each NSI).
• Characterizing the solution: It is shown that the proposed

approach results in a distributed privacy-saving mechanism
which does not require sharing any private information (e.g.,
resource capacities of data centers or APs, and demand pro-
file or payoff function of tenants) among different parties.
We further analyze the performance of the proposed mech-
anism, by demonstrating certain properties (such as envy-
freeness and sharing incentive) that are deemed desirable
for efficient and fair allocation of resources.
• Demonstrating the performance: In addition to analytical

results, we also employ numerical evaluations to show
the validity of the results, demonstrate convergence of the
presented algorithm, and show the superior performance of
the proposed mechanism (in terms of resource utilization,
fairness and operational expenditures) compared to heuris-
tics and other existing solutions.

Organization: The background and related work is pre-
sented in Section II. The system model is characterized in
Section III. Our proposed distributed resource provisioning
mechanism is described in Section IV. Some import exten-
sions to the original formulation (such as considering budget-
constrained tenants, and exploiting the capabilities at the
mobile edge) are presented in Section V. The numerical results
on evaluating the performance of the proposed scheme are
reported in Section VI. The paper is concluded in Section VII.

II. BACKGROUND AND RELATED WORK

A. Background on Enabling Technologies

Network slicing is a promising solution for the next gener-
ation mobile networks which allows to build multiple logical
networks on the top of a shared infrastructure, so that (virtual)
mobile network operators may provide services tailored for
different network slices with different QoS requirements. To
achieve potential advantages of network slicing, considerable
research activities are dedicated to developing the underly-
ing/enabling technologies (such as, NFV, VMs, containers,



etc.) that are required for implementation of virtualized net-
work functions and services [27]–[31]. NFV decouples the
software implementation of network functions from the un-
derlying hardware. Hence, different network appliances and/or
middle-box processings (such as firewalls, traffic shapers, etc.)
can be implemented on an VM running on commercial off-
the-shelf hardware (such as general purpose server, storage
and switches), as opposed to dedicating specialized hardware
devices for implementation of network functions/protocols
in conventional communications networks [32], [33]. One
of the main advantages of virtualized network functions is
programmability, so that future changes can be applied easily
by just updating the software without the need to replacing
the hardware [33].

Another line of research in this area includes the works
investigating complementary technologies such as CRAN
(cloud/cetralized radio access network [1]), mobile edge com-
puting (MEC), and fog computing [2], [25]. CRAN is a new
architecture which is introduced as a cost-efficient solution to
address the scalability issue with the growing user demands
in 5G mobile networks [1]. The main idea is to achieve
multiplexing gain by pooling baseband units (BBU) from
several base stations into a centralized radio access unit. It
introduces substantial savings on both operational expenditures
(due to enhanced energy-efficiency) and capital expenditures
for implementation of BBUs. Moreover, it may improve the
network performance by providing the possibility to perform
joint processing of signals from different base station [1].
Mobile edge computing, on the other hand, is an emerging
platform which integrates new technologies, such as cloud
computing and NFV, with the conventional telecommunication
networks to provide computational capabilities at the mobile
edge, enabling a wide range of new applications/services [2].
In [25] a market equilibrium approach has been proposed to
efficiently allocate the resources at the mobile edge to budget
constrained users.

B. Related Work

Different business models and architectural solutions have
been presented for application of NFV and network slicing to
wireless/mobile networks [8]–[10]. In [9] the authors propose
the concept of hierarchical network slice as a service, enabling
the operators to provide customized end-to-end (E2E) cellular
network as a service. In [8] an architecture is presented for
RAN virtualization in network-slicing-based 5G networks.
Moreover, it discusses how to address different challenges that
are involved in RAN virtualization (such as power control,
channel allocation and mobility management) in the proposed
architecture. Indeed, the concept of network slicing can be
applied to different domains (including RAN, backhaul and
core network) individually [11], [12], [34]–[36], or providing
an E2E network slice as a service [26].

To achieve potential advantages of network slicing and
to provide E2E QoS guarantees for different network slices
with diverse E2E QoS requirements, an efficient E2E resource
provisioning mechanism is required. There are several works
in the literature which study the problem of E2E resource

provisioning to network slices in the context of a general
topology network (e.g., an ISP or an enterprise network).
The work in [15] proposes a high-level E2E orchestration
framework wherein the problem is broken to placement of
virtual machines across the network, and then resource al-
location to network functions on virtual nodes. However,
it does not provide a technical solution for placement and
resource allocation to VNFs. The work in [21] formulates
placement of chain of VNFs as an MILP, and then proposes a
dynamic-programming-based heuristic which achieves a sub-
optimal solution. The complex network theory is used in [37]
for ranking the nodes of an infrastructure network, and then
mapping them to VNFs. A heuristic solution is proposed in
[20] for joint VNF placement and online request scheduling to
the instantiated VNFs. In [19], a multi-objective optimization
problem (which minimizes links traffic along with the number
of busy CPU cores) is formulated for optimal routing in the
network of an ISP. In [18] a heuristic method is proposed
for placement of elastic network functions, while it minimizes
the operational expenditures in order to address the trade-off
between bandwidth and host resource consumption. Indeed, all
of these studies and also the work in [22] can be viewed as
an extension/variant of virtual network embedding problem,
resulting in an MILP which is shown to be NP-hard [17].
Hence, all of these studies come up with a heuristic solution.
Moreover, the underlying model in none of these work is
comprehensive in the sense to consider an accurate resource
model for data centers (comprising multiple types of resources
with heterogeneous resource capacities).

The work in [26] is the most related study to the framework
presented herein. However, it does not provide the possibility
to exploit different paths/chains-of-VNFs. Indeed, the solution
in [26] is based on a model assuming fixed placement of
VNFs over a pre-determined path for each network slice.
Moreover, it does not address cost-aware resource pricing and
minimization of the OPEX. Lastly, as we show in Section VI,
the solution of [26] may not satisfy some desirable fairness
related property (such as sharing incentive). Adopting a market
equilibrium approach, we develop a distributed mechanism for
E2E resource provisioning to different network slices. The
proposed mechanism is shown to maximize social welfare
among network slice tenants, while minimizing the OPEX
across different domains. In our formulation, we consider
a number of possible forwarding paths (each comprising a
pre-determined chain of VNFs) for each network slice. In
this way, we avoid intractable complexities in placement of
VNFs, while yet providing the flexibility to optimize routing
across different paths/chains-of-VNFs. Moreover, we consider
an accurate resource model (comprising multiple types of
resources) for data centers.

III. SYSTEM MODEL

Based on the developments in 5G standardization, for each
end-to-end NSI n, n = 1, 2, · · · , N , one may consider three
NSSIs in different domains, namely, radio access, backhaul,
and the core network. Fig. 1 shows a sample NSI comprising



RAN, CRAN3, and core NSSIs. Each NSSI comprises a
specific sequence of VNFs in a certain domain. Note that it is
possible to consider several NSSIs in each domain. In addition,
there might be more than one service provider node (i.e.,
data center or AP) in each domain. The resources (including
network bandwidth and computing resources) provided by a
data center or AP in a particular domain are used to implement
network functions for NSSIs in the same domain. Note that
virtualization helps to tailor the network function chains with
respect to the services provided by different NSSIs. Hence,
each data center or AP has to implement several network
function chains, depending on the network services provided
by NSSIs.

Given the deployed infrastructure, it is assumed that the
traffic flow in each area, l = 1, 2, ..., A, can be forwarded over
certain paths towards the core network [26], [38]. Particularly,
mobile users in each geographical area could be served by
a number of local radio access units. Then, the traffic flow
from each radio access unit could be forwarded over pre-
defined paths towards the core network. We assume that the
set of forwarding paths are pre-defined based on VNF place-
ment constraints (including vendor/technology compatibility,
transmission latency constraints, etc.) for each geographical
area. Let Pl denote the set of paths originating from area
l. Each path p ∈ Pl originating from area l comprises a
sequence of nodes4 over different domains of the network,
p = {l, i, j, k}, i ∈ I1, j ∈ I2, k ∈ I3, where I1, I2,
and I3 denote the set of node indices over RAN, CRAN,
and core network, respectively. A communication link with
a certain nominal capacity is assumed between every two
consecutive nodes of a path. It is assumed that the nodes
in each domain are in charge of allocating the inbound
communication bandwidth. In general, we use a capacity
vector of size M , Ci = [Ci,1, ..., Ci,r, ..., Ci,M ], to specify the
amount of available resources, such as CPU, RAM, memory
bandwidth, the outbound bandwidth towards the internet, and
the inbound communication bandwidths at each node i. The
resource model for a generic node is shown on the top-right
corner of Fig. 1.

We use the notion of demand vector [39], dpn,i = [dpn,i,r],
to specify the amount of different resources, r = 1, 2, · · · ,M ,
that are required for processing one unit of traffic for NSI
n when routed to node i through path p. The reader may
note that dpn,i is node-dependent, so that it may reflect a
variable performance for the same NSI over different nodes.
For instance, at the RAN domain the number of physical
resource blocks that are required for transmitting one unit of
traffic for NSI n might be different from one radio access point
to another [34]. It is worth noting that the demand vector con-
vention follows a physical-layer abstraction model to capture
mid-term statistics of the RAN (averaged over few minutes,
e.g., to absorb short-term variations), while yet providing the
possibility to capture some physical layer complexities (e.g.,

3CRAN is actually a part of 5G core network, based on 5G standardization
by SA2 group. In this article, we use the terms “CRAN” and “core” to
distinguish between the domains where these functionalities are implemented.

4A node at the RAN represents an access-point/base-station, whereas a node
at backhaul or core network may represent a server or a data center.

variations that may occur due to UE-mobility). Moreover, the
demand vector is slice-specific, so it can account for variable
performance of different NSIs at the same node. This can
be particularly useful to capture slice dependent complexities
at the RAN. The demand vector, dpn,i, is also considered to
be path dependent so as to account for (possibly) different
chains of network functions over different paths. Also, it may
account for multiple inbound communication links at each
node (including the RAN).

As an example, consider a node (i.e., server) compris-
ing 16 CPU cores, 32 GBytes of RAM, 1 Gb/s memory
BW, 10 Gb/s outbound BW, and 4 input ports each with a
bandwidth of 2.5 Gb/s, complying with the resource model
in Fig 1. The capacity vector here is represented as Ci =
[16, 32, 1, 10, 2.5, 2.5, 2.5, 2.5]. A demand vector, for instance,
can be described5 as dpn,i = [0.5, 2, 0.1, 0.75, 1.1, 0, 0, 0],
which specifies the amount of different resources required
for processing one unit of traffic (e.g., 1 Gb/s) for NSI n
when routed through the first input port to node i. Identifying
demand vectors per routing paths is the key to account for
limited bandwidth of communication links. This is in contrast
to existing works in the literature which only consider the
overall network bandwidth over each data center or server [26],
[40]–[42]. Such studies may only address the limited capacity
of the server switch in accepting the incoming traffic, but may
not capture the capacity constraint of communication links.

Note that one mobile user can obtain multiple services,
each provided by a different NSI. The key point is that the
granularity level is per slice per traffic-flow, rather than per
mobile user. Let xpn denote the capacity allocated/provisioned
to NSI n over path p. It actually represents the (maximum)
volume of traffic that can be forwarded for NSI n over path
p. The (maximum) volume of traffic which can be forwarded
for the users/tenant of NSI n in area l is given by

xn,l :=
∑
p∈Pl

xpn. (1)

Indeed, the traffic admitted from users of NSI n should be
kept below xn,l in each area. The resources allocated from
node i to NSI n (to provision xpn units of traffic over each
path p which node i belongs to) is given by an,i = [an,i,r],

an,i,r =
∑
p:i∈p

xpnd
p
n,i,r. (2)

Generally, for an allocation, x := {xpn | n ∈ N , p ∈ Pl, l =
1, 2, .., A} to be feasible, the following has to be satisfied:∑

n∈N
an,i,r =

∑
n∈N

∑
p:i∈p

xpnd
p
n,i,r ≤ Ci,r, ∀i, r. (3)

The key notations are summarized in Table I. It is worth
noting that the resource capacity, Ci,r, represents the nominal
capacity of resource r at node i. For example, the communica-
tion bandwidth of an AP is defined as the maximum achievable
data rate when using the best modulation and coding scheme.
Depending on their performance requirements and to rectify

5In practice, a hypervisor shares the CPU-time among different VMs
running on the same server. So, any fraction of a CPU core can be assigned
to each VM [39].
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(NBW)) to VNFs of the NSSIs in each domain. The resource model for a generic node is shown on the top-right corner.

TABLE I: A summary of key notations

Notation Description
Ci,r Capacity of resource r at node i
dp
n,i = [dpn,i,r] The demand vector for NSI n at node i using path p

an,i = [an,i,r] Vector of resources allocated from node i to NSI n
xpn The traffic capacity provisioned to NSI n over path p
Pl The set of paths originating from area l
xn,l The traffic capacity provisioned to NSI n in area l
Un,l(xn,l) The utility (function) for NSI n in area l
qi,r The OPEX for unit of resource r at node i.
µi,r The price to book one unit of resource r at node i
Πn(xn;µ) The net payoff function for NSI n
wn,i,r The payment of NSI n to node i for resource r

certain physical layer complexities, however, some NSIs may
need to use lower order modulation and coding schemes. Such
requirements can be flexibly reflected in the demand vectors.

IV. DISTRIBUTED RESOURCE PROVISIONING

In this section, we first formulate the problem of re-
source provisioning to different network slices as a centralized
system-wide optimization problem, maximizing social welfare
among network slice tenants, while minimizing OPEX for the
infrastructure service providers at the same time. We show
that the described problem can be solved by implementing

an auction game among network slice tenants on one hand,
and a set of price-taking infrastructure service providers, on
the other hand. In the proposed solution, each network slice
tenant maximizes a local payoff function, while a certain
resource allocation and pricing scheme is implemented at each
infrastructure node. We further characterize the performance of
the proposed mechanism by demonstrating certain properties
which are highly desirable for efficient and fair allocation of
the resources.

A. The System-Wide Objective

Each network slice tenant may gain a utility (i.e., profit) of
Un,l(xn,l) out of the allocated capacity in each area l. The
utility function for each NSI n can be reasonably represented
by a concave function.

Problem 1: The system-wide optimization problem

max
x

∑
n,l

Un,l

∑
p∈Pl

xpn

−∑
i,r

qi,r
∑
n

∑
p:i∈p

xpnd
p
n,i,r (4)

s.t.
∑
n

∑
p:i∈p

xpnd
p
n,i,r ≤ Ci,r, ∀i, r, (5)

xpn ≥ 0, ∀n, p. (6)



The parameter qi,r is the OPEX for node i to provision one
unit of resource r. So the objective in Problem 1 is to maximize
the overall utility for different NSIs (i.e., maximizing social
welfare), while minimizing OPEX for service providers. The
following solution method and the presented analytical results
are established in general for every utility function, Un,l(·),
that is continuously differentiable and strictly concave. As an
example, one may assume Un,l(z) from a common class of
utility functions for which the derivative (i.e., marginal benefit)
is described as U ′n,l(z) = (φn,l/z)

αn , αn > 0 [43], [44]. For
this class of functions, the parameter αn (which typically takes
on a value in the range of [1, 2]) determines the shape of the
utility function [43], [44]. The parameter φn,l may present the
traffic load for each NSI n in a certain area. We use the class of
functions for the sake of numerical evaluations in Section VI.

For NSIs with delay sensitive applications, we can account
for the end-to-end delay in the utility function. In particular,
the end-to-end delay for NSI n which forwards an admissible6

volume of φn,l unit of traffic can be estimated by [45]

Dn(xn,l) :=
L

xn,l − φn,l
+
hn,lL

xn,l
, for xn,l > φn,l, (7)

where L is the average packet length (in bits) and hn,l is
(proportional to) the total number of steps that each packet is
processed in the network7. The net revenue for NSI n then is
given by

Rn(xn,l) := Un(xn,l)− βn,lDn(xn,l), (8)

where the parameter βn,l in (8) relates the delay to loss in
profit. For delay sensitive slices, we can consider the net
revenue instead of the utility function in (4). The parameter
βn,l then could be properly adjusted to keep the end-to-end
delay less than a desired threshold. The proposed solution
method in the following can be viewed as a variant of the
market equilibrium approach which was originally presented
in [44] and here is extended to a multi-resource multi-domain
network.

B. End-to-end Network Slice Management
For each NSI we assume an end-to-end slice manager

which monitors the end-to-end network slice performance, and
decides on bidding for the resources at different domains of the
network. It is assumed that the network slice manager has (a-
priori) found the demand vector for each service function chain
of an NSI, by getting feedbacks and monitoring the resource
utilization of the VMs implementing the function chains.
Particularly, assume that d̂n,i = [d̂n,i,r] is an (arbitrary) initial
estimate of the demand vector for a service function at node i.
Given that the resources are initially allocated (to the service
function chain) proportional to d̂n,i, the resource utilization
of the VM, which implements it, is described in terms of d̂n,i
and the true value of the demand vector [46],

un,i,r :=
dn,i,r

d̂n,i,r
min
r′
{ d̂n,i,r

′

dn,i,r′
}. (9)

6The admitted traffic volume could be a fraction of offered load in each
region. In Section V-B, we discuss a potential solution to adjust the admitted
traffic volume.

7By definition, Dn(xn,l) := −∞ for xn,l ≤ φn,l.

So, given the resource utilization and an (arbitrary) initial
estimate of the demand vector, the true value of the demand
vector can be found using (9). In the following, it is assumed
that the true value of the demand vector is known to the
slice manager. Based on the demand vector, the slice manager
knows the amount of resources that are required for forward-
ing/processing a certain volume of traffic at each domain of the
network. Moreover, it is assumed that the utility function (as a
function of NSI traffic volume) is known to the network slice
manager. Each network slice manager then needs to maximize
its net payoff function (i.e., the gained utility minus the total
payment),

Πn(xn;µ) =
∑
l

Un,l(xn,l)−
∑
i,r

∑
p:i∈p

xpnd
p
n,i,rµi,r, (10)

where µi,r is the price to book one unit of resource r at
node i. The reader may note that xn,l is described in terms of
path traffic volumes, xpn (see (1)). The network slice manager
then strives to find an allocation xn := {xpn | p ∈ Pl, l =
1, 2, ..., A} which solves the following problem.

Problem 2: Network slice optimization problem

max
xn

Πn(xn;µ) (11)

Subject to: xpn ≥ 0. (12)

Given a solution to this problem, the network slice manager
decides how much capacity should be provisioned for each
NSI n over each path, which subsequently specifies the amount
of resources which should be allocated from each node to
NSI n (see (2)). The bid/payment that is made by NSI n for
resource r of node i is given by

wn,i,r := µi,r
∑
p:i∈p

xpnd
p
n,i,r. (13)

Note 1. The payment matrix for each NSI n, Wn := [wn,i,r],
is determined based on path traffic volumes/capacities. That
is, Wn = Wn(xn).

C. Resource Management for Nodes

Each service provider node, which implements a subnet-
work functionality (i.e., NSSI) for NSI n, receives some bids
wn,i,r > 0 for different resources. It is assumed that each node
does not price discriminate among different NSIs. That is, each
node i chooses a certain price, µi,r, for unit of each resource r,
and subsequently allocates an amount of an,i,r = wn,i,r/µi,r
of resource r to each NSI n. It is assumed that node i is
incurred an OPEX of qi,r for providing one unit of resource
r. This may include electrical energy costs, and the cost
to transport traffic over the network of an internet service
provider. To ensure that OPEX are covered by NSI payments,
the price for one unit of resource r is chosen to be8

µi,r = max

{
qi,r,

∑
n wn,i,r(x)

Ci,r

}
, (14)

8We consider a competitive market in the presence of a plurality of service
provider nodes. So it is assumed that each subnet service provider node applies
the true value of its OPEX to set the resource prices.



so that resource r is cleared (that is
∑
n an,i,r = Ci,r) only

when
∑
n wn,i,r/Ci,r ≥ qi,r, In general,∑

n

an,i,r =
∑
n

wn,i,r
µi,r

=: ηi,rCi,r, (15)

where ηi,r := min

{∑
n wn,i,r
Ci,rqi,r

, 1

}
, (16)

so that a fraction of ηi,r < 1 of resource r is allocated
to different NSIs when

∑
n wn,i,r/Ci,r < qi,r. We show

that employing such a simple pricing scheme in conjunction
with the end-to-end NSI resource management mechanism of
Section IV-B results in minimizing the operational costs in
the whole network, while maximizing social welfare among
network slice tenants.

D. Distributed Online Mechanism

In this section we devise a distributed online mechanism
which implements an auction game among the network slice
mangers, on one hand, and a set of price-taking infras-
tructure/subnet service providers, on the other hand. In the
proposed mechanism, the network slice managers (each imple-
menting one NSI) may iteratively update their bids for various
resources of different nodes (see (13)). Given the payments by
network slice managers, each node (i.e., AP or data center)
decides on the resource prices (see (14)) and declares9 the
resource prices to all network slice managers. Each network
slice manager then may find its desired (i.e., optimal) path
traffic volumes, and accordingly updates its payments, so as
to improve its achievable payoff. Given the payments from all
NSIs, the resource prices are updated in a way that the capacity
constraints are met for all resources. This procedure continues
until no network slice is willing to update its payments. At this
point (which is so-called a Nash equilibrium) a stable price
is established for each resource. Since the resource prices are
determined based on the payments from all NSIs, a tradeoff
(which results in maximizing social welfare, as shown in
Theorem 1) is established between the allocated resources to
different NSIs.

In the described auction game, the bidders are network
slice managers, while the suppliers are different nodes, each
offering M types of (divisible) resources according to a certain
pricing scheme (as in (14)). Hence, the resource prices are
function of actions (i.e., allocations) taken by network slice
managers (see (14) and Note 1).

Definition 1. The game is said to be in a Nash Equilibrium
(NE) if there exists an allocation x∗ and a set of resource
prices µ∗ = µ(x∗), in compliance with (14), so that no NSI
gains payoff by unilateral deviation from its current allocation,

Πn(x∗n;µ∗) ≥ Πn(xn;µ∗), for all feasible xn,∀n. (17)

It is worth noting that the payoff of each NSI depends on
its own action (i.e., xn) as well as the current resource prices.
The inequality in (17) implies that x∗n is an optimal solution

9Alternatively, we may assume that nodes declare the allocated resources to
each NSI, so that slice managers indirectly infer the resource prices (µi,r =
wn,i,r/an,i,r).

to Problem 2 (i.e., the local payoff optimization for NSI n)
in conjunction with the equilibrium resource prices. Given the
concavity of the payoff functions, an allocation xn := {xpn |
p ∈ Pl, l = 1, 2, ..., A} is an optimal solution to Problem 2
for NSI n if and only if for every path p ∈ Pl:

∂Π(xn;µ)

∂xpn
=

U ′n,l(xn,l)−
∑
i∈p

∑
r

dpn,i,rµi,r

{
= 0 if xpn > 0,

≤ 0 otherwise.
(18)

The condition in (18) implies that xpn > 0, p ∈ Pl, only when∑
i∈p

∑
r

dpn,i,rµi,r = min
p′∈Pl

∑
i∈p′

∑
r

dp
′

n,i,rµi,r. (19)

The left hand side in (19) gives the cost for transmitting one
unit of NSI n’s traffic over path p. It means that at the optimal
solution to Problem 2, the traffic for each NSI is forwarded
over the least expensive path(s) in each area. Moreover, it
follows from (18) that

x∗n,l := U ′n,l
(−1)

min
p∈Pl

∑
i∈p

∑
r

dpn,i,rµi,r

 , (20)

where U ′n,l
(−1)

(·) is the inverse of U ′n,l(·). The function
U ′n,l(·) is assumed to be invertible owing to concavity of
Un,l(·) over its feasible region. Although x∗n,l is uniquely
specified for each NSI in each area, yet there might be several
possible allocations in case that the minimum transmission
cost is attained over multiple paths. In particular, let P∗n,l ⊆ Pl
denote the set of paths which result in the minimum transmis-
sion cost for NSI n in area l (c.f. (19)). A possible allocation
is to uniformly distribute x∗n,l across the least expensive paths:

xp∗n =

{
x∗n,l/|P∗n,l| if p ∈ P∗n,l,
0 otherwise.

(21)

The proposed Distributed Resource Provisioning (DRP)
mechanism is summarized in Table II. Beginning with some
initial resource prices (e.g., µi,r = qi,r), the slice manager for
each NSI may find an optimal allocation according to (20)
and (21). However, to prevent oscillations, especially when
traffic is to be distributed over multiple paths, xn is (gradually)
updated according to (23). The slice manager then finds the
amount of resources which should be allocated from different
nodes (c.f. (2)), and accordingly bids for different resources of
each node. The offered payments are in turn used to update the
resource prices at each node (see (14)). Let {µ̂i,r} denote the
updated resource prices which are taken by node i in response
to bids made by different NSIs in the current iteration. The
actual volume of traffic that can be processed for NSI n over
path p is given by

x̂pn := xpn min
i∈p,r

µi,r
µ̂i,r

. (22)

The updated resource prices are subsequently used by network
slice managers to repeat the same procedure in the next round.
The slice managers keep updating their decisions while ‖x̂n−
x∗n‖ > ε for some ε > 0.



TABLE II: Distributed Resource Provisioning (DRP) Mecha-
nism

The resource prices are initially set to µi,r = qi,r, ∀i, r.
I. Given a set of resource prices, µ, each network slice manager

- Finds the optimal allocation x∗
n per the current resource prices

according to (20) and (21). It then updates the current allocation
according to

xn ← (1− ηn)xn + ηnx
∗
n, (23)

where ηn ∈ (0, 1).
- Finds the amount of resources which should be allocated from

each node (see (2)), and then bids for different resources,
accordingly (see (13)).

II. Given updated payments by slice managers, each service
provider node

- Updates the resource prices according to (14), and allocates the
resources to different NSIs, accordingly.

- Declares the resource prices to the network slice managers.
III. Given updated resource prices, µ̂, each network slice manager

- Finds the actual allocation, x̂n, according to (22).
- Updates the resource prices, µ← µ̂, as well as the allocation,

xn ← x̂n. Subroutine I then is repeated while ‖xn−x∗
n‖ > ε.

E. Characterizing the Solution

In this section we show that the proposed distributed
resource provisioning mechanism results in optimizing the
global system-wide objective of Problem 1, maximizing social
welfare among the network slice tenants while minimizing
the OPEX for service providers. Moreover, we show that
Problem 1 has a unique optimal solution (in terms of {xn,l})
and so is the NE of the DRP mechanism. We finally study
the properties of the resulting allocation by characterizing the
solution of Problem 1.

Theorem 1. Assume a continuously differentiable and strictly
concave utility function, Un,l(·), for each NSI n. An allocation
x is an NE for DRP mechanism (in conjunction with some
resource prices) if and only if it is a solution to Problem 1.

The following is a direct conclusion of Theorem 1.

Remark 1. There exists an NE for the DRP mechanism.
Moreover, the resulting allocation at the NE is unique in terms
of {x∗n,l}.

The proof appears in the Appendix. According to Theo-
rem 1, the DRP mechanism results in an allocation which
maximizes the overall utility for different NSIs minus the
summation of OPEX for infrastructure service providers (see
(4)). Moreover, it follows from the proof of Theorem 1 that
the resource prices at the NE are associated with the dual
variables λi,r corresponding to the capacity constraints in (5).
In particular, µi,r = qi,r + λi,r, so that resource r with a
restricting capacity at node i (i.e., with λi,r > 0) results in
µi,r > qi,r.

The reader may note that the convergence behavior of the
proposed DRP mechanism depends on the actual choice of
utility functions, which can be different for various NSIs. The
fact that different NSIs can take different utility functions
makes it difficult to derive analytical results on the rate of

the convergence. To derive such results, one needs to perform
a statistical or worst-case analysis which is not straightforward
and is out of the scope of this paper. Nevertheless, Theorem 1
describes the NE, which is the convergence point of the
DRP mechanism, as the optimal solution to Problem 1 for
any choice of continuously differentiable and strictly concave
utility functions. At this point, we leave this rich topic for
future work, and provide numerical experiments to have some
observations on the convergence behavior of the DRP mech-
anism in Section VI.

To further characterize the NE of the DRP mechanism
(or equivalently the solution to Problem 1), we formulate an
equivalent network-wide optimization problem, which prov-
ably results in the same allocation. Towards that, let wn,l
denote the total payment made by NSI n for the resources
which process the originating traffic from area l,

wn,l :=
∑
i,r

µi,r
∑

p∈Pl:i∈p
xpnd

p
n,i,r. (24)

Theorem 2. Let {w∗n,l} denote the set of payments made by
different NSIs when the DRP mechanism is in an NE. An
allocation x∗ serves as an NE for the DRP mechanism if and
only if it is a solution to following problem.

Problem 3: Subnetworks optimization problem

max
x

∑
n,l

w∗n,l log(xn,l)−
∑
i,r

qi,r
∑
n

∑
p:i∈p

xpnd
p
n,i,r (25)

s.t.
∑
n

∑
p:i∈p

xpnd
p
n,i,r ≤ Ci,r, ∀i, r, (26)

xpn ≥ 0, ∀n, p, (27)

where xn,l is written in terms of xpn according to (1).

According to Theorem 2, the DRP mechanism results in
an allocation which satisfies weighted proportional fairness
among different NSIs (wherein the weights are set to pay-
ments) while minimizing the OPEX [44], [47]. To further
characterize the allocation resulting from the DRP mechanism,
let apn = {apn,i,r|i ∈ p,∀ r} denote the allocated resources to
NSI n over path p. We denote by Tn(an,l) the volume of
traffic which can be processed for NSI n using the resources
allocated to NSI n in area l, an,l :=

∑
p∈Pl

apn.

Definition 2. An allocation is said to satisfy envy-freeness
if each NSI n in each area would not prefer the allocated
resources to another NSI when adjusted according to their
payments, that is, Tn(an,l) ≥ Tn(

w∗n,l

w∗m,l
am,l).

The envy freeness property embodies the notion of fair-
ness [39]. The other property that we consider here is sharing-
incentive, which ensures that the proposed mechanism out-
performs a so-called uniform allocation. To find a generic
uniform allocation, let wp∗n,i denote the payment made by
NSI n to node i for the service over path p. Consider a
uniform allocation wherein a fraction wp∗n,i/

∑
m,p′:i∈p′ w

p′∗
m,i

of different resources at node i is dedicated to NSI n for
service over path p.



Definition 3. An allocation is said to satisfy sharing-incentive
if each NSI is provided with more traffic volume compared to
the uniform allocation.

The sharing-incentive property is the key to ensure a worst-
case performance guarantee for each NSI. Satisfying this
property also may incentify different carriers/operators to pool
their resources together [39], because each of them may
forward more traffic volumes over the shared infrastructure
(when orchestrated by the proposed mechanism) compared to
the case that each of them gets an equal (weighted) share of
all the resources. We show that the envy-freeness and sharing-
incentive properties are established at the NE of the DRP
mechanism.

Theorem 3. The allocation at the NE of the DRP mechanism
satisfies both envy-freeness and sharing-incentive properties.

The proof appears in the Appendix.

V. EXTENSIONS

We may consider several possible extensions/applications
for the original resource provisioning mechanism presented
herein. For instance, one may find the proposed mecha-
nism particularly useful for network slicing in multi-layer
networks such as the integrated vertical HetNets [23] (with
aerial BSs [48], LEO satellites, etc.), owing to agility and
distributed nature of the solution. In the following we briefly
describe some important extensions to the original mechanism
of Section IV.

A. Exploiting the Capabilities at the Mobile Edge

Our proposed mechanism can be easily extended to address
the case that the service function chain at each domain com-
prises a number of sub-chains, with the possibility that some
backhaul and/or core network sub-chains can be implemented
at a domain closer to the mobile edge.

In particular, let {F1
n,F2

n,F3
n} denote the per domain

network function chain for NSI n. It is assumed that for the
last two domains Fsn = {F̃ sn, F̂ sn}, s = 2, 3, where F̂ sn should
be placed at a domain s node, while F̃ sn can be flexibly placed
at a node either in domain s or s − 1. Accordingly, we may
consider separate demand vectors, d̂pn,i and d̃pn,i, for each
sub-chain of NSI n, where dpn,i = d̂pn,i + d̃pn,i. To extend
the DRP mechanism we may redefine paths as sequence of
nodes, p = {l, i, j, k, g, h}, which host different sub-chains
of an NSI. It reduces to the original formulation (with a per-
domain service function chain), when i2 = i3 and i4 = i5. The
DRP mechanism then is implemented as before, except that
the network slice manager now bids separately for individual
sub-chains when they are located at different nodes. The DRP
mechanism may exploit this flexibility to efficiently utilize
the capabilities at the mobile edge, so as to improve the
performance for NSIs with stringent QoS/delay requirements.

B. Budget-Constrained Tenants

With the resource pricing strategy described in Sec-
tion IV-C, the resource prices might be chosen well above the

operational expenditures (i.e., µi,r > qi,r) when so many NSIs
contend for the resources of the same node. If the allocated
traffic volume to an NSI is less than its desired optimal traffic
volume, the corresponding network slice manager may intend
to make a larger bid/payment, which in turn may increase the
resource prices. This procedure may unboundedly increase the
resource prices as well as the required payments from different
NSIs. In practice, however, each network slice tenant may have
a limited budget, so that the bids may not go beyond a certain
limit. The key to account for limited budgets is to exploit
an admission control policy which limits the admitted traffic
volume in each area, so that the required payment remains in
a feasible region. Let Bn,l denote the budget for NSI n in
area l, and U ′n,l(xn,l) = (φn,l/xn,l)

αn , where φn,l represents
the admitted traffic volume. In case that wn,l > Bn,l, one
may update φn,l ← ζφn,l, ζ < 1, so as to make sure that the
payments are less than or equal to the budget.

C. Multi-resource Fair Allocation

In Section IV-E we showed that the proposed distributed
resource provisioning mechanism provides weighted propor-
tional fairness among different NSIs, wherein the weight for
each NSI n in area l is set to its payment, wn,l (see Problem 3).
The proportional fairness objective in Problem 3 is shown
to satisfy some highly desirable properties, such as envy-
freeness and sharing incentive [49]. It should be noted that the
formulation in Problem 3 is applicable for a system where all
the resources of all nodes are allocated by a central controller.
With a centralized implementation, however, there are other
properties, such as strategy proofness which are desirable to
be satisfied [39]. In particular, an allocation mechanism is said
to satisfy strategy proofness if each NSI may not be allocated
more traffic volumes when lying about its resource demands
to the centralized controller.

Dominant resource fairness (DRF) is the first multi-resource
fair allocation mechanism which satisfies strategy-proofness
in addition to the above-mentioned properties [39], when
allocating multiple types of resources from a single server. Of
all the resources requested by a network function from one
node (for each unit of traffic), its dominant resource is the
one with the highest demand when demands are expressed as
fractions of the overall resource capacities. Using DRF, each
network function receives a fair share of its respective domi-
nant resource [39]. The studies in [47], [49]–[51] investigate
the problem of multi-resource fair allocation in an environment
of heterogeneous and geographically distributed servers. Such
studies, however, address single-hop processing of the traffic
in a network of cloud computing servers, and may not be
directly applicable to end-to-end resource provisioning in a
multi-domain mobile network environment.

The study in [26] strives to extend DRF to a multi-domain
mobile network environment, wherein the traffic for each NSI
is forwarded over a certain path towards the core network.
Towards that, it identifies an end-to-end dominant resource for
each NSI, which is specified based on its end-to-end demand
vector. Then, it strives to allocate each NSI a fair share of its



respective dominant resource. Particularly, a dominant share
for NSI n over path10 p is defined as [26]

zn := xn max
i∈p

max
r

dn,i,r
Ci,r

. (28)

Then the NSI traffic volumes, {xn}, are determined so as
to maximize the minimum dominant share across different
NSIs. In case that different NSIs make different payments,
wn, one can maximize the minimum weighted dominant share,
zn/wn, across different NSIs. We refer to such an extension
to DRF as multi-domain DRF. However, as we show in the
following (and also in Section VI), the multi-domain DRF
mechanism may not satisfy the sharing-incentive property, and
also may not result in a fair allocation. Intuitively, the main
problem with this mechanism is that it may identify a resource
at a lightly loaded node (with a few NSIs passing through)
as the end-to-end dominant resource for some NSIs. Such a
resource, however, may not serve as a bottleneck over an end-
to-end routing path. In this case, a smaller share of the actual
bottleneck resource is allocated to such NSIs, which in turn
may violate the sharing incentive property.

For instance, consider the example of Fig. 2, which shows
a simple network connecting the users from two APs to a
CRAN unit. The resource capacity vector for each node,
Ci, i = 1, 2, 3, as well as the demand vector for each NSI n
passing through node i, dn,i, are shown in the figure. In this
example, the communication bandwidth of APs is identified
as the end-to-end dominant resource for each NSI. According
to the multi-domain DRF mechanism [26], one may equalize
zn for the three NSIs, which requires x2 = x3 = x1/2. It
can be observed that NSI traffic volumes can be increased up
x2 = x3 = x1/2 = 4, before the CPU turns to a bottleneck
(i.e., fully booked) at the CRAN. Evidently, the second and
third NSIs do not obtain a fair share of the bottleneck
resource (i.e., CPU of the CRAN) under the multi-domain
DRF allocation in this example. Moreover, the provisioned
capacity to each of them is less than that achievable under a
uniform allocation (where xn = 20/3, for n = 1, 2, 3).

To address this issue, we propose an extension to DRF
which is inspired by the per-server dominant share fair (PS-
DSF) allocation mechanism presented in [46], [49] for fair
resource allocation from a set of multi-resource heterogeneous
servers. Particularly, by the PS-DSF mechanism a per-server
dominant resource is identified for each network function with
respect to each server. Then, each server strives to maximize
the minimum per-server dominant share among different
network functions [46]. For fair resource provisioning in a
multi-domain mobile network environment, we may identify
a per-domain dominant resource for each NSI with respect to
each node over an end-to-end routing path. Then starting from
the last domain (i.e., the core network), at each node one may
allocate a fair-share of the per-domain dominant resource to
all NSIs which are passing through the same node. The same
procedure can be implemented at preceding domains, except
that the allocated traffic volume to each NSI is limited by the

10Here, we may drop the index p from the demand vectors, since each NSI
is presumably forwarded over a single path.

Resources: [CPU (Cores), RAM (GB),  BW (Gb/s)] 

NSIs    1 2
  3

  

𝐝𝑛,1 =  1, 2, 0.1 , 

𝐂1 = [20, 48, 2.5], 

      𝑛 = 1, 2, 3 

 
𝐝1,2 = [0.5, 1, 0.1],    

𝐝2,2 = [0.5, 1, 0.2] 

𝐂3 = [8, 16, 1] 

𝐂2 = [16, 32, 2] 

𝐝3,3 = [0.5, 1, 0.1],  

            

Fig. 2: A sample network of 2 APs, and 1 CRAN unit, providing resources
to three NSIs.

one at subsequent domains. We refer to this mechanism as Per-
Domain DRF11. For example, in Fig. 2, CPU (bandwidth) is
identified as the dominant resource for each NSI at the CRAN
unit (each of the APs). Starting from the CRAN, each of the
NSIs receives a fair share of the per-domain dominant resource
(i.e., CPU), which results in xn = 20/3, n = 1, 2, 3. Here the
traffic volume for NSIs at each of the APs is limited by that at
the CRAN (i.e., the end-to-end bottleneck), so the end-to-end
allocation for each NSI is given by xn = 20/3, n = 1, 2, 3.

In this particular example, the proportional fairness metric
of Problem 3 results in the same allocation (as the per-
domain DRF mechanism) when setting OPEX to zero and
assuming the same weights (i.e., payments) for all NSIs.
By implementing the DRP mechanism, however, each of the
NSIs would make a (different) payment which maximizes its
payoff function. In Section VI we compare the performance of
the proposed DRP mechanism (or equivalently the weighted
proportional fairness metric of Problem 3) against the multi-
domain DRF, and per-domain DRF, respectively, while setting
the weight for each NSI as its payment under the DRP
mechanism.

VI. PERFORMANCE EVALUATION

A. Simulation Setup

In this section we evaluate the performance of the DRP
mechanism by implementing the proposed algorithm in MAT-
LAB, and comparing its performance against some existing
solutions in the literature. For the sake of numerical eval-
uations, we consider a multi-domain network, as shown in
Fig. 1, comprising ten distributed RAN units (e.g., APs),
two CRAN units, and a core network data center. In the
RAN segment, we consider five areas, wherein 2 different
APs are assumed in each area. Particularly, it is assumed

11It can be shown that the per-domain DRF mechanism inherits all of the
properties which are satisfied by PS-DSD mechanism [49]. The details of
such analysis, however, are out of the scope of this paper.



that APs are of 2 different types, each providing four types
of resources that are CPU, RAM, memory bandwidth and
communication bandwidth. The resource capacities for the two
types of APs, and for the CRAN and CN data centers are
given in Table III. The resource capacities for each CRAN
data center (and CN data center, respectively) are equivalent
to 3 instances of Amazon EC2 C5.4 (one instance of Amazon
EC2 C5n.18). The operational costs are taken according to a
uniform distribution in the range of [0.5, 1]¢ for unit of RAM
and memory bandwidth, in the range of [1, 2]¢ for 1 core of
CPU, and in the range of [1, 10]¢ for 1Gb/s of communication
bandwidth allocated over unit of time. It is assumed that APs in
areas 2, 3, and 4 have connections to both CRAN units, while
the APs in area 1 (area 5, respectively) are connected only
to the first CRAN (second CRAN) unit. The communication
bandwidth at each AP represents the maximum achievable
data rate when using the best modulation and coding scheme
(i.e, the nominal capacity). Depending on the performance
requirements and or (mid-term) feedbacks from the users in
a certain area, however, some NSIs may require lower order
modulation and coding schemes, or particular beam-forming
and or MIMO transmission schemes which possibly result in
a lower (average) achievable data rate. Such complexities can
be flexibly reflected in the demand vector for different NSIs.
The demand vector for each NSI is assumed to be fixed in one
instantiation of the game. However, it may vary in different
instantiations to capture (mid-term) fluctuations in the RAN
environment.

Since network slicing is rather a new concept, there are
no real-world traces publicly available to use. So, as in [26],
the demand vector (for 100 Mb/s of traffic) is generated
independently for each NSI n, with the values taken ac-
cording to independent uniform distributions in the range
of coeff1 × [0.4, 0.8] cores for CPU, in the range of [1, 2]
GB for RAM, in the range of coeff2 × [50, 100] Mb/s for
communication bandwidth, and in the range of [10, 20] Mb/s
for the memory bandwidth. Independency of the demand
vector for various NSIs and across different elements ensures
heterogeneity in the generated data-set which is the most
important requirement to synthesize a multi-resource data-
set [39], [49]. The parameter coeff1 is taken to be 2 for
demands at the RAN (representing more intensive processing
at the RAN), and 1 otherwise. The parameter coeff2 is taken
randomly from the set {1, 2, 4, 6} at the RAN for each NSI,
and is chosen to be 2 at other network segments. The utility
function for each NSI n, Un,l(z), is chosen from the class
of concave utility functions with the derivative (i.e., marginal
benefit) described as U ′n,l(z) = (φn,l/z)

αn [43], [44]. The
parameter αn determines the shape of the utility function
(or the marginal benefit) for each NSI. The parameter φn,l
may present the traffic load for each NSI n. Unless otherwise
stated, the parameter αn for each NSI n is chosen according
to a uniform distribution in the range of [1, 2]. We study
the performance of the proposed mechanism under different
loading conditions (as described in Section VI-B). The budget
for each NSI is chosen to be $100 in each area.

TABLE III: Data-center/AP resource capacities

Node Type CPU RAM Memory BW Comm BW
(# cores) (GBytes) (Gb/s) (Gb/s)

AP Type 1 16 32 10 1
AP Type 2 8 16 5 1

CRAN 48 384 4×10 7
CN 96 384 2×50 14

B. Simulation Results

First we study the convergence behavior of the proposed dis-
tributed resource provisioning mechanism. Next, we compare
the performance of the DRP mechanism (in terms of the pro-
visioned capacity, resource utilization and other performance
metrics such as OPEX) against some heuristic and/or recently
developed work in the literature, which show the enhanced
performance of the proposed solution.

Fig. 3 shows the number of iterations that are required
for the DRP mechanism to converge to an ε-boundary of
the optimal solution to Problem 1 under different loading
conditions. In this experiment, the parameter αn for each NSI
is taken according to a uniform distribution in the range of
[1, 2]. Unless otherwise stated, we consider a fixed number of
N = 50 NSIs. The parameter φn,l = φ (representing the traffic
demand) for different NSIs is chosen under the high-loading
condition such that a fully booked resource (i.e., bottleneck)
exists on each routing path. The traffic demand is reduced
to half (and one fourth, respectively) for mid-loading (low-
loading) condition. We also consider another high-loading
condition where we assume 2N = 100 number of NSIs but φn
is halved. It is observed that a precision of 10−3 is achieved
in the worst case (i.e., under a high loading condition) within
only a few hundreds of iterations, which only takes a few
milliseconds when implemented in such a cluster with tens of
servers. Our observations indicate that the convergence rate
mainly depends on the overall traffic demand. Hence, the
convergence rate for a high loading regime remains the same
when the number of NSIs is doubled but φn is halved (see
Fig. 3).

It is worth noting that the proposed mechanism converges
within only a few (less than 10) iterations under a low-loading
condition. Intuitively, there is less contention for different
resources under lower loading conditions, resulting in partially
booked resources with a fixed pricing at almost all nodes.
With less variations in pricing, the proposed auction game
converges more rapidly to the optimal solution under lower
loading conditions.

In another experiment reported in Fig. 4, we study the
convergence performance of the DRP mechanism under high
loading conditions, while the parameter αn for each NSI
is taken in two different ranges. It is observed that the
convergence facilitates when αn takes on values in a tighter
range. Intuitively, when αn takes on values in the range of
[1, 1.5] (compared to taking values in [1, 2]), the shape of
utility function and also the marginal benefit for different NSIs
get more similar and closer to each other. It means that the
payments from different NSIs will be in a tighter range. Also,
the NSIs would be making a smaller change in their payments
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Fig. 3: The required number of iterations for convergence of
the DRP mechanism to an ε-boundary of the optimal solution
to Problem 1 under different loading conditions. The parameter
αn for each NSI is taken according to a uniform distribution
in the range of [1, 2].

in response to a change in the resource prices. This implies
that a stable price (or the NE) can be established within a
fewer number of iterations.
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Fig. 4: The required number of iterations for convergence of
the DRP mechanism to an ε-boundary of the optimal solution
to Problem 1 under high loading conditions. The convergence
performance is compared when αn is taken (according to a
uniform distribution) in two different ranges.

To evaluate the performance of the proposed DRP mecha-
nism in terms of resource utilization, we compare it against
some heuristic and greedy solutions which strive to allocate
the whole resources according to some fairness criteria. In
particular, we compare the DRP mechanism with the multi-
domain DRF mechanism which allocates resources to different
NSIs by employing dominant resource fairness (DRF [39])
across different domains [26] (c.f. Section V-C). We show
that, however, the multi-domain DRF mechanism does not
satisfy the sharing incentive property. So, we also implement
an extension to DRF, referred to as per-domain DRF (c.f.
Section V-C), which is shown to satisfy the sharing-incentive

property. We further compare the performance of these three
mechanisms (i.e., DRP, multi-domain DRF, and per-domain
DRF) with a generic uniform allocation (described in Sec-
tion IV-E).

To observe how each of the above-described mechanisms
performs compared to the uniform allocation, we find the
allocated traffic volume to each NSI (under each allocation
mechanism), and normalize it by the allocated traffic under
the uniform allocation. Such a parameter, denoted by rn for
each NSI n, represents the improvement ratio by which the
allocated traffic to NSI n is increased compared to the uniform
allocation. In Fig. 5 we plot rn for different NSIs, when
implementing each of these mechanism for the same NSIs
under a high loading condition. It can be observed that with
multi-domain DRF, the allocated traffic volume for two NSIs
(index 21 and 24) is less than their allocated traffic volume
under the uniform allocation. It means that the multi-domain
DRF does not satisfy the sharing incentive property. However,
it is observed that both of the DRP and per-domain DRF
mechanisms out-perform the uniform allocation. To affirm
this observation, we repeat the same experiment for 100
times, generating demand profiles randomly each time. Then,
we find the empirical probability that the improvement ratio
for an arbitrary NSI is greater than certain values, that is
P (R > r). Fig. 6 shows that both of the DRP and per-domain
DRF mechanisms always outperform the uniform allocation.
Moreover, the DRP mechanism is shown to provision (on
average) more traffic volumes to different NSIs.
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Fig. 5: Comparing the allocated traffic volume to each NSI
under different resource provisioning mechanisms when nor-
malized by the allocated traffic volume under the uniform
allocation.

Particularly, as plotted in Fig. 7, the end-to-end capacity
provisioned to each NSI (under a high-loading condition) is
enhanced under the DRP mechanism by 95% compared to
the uniform allocation, and by at least 10% compared to the
two other schemes. The end-to-end queuing delay for each
NSI, on the other hand, depends on the provisioned capacity
as well as the average traffic load that is admitted to the
network. Specifically, if ρn,l denotes the average traffic load
that is admitted for an NSI in a particular area, the end-to-end
queuing delay is conversely proportional to xn,l − ρn,l [45].
Indeed, a detailed quantitative analysis of delay depends on the
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Fig. 7: The average improvement ratio of the end-to-end
capacity provisioned to each NSI compared to the uniform
allocation.

admission and flow control policy, as well as other packet-level
networking modules (including traffic shaping, packet segmen-
tation, aggregation, or duplication functionalities), which are
out of the scope of this paper. Nevertheless, we can perform
a comparative analysis for the end-to-end delay, comparing
every two mechanisms while considering a certain traffic
load for each NSI. Specifically, assume that the traffic load
for each NSI is set to 95% of the (minimum) capacity that
can be provisioned under the DRP and every other resource
provisioning mechanism. The improvement ratio of the end-to-
end delay for the DRP mechanism compared to other schemes
is summarized in Table IV. Indeed, an improvement of 10
to 15% in the capacity provisioned by the DRP mechanism
results in reducing the end-to-end queuing delay by a factor
of 3 to 4 (compared to the per-domain or multi-domain DRF)
under a high-loading condition.

To better observe the efficiency of the DRP mechanism in
utilizing different resources, the resource utilization that is
achieved on average across all nodes under different mecha-
nisms in a high loading condition is shown in Fig. 8. The av-
erage resource utilization over different nodes in each domain

TABLE IV: The average improvement ratio for the end-to-end
delay of the DRP mechanism compared to other schemes.

Delay Improvement Ratio Uniform MD-DRF PD-DRF
DRP over other schemes 19.94 4.08 3.24

is also shown in Fig. 9-11, respectively. All of the results are
averaged over 100 experiments. The 95% confidence interval
is shown on the top of each bar graph. Our observations
indicate that at least one of the resources (either CPU or
communication bandwidth) is fully booked over each node
in Domain 1 under each of the DRP, multi-domain DRF,
and per-domain DRF mechanisms. It means that there is a
bottleneck (imposed by the limited resource capacities) on
each routing path under a high loading condition. Despite the
greedy nature of the per-domain DRF and multi-domain DRF
mechanisms, it is observed that the average resource utilization
that is achieved by the DRP mechanism is increased by around
10% for all of the resources compared to the per-domain DRF
and multi-domain DRF mechanisms, and by 20% compared
to the uniform allocation (see Fig. 8).
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Fig. 8: The resource utilization when averaged over differ-
ent nodes and over 100 experiments for different allocation
mechanisms (from left to the right: DRP, multi-domain DRF,
per-domain DRF, and uniform allocation) in a high-loading
condition.

Another observation that we make here is on the operational
expenditures that are imposed (on average) to the network for
provisioning each unit of traffic. The DRP mechanism may
limit the allocated resources from different nodes in a low-
loading condition in a way that the operational expenditures
are covered by the payment from different NSIs. Hence, it
may not be fair to compare the absolute value of OPEX
(which is considerably reduced by the DRP in a low loading
condition), against greedy mechanisms such as multi-domain
DRF or per-domain DRF. To make a fair comparison, we
find the average operational expenditures for each unit of
traffic under different mechanisms in low-loading and high
loading conditions. As shown in Fig. 12, the per unit OPEX is
reduced by the DRP mechanism under both low-loading and
high-loading conditions. While the DRP mechanism makes
a better utilization of different resources in a high-loading
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Fig. 9: The resource utilization that is achieved on average
over different nodes in Domain 1 (i.e., RAN) under different
allocation mechanisms.
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Fig. 10: The resource utilization that is achieved on average
over Domain 2 data centers under different allocation mecha-
nisms.
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Fig. 11: The average resource utilization for the core network
data center under different allocation mechanisms.

condition, yet it results in less OPEX for each unit of traffic,
owing to the optimal routing decisions. The DRP mechanism
results in a more considerable reduction in per unit OPEX

in a low loading condition. Intuitively, the DRP mechanism
may throttle the allocated resources of costly nodes in a low-
loading condition, while allocating more resources from nodes
with low operational costs. Making jointly optimal routing and
resource provisioning decisions, the DRP mechanism reduces
the per unit OPEX by 12% compared to the per-domain
DRF and multi-domain DRF in a low loading condition (see
Fig. 12). It is worth noting that OPEX for other mechanisms
does not change much with respect to loading conditions.
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Fig. 12: The average operational expenditures to provision one
unit of traffic under different allocation mechanisms.

VII. CONCLUSION

We proposed an agile and distributed mechanism for end-to-
end resource provisioning to NSIs in a multi-domain mobile
network environment. In the proposed solution, each network
slice tenant finds the optimal traffic volumes for different paths
(comprising different chains-of-VNFs) so as to maximize a
local payoff function. Based on the solution to the network
slice optimization problem, each network slice tenant decides
on the amount of resources which should be acquired from
the service provider(s) in each domain, and accordingly bids
for the required resources. Given the payments from different
NSIs, each service provider decides on the resource prices,
and then allocates resources to different NSIs. We showed that
such an auction game has a unique NE (in terms of NSI traffic
volumes), which maximizes social welfare among network
slice tenants, while minimizing OPEX for service providers.
Making optimal routing and resource provisioning decisions
while employing a cost-aware resource pricing scheme, the
DRP mechanism is shown to reduce the OPEX for provision-
ing each unit of traffic, while enhancing the resource utilization
of the infrastructure network at the same time. The proposed
DRP mechanism is distinguished from the existing works in
the literature, owing to generality of the model, agility of the
solution, and the possibility for a distributed implementation
without sharing any private information among different par-
ties. The DRP mechanism is superior (in terms of resource
utilization and OPEX) not only to the existing solutions,
but also their enhanced versions proposed in this study. An
extension wherein the network slice manager integrates the
achievable QoS to the NSI’s utility function can be part of
the future work. Also a thorough analysis on the convergence



behavior of the DRP mechanism for a variety of practical
utility functions can be addressed in a future study.
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APPENDIX

Proof of Theorem 1. Problem 1 is a convex optimization
problem. An allocation is an optimal solution to this problem
if and only if there exists a set of multipliers λi,r, and νpn
(corresponding to the constraints in (5) and (6), respectively)
so that KKT conditions are satisfied12 [52]

∂Un,l(xn,l)

∂xn,l
=
∑
i∈p

∑
r

(λi,r + qi,r)d
p
n,i,r − ν

p
n, ∀n, p, (29)

0 ≤ Ci,r −
∑
n

∑
p:i∈p

xpnd
p
n,i,r ⊥ λi,r ≥ 0, ∀i, r, (30)

0 ≤ xpn ⊥ νpn ≥ 0, ∀n, p. (31)

When x is an NE for DRP mechanism in conjunction with
some resource prices {µi,r}, it will be an optimal solution to
Problem 2 for every NSI n. Problem 2 is a convex optimization
problem in terms of xn for each NSI n. It follows that xn is
an optimal solution to Problem 2 if (and only if) there exists
a set of multipliers {vpn} so that

∂Un,l(xn,l)

∂xn,l
=
∑
i∈p

∑
r

µi,rd
p
n,i,r − v

p
n, ∀p, (32)

0 ≤ xpn ⊥ vpn ≥ 0, ∀p, (33)

where µi,r is set according to (14), so µi,r ≥ qi,r, ∀i, r.
We show that the conditions in (29)-(31) are satisfied when
choosing λi,r := µi,r − qi,r, and νpn = vpn. It means that
we may find a set of multipliers in conjunction with each
NE of DRP mechanism, so that the KKT conditions in
(29)-(31) are satisfied. This, in turn, implies that each NE
of DRP mechanism is an optimal solution to Problem 1.
It is straightforward to reach (29) and (31) when choosing
λi,r := µi,r − qi,r ≥ 0, and νpn = vpn. To observe (30), one

12The notation x ⊥ y means xy = 0.

may substitute for wn,i,r from (13) into (14), which results in
an updated resource price,

µ̂i,r = max{qi,r,
∑
n

∑
p:i∈p x

p
nd

p
n,i,r

Ci,r
µi,r}. (34)

At the NE we should have µ̂i,r = µi,r, ∀i, r. This is estab-
lished only if

∑
n

∑
p:i∈p x

p
nd

p
n,i,r ≤ Ci,r for every node i and

resource r with µi,r = qi,r, and
∑
n

∑
p:i∈p x

p
nd

p
n,i,r = Ci,r

for every node i and resource r with µi,r > qi,r. This is
exactly equivalent to the condition in (30) when choosing
λi,r = µi,r − qi,r.

Now, consider an allocation x := {xpn | n ∈ N , p ∈ Pl, l =
1, 2, .., A}, along with a set of multipliers which satisfy the
conditions in (29)-(31). We show that x is an NE for DRP
mechanism in conjunction with the resource prices chosen as
µi,r := qi,r + λi,r. To have an NE, xn should be an optimal
solution to Problem 2 for every NSI n. On the other hand, xn
is an optimal solution to Problem 2, if it satisfies conditions in
(32)-(33), which is the case when choosing µi,r := qi,r+λi,r,
and vpn = νpn (c.f. (29) and (31)). Finally, the condition in
(30) implies that the resource prices remain steady in DRP
mechanism (i.e., µ̂i,r = µi,r), when choosing µi,r = qi,r+λi,r
(c.f. (34)).

Proof of Theorem 2. Problem 3 describes a convex optimiza-
tion problem. An allocation x is a solution to this problem
if and only if there exists a set of multipliers λi,r, and νpn
(corresponding to the constraints in (26) and (27), respectively)
so that KKT conditions are satisfied [52]

w∗n,l
xn,l

=
∑
i∈p

∑
r

(λi,r + qi,r)d
p
n,i,r − ν

p
n, ∀n, p, (35)

0 ≤ Ci,r −
∑
n

∑
p:i∈p

xpnd
p
n,i,r ⊥ λi,r ≥ 0, ∀i, r, (36)

0 ≤ xpn ⊥ νpn ≥ 0, ∀n, p. (37)

It should be noted that w∗n,l is the payment made by NSI n
in area l, when DRP mechanism is in an NE equilibrium. It
means that (c.f. (24))

w∗n,l = x∗n,l
∑
i∈p

∑
r

(λ∗i,r + qi,r)d
p
n,i,r, p ∈ P

∗
n,l, (38)

where x∗n,l is the solution at the NE, and P∗n,l is the set of
paths with minimum transmission cost for NSI n in area l.
According to Theorem 1, x∗ is a solution to (29)-(31) in
conjunction with {λ∗i,r} and {νp∗n }. It follows from (38) and
(29)-(31) that x∗ is also a solution to (35)-(37) when choosing
λi,r = λ∗i,r, ∀i, r and νpn = νp∗n , ∀n, p. In the same way, it
can be observed that every solution to Problem 3 (satisfying
the conditions in (29)-(31)) is a solution to Problem 1.

Proof of Theorem 3. According to Theorem 2, an allocation is
an NE for the DRP mechanism if and only if it is a solution to
Problem 3. Let λi,r, and νpn, respectively, denote the Lagrange
multipliers corresponding to the constraints in (26) and (27).
For every path p ∈ Pl and NSI n it follows that

w∗n,l
xn,l

=
∑
i∈p

∑
r

(λi,r + qi,r)d
p
n,i,r − ν

p
n, (39)



where νpn = 0, when xpn > 0.
To show envy-freeness, we show that each NSI n would not

prefer the allocated resources to another NSI m over any path
p, when adjusted according to their payments. The resources
allocated from data center i to NSI m for xpm unit of traffic is
given by [xpmd

p
m,i,r], r = 1, 2, ...,M . The payment of NSI m

for this amount of traffic is given by wp∗m := xpmw
∗
m,l/xm,l.

Such resources are preferred by NSI n if

xpnd
p
n,i,r

wp∗n
<
xpmd

p
m,i,r

wp∗m
, ∀r, i ∈ p, (40)

or equivalently (by substituting for wp∗n and wp∗m ),

xn,ld
p
n,i,r

w∗n,l
<
xm,ld

p
m,i,r

w∗m,l
, ∀r, i ∈ p. (41)

Consider some path p for which xpm > 0, so that νpm = 0.
It follows from (39) that

w∗m,l
xm,l

=
∑
i∈p

∑
r

µi,rd
p
m,i,r, (42)

w∗n,l
xn,l

≤
∑
i∈p

∑
r

µi,rd
p
n,i,r, (43)

where µi,r := λi,r + qi,r. Multiplying both sides of (43) by
xn,l/w

∗
n,l, and using the inequality in (41), result in

1 ≤
∑
i∈p

∑
r

µi,r
xn,l
w∗n,l

dpn,i,r (44)

<
∑
i∈p

∑
r

µi,r
xm,l
w∗m,l

dpm,i,r = 1, (45)

which is a contradiction.
Consider an NE resulting from the DRP mechanism. To

prove the sharing incentive property we need to show that
each NSI is provided with more traffic volume (under the
NE) compared to the uniform allocation. To characterize the
uniform allocation, let define γpn,i as the (maximum) volume
of traffic which can be processed for NSI n through path p
when monopolizing the whole resources allocated from node
i ∈ p under the NE. That is,

γpn,i := min
r

ηi,rCi,r
dpn,i,r

, (46)

where ηi,r is the portion of resource r that is utilized at the
NE. The (maximum) volume of traffic which can be processed
for NSI n through path p is given by

xp,uni
n := min

i∈p

wp∗n,i
W ∗i

γpn,i, (47)

where

W ∗i :=
∑

m,p′:i∈p′
wp∗n,i. (48)

In the following we show that xpn ≥ xp,uni
n for every path

p ∈ Pl with wp∗n > 0. In particular, for every path p with
wp∗n > 0, if we multiply both sides of (39) by wp∗n,iγ

p
n,i/W

∗
i ,

for every node i ∈ p, it follows that

γpn,i
wp∗n,i
W ∗i

w∗n,l
xn,l

≤ wp∗n,i + γpn,i
wp∗n,i
W ∗i

∑
i′∈p,i′ 6=i

∑
r

µi′,rd
p
n,i′,r, (49)

where the inequality follows from the fact that γpn,id
p
n,i,r ≤

ηi,rCi,r, ∀r (c.f. (46)), and
∑
r µi,rηi,rCi,r = W ∗i . In the

same way (multiplying both sides of (49) by wp∗n,i′γ
p
n,i′/W

∗
i′ ),

it can be observed that

min
i∈p
{γpn,i

wp∗n,i
W ∗i
}
w∗n,l
xn,l

≤
∑
i∈p

wp∗n,i = wp∗n . (50)

On the other hand,
w∗n,l

xn,l
=

wp∗
n

xp
n

for every path p ∈ Pl with
wp∗n > 0. Hence,

wp∗n
xpn

xp,uni
n ≤ wp∗n , (51)

or, xpn ≥ xp,uni
n .
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